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Abstract 23 

Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), 24 

which are assigned distinct environmental tolerances and replace one another progressively 25 

along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait 26 

variation along gradients is thus driven by PFT replacement. But empirical studies have 27 
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revealed “universal” scaling relationships (quantitative trait variations with climate that are 1 

similar within and between species, PFTs and communities); and continuous, adaptive trait 2 

variation has been proposed to replace PFTs as the basis for next-generation DGVMs. 3 

Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in 4 

China with a view to understanding the relative importance of PFT replacement versus 5 

continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry 6 

matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 7 

sites ranging from temperate to tropical climates and from dense forests to deserts. 8 

Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were 9 

measured at 47 sites. Generalized linear models were used to relate log-transformed trait 10 

values to growing-season temperature and moisture indices, with or without PFT identity as a 11 

predictor, and to test for differences in trait responses among PFTs. 12 

Continuous trait variation was found to be ubiquitous. Responses to moisture availability 13 

were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) 14 

of forbs and grasses responded differently from woody plants. SLA and LDMC responses to 15 

temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at 16 

the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were 17 

generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea 18 

and Karea declined with temperature, but Parea increased with temperature.  19 

Although the adaptive nature of many of these trait-climate relationships is understood 20 

qualitatively, a key challenge for modelling is to predict them quantitatively. Models must 21 

take into account that community-level responses to climatic gradients can be influenced by 22 

shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which 23 

may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts 24 

varies among traits, being important for biophysical traits but less so for physiological and 25 

chemical traits. Finally, models should take account of the diversity of trait values that is 26 

found in all sites and PFTs, representing the “pool” of variation that is locally available for 27 

the natural adaptation of ecosystem function to environmental change. 28 

29 
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1 Introduction 1 

The plant functional type (PFT) concept has been important in the development of dynamic 2 

global vegetation models (DGVMs), which combine vegetation dynamics (changes in 3 

vegetation composition, expressed as abundances of PFTs) at the grid-cell scale with 4 

hydrological and biogeochemical processes driven by the physical environment and 5 

modulated by PFT characteristics (Prentice et al., 2007; Prentice and Cowling, 2013). PFT 6 

classifications vary among models but nearly all include distinctions of life form (at least, 7 

woody versus herbaceous plants), leaf habit (evergreen or deciduous) and leaf form (broad or 8 

needle-leaves). Some models also distinguish climatic tolerance classes, related primarily to 9 

different overwintering mechanisms for woody plants (Harrison et al., 2010), and most 10 

distinguish C4 plants. Usually a fixed set of properties (parameter values) is assigned to each 11 

PFT. This expedient simplifies modelling, but it is a potential weakness because it disregards 12 

continuous adaptive variation within PFTs; the fact that trait variation within PFTs often 13 

exceeds trait differences between PFTs; and the possibility that such variation is “universal” – 14 

that is, manifested similarly within and between species, PFTs and communities. Neglect of 15 

continuous adaptive variation in models could lead to underestimation of the potential for 16 

vegetation to adapt to environmental change and generally incorrect assessments of the 17 

response of vegetation to climate (Kleidon et al., 2007; Scheiter and Higgins, 2009) and 18 

vegetation feedbacks to climate (Alton et al., 2011).  19 

Numerous observational studies have documented continuous relationships between 20 

quantitative plant traits and climate (e.g. Werger and Ellenbroek, 1978; Díaz et al., 1998; 21 

Fonseca et al., 2000; Niinemets, 2001; Wright and Westoby, 2002; Wright et al., 2004, 2005a, 22 

b; Swenson & Enquist, 2007; Reich et al., 2007; Cornwell and Ackerly, 2009; Meng et al., 23 

2009; Ordoñez et al., 2009, 2010; Albert et al., 2010; Prentice et al., 2011; Zhang et al., 24 

2012). Analyses of trait-environment relationships have been motivated partly by the 25 

objective of improving the representation of plant structural and functional diversity in 26 

DGVMs (Woodward and Cramer, 1996; Díaz and Cabido, 1997; Lavorel et al., 2007; Kattge 27 

et al., 2011). In a new strand of DGVM development, modelling quantitative trait values 28 

rather than PFT abundances is the central objective (Kleidon et al., 2009; van Bodegom et al., 29 

2012, 2014; Scheiter et al., 2013; Fyllas et al., 2014). Trait-based modelling can take better 30 

advantage of the wealth of georeferenced data now available on plant functional traits (Kattge 31 

et al., 2011) as well as providing a more realistic representation of functional diversity and 32 
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competition in plant communities (Scheiter et al., 2013) On the other hand, trait-environment 1 

relationships have been shown to differ between PFTs in some cases (e.g. Barboni et al., 2 

2004; He et al., 2006; Meng et al., 2009), implying that not all such relationships are 3 

universal; some adaptive trait variation might depend on the values of other traits, including 4 

those conventionally used to define PFTs. Moreover there are systematic leaf-trait differences 5 

between PFTs and in some studies these have  been found to account for a substantial fraction 6 

of the total climatically related variation in leaf traits (e.g. Reich et al., 2007; Ordoñez et al., 7 

2009, 2010; He et al., 2010). Thus, observational studies have reached somewhat varying 8 

conclusions about the utility of PFT distinctions in predicting adaptive trait variation along 9 

environmental gradients.  10 

In this work we address the following questions that are important for modelling, and not 11 

definitively resolved based on the current literature. (1) To what extent are quantitative trait-12 

environment relationships universal? Alternatively, (2) are there systematic differences in the 13 

trait-environment relationships shown by different PFTs? (3) To what extent are variations in 14 

traits along environmental gradients accounted for by variation within PFTs, as opposed to 15 

successive replacements of one PFT by another? (4) What fractions of total trait variation are 16 

linked to climate, and/or to PFT membership, as opposed to being unexplained by either 17 

climate or PFTs? We address these questions with an analysis of variations in leaf traits in 18 

plant communities sampled on long gradients of temperature and moisture availability in 19 

China (Fig. 1). The data set consists of >11,000 quantitative leaf trait determinations on all of 20 

the species present at 80 sites (1549 species-site combinations; between 1 and 59 (median 16) 21 

species sampled per site), with a wide geographic and climatic spread as shown in Fig. 1. We 22 

consider biophysical traits (leaf area: LA, specific leaf area: SLA and leaf dry matter content: 23 

LDMC), field-measured chlorophyll fluorescence traits (the ratio of variable fluorescence to 24 

maximal fluorescence: Fv/Fm and the quantum yield of PhotoSystem II: QY), and chemical 25 

traits: carbon content by mass (Cmass), and nitrogen (N), phosphorus (P) and potassium (K) 26 

contents, expressed on both an area and a mass basis. Thus we consider 12 traits in all. 27 

Although area-based nutrient contents are simply derived from mass-based nutrient contents 28 

and SLA, we analyse them separately because their functional significance is different – for 29 

example, leaf N comprises a photosynthetic component that is expected to be proportional to 30 

LA and a structural component inversely proportional to SLA (Niinements and Tenhunen 31 

1997). LA, SLA, LDMC and N were measured at all sites; the other traits were measured at 32 

the 47 sites in eastern China, which cover most of the climatic range of the full data set, 33 
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except for the driest climates in the west. Adopting a conventional PFT classification, we 1 

analyse variations of each trait with bioclimatic temperature and moisture indices (Harrison et 2 

al., 2010) within and across PFTs.  3 

 4 

2 Materials and methods 5 

2.1 Sampling sites 6 

The sites (Fig. 1, Table S1) represent variation along the major gradients in temperature and 7 

moisture and include a good sampling of the range of vegetation types present in China. 8 

Thirty-three sites in Xinjiang Autonomous Region in western China sample the extreme dry 9 

end of the moisture gradient, with annual rainfall between 12 and 468 mm (160 mm on 10 

average). Thirty-three sites on the Northeast China Transect (NECT: Ni and Wang, 2004) lie 11 

on an aridity gradient from closed forests with annual rainfall > 700 mm in the east, through 12 

grasslands to desert with annual rainfall of < 150 mm in the west. Fourteen sites located in 13 

forest reserves on the North-South Transect of Eastern China (NSTEC: Gao et al., 2003) have 14 

greater annual rainfall and sample a range from temperate climates in the north to warm-15 

temperate/subtropical climates in the south. The NSTEC sites are also differentiated in terms 16 

of rainfall, the sites in the east at any given latitude being wetter than those in the west. 17 

Sampling took place during three summer field campaigns, in 2005 (Xinjiang), 2006 (NECT) 18 

and 2007 (NSTEC). All sites were occupied by visually homogeneous uncultivated vegetation 19 

with minimal signs of disturbance. Species composition and vegetation structure were 20 

surveyed at each site. A checklist of vascular species at each site was created and field 21 

measurements were made on all the species for which sufficient material could be sampled. 22 

Species sampled are listed in Table S2. 23 

2.2 Chlorophyll fluorescence measurements 24 

Fv/Fm and QY were measured using a FluorPen FP100 (Photon Systems Instruments, Czech 25 

Republic). Fv/Fm measures the potential rate of photosynthetic electron transport while QY 26 

measures the actual rate. QY is correlated with photosynthetic rate, although it also includes 27 

the diversion of electrons to non-photosynthetic activities such as the elimination of reactive 28 

oxygen species (Cavender-Bares and Bazzaz, 2004).  29 
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2.3 Foliage sampling and analysis 1 

At least 10 g of leaves were collected for each species, except for a few species with very 2 

small leaves at the driest sites, where at least 2 g of leaves were collected. Sunlit leaves of tree 3 

species were obtained with long-handled twig shears. The samples were subdivided for the 4 

measurement of specific leaf area (SLA), leaf dry matter content (LDMC) and C, N, P and K 5 

contents. The measurements used are averages of three replicates. Leaf area (LA) was 6 

determined by scanning three replicate sets of five leaves (or more in the case of small leaves, 7 

to make up a total area ≥ 20 cm2 per replicate) with a laser scanner. Areas were measured 8 

using Photoshop on the scanned images. Leaf fresh weight was measured in the field. Dry 9 

weight was obtained after air-drying for several days and then oven-drying at 75°C for 48 10 

hours. Leaf C was measured by the potassium dichromate volumetry method (e.g. Slepetiene 11 

et al., 2008) and leaf N by the microkjeldahl method (e.g. Bremner, 1960). Leaf P was 12 

analyzed colorimetrically (Shimadzu UV-2550). Leaf K was measured by Flame Atomic 13 

Emission Spectrophotometry (PE 5100 PC). 14 

2.4 Climate data and analysis 15 

Mean monthly values of temperature, precipitation and fractional sunshine hours were 16 

obtained from 1814 meteorological stations (China Meteorological Administration, 17 

unpublished) and interpolated to a 10-km grid using ANUSPLIN 4.36 (Hutchinson and 18 

Hancock, 2006) with the help of a digital elevation model (Farr et al., 2007). Mean annual 19 

temperature (MAT) and precipitation (MAP), mean winter (PDJF) and summer (PJJA) 20 

precipitation and of precipitation seasonality and timing (defined as in Prentice et al., 2011) 21 

were calculated for each site. Bioclimatic variables were derived as in Gallego-Sala et al. 22 

(2010): mean temperature of the coldest month (MTCO) and warmest month (MTWA), 23 

growing degree days above 0°C (GDD0), photosynthetically active radiation during the 24 

growing season (PAR0), annual equilibrium evapotranspiration (EET), Moisture Index (MI = 25 

MAP/EET), annual actual evapotranspiration (AET) and the Cramer-Prentice α index of 26 

plant-available soil moisture (α = AET/EET) (Cramer and Prentice, 1988). Available water 27 

holding capacity (AWHC) values for the calculation of α were assigned following Prentice et 28 

al. (2011), using sand, silt and clay fractions digitized from Shi et al. (2004). 29 
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Principal components analysis was performed on standardized climate variables in SPSS. We 1 

analysed climate gradients for China as a whole, based on data from 89 623 10-km grid cells, 2 

and separately using just the 80 grid cells that included the sampling sites. 3 

2.5 Plant functional types (PFTs) 4 

Plant species were classified as follows: trees (single-stemmed, maximum height > 2 m, 5 

subdivided as evergreen broad-leaved, evergreen needle-leaved and deciduous broad-leaved), 6 

shrubs (multi-stemmed with maximum height between 50 cm and 2 m, subdivided as 7 

evergreen and deciduous), erect dwarf shrubs (multi-stemmed with maximum height < 50 8 

cm), lianas (woody climbing plants with perennial above-ground biomass), climbers (non-9 

woody climbing plants with annual above-ground biomass), forbs, grasses, geophytes and 10 

ferns. Climbers and ferns were not included in the statistical analyses, however, as there were 11 

too few species of each. The optimum and tolerance of each PFT in terms of α and GDD0, 12 

recommended by Harrison et al. (2010) as useful and globally applicable indices of effective 13 

moisture availability and warmth for plants, were calculated non-parametrically as follows 14 

(Fig. 2): the range of each variable was divided into bins, and average abundance values were 15 

calculated for the sites within each bin. The widths of the bins were selected to yield visually 16 

smooth frequency distributions of abundance for each PFT and climate variable. The 17 

optimum was calculated as the mean of the climate variable in the bins where the PFT was 18 

present, weighted by its average abundance in the bins. The tolerance range was calculated 19 

similarly, as the standard deviation of the climate variable weighted by average abundance.  20 

2.6 Generalized linear models 21 

Generalized linear models (GLMs: Nelder and Wedderburn, 1972; Nelder and Baker, 2006) 22 

were used to quantify the relationships of trait values to climate variables (α and GDD0), to 23 

avoid spurious bivariate relationships that can arise when (as here) the predictor variables are 24 

not perfectly independent and to allow the inclusion of qualitative variables (PFTs) as 25 

predictors in some analyses The unit of analysis was the species-site combination, i.e. a 26 

species sampled at a site. All trait measurements were transformed to natural logarithms (ln) 27 

to reduce skewness and linearize their relationships to the climate variables. This 28 

transformation has the property that regression coefficients represent fractional changes, 29 

which can be compared among traits measured in different units. The coefficients are 30 

expressed per unit of α (in other words, the change in ln trait value across the global range of 31 

α from 0 to 1) and per 104 GDD0 (equivalent to the change in ln trait value across the global 32 
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range from 0 to around 104 GDD0), so that their values are broadly comparable in magnitude 1 

between climate variables as well as between traits. 2 

We carried out three GLM analyses for each trait: (1) With climate variables (α and GDD0) 3 

only as predictors, equivalent to ordinary least-squares multiple regression; (2) with climate 4 

variables and PFTs as predictors; (3) with PFTs and PFT-climate interactions as predictors. 5 

Analysis (1) measures the partial effect of each climate variable on the observed trait values. 6 

Analysis (2) measures the average partial effect of each climate variable on trait values within 7 

PFTs, allowing that the PFTs might have consistently lower or higher trait values. Analysis 8 

(3) estimates the partial effect of each climate variable on trait values within each PFT (the 9 

PFT-climate interaction). These three analyses are needed to answer the following questions 10 

in sequence: (1) What is the overall (community-level) response of trait values to climate? (2) 11 

To what extent is this response caused by similar trait variations within each PFT, versus 12 

shifts in the occurrence and abundance of PFTs with innately different trait values? (3) Do 13 

trait values of some PFTs respond to climate differently from others?  14 

A significance criterion of P < 0.01 was adopted for all regression coefficients in all three 15 

analyses. This is stringent enough to minimize the chance of ‘false positives’ in analyses (2) 16 

and (3). In the description of Results, “significant” always implies P < 0.01 or better. 17 

Significant differences between trait values for different PFTs (assessed at a common 18 

environmental value) were inferred from significant coefficients for the relevant factors 19 

(PFTs) in analysis (2), while significant differences between the trait-environment slopes for 20 

different PFTs were inferred from significant PFT-environment interactions in analysis (3). 21 

All GLM results are presented as partial residual plots, using the visreg package in R. Partial 22 

residual plots are the multiple-regression analogue of simple x-y plots in ordinary regression. 23 

In plots showing the relationship of each trait to α, the y-axis values of the data points are 24 

adjusted so as to remove the fitted effect of GDD0. Similarly, in plots showing the 25 

relationship of each trait to GDD0, the y-axis values of the data points are adjusted so as to 26 

remove the fitted effect of α. 27 

2.7 Multivariate analysis and variance partitioning 28 

As a complement to single-trait analyses, we performed redundancy analysis (the constrained 29 

equivalent of PCA: ter Braak & Prentice 1988) with variance partitioning (Legendre 2008), to 30 

quantify the unique and combined contributions of climate and PFT identity to the total 31 
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variation in all traits. This analysis was performed with the CANOCO package (Leps & 1 

Smilauer 2003), based on the sites for which all traits were measured.  2 

3 Results 3 

3.1 Climate gradients 4 

More than 80% of the geographic variation in the climate of our sampling sites can be 5 

summarized by variation on two principal axes (Table 1). Each principal axis is defined as a 6 

linear combination of variables, and each variable is assigned a “loading” which represents 7 

the contribution of that variable to the combination. The first principal axis explains 60% of 8 

total variation and is primarily related to temperature. MAT, GDD0, MTCO, MAP, MI, PDJF 9 

and PJJA have the largest positive loadings. The positive loadings for precipitation variables 10 

reflects the general tendency for absolute amounts of precipitation to increase with 11 

temperature. The second axis explains a further 25% of total variation and is related to 12 

moisture versus aridity. MI, α, and PJJA have large positive loadings while PAR0 and MTWA 13 

have large negative loadings. The similar behaviour of PAR0 and MTWA reflects an 14 

increasing period without clouds, and thus also higher temperatures in summer, as moisture 15 

availability decreases. A third axis relating to the seasonality of precipitation accounts for 16 

only 9% of total variation. A closely similar pattern emerged from the analysis of climate data 17 

for the whole country (Table S3). This similarity confirms that the pattern of variation in 18 

climate across the sites reflects the general pattern of climate gradients across China, and that 19 

these gradients can be summarized using two variables, representing temperature and plant 20 

moisture availability respectively.  21 

For all further analysis we used the variables GDD0 and α. GDD0 was preferred to MAT as 22 

MAT values in climates with a long, cold winter, as in northern China, show the influence of 23 

conditions unrelated to those prevailing at the time of growth. The pattern of variation of 24 

GDD0 and α across China is shown, with the site locations, in Fig. 1. Fig. 1 also shows the 25 

frequency of different GDD0-α combinations among grid cells in the whole country (grey 26 

scale), and the site positions in this climate space. Significant regions of climate space not 27 

sampled correspond to low GDD0 at high α (far northeast China) and low α (Tibetan plateau), 28 

and high GDD0 at intermediate α (tropical climates in the extreme south of China). 29 
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3.2 Distribution of PFTs in climate space 1 

The PFTs in our data set show distinct patterns of distribution in climate space (Fig. 2), 2 

falling broadly into four groups. (1) Evergreen trees, evergreen shrubs and lianas favour the 3 

warmest and wettest climates, corresponding to the warm-temperate broad-leaved evergreen 4 

forests of southeastern China, with evergreen needle-leaved trees extending into cooler 5 

climates in the north. (2) Deciduous trees and deciduous shrubs favour cooler and drier 6 

climates, with optima corresponding to the deciduous forests of central eastern China; 7 

although these PFTs have a wide tolerance and broadly overlap with groups (1) and (3). (3) 8 

Dwarf shrubs, grasses, forbs and geophytes favour still cooler and drier climates, 9 

corresponding to the grasslands, steppes and desert steppes of northern and northwestern 10 

China. (4) Ferns and climbers are prominent only in cooler and wetter regions of climate 11 

space; they occur more widely but not in any abundance, and they were not sampled 12 

elsewhere. 13 

3.3 Trait-climate relationships: moisture effects 14 

Significant (P < 0.01) community-level responses to growing-season moisture availability (α) 15 

were found for most traits (Fig. 3, Table 2). Dry climates generally favour small, thick, dense 16 

leaves (low LA, low SLA, high LDMC).  Dry climates are also associated with slightly, or 17 

sometimes greatly, reduced potential and actual quantum yield. The steepest overall 18 

relationships to α are for LA (5.8), SLA (1.6), and Narea and Karea (–1.1) and Pmass (0.7) (Table 19 

2: values in parentheses are slopes of ln trait-values versus α). The response of Nmass to α is 20 

slight (0.25) compared to the response of Narea. 21 

Inclusion of PFTs as predictors (Fig. S1) shows that there are some significant (P < 0.01) 22 

differences among PFTs in the typical trait values found at any given α. This is most obvious 23 

for biophysical traits – LA, SLA and LDMC – and area-based nutrients. Needle-leaved 24 

evergreen trees stand out, having small, thick leaves, and high area-based nutrient contents, 25 

relative to other PFTs. The magnitudes of the regression coefficients against α for the 26 

different traits in this analysis are similar to those in Fig. 3, but now Parea (in common with the 27 

other area-based nutrients) shows a significant (P < 0.01) negative effect of α. This 28 

relationship within PFTs is obscured in Fig. 3 by the abundance of needle-leaved evergreen 29 

trees, with their very low SLA and therefore high Parea values, towards the wet end of the 30 

gradient.  31 
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Where significant (P < 0.01) trait-PFT interactions in the response to α are found (Fig. S2), 1 

the responses are qualitatively (and usually, quantitatively) similar from one PFT to another. 2 

Regression coefficients for LA versus α range from 3.8 to 6.1, with deciduous shrubs and 3 

forbs showing significantly steeper responses than the rest. Regression coefficients for SLA 4 

range from 1.3 to 2.5 with forbs showing the steepest increases. Regression coefficients for 5 

LDMC range from –0.35 to –1.5 with forbs showing the steepest decreases. Different PFTs 6 

have significantly (P < 0.01) different responses of QY to moisture, with geophytes 7 

responding most and forbs least. Neither area- nor mass-based nutrients show any significant 8 

differences in slopes among PFTs. 9 

3.4 Trait-climate relationships: temperature effects 10 

Significant (P < 0.01) overall responses to growing-season warmth (GDD0) were also found 11 

for most traits (Fig. 4, Table 2). Warm climates favour thick and dense leaves (low SLA and 12 

high LDMC). Warmer climates also show somewhat reduced potential and actual quantum 13 

yield. The steepest overall relationship of any trait to GDD0 is for SLA (–1.5) (Table 2: 14 

numbers in parentheses are slopes of ln trait values against GDD/104). Relatively steep slopes 15 

are also shown for Nmass (–1.1), Parea (1.4) and Kmass (–1.1). 16 

Including PFTs as predictors shows some significant (P < 0.01) differences among PFTs at 17 

any GDD0 value, similar to those shown for α (Fig. S3). But the effects on the regression 18 

coefficients for GDD0 are more profound. Most importantly, the within-PFT responses of the 19 

three biophysical traits – LA, SLA and LDMC – to temperature are non-significant. Thus, the 20 

overall responses of SLA and LDMC to GDD0 shown in Fig. 4 are brought about by PFT 21 

replacement, including the dominance of broad-leaved evergreen trees with low SLA and 22 

high LDMC at the warm end of the gradient. Within PFTs, Narea and Karea both decline with 23 

temperature, while Parea increases. The lack of a significant relationship at the community 24 

level between Narea and Karea and temperature is due to PFT replacement along the gradient – 25 

again, most obviously, the prevalence of broad-leaved evergreen trees with high Narea and 26 

Karea at the warm end of the gradient. Similarly, the steep overall declines in Nmass and Kmass 27 

with GDD0 are mainly due to PFT replacement. 28 

Relationships to GDD0 fitted separately within PFTs (Fig. S4) showed fewer significant 29 

slopes, and less consistency among PFTs, than the corresponding relationships to α. 30 

Individually significant (P < 0.01) PFT responses of SLA to GDD0 could be increasing or 31 

decreasing (–0.57 to +1.3). Slopes of LDMC are negative (–1.6 to –3.0), with forbs and 32 
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grasses showing the steepest declines. Area- and mass-based nutrients show few significant 1 

differences among PFTs in their responses to either GDD0; however forbs show an increase in 2 

Nmass  and more steeply increasing Pmass with GDD0 compared to other PFTs, and evergreen 3 

needleleaf trees show a steeper increase in Parea. 4 

3.5 Climate, PFT and residual contributions to total trait variance 5 

Variance partitioning based on RDA (Table 3) quantifies the total “predictable” fraction of 6 

variation for each trait (based on climate and PFT identity), and the fractions uniquely 7 

attributable to PFT identity or climate.  The difference between the sum of the unique 8 

fractions and the total predictable fraction is the “common” fraction, which can be positive or 9 

negative and arises because of covariance between the two sets of predictors (Legendre 2008). 10 

The difference between the predictable fraction and 100% is the residual (unexplained) 11 

fraction. Apart from Cmass (with low predictability) the predictable fractions of variation for 12 

the different traits ranged between 15% (SLA) and 49% (LA). Both climate and PFT identity 13 

had highly significant (P < 0.005, based on a permutation test) unique effects on the ensemble 14 

of traits. Variation in LDMC was overwhelmingly dominated by PFT effects and for Kmass 15 

and Parea similar fractions of variation were attributed to PFT and climate effects. For all other 16 

traits except Cmass the contribution of climate was greater (and in several cases, much greater) 17 

than the contribution of PFT identity. 18 

 19 

4 Discussion 20 

4.1 Adaptive significance of trait responses to moisture availability 21 

The observed continuous biophysical trait variations with moisture availability are consistent 22 

with previous studies (e.g. Reich et al. 1999; Fonseca et al., 2000; Niinemets, 2001; Wright 23 

and Westoby, 2002; Wright et al. 2003, 2005a, b; Prentice et al., 2011) and, qualitatively, 24 

reasonably well understood. The decrease in LA towards arid climates allows leaves to avoid 25 

overheating in environments where soil moisture supplies are inadequate for transpirational 26 

cooling to be effective (Campbell and Norman, 1998). High photosynthetic capacity coupled 27 

with high CO2 drawdown, resulting in a low ratio of internal to ambient CO2 concentration 28 

(ci:ca), is also adaptive in dry environments (Wright et al., 2003; Prentice et al., 2014a) 29 

because of the high transpirational cost of keeping stomata open under conditions of high 30 

atmospheric aridity (vapour pressure deficit). Increased photosynthetic capacity requires an 31 
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increase in Narea and a reduction in SLA. Low SLA of plants in arid environments may also 1 

allow leaves to avoid transient overheating when wind speeds fall (Leigh et al., 2012). The 2 

increase in LDMC with aridity is a key adaptation that allows leaves to maintain hydration 3 

even at low water potentials that may arise under drought conditions (Bartlett et al., 2012).  4 

The reduction in QY with aridity points to drought-induced photoinhibition at the arid end of 5 

the gradient. Dry climates are characterized by high Narea, consistent with a high 6 

photosynthetic capacity (compensating for low ci:ca) as mentioned above. High Karea in dry 7 

climates is consistent with the role of K in maintaining leaf function under water-limited 8 

conditions (Sardans and Peñuelas, 2015; Lloyd et al., 2015). The regulation of leaf P is less 9 

well understood, but the trend towards higher Parea in dry climates is consistent with a 10 

relatively conservative N:P ratio within PFTs. Reduced mass-based N and P in arid climates 11 

are consistent with the increased allocation of carbon to leaf structural components in leaves 12 

with low SLA. 13 

4.2 Adaptive significance of trait responses to growing-season warmth 14 

The observed tendency towards lower community-level SLA with increasing temperature 15 

may be linked to the well-known relationship between SLA and leaf longevity (Wright et al., 16 

2004; Poorter et al., 2009). However, temperature-related trends in SLA within PFTs are 17 

mostly non-significant. The overall trend to lower SLA with increasing temperature is mainly 18 

driven by the shift from deciduous to evergreen PFTs, which is to be expected given the clear 19 

advantage for evergreens in a subtropical climate that favours year-round photosynthesis and 20 

growth. Leaves also become more dense (higher LDMC) towards the warm end of the 21 

gradient, but within PFTs, the only significant responses are for leaves to become less dense 22 

with increasing temperature. The community-level response of LDMC is thus driven by PFT 23 

replacement, with evergreen broad leaves characterized by high LDMC. 24 

Both potential and actual rates of electron transport in woody plants are reduced at the warm 25 

end of the temperature gradient. The effect is seen in both deciduous and evergreen woody 26 

plants and is likely caused by heat stress resulting in a reduced efficiency of Photosystem II. 27 

The decrease in the potential rate implies that electrons are being diverted to protective 28 

mechanisms. The decrease in Fv/Fm is steeper than the decrease in QY.  29 

The decline of both Narea and Nmass with temperature (after PFT differences have been 30 

considered) is consistent with the declining N requirement to achieve a given catalytic activity 31 
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of photosynthetic proteins as temperature increases (Reich and Oleksyn, 2004). The reasons 1 

for declining Karea and Kmass with temperature are unclear; possibly low temperatures in 2 

winter, towards the cold end of the gradient, create a K requirement similar to that caused by 3 

drought. The observed increases in both Parea and Pmass with temperature are opposite to the 4 

general tendency of leaf N to increase allometrically with leaf P (e.g. Reich et al., 2010). 5 

These trends might reflect an increase in non-photosynthetic electron transport processes that 6 

require a large supply of inorganic phosphate.  7 

4.3 Trait variation within and between PFTs 8 

Our results add to the growing evidence for extensive trait variability that is not accounted for 9 

by PFT differences. Using the global TRY data base, Kattge et al. (2011) found that the 10 

largest part of the total variance (as much as 75%) for several traits (including Narea and SLA) 11 

was found within rather than between PFTs. Similar observations have been made by van 12 

Bodegom et al. (2012) and Wullschleger et al. (2014), while Groenendijk (2011) found that 13 

PFTs were not useful predictors of community-level photosynthetic traits. Kattge et al. (2011) 14 

also showed (in agreement with our results) that this partitioning varies considerably among 15 

traits – with some traits predicted well by PFT identity. Our results extend these previous 16 

studies in that they analyse climatically related trait variation. We show contrasts in the 17 

responses of different traits to climate, and in their responses to different aspects of climate. 18 

In most cases, nutrient traits showed similar responses to climate within PFTs to those shown 19 

at the community level; no significant differences were found between the responses within 20 

different PFTs., consistent with Zhang et al.’s (2012) findings for multiple element 21 

concentrations at the species level. 22 

Variations of biophysical traits with respect to moisture availability are also similar within 23 

PFTs and at the community level. However, these same traits show patterns of response to 24 

temperature that are dominated by differences among PFTs. The differential responses of leaf 25 

N and P contents to moisture availability and temperature require further investigation. Note 26 

also that we have not examined trait relationships to soil conditions, especially measures of 27 

fertility status, which have been shown to be important in determining photosynthetic and 28 

other leaf traits (Ordoñez et al., 2009; Maire et al., 2015). It would be particularly interesting 29 

to assess the degree to which leaf chemistry is influenced by nutrient supplies, as opposed to 30 

internal stoichiometric regulation. Results presented here suggest that the latter process does 31 

at least play an important role, for all three nutrients measured. 32 
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4.4 Implications for modelling 1 

It is reasonable to expect that the performance of vegetation models would be improved by 2 

representing the values of phenotypically or genotypically plastic traits as state variables, 3 

rather than parameters (Prentice et al., 2007). This ‘adaptive’ approach has been adopted 4 

explicitly in some recently developed models, e.g. Schymanski et al. (2009) and Scheiter et al. 5 

(2013). In the LPJ family of models descended from Sitch et al. (2003), leaf-level 6 

photosynthetic capacity (Vcmax) is allowed to vary adaptively within PFTs, based on an 7 

optimality hypothesis that predicts realistic responses of Narea to light, temperature and CO2 8 

(Dewar, 1996; Haxeltine and Prentice, 1996). Most of the LPJ-family models have treated 9 

SLA as a PFT-specific parameter and thus do not allow for covariation of SLA with Narea, as 10 

has been demonstrated to occur, here and in other contexts (e.g. Lloyd et al., 2010; Prentice et 11 

al., 2011). This deficiency has recently been corrected in an LPJ version by Sakschewski et al. 12 

(2015). But the adaptive approach embedded in LPJ is unusual among “first-generation” 13 

DGVMs, which generally treat leaf traits as fixed PFT properties. 14 

Our findings also indicate that not all trait-environment relationships are “universal”. The 15 

distinctions between woody and herbaceous, deciduous and evergreen, and angiosperm and 16 

gymnosperm plants systematically influence the values of key biophysical traits in ways that 17 

would not be predictable from assumed universal relationships. Moreover certain observed 18 

overall responses of trait values to climate, including the decline in SLA and increase of 19 

LDMC with increasing temperature in our study, appear to be driven principally by PFT 20 

replacement rather than by adaptive variation within PFTs. Nonetheless, the prevalence of 21 

continuous, consistent trait variation within and between PFTs for many traits and trait-22 

environment relationships supports the conclusion that models should avoid prescribing fixed, 23 

PFT-specific values for most quantitative traits (e.g. Wright et al., 2005). This conclusion is 24 

reinforced by examining distributions of PFTs in spaces defined by pairs of traits (Fig. 5). 25 

PFTs show considerable overlap in “trait space”, even for traits such as LDMC where climate 26 

has little direct influence. An additional argument against the imposition of fixed trait values 27 

for PFTs is that PFT identity itself can be environmentally plastic; for example, there are 28 

species capable of behaving as trees or shrubs depending on growth conditions.  29 

Fixed, PFT-specific values in models could be replaced by adaptive functions of 30 

environmental variables: thus reducing the multiplicity of uncertain parameters, while 31 

simultaneously increasing the realism of next-generation DGVMs (Prentice et al., 2014b). To 32 
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do so, however, requires that these functions be well specified and robust. Although some 1 

progress has been made in developing trait-based models based on statistical trait-2 

environment relationships, process-based model development requires these responses to be 3 

quantitatively predictable, based on explicit hypotheses about the adaptive significance of 4 

traits. 5 

Practical considerations, including the problem of access with equipment at some of the forest 6 

reserve sites, prevented us from including measurements of photosynthetic rates in this trait 7 

data set. Chlorophyll fluorescence measurements give different information from CO2 8 

fixation measurements. Although Narea has often been found to be correlated with 9 

carboxylation capacity (Vcmax), a key quantity for DGVMs, the correlation is far from perfect 10 

because of the large and variable structural component of leaf N (Niinemets and Tenhunen, 11 

1997) and other significant components unrelated to photosynthesis, including nucleic acids 12 

and defence compounds. However, there are encouraging indications that Vcmax too may be 13 

broadly predictable as a function of environmental variables (Ali et al., 2015; Fisher et al., 14 

2015). The theory behind the adaptive representation of photosynthetic capacity in the LPJ 15 

family of models (Haxeltine and Prentice, 1996) makes predictions about the relationship 16 

between Vcmax and environment, which could be tested given a sufficiently wide-ranging set 17 

of measurements. Quantifying the predictability of key photosynthetic parameters will thus 18 

also be important for developing next-generation DGVMs, and is a high priority for our future 19 

research. 20 

Finally we note that within-site variation in traits is large, indeed it is generally as large or 21 

larger than the component that can be predicted from site characteristics; consistent with our 22 

finding that at least half of the total measured variation in each trait is related neither to PFT 23 

identity nor to climate (Table 3). This is an important caveat for modelling because it implies 24 

that unless such variation is allowed for, models will underestimate the ability of locally 25 

available species, by shifting abundance, to faclitate community-level adaptation to  26 

environmental change. In effect, current DGVMs largely ignore the potential stabilizing 27 

effects of biodiversity on ecosystem function. Taking account of biodiversity in a more 28 

realistic way should be possible within a quantitative trait framework by analysing the extent 29 

of trait plasticity within species (e.g. Ackerly and Cornwell, 2007). We suggest this as an 30 

important research topic, which could capitalize on the growing body of quantitative plant 31 

trait data sets based on comprehensive floristic sampling in different environments. 32 
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 26 

Figures  1 

Figure 1: Left: Geographic variation in the mean Cramer-Prentice moisture index (α) and 2 

annual growing degree days above 0˚C (GDD0) in China. Right: frequency distribution of 10-3 

km grid cells (grey squares) and location of sampling sites (red circles) in climate space. 4 
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 27 

Figure 2: Optima and tolerances of PFTs in climate space, based on data from the sampling 1 

sites. The grey dots represent the climates of all grid cells in China. 2 
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 28 

Figure 3: Partial residual plots for the relationships between leaf traits and the Cramer-1 

Prentice moisture index (α), from the GLM analysis summarized in Table 2. Each point 2 

denotes a species-site combination; PFTs are indicated by colours. Only significant regression 3 

slopes (P < 0.01) are shown. 4 
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 29 

Figure 4: Partial residual plots for the relationships between leaf traits and growing degree 1 

days (GDD0), from the GLM analysis summarized in Table 2. Each point denotes a species-2 

site combination; PFTs are indicated by colours. Only significant regression slopes (P < 0.01) 3 

are shown. 4 
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 30 

Figure 5: Illustrative plots showing means and standard deviations of trait values within PFTs 1 

for ln Narea combined with LDMC, ln Parea and SLA. 2 
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Tables 1 

Table 1: Principal components of climate data based on the 80 sampling sites. Each 2 

component (axis) represents a linear combination of variables. Loadings for variables 3 

represent the contribution of each variable to the axis. Values are shown in bold when their 4 

magnitude > 0.5. 5 

 6 

 7 
  8 

 PC 1 PC 2 PC 3 

MAT   0.870 −0.462   0.127 

GDD0   0.865 −0.474   0.092 

MTCO   0.946 −0.219   0.030 

MTWA   0.572 −0.727   0.223 

PAR0   0.642 −0.701   0.106 

MAP   0.899   0.427 −0.014 

α   0.603   0.753   0.106 

MI   0.824   0.560   0.000 

PDJF   0.917   0.200 −0.263 

PJJA   0.747   0.599   0.238 

Timing −0.833 −0.021   0.143 

Seasonality −0.314   0.204   0.900 

Variance explained 59.8% 25.1%   8.8% 



 

 32 

Table 2: Regression coefficients for the GLM with only climate variables as predictors. 1 
Values in bold are significant at P < 0.01. 2 
 3 

 

intercept alpha GDD0 

 

slope ± sd error slope ± sd error slope ± sd error 

ln LA 1.8167 0.1433 5.8373 0.2025 –0.3682 0.3413 

ln SLA 2.3234 0.0434 1.5550 0.0588 –1.5061 0.0979 

ln LDMC 5.7544 0.0347 –0.3542 0.0468 0.6490 0.0779 

ln Fv/Fm –0.2400 0.0136 0.1168 0.0196 –0.4191 0.0250 

ln QY –0.7823 0.0213 0.5820 0.0306 –0.1321 0.0391 

ln Cmass 6.1961 0.0276 –0.0792 0.0424 –0.0831 0.0547 

ln Nmass 3.1357 0.0419 0.2511 0.0605 –1.0920 0.1033 

ln Pmass 0.1243 0.0476 0.6884 0.0733 0.4798 0.0944 

ln Kmass 3.2124 0.0696 -0.1766 0.1072 –1.0956 0.1381 

ln Narea 0.8419 0.0462 –1.1027 0.0670 0.0638 0.1142 

ln Parea –2.4890 0.0676 -0.2141 0.1043 1.4426 0.1347 

ln Karea 0.5975 0.0767 –1.0796 0.1185 –0.1282 0.1530 

 4 
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Table 3: Variation (%) in traits accounted for by climate and PFTs together, and the unique 1 

contributions (%) of climate and PFTs, based on the first two axes of a redundancy analysis 2 

for the sites with data for all traits. 3 

 4 

 climate and PFTs climate PFTs 

ln LA 48.7 23.1 6.4 

ln SLA 15.0 12.7 5.8 

ln LDMC 25.9 3.9 24.8 

ln Fv/Fm 27.7 20.8 1.4 

ln QY 36.6 12.4 5.0 

ln Cmass 3.5 0.6 0.8 

ln Nmass 29.8 16.4 3.8 

ln Pmass 29.8 7.3 2.9 

ln Kmass 20.7 5.3 5.4 

ln Narea 36.3 27.0 8.9 

ln Parea 23.2 6.7 8.1 

ln Karea 18.6 8.1 3.4 

All 40.1 33.6 21.1 
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