Response to referees and editor

We were happy to read these very positive, thoughtful reviews of our Discussion
Paper. We have prepared a revised MS taking the editor’s and three referees’
comments into account. The comments are reproduced here, in full, with bold type
used to highlight the key points requiring consideration. Our responses to every
comment are given in italics.

Anonymous referee #1
General comments

This paper addresses the issue of trait variability within plant functional types in
relation to climate. The authors argue that most traits vary in relation to climatic
gradients but that change occurs sometimes through trait change within PFTs, and
sometimes through shifts in the occurrence and abundance of PFTs with innately
different trait values. These ideas are not new and have been suggested and shown in
various earlier papers, but the authors present an impressive dataset that is in my
opinion more reliable than those upon which earlier analyses have been based. Other
tests of trait-environment relationships at similar spatial scales often rely on data
collated from multiple studies and environmental data of poorer quality than that used
in this manuscript.

The manuscript is very well written and a pleasure to read. The research questions are
clearly stated and clearly addressed by the data and analyses. I have few major
criticisms, and most of my comments are merely suggestions that I believe would
improve the quality and readability of the manuscript and do not point to major flaws
in the methodology or interpretation.

There is only one major issue that I would like to see addressed in the manuscript
before publication. My problem with most studies investigating trait-environment
relationships is that despite identifying statistically significant relationships among
environmental predictors and trait means, the ability to predict trait values from
environmental forcing alone is often quite poor. That is, after accounting for the
variance explained by the environmental predictors, and differences among PFTs,
most of the trait variability still remains (there is overlap in the traits values observed
at either extreme of the environmental gradient and in almost all PFTs). Given that
vegetation models are attempting to simulate vegetation and biogeochemistry with
these same environmental forcings alone — which account for so little of the observed
trait variation — I think it is important to acknowledge limits to the predictability of
the vegetation traits we actually observe when using only macroclimate and a few
simple soil variables to force models and discuss other potential sources of variation
(e.g. microclimatic variation, disturbance, heterogeneity, evolutionary constraint).
Specifically 1 would like to see a paragraph highlighting these issues and some
attempt at variance partitioning in the analyses that highlights the proportion of trait
variation explained by climate, PFTs, and unexplained variation.

These points are very well taken. We have added a new paragraph at the end of the
Discussion that covers this topic (plus a new sentence at the end of the Abstract). We
have also taken the opportunity to present a variance-partitioning analysis, which we
think is a significant enhancement to the manuscript.



I would also really like to see another plot, similar to figure 2, but with PFTs plotted
in trait space to highlight to massive overlap in trait values among PFTs.

We have included a new Figure (Fig. 5), which illustrates exactly this point.
Specific comments

Table 1 seems unnecessary. With most of the important information contained within
it repeated in figure 1. I would suggest moving it to the Supplementary info.

We have moved the Table as suggested.

DGVMs typically use Auq and Vengy as parameters to describe photosynthetic rates. I
understand that chlorophyll florescence offer advantages over A/ Vemar, but perhaps
the authors should state this because otherwise it seems that it would have been more
appropriate to measure parameters used by DGVMs.

Vemax can be inferred from Ayqy using the so-called one-point method, but even simply
measuring Amqx requires taking a heavy infrared gas analysis (IRGA) apparatus to the
field sites. Fluorescence is a different measure, not a substitute for Am.. However, we
sacrificed the added value of providing Ama: and Vema: data for the ability to assemble
a very large trait data set, including sampling forest reserves in South China that
would have been challenging to reach with an IRGA.

It is not stated in the methods what the sampling unit is that is being analyzed. Are the
GLMs applied to trait values of individual plants and the environmental variable at
the site levels or (as is plotted in figure 3 and 4) species-level means?

The sampling unit analysed is a species at a site. We have now added this information
in the Methods.

I would be interested to know how the analyses look when they are repeated within
and between species rather than PFTs. In terms of trait change along environmental
gradients this is more relevant as species are real entities rather than PFTs which are
the invention of modelers. There isn’t room for this in this manuscript, which is
focused on the utility of traits and PFTs for models, but I look forward to seeing this
analysis in anther publication.

We agree that there is scope for this analysis to be done in future, and that it would be
of great interest. However we agree that this manuscript doesn’t have room for it; it
would be a separate study.

Does the entire PCA analysis of climate space in China and the climate space covered
by the sites only exist to make the point that the sites cover a wide range of climate
conditions that are representative of Chinese climate? This point seems to be
adequately made in figure 1. I would suggest moving this analysis to the supporting
information.

Yes, this is the only purpose of this complete PCA. So we agree, and we have moved
this analysis out of the main text (apart from a brief mention of its similarity to the
analysis of our sampling sites).



Please add some discussion of the confounding role of nutrients. Many of the traits
included in this analysis would be expected to be profoundly altered by different soil
nutrient conditions. It is understandable given the poor quality of most soil nutrient
maps that this was not included as a predictor variable in the analysis, but I believe
further discussion and an acknowledgment of their role should be included.

We fully agree; we have added new text in the Discussion, with appropriate
references, making this clear.

Technical corrections

In the discussion it is stated: “On the other hand, the LPJ-family models treat SLA as
a PFT-specific parameter and thus do not allow for covariation of SLA with Nye..”
This is not true. Please see the recently published LPJmI-FIT model:

Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L.,
Penuelas, J. and Thonicke, K. (2015), Leaf and stem economics spectra drive

diversity of functional plant traits in a dynamic global vegetation model. Global
Change Biology. doi: 10.1111/gcb.12870

We have modified this statement, and cited this paper.
Anonymous referee #2
General comments

This manuscript addresses a scientifically interesting and important topic — the
connection between biophysical, biochemical and physiological leaf traits and
climate. It is asking the question how temperature and water availability influence
selected leaf traits, and if observed variability in leaf traits is due to continuous
adaptive trait shifts within plant functional types (PFTs), or due to PFT replacements
along climatic gradients. Although many contemporary Dynamic (Global) Vegetation
Models (DGVMs) still rely on the PFT concept, more recent developments in
vegetation modeling focus on PFT-less trait-based approaches, arguing that the
conventional PFT-based approaches may be too rigid, general, and over-simplifying.
As PFTs are usually assigned a fixed set of parameter values in many DGVMs,
continuous adaptive variation cannot be modeled directly, but needs to be mimicked
by PFT replacement, disregarding that within-PFT variability of traits can equal or
exceed between-PFT variability. Especially with respect to the more recent
development of trait-based DGVMs that allow continuous trait variation within
defined ranges of trait space this study provides valuable new data material for model
parameterization, calibration and evaluation. Moreover, it contributes to an improved
understanding of the linkages between different leaf traits and climate.

The abstract is clearly structured, presenting the motivation for the presented study,
the methods used to address the problematic, a very short summary of the main results
found in the study, and a brief outlook on the significance of the presented results.
The introduction provides background information on the PFT concept in vegetation
modeling and its inherent drawbacks, and establishes a connection to related studies
in the field. However, although the scientific questions acting as motivation for
this study are inherently present hidden in the introduction text, I would like to



see them listed and phrased directly as such (bullet points, listed by numbers, or in
a similar way) at the end of the second paragraph (p. 7097, 1. 21).

We have made this change: now the third paragraph starts by stating the main
scientific questions addressed, as a numbered list.

The scientific methods used to address the research questions are well-established and
appropriate to address the presented research questions. Results and conclusions are
generally presented in a transparent, structured and concise way and sufficiently
illustrated with figures and tables. The discussion part is well-structured, but section
4.3 (Comparison with previous studies of trait variation within and between PFTs) is
rather short and basically only focuses on Kattge et al. (2011) and Zhang et al. (2012).
If available, it would be desirable to (shortly) include a few more studies related to
this topic here.

The literature on this topic is actually quite limited; we have found a couple of
additional papers to cite, but both use the examples of N and SLA and rely on a
graphical demonstration — they add little to the analysis by Kattge et al. However, we
realize that the original section looked unbalanced, so we have re-structured it, added
the new references, and altered the section heading to a more general one.

The only part where I do not fully agree with the authors is the last section (4.4
Implications for modelling). Their results nicely show that within-PFT trait variability
is often continuous and can be as high or higher as between-PFT trait variability, and
that PFT replacement only partially explains trait variation along climate gradients.
Nonetheless, they strongly argue in favor of PFT-based vegetation models, when in
fact their results justify and support the development and existence of PFT-less trait-
based models that allow dynamic plant community assembly in dependence of
prevailing environmental conditions. I would have liked to have seen a slightly more
balanced discussion here with respect to the advantages/limitations of PFT-based
vs. trait-based vegetation models, as in my opinion both model types have their
right to exist, depending on the research questions under consideration.

This was a thought-provoking comment. On reflection, we realized that although
simply retaining PFT distinctions would be one way to account for differences
between PFTs, in fact the phenomenon described (trait-environment relationships
being contingent on PFT membership) could as well or better be represented as an
effect of ‘PFT-defining traits’ on the relationships between other traits and
environment. We have amended our discussion accordingly.

In general, the manuscript is sufficiently referenced to allow making connections to
related research. In a few places where more references would be desirable, it is
highlighted in the “Detailed Comments” section of this review. The provided
supplementary material is of good quality and sufficient to transparently present the
results in a more in-depth way than possible in the manuscript itself. Overall, I
consider this study to be a valuable contribution to the field, and suggest its
publication in BG after minor revisions.

Detailed comments



p. 7096, 1. 19-22: “ Usually a fixed set of properties (parameter values) is assigned to
each PFT. This expedient simplifies modelling, but it is a potential weakness because
it disregards continuous adaptive variation within PFTs and the possibility that such
variation is “universal” — that is, manifested similarly within and between species,
PFTs and communities.” Should phrase this even more clearly: the definition of a
limited number of PFTs with fixed parameter values is an artificial generalization
concept used by vegetation modelers to discretize continuous trait combinations into a
manageable number of seemingly distinct categories. However, this
oversimplification neglects that the range of trait variations within these artificial
PFT-categories in reality may be as large or larger than between PFT categories,
which leads to an underestimation of the plasticity and adaptive potential of
vegetation to environmental change and vegetation feedbacks to climate.

We fully agree. We have strengthened our statement on the subject.

p. 7097, 1. 10-21: this part reads a bit confusing, as the arguing in favor of trait-based
approaches vs. PFT-based approaches goes back and forth and from the phrasing is
not clear enough. Please first talk about the advantages of trait-based modeling, and
then make it clear that afterwards you are talking about circumstances in which leaf
traits have been discovered to be distinctly different between PFTs, thus indicating
that PFT-based modeling also can be justified based on focus and circumstances. “An
advantage of trait-based modelling is that it can take better advantage of the wealth of
georeferenced data now available on plant functional traits (Kattge et al., 2011).” This
may indeed be one advantage, but in my opinion the more relevant advantage of trait-
based modeling is that it allows to simulate continuous trait variation, thereby
allowing the development of plant community assemblies that are adapted to site-
specific biotic and abiotic environmental conditions and can react more flexibly to
environmental change, as well as allowing new approaches to simulate functional
diversity and competition (see, e.g., the trait-based aDGVM2 model as described in
Scheiter et al., 2013).

We agree, and we have added a statement to this effect.

“On the other hand, some leaf traits can have different relationships to climate
depending on the PFT”: I’'m not entirely sure I understand correctly what you mean to
say with this sentence. Do you mean that certain leaf traits within one PFT behave
one way along a climate gradient, while they behave the opposite way along the same
climate gradient for plants that belong to another PFT, or do not vary with climate at
all for a third PFT? If possible, rephrase this to make it more clear.

We have clarified the wording of this statement.

p. 7097, 1. 25: “on all of the species present at 80 sites, with a wide geographic
spread.”: How many species did you sample overall? And what was the range of
species numbers between sites (minimum and maximum number of species per site)?

This information was available in Table S2. However, we have now extracted key
statistics (number of species-site combinations; range of species number) and put
them into the text.



p. 7098, 1. 2-4: “Area-based nutrient contents provide no independent information, as
they are simply derived from mass-based nutrient contents and SLA, but they provide
an alternative perspective on the regulation of leaf nutrient contents.” In what way do
they provide an alternative perspective? Please elaborate a bit more closely, or else it
becomes hard to justify why you are presenting both if they are not independent.

We have added a senetence expanding on this point, and provided a key reference in
support of our reasoning.

p- 7098, 1. 12: “The sites (Table 1) represent...”: Please also point out Figure 1 here, as
you show the location of your sampling sites on a map in Figure 1. I find it helpful to
also see the location of the sites on a map, and would have asked for a map figure, but
then realized that the sites are actually highlighted in Fig. 1 when looking at the figure
later on.

Done.

p. 7099, 1. 11/12: “except for a few species with very small leaves at the driest sites”:
What did you do for these? No sampling, or sample as much as was available?

We took a smaller sample (at least 2 g). This is now stated.

p. 7099, 1. 19: “Leaf C was measured by the potassium dichromate volumetry method
and leaf N by the microkjeldahl method.” Please add a reference if possible, as it is
not instantaneously clear to everybody how these methods work.

Done.

p. 7103, 1. 7/8: “Figure 1 also shows the frequency of different GDDO0-o combinations
among grid cells, and the site positions in this climate space.”, and p. 7121, Fig. 1:
frequency distribution and location of sampling sites in climate space: The chosen
sampling sites cover a large range of the occurring GDDO-o combinations and are
therefore well-suited for the pursued study purpose. However, no sites cover the very
low end of GDDO values, and in the areca of GDDO0-values between 6000 and 9000
and o between 0.4 and 0.9. Which areas of China would these combinations
correspond to? Probably high-altitude grid cells for the low GDDO-values, and places
in Southern China with high GDDO and intermediate to high o values? Maybe point
this out briefly either in the Figure caption or in the text.

We have provided this information in the revised text.

p. 7103, 1. 14-16: “Deciduous trees and deciduous shrubs favor cooler and drier
climates, corresponding to the deciduous forests of central eastern China.” I generally
agree with your four PFT groups based on optimum and tolerance thresholds, except
maybe for this group, as their tolerance range compared to the ones of the PFTs in the
other groups is very wide, and therefore makes these two PFTs overlap with group (1)
and group (3).

Their range is particularly wide, certainly, and we have now commented on this.

p. 7104, 1. 3-6: “Inclusion of PFTs as predictors (Fig. S1 in the Supplement) shows
that there are some differences among PFTs in the typical trait values found at any



given a. This is most obvious for biophysical traits — LA, SLA and LDMC — and area-
based nutrients.” Are the differences statistically significant? (Same question applies
to Fig. S3)

Yes. The original text mentioned the fact that we applied a quite conservative (P <
0.01) criterion in order to minimize the chance of ‘false positives” in analyses (2)
and (3), where a large number of parameters are estimated. However, it was stated
kust once and without elaboration. So we have now expanded this statement in the
Methods, explained that by “significant” we always mean P < 0.01 (or better), and
provided frequent “reminders” of this in the Results section.

p. 7104, 1. 25/26: “Warmer climates also show somewhat reduced potential and actual
quantum yield.” So both dry conditions and warm climate show reduced QY. Can you
make a judgment which of these two factors has the greater effect? I suppose that,
since dry conditions and warm conditions are not statistically independent, the
decrease in QY is a combination of both, but nonetheless it would be interesting to
know more about the relative importance of each factor.

As should now be clear (from our more explicit treatment of “significance”, QY
shows independently significant effects of both drought and heat. We can’t say
whether one is more important than the other: that would depend on the conditions
sampled.

p. 7105, 1. 24/25: “The observed continuous biophysical trait variations with moisture
availability are consistent with previous studies...” Please add some references for
these studies.

This was an oversight. We have now added a list of relevant papers.

p. 7108, 1. 24-28: “Our findings suggest that vegetation models should retain the PFT
concept and a minimal set of PFTs, because the distinctions between woody and
herbaceous, de- ciduous and evergreen, and angiosperm and gymnosperm plant types
systematically influence the values of key biophysical traits in ways that would not be
predictable from assumed universal relationships.” I do not agree with this statement.
Vegetation models using the PFT concept may be useful and sufficient to address
many scientific questions with respect to vegetation dynamics, but it is not true that
using the PFT concept is the only way to get clear distinctions between key
biophysical traits. Trait-based vegetation models not necessarily need to assume
universal relationships, but may define a potentially allowed maximum range of
values for key biophysical traits. If plants are assigned values from within these
ranges at birth, selection through environmental conditions such as temperature and
water availability will lead to the emergence of successful trait value combinations,
whereas unsuccessful combinations will be eliminated through competition and/or
environmental pressure. Whether woody or herbaceous, deciduous or evergreen,
plants with low or high SLA, etc. will prevail therefore is not predefined, but will be
an emergent property of simulated trait selection through environmental filtering. No
PFTs need to be predefined, but an a posteriori classification of simulated plants into
PFT categories based on simulated successful trait combinations is possible and will
also pick up PFT replacement over time and space where it occurs. Trait-based
vegetation models such as, e.g., the aDGVM2 model (Scheiter et al., 2013) therefore
offer completely new approaches to simulate changes in functional diversity, trait



selection through environmental conditions, and competition for resources (water,
light) that in such a way are not possible with classical PFT-based vegetation models.

See our response to the related general comment previously. Although a broad
discussion of model construction principles is outside our scope here, we accept the
point and have modified our statements accordingly.

p. 7122, Fig. 2: Change “boardleaf” to “broadleaf in figure caption.
Done.

What are the grey background points? The GDDO vs. a combinations of all the 10 km
grid pixels in China?

Presumably this comment refers to Fig. 2? We have amended the caption to point out
that the grey points are, indeed, all of the grid cells across China.

p. 7123, Fig. 3: Change “boardleaf” to “broadleaf” in figure caption
Done.
p. 7124, Fig. 4: Change “boardleaf” to “broadleaf” in figure caption
Done.

Supplementary Material: Please also change “boardleaf” to “broadleaf” in figure
captions where applicable.

Done.
Anonymous referee #3

This article provides an impressive dataset and very insightful analysis of the
modulation of plant functional traits within and between functional groups according
to environmental conditions broadly related to moisture availability and temperature.
Although several studies on this subject exist, few can provide such a large, uniformly
measured dataset together with high quality environmental data. The analysis is aimed
at disentangling the effects of adaptive trait shifts within functional types (PFT)
versus PFT replacement along environmental gradients on trait variability. This
question is extremely relevant not only to improve our understanding of functional
trait modulation in general but also due to the (still) frequent and arguably
problematic use of the PFT concept in dynamic vegetation models.

Specific comments

The paper is very well written and generally easy to follow. Apart from some minor
points, which are outlined in "technical corrections", I have only three main points of
critique.

Firstly, the relative lack of discussion of the issues related to the use of plant
functional groups, such as inferring functional similarity in groups where trait
syndromes vary widely and functional group membership may be dependent on



environmental conditions (e,g. species generally known as growing in tree form
growing in shrub-like forms in harsher environments). Although this is addressed to
some extent, e.g. on page 7096, I think such a fundamental issue should be
highlighted even more. This is particularly important since the conclusions seem to
point towards the authors interpreting their study as being supportive of the PFT
concept, when their results could easily be interpreted otherwise.

This is a good point. The revised Discussion draws attention to this further limitation
of the PFT concept.

Related to this, I miss references to species-specific, or at least genus specific trait
differences. Again, this is briefly mentioned in the discussion but without providing
any data or analyses. Although repeating the analyses performed on species rather
than functional group level might change the scope of this work too much, at least
giving an indication to the degree of within as opposed to between species functional
variability in their data would add a lot to the paper.

As this referee notes, consideration of trait differences between taxa, as opposed to
PFTs, would require different analyses and change the scope of the paper in a major
way. Our goal in this MS was to compare variation within and between PFTs
(basically a modelling construct), rather than addressing the separate question of
trait plasticity within species. But this question is relevant to modelling too, so we
have added a little more Discussion material on it.

Secondly, the argumentation for using GDDO instead of e.g. the Principle Component
scores of axes one or MAT, which has a higher loading than GDDO on the first axis,
is insufficient. There are good reasons for using GDDO but the authors should clarify
these.

We have added a sentence explaining why we use GDDy. The main argument in
favour of GDDy as opposed to MAT is that in climates with cold winters, such as in
northern China, large spatial variations in MAT can be induced by conditions in
midwinter that do not relate to conditions during the time when growth occurs.

Also, since a lot of traits are highly dependent on soil nutrient status and other
environmental conditions, which have not been measured in this study, their likely
effect should at least be mentioned.

This is now mentioned in the Discussion, as a potential field for investigation which
we have not attempted.

Finally, unless I have overlooked this, no statistical tests of differences between the
linear model regression fits have been performed. The authors talk about "significant
differences" (e.g.pp. 7104 line 16) but it is not clear how significance can be inferred
without such tests.

See our response to the same point as made by referee #2. Indeed, all statements
made in the original manuscript had been carefully checked for significance using a
conservative (P < 0.01) criterion. We hope that this is now abundantly clear in the
revised MS.



Technical corrections

Pp. 7099 - line 11: clarify what you did in case of the very small leaves at the driest
sites.

Done (also requested by referee #2).
Pp. 7099 - line 15: how many leaves were scanned?
We have included this information now.

Pp. 7100 - line 14: the results of the country-wide PCA should be provided in the
appendix.

Done (also recommended by referee #1).

Pp. 7101 - line 1: clarify how you divided the variables into bins - how did you decide
on the size of the bins?

This is now briefly described.

Pp. 7101 - line 6: GLM should be GZLM to avoid confusion between General linear
models (GLM) and the Generalized linear models (GZLM) used here.

We disagree. GLM is a very widely accepted abbreviation for generalized linear
models; whereas we have never encountered “GZLM”. Given the context, we believe
there should be no confusion.

Pp. 7105 - line 25: please provide references to the "previous studies".
Done (also requested by referee #2).

Figure 1: if possible, please choose another colour scheme to cater for red-green
blindness, it would be very useful if you could code the plot symbols according to
region

Done.
Please check your spelling of "broadleaf" in the figure captions.
Corrected.

It would be useful to include a table with the number of species per site to give the
reader an idea of differences in the geographic spread of the species you measured
and whether the PFTs within certain regions are represented by many or few species.

This information is already in Table S1. We have also provided summary statistics in
the revised text.



Editor

Please provide a revised manuscript according to your answers to the reviewer
queries. When doing so, please add a short statement wrt to the reviewer #1 query on
the relevance of fluorescence vs Vemax/Amax to the paper.

Done. As a response to reviewer #1 query on the relevance of fluorescence vs

Vemax/Amax, we have added some discussion on quantifying Vema-environment
relationships for DGVMs in the last second paragraph.

Changes in the manuscript

We have made some changes in the manuscript as indicated in the above response.
Those changes are clearly illustrated by the marked-up manuscript as following.
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Abstract

Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs),
which are assigned distinct environmental tolerances and replace one another progressively
along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait

variation along gradients is thus driven by PFT replacement. But empirical studies have
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revealed “universal” scaling relationships (quantitative trait variations with climate that are
similar within and between species, PFTs and communities); and continuous, adaptive trait

variation has been proposed to replace PFTs as the basis for next-generation DGVMs.

Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in
China with a view to understanding the relative importance of PFT replacement versus
continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry
matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80
sites ranging from temperate to tropical climates and from dense forests to deserts.
Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were
measured at 47 sites. Generalized linear models were used to relate log-transformed trait
values to growing-season temperature and moisture indices, with or without PFT identity as a

predictor, and to test for differences in trait responses among PFTs.

Continuous trait variation was found to be ubiquitous. Responses to moisture availability
were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC)
of forbs and grasses responded differently from woody plants. SLA and LDMC responses to
temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at
the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were
generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea

and Karea declined with temperature, but Py, increased with temperature.

Although the adaptive nature of many of these trait-climate relationships is understood
qualitatively, a key challenge for modelling is to predict them quantitatively. Models must
take into account that community-level responses to climatic gradients can be influenced by
shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which
may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts
varies among traits, being important for biophysical traits but less so for physiological and

chemical traits. Finally, models should take account of the diversity of trait values that is

found in all sites and PFTs, representing the “pool” of variation that is locally available for

the natural adaptation of ecosystem function to environmental change.
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1 Introduction

The plant functional type (PFT) concept has been important in the development of dynamic
global vegetation models (DGVMs), which combine vegetation dynamics (changes in
vegetation composition, expressed as abundances of PFTs) at the grid-cell scale with
hydrological and biogeochemical processes driven by the physical environment and
modulated by PFT characteristics (Prentice et al., 2007; Prentice and Cowling, 2013). PFT
classifications vary among models but nearly all include distinctions of life form (at least,
woody versus herbaceous plants), leaf habit (evergreen or deciduous) and leaf form (broad or
needle-leaves). Some models also distinguish climatic tolerance classes, related primarily to
different overwintering mechanisms for woody plants (Harrison et al., 2010), and most
distinguish Cy4plants. Usually a fixed set of properties (parameter values) is assigned to each
PFT. This expedient simplifies modelling, but it is a potential weakness because it disregards

continuous adaptive variation within PFTs; the fact that trait variation within PFTs often

exceeds trait differences between PFTs; and the possibility that such variation is “universal” —

that is, manifested similarly within and between species, PFTs and communities. Neglect of

continuous adaptive variation in models could lead to underestimation of the potential for

vegetation to adapt to environmental change and generally incorrect assessments of the

response of vegetation to climate (Kleidon et al., 2007; Scheiter and Higgins, 2009) and
vegetation feedbacks to climate (Alton et al., 2011).

Numerous observational studies have documented continuous relationships between
quantitative plant traits and climate (e.g. Werger and Ellenbroek, 1978; Diaz et al., 1998;
Fonseca et al., 2000; Niinemets, 2001; Wright and Westoby, 2002; Wright et al., 2004, 2005a,
b; Swenson & Enquist, 2007; Reich et al., 2007; Cornwell and Ackerly, 2009; Meng et al.,
2009; Ordoiiez et al., 2009, 2010; Albert et al., 2010; Prentice et al., 2011; Zhang et al.,

2012). Analyses of trait-environment relationships have been motivated partly by the
objective of improving the representation of plant structural and functional diversity in
DGVMs (Woodward and Cramer, 1996; Diaz and Cabido, 1997; Lavorel et al., 2007; Kattge
et al., 2011). In a new strand of DGVM development, modelling quantitative trait values
rather than PFT abundances is the central objective (Kleidon et al., 2009; van Bodegom et al.,
2012, 2014; Scheiter et al., 2013; Fyllas et al., 2014). Trait-based modelling can take better

advantage of the wealth of georeferenced data now available on plant functional traits (Kattge

‘ et al., 2011) as well as providing a more realistic representation of functional diversity and
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competition in plant communities (Scheiter et al., 2013) On the other hand, trait-environment

relationships have been shown to differ between PFTs in some cases (e.g. Barboni et al.,

2004; He et al., 2006; Meng et al., 2009), implying that not all such relationships are

universal; some adaptive trait variation might depend on the values of other traits, including

those conventionally used to define PF'Ts. Moreover there are systematic leaf-trait differences

between PFTs and in some studies these have been found to account for a substantial fraction

of the total climatically related variation in leaf traits (e.g. Reich et al., 2007; Ordofiez et al.,

2009, 2010; He et al., 2010). Thus, observational studies have reached somewhat varying

conclusions about the utility of PFT distinctions in predicting adaptive trait variation along

environmental gradients.

In this work we address the following questions that are important for modelling, and not

definitively resolved based on the current literature. (1) To what extent are quantitative trait-

environment relationships universal? Alternatively, (2) are there systematic differences in the

trait-environment relationships shown by different PFTs? (3) To what extent are variations in

traits along environmental gradients accounted for by variation within PFTs, as opposed to

successive replacements of one PFT by another? (4) What fractions of total trait variation are

linked to climate, and/or to PFT membership, as opposed to being unexplained by either

climate or PFTs? We address these questions with an analysis of variations in leaf traits in

plant communities sampled on long gradients of temperature and moisture availability in
China (Fig. 1). The data set consists of >11,000 quantitative leaf trait determinations on all of

the species present at 80 sites (1549 species-site combinations; between | and 59 (median 16)

species sampled per site), with a wide geographic and climatic spread as shown in Fig. 1. We

consider biophysical traits (leaf area: LA, specific leaf area: SLA and leaf dry matter content:
LDMC), field-measured chlorophyll fluorescence traits (the ratio of variable fluorescence to
maximal fluorescence: F,/F,, and the quantum yield of PhotoSystem II: QY), and chemical
traits: carbon content by mass (Cpass), and nitrogen (N), phosphorus (P) and potassium (K)
contents, expressed on both an area and a mass basis. Thus we consider 12 traits in all.
Although area-based nutrient contents are simply derived from mass-based nutrient contents

and SLA, we analyse them separately because their functional significance is different — for

example, leaf N comprises a photosynthetic component that is expected to be proportional to

LA and a structural component inversely proportional to SLA (Niinements and Tenhunen

1997). LA, SLA, LDMC and N were measured at all sites; the other traits were measured at

the 47 sites in eastern China, which cover most of the climatic range of the full data set,

4
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except for the driest climates in the west. Adopting a conventional PFT classification, we
analyse variations of each trait with bioclimatic temperature and moisture indices (Harrison et

al., 2010) within and across PFTs.

2 Materials and methods

2.1 Sampling sites

The sites (Fig. 1, Table S1) represent variation along the major gradients in temperature and

moisture and include a good sampling of the range of vegetation types present in China.

Thirty-three sites in Xinjiang Autonomous Region in western China sample the extreme dry
end of the moisture gradient, with annual rainfall between 12 and 468 mm (160 mm on
average). Thirty-three sites on the Northeast China Transect (NECT: Ni and Wang, 2004) lie
on an aridity gradient from closed forests with annual rainfall > 700 mm in the east, through
grasslands to desert with annual rainfall of < 150 mm in the west. Fourteen sites located in
forest reserves on the North-South Transect of Eastern China (NSTEC: Gao et al., 2003) have
greater annual rainfall and sample a range from temperate climates in the north to warm-
temperate/subtropical climates in the south. The NSTEC sites are also differentiated in terms

of rainfall, the sites in the east at any given latitude being wetter than those in the west.

Sampling took place during three summer field campaigns, in 2005 (Xinjiang), 2006 (NECT)
and 2007 (NSTEC). All sites were occupied by visually homogeneous uncultivated vegetation
with minimal signs of disturbance. Species composition and vegetation structure were
surveyed at each site. A checklist of vascular species at each site was created and field
measurements were made on all the species for which sufficient material could be sampled.

Species sampled are listed in Table S2.

2.2 Chlorophyll fluorescence measurements

F./Fn, and QY were measured using a FluorPen FP100 (Photon Systems Instruments, Czech
Republic). F,/F,, measures the potential rate of photosynthetic electron transport while QY
measures the actual rate. QY is correlated with photosynthetic rate, although it also includes
the diversion of electrons to non-photosynthetic activities such as the elimination of reactive

oxygen species (Cavender-Bares and Bazzaz, 2004).
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2.3 Foliage sampling and analysis

At least 10 g of leaves were collected for each species, except for a few species with very

small leaves at the driest sites, where at least 2 ¢ of leaves were collected. Sunlit leaves of tree

species were obtained with long-handled twig shears. The samples were subdivided for the
measurement of specific leaf area (SLA), leaf dry matter content (LDMC) and C, N, P and K

contents. The measurements used are averages of three replicates. Leaf arca (LA) was

determined by scanning three replicate sets of five leaves (or more in the case of small leaves,

b . .
to make up a total area > 20 cm” per replicate) with a laser scanner. Areas were measured

using Photoshop on the scanned images. Leaf fresh weight was measured in the field. Dry
weight was obtained after air-drying for several days and then oven-drying at 75°C for 48
hours. Leaf C was measured by the potassium dichromate volumetry method (e.g. Slepetiene

et al., 2008) and leaf N by the microkjeldahl method (e.g. Bremner, 1960). Leaf P was

analyzed colorimetrically (Shimadzu UV-2550). Leaf K was measured by Flame Atomic
Emission Spectrophotometry (PE 5100 PC).

2.4 Climate data and analysis

Mean monthly values of temperature, precipitation and fractional sunshine hours were
obtained from 1814 meteorological stations (China Meteorological Administration,
unpublished) and interpolated to a 10-km grid using ANUSPLIN 4.36 (Hutchinson and
Hancock, 2006) with the help of a digital elevation model (Farr et al., 2007). Mean annual
temperature (MAT) and precipitation (MAP), mean winter (Ppjr) and summer (Pja)
precipitation and of precipitation seasonality and timing (defined as in Prentice et al., 2011)
were calculated for each site. Bioclimatic variables were derived as in Gallego-Sala et al.
(2010): mean temperature of the coldest month (MTCO) and warmest month (MTWA),
growing degree days above 0°C (GDDy), photosynthetically active radiation during the
growing season (PARy), annual equilibrium evapotranspiration (EET), Moisture Index (MI =
MAP/EET), annual actual evapotranspiration (AET) and the Cramer-Prentice o index of
plant-available soil moisture (o¢ = AET/EET) (Cramer and Prentice, 1988). Available water
holding capacity (AWHC) values for the calculation of a were assigned following Prentice et

al. (2011), using sand, silt and clay fractions digitized from Shi et al. (2004).
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Principal components analysis was performed on standardized climate variables in SPSS. We
analysed climate gradients for China as a whole, based on data from 89 623 10-km grid cells,

and separately using just the 80 grid cells that included the sampling sites.
2.5 Plant functional types (PFTs)

Plant species were classified as follows: trees (single-stemmed, maximum height > 2 m,
subdivided as evergreen broad-leaved, evergreen needle-leaved and deciduous broad-leaved),
shrubs (multi-stemmed with maximum height between 50 cm and 2 m, subdivided as
evergreen and deciduous), erect dwarf shrubs (multi-stemmed with maximum height < 50
cm), lianas (woody climbing plants with perennial above-ground biomass), climbers (non-
woody climbing plants with annual above-ground biomass), forbs, grasses, geophytes and
ferns. Climbers and ferns were not included in the statistical analyses, however, as there were
too few species of each. The optimum and tolerance of each PFT in terms of a and GDD,,
recommended by Harrison et al. (2010) as useful and globally applicable indices of effective
moisture availability and warmth for plants, were calculated non-parametrically as follows
(Fig. 2): the range of each variable was divided into bins, and average abundance values were

calculated for the sites within each bin. The widths of the bins were selected to yield visually

smooth frequency distributions of abundance for each PFT and climate variable. The

optimum was calculated as the mean of the climate variable in the bins where the PFT was
present, weighted by its average abundance in the bins. The tolerance range was calculated

similarly, as the standard deviation of the climate variable weighted by average abundance.
2.6 Generalized linear models

Generalized linear models (GLMs: Nelder and Wedderburn, 1972; Nelder and Baker, 2006)
were used to quantify the relationships of trait values to climate variables (o and GDDy), to
avoid spurious bivariate relationships that can arise when (as here) the predictor variables are

not perfectly independent and to allow the inclusion of qualitative variables (PFTs) as

predictors in some analyses The unit of analysis was the species-site combination, i.e. a

species sampled at a site. All trait measurements were transformed to natural logarithms (In)

to reduce skewness and linearize their relationships to the climate variables. This
transformation has the property that regression coefficients represent fractional changes,
which can be compared among traits measured in different units. The coefficients are
expressed per unit of o (in other words, the change in In trait value across the global range of

o from 0 to 1) and per 10" GDDy (equivalent to the change in In trait value across the global
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range from 0 to around 10* GDDy), so that their values are broadly comparable in magnitude

between climate variables as well as between traits.

We carried out three GLM analyses for each trait: (1) With climate variables (oo and GDDy)
only as predictors, equivalent to ordinary least-squares multiple regression; (2) with climate
variables and PFTs as predictors; (3) with PFTs and PFT-climate interactions as predictors.
Analysis (1) measures the partial effect of each climate variable on the observed trait values.
Analysis (2) measures the average partial effect of each climate variable on trait values within
PFTs, allowing that the PFTs might have consistently lower or higher trait values. Analysis
(3) estimates the partial effect of each climate variable on trait values within each PFT (the
PFT-climate interaction). These three analyses are needed to answer the following questions
in sequence: (1) What is the overall (community-level) response of trait values to climate? (2)
To what extent is this response caused by similar trait variations within each PFT, versus
shifts in the occurrence and abundance of PFTs with innately different trait values? (3) Do

trait values of some PFTs respond to climate differently from others?

A significance criterion of P < 0.01 was adopted for all regression coefficients in all three
analyses. This is stringent enough to minimize the chance of ‘false positives’ in analyses (2)

and (3). In the description of Results, “significant” always implies P < 0.01 or better.

Significant differences between trait values for different PFTs (assessed at a common

environmental value) were inferred from significant coefficients for the relevant factors

(PFTs) in analysis (2), while significant differences between the trait-environment slopes for

different PFTs were inferred from significant PFT-environment interactions in analysis (3).

All GLM results are presented as partial residual plots, using the visreg package in R. Partial
residual plots are the multiple-regression analogue of simple x-y plots in ordinary regression.
In plots showing the relationship of each trait to a, the y-axis values of the data points are
adjusted so as to remove the fitted effect of GDDy. Similarly, in plots showing the
relationship of each trait to GDDy, the y-axis values of the data points are adjusted so as to

remove the fitted effect of a.

2.7 Multivariate analysis and variance partitioning

As a complement to single-trait analyses, we performed redundancy analysis (the constrained

equivalent of PCA: ter Braak & Prentice 1988) with variance partitioning (Legendre 2008), to

quantify the unique and combined contributions of climate and PFT identity to the total
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variation in all traits. This analysis was performed with the CANOCO package (Leps &

Smilauer 2003), based on the sites for which all traits were measured.

3 Results

3.1 Climate gradients

More than 80% of the geographic variation in the climate of our sampling sites can be

summarized by variation on two principal axes (Table 1). Each principal axis is defined as a
linear combination of variables, and each variable is assigned a “loading” which represents
the contribution of that variable to the combination. The first principal axis explains 60% of

total variation and is primarily related to temperature. MAT, GDDy, MTCO, MAP, MI, Ppjr

and Pj;, have the largest positive loadings. The positive loadings for precipitation variables

reflects the general tendency for absolute amounts of precipitation to increase with
temperature. The second axis explains a further 25% of total variation and is related to
moisture versus aridity. M1, a, and Py4 have large positive loadings while PARy and MTWA
have large negative loadings. The similar behaviour of PARy and MTWA reflects an
increasing period without clouds, and thus also higher temperatures in summer, as moisture
availability decreases. A third axis relating to the seasonality of precipitation accounts for
only 9% of total variation. A closely similar pattern emerged from the analysis of climate data
for the whole country (Table S3). This similarity confirms that the pattern of variation in
climate across the sites reflects the general pattern of climate gradients across China, and that
these gradients can be summarized using two variables, representing temperature and plant

moisture availability respectively.

For all further analysis we used the variables GDDy and a. GDD, was preferred to MAT as

MAT values in climates with a long, cold winter, as in northern China, show the influence of

conditions unrelated to those prevailing at the time of growth. The pattern of variation of

GDDy and o across China is shown, with the site locations, in Fig. 1. Fig. 1 also shows the

frequency of different GDDy-0. combinations among grid cells in the whole country (grey

scale), and the site positions in this climate space. Significant regions of climate space not

sampled correspond to low GDDy at high o (far northeast China) and low o (Tibetan plateau),

and high GDD, at intermediate o (tropical climates in the extreme south of China).
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3.2 Distribution of PFTs in climate space

The PFTs in our data set show distinct patterns of distribution in climate space (Fig. 2),
falling broadly into four groups. (1) Evergreen trees, evergreen shrubs and lianas favour the
warmest and wettest climates, corresponding to the warm-temperate broad-leaved evergreen
forests of southeastern China, with evergreen needle-leaved trees extending into cooler
climates in the north. (2) Deciduous trees and deciduous shrubs favour cooler and drier
climates, with optima corresponding to the deciduous forests of central eastern China;

although these PFTs have a wide tolerance and broadly overlap with groups (1) and (3). (3)

Dwarf shrubs, grasses, forbs and geophytes favour still cooler and drier climates,
corresponding to the grasslands, steppes and desert steppes of northern and northwestern
China. (4) Ferns and climbers are prominent only in cooler and wetter regions of climate
space; they occur more widely but not in any abundance, and they were not sampled

elsewhere.
3.3 Trait-climate relationships: moisture effects

Significant (P < 0.01) community-level responses to growing-season moisture availability (o)
were found for most traits (Fig. 3, Table 2). Dry climates generally favour small, thick, dense
leaves (low LA, low SLA, high LDMC). Dry climates are also associated with slightly, or
sometimes greatly, reduced potential and actual quantum yield. The steepest overall
relationships to a are for LA (5.8), SLA (1.6), and Nyrea and Karea (—1.1) and Ppass (0.7) (Table
2: values in parentheses are slopes of In trait-values versus o). The response of N, to o i

slight (0.25) compared to the response 0f Nyrea.

Inclusion of PFTs as predictors (Fig. S1) shows that there are some significant (P < 0.01)

differences among PFTs in the typical trait values found at any given a. This is most obvious
for biophysical traits — LA, SLA and LDMC — and area-based nutrients. Needle-leaved
evergreen trees stand out, having small, thick leaves, and high area-based nutrient contents,
relative to other PFTs. The magnitudes of the regression coefficients against o for the
different traits in this analysis are similar to those in Fig. 3, but now Py, (in common with the
other area-based nutrients) shows a significant (P < 0.01) negative effect of a. This
relationship within PFTs is obscured in Fig. 3 by the abundance of needle-leaved evergreen
trees, with their very low SLA and therefore high P, values, towards the wet end of the

gradient.
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Where significant (P < 0.01) trait-PFT interactions in the response to a are found (Fig. S2),
the responses are qualitatively (and usually, quantitatively) similar from one PFT to another.
Regression coefficients for LA versus a range from 3.8 to 6.1, with deciduous shrubs and
forbs showing significantly steeper responses than the rest. Regression coefficients for SLA
range from 1.3 to 2.5 with forbs showing the steepest increases. Regression coefficients for
LDMC range from —0.35 to —1.5 with forbs showing the steepest decreases. Different PFTs

have significantly (P < 0.01) different responses of QY to moisture, with geophytes

responding most and forbs least. Neither area- nor mass-based nutrients show any significant

differences in slopes among PFTs.
3.4 Trait-climate relationships: temperature effects

Significant (P < 0.01) overall responses to growing-season warmth (GDDg) were also found
for most traits (Fig. 4, Table 2). Warm climates favour thick and dense leaves (low SLA and
high LDMC). Warmer climates also show somewhat reduced potential and actual quantum
yield. The steepest overall relationship of any trait to GDDy is for SLA (-1.5) (Table 2:
numbers in parentheses are slopes of In trait values against GDD/10%). Relatively steep slopes

are also shown for Niass (—1.1), Parea (1.4) and Kipass (—1.1).

Including PFTs as predictors shows some significant (P < 0.01) differences among PFTs at

any GDDy value, similar to those shown for a (Fig. S3). But the effects on the regression
coefficients for GDD, are more profound. Most importantly, the within-PFT responses of the
three biophysical traits — LA, SLA and LDMC — to temperature are non-significant. Thus, the
overall responses of SLA and LDMC to GDD, shown in Fig. 4 are brought about by PFT
replacement, including the dominance of broad-leaved evergreen trees with low SLA and
high LDMC at the warm end of the gradient. Within PFTSs, Narea and Kyrea both decline with
temperature, while P, increases. The lack of a significant relationship at the community
level between Nyrea and Kiyrea and temperature is due to PFT replacement along the gradient —
again, most obviously, the prevalence of broad-leaved evergreen trees with high Ny, and
Karea at the warm end of the gradient. Similarly, the steep overall declines in Ni,ss and Kpags

with GDDy are mainly due to PFT replacement.

Relationships to GDD, fitted separately within PFTs (Fig. S4) showed fewer significant
slopes, and less consistency among PFTs, than the corresponding relationships to a.
Individually significant (P < 0.01) PFT responses of SLA to GDDy could be increasing or
decreasing (—0.57 to +1.3). Slopes of LDMC are negative (—1.6 to —3.0), with forbs and

11
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grasses showing the steepest declines. Area- and mass-based nutrients show few significant
differences among PFTs in their responses to either GDDy; however forbs show an increase in
Nmass and more steeply increasing P, with GDDy compared to other PFTs, and evergreen

needleleaf trees show a steeper increase in Pyrea.

3.5 Climate, PFT and residual contributions to total trait variance

Variance partitioning based on RDA (Table 3) quantifies the total “predictable” fraction of

variation for each trait (based on climate and PFT identity), and the fractions uniquely

attributable to PFT identity or climate. The difference between the sum of the unique

fractions and the total predictable fraction is the “common” fraction, which can be positive or

negative and arises because of covariance between the two sets of predictors (Legendre 2008).

The difference between the predictable fraction and 100% 1is the residual (unexplained)

fraction. Apart from C.s (With low predictability) the predictable fractions of variation for

the different traits ranged between 15% (SLA) and 49% (LA). Both climate and PFT identity

had highly significant (P < 0.005, based on a permutation test) unique effects on the ensemble

of traits. Variation in LDMC was overwhelmingly dominated by PFT effects and for Kuass

and P, similar fractions of variation were attributed to PFT and climate effects. For all other

traits except Cmass the contribution of climate was greater (and in several cases, much greater)

than the contribution of PFT identity.

4 Discussion
4.1 Adaptive significance of trait responses to moisture availability

The observed continuous biophysical trait variations with moisture availability are consistent
with previous studies (e.g. Reich et al. 1999; Fonseca et al., 2000; Niinemets, 2001; Wright
and Westoby, 2002; Wright et al. 2003, 2005a, b; Prentice et al., 2011) and, qualitatively,

reasonably well understood. The decrease in LA towards arid climates allows leaves to avoid
overheating in environments where soil moisture supplies are inadequate for transpirational

cooling to be effective (Campbell and Norman, 1998). High photosynthetic capacity coupled

with high CO, drawdown, resulting in a low ratio of internal to ambient CO, concentration
(ciicq), 1s also adaptive in dry environments (Wright et al., 2003; Prentice et al., 2014a)
because of the high transpirational cost of keeping stomata open under conditions of high

atmospheric aridity (vapour pressure deficit). Increased photosynthetic capacity requires an

12
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increase in Nyrea and a reduction in SLA. Low SLA of plants in arid environments may also
allow leaves to avoid transient overheating when wind speeds fall (Leigh et al., 2012). The
increase in LDMC with aridity is a key adaptation that allows leaves to maintain hydration

even at low water potentials that may arise under drought conditions (Bartlett et al., 2012).

The reduction in QY with aridity points to drought-induced photoinhibition at the arid end of
the gradient. Dry climates are characterized by high Nyes consistent with a high
photosynthetic capacity (compensating for low c;:c,) as mentioned above. High Kg., in dry
climates is consistent with the role of K in maintaining leaf function under water-limited

conditions (Sardans and Pefiuelas, 2015; Lloyd et al., 2015). The regulation of leaf P is less

well understood, but the trend towards higher Pye, in dry climates is consistent with a
relatively conservative N:P ratio within PFTs. Reduced mass-based N and P in arid climates
are consistent with the increased allocation of carbon to leaf structural components in leaves

with low SLA.
4.2 Adaptive significance of trait responses to growing-season warmth

The observed tendency towards lower community-level SLA with increasing temperature
may be linked to the well-known relationship between SLA and leaf longevity (Wright et al.,
2004; Poorter et al., 2009). However, temperature-related trends in SLA within PFTs are
mostly non-significant. The overall trend to lower SLA with increasing temperature is mainly
driven by the shift from deciduous to evergreen PFTs, which is to be expected given the clear
advantage for evergreens in a subtropical climate that favours year-round photosynthesis and
growth. Leaves also become more dense (higher LDMC) towards the warm end of the
gradient, but within PFTs, the only significant responses are for leaves to become /ess dense
with increasing temperature. The community-level response of LDMC is thus driven by PFT

replacement, with evergreen broad leaves characterized by high LDMC.

Both potential and actual rates of electron transport in woody plants are reduced at the warm
end of the temperature gradient. The effect is seen in both deciduous and evergreen woody
plants and is likely caused by heat stress resulting in a reduced efficiency of Photosystem II.
The decrease in the potential rate implies that electrons are being diverted to protective

mechanisms. The decrease in F,/F, is steeper than the decrease in QY.

The decline of both N, and Ny, with temperature (after PFT differences have been

considered) is consistent with the declining N requirement to achieve a given catalytic activity

13
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of photosynthetic proteins as temperature increases (Reich and Oleksyn, 2004). The reasons
for declining Kyen and Kp,es With temperature are unclear; possibly low temperatures in
winter, towards the cold end of the gradient, create a K requirement similar to that caused by
drought. The observed increases in both Py, and Py, With temperature are opposite to the
general tendency of leaf N to increase allometrically with leaf P (e.g. Reich et al., 2010).
These trends might reflect an increase in non-photosynthetic electron transport processes that

require a large supply of inorganic phosphate.
4.3 Trait variation within and between PFTs

Our results add to the growing evidence for extensive trait variability that is not accounted for

by PET differences. Using the global TRY data base, Kattge et al. (2011) found that the

largest part of the total variance (as much as 75%) for several traits (including Ny, and SLA)
was found within rather than between PFTs. Similar observations have been made by van

Bodegom et al. (2012) and Wullschleger et al. (2014), while Groenendijk (2011) found that

PFTs were not useful predictors of community-level photosynthetic traits. Kattge et al. (2011)

also showed (in agreement with our results) that this partitioning varies considerably among

traits — with some traits predicted well by PFT identity. Our results extend these previous

studies in that they analyse climatically related trait variation. We show contrasts in the

responses of different traits to climate, and in their responses to different aspects of climate.
In most cases, nutrient traits showed similar responses to climate within PFTs to those shown
at the community level; no significant differences were found between the responses within

different PFTs., consistent with Zhang et al.’s (2012) findings for multiple element

concentrations at the species level.

Variations of biophysical traits with respect to moisture availability are also similar within
PFTs and at the community level. However, these same traits show patterns of response to
temperature that are dominated by differences among PFTs. The differential responses of leaf
N and P contents to moisture availability and temperature require further investigation. Note

also that we have not examined trait relationships to soil conditions, especially measures of

fertility status, which have been shown to be important in determining photosynthetic and

other leaf traits (Ordofez et al., 2009; Maire et al., 2015). It would be particularly interesting

to assess the degree to which leaf chemistry is influenced by nutrient supplies, as opposed to

internal stoichiometric regulation. Results presented here suggest that the latter process does

at least play an important role, for all three nutrients measured.
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4.4 Implications for modelling

It is reasonable to expect that the performance of vegetation models would be improved by
representing the values of phenotypically or genotypically plastic traits as state variables,
rather than parameters (Prentice et al., 2007). This ‘adaptive’ approach has been adopted
explicitly in some recently developed models, e.g. Schymanski et al. (2009) and Scheiter et al.
(2013). In the LPJ family of models descended from Sitch et al. (2003), leaf-level
photosynthetic capacity (Vema:) 1s allowed to vary adaptively within PFTs, based on an
optimality hypothesis that predicts realistic responses of Ny, to light, temperature and CO,
(Dewar, 1996; Haxeltine and Prentice, 1996). Most of the LPJ-family models have treated
SLA as a PFT-specific parameter and thus do not allow for covariation of SLA with Nyyca, as
has been demonstrated to occur, here and in other contexts (e.g. Lloyd et al., 2010; Prentice et

al., 2011). This deficiency has recently been corrected in an LPJ version by Sakschewski et al.

(2015). But the adaptive approach embedded in LPJ is unusual among ‘first-generation”

DGVMs, which generally treat leaf traits as fixed PFT properties.

3

Our findings also indicate that not all trait-environment relationships are “universal”. The

distinctions between woody and herbaceous, deciduous and evergreen, and angiosperm and
gymnosperm plants systematically influence the values of key biophysical traits in ways that
would not be predictable from assumed universal relationships. Moreover certain observed
overall responses of trait values to climate, including the decline in SLA and increase of
LDMC with increasing temperature in our study, appear to be driven principally by PFT
replacement rather than by adaptive variation within PFTs. Nonetheless, the prevalence of
continuous, consistent trait variation within and between PFTs for many traits and trait-
environment relationships supports the conclusion that models should avoid prescribing fixed,

PFT-specific values for most quantitative traits (e.g. Wright et al., 2005). This conclusion is

reinforced by examining distributions of PFTs in spaces defined by pairs of traits (Fig. 5).

PFTs show considerable overlap in “trait space”, even for traits such as LDMC where climate

has little direct influence. An additional argument against the imposition of fixed trait values

for PFTs is that PFT identity itself can be environmentally plastic; for example, there are

species capable of behaving as trees or shrubs depending on growth conditions.

Fixed, PFT-specific values in models could be replaced by adaptive functions of
environmental variables: thus reducing the multiplicity of uncertain parameters, while

simultaneously increasing the realism of next-generation DGVMs (Prentice et al., 2014b). To
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do so, however, requires that these functions be well specified and robust. Although some
progress has been made in developing trait-based models based on statistical trait-
environment relationships, process-based model development requires these responses to be
quantitatively predictable, based on explicit hypotheses about the adaptive significance of

traits.

Practical considerations, including the problem of access with equipment at some of the forest

reserve sites, prevented us from including measurements of photosynthetic rates in this trait

data set. Chlorophyll fluorescence measurements give different information from CO,

fixation measurements. Although N,.. has often been found to be correlated with

carboxylation capacity (Vemar), a key quantity for DGVMs, the correlation is far from perfect

because of the large and variable structural component of leaf N (Niinemets and Tenhunen,

1997) and other significant components unrelated to photosynthesis, including nucleic acids

and defence compounds. However, there are encouraging indications that V... too may be

broadly predictable as a function of environmental variables (Ali et al., 2015; Fisher et al.,

2015). The theory behind the adaptive representation of photosynthetic capacity in the LPJ

family of models (Haxeltine and Prentice, 1996) makes predictions about the relationship

between V... and environment, which could be tested given a sufficiently wide-ranging set

of measurements. Quantifying the predictability of key photosynthetic parameters will thus

also be important for developing next-generation DGVMs, and is a high priority for our future

research.

Finally we note that within-site variation in traits is large, indeed it is generally as large or

larger than the component that can be predicted from site characteristics; consistent with our

finding that at least half of the total measured variation in each trait is related neither to PFT

identity nor to climate (Table 3). This is an important caveat for modelling because it implies

that unless such variation is allowed for, models will underestimate the ability of locally

available species, by shifting abundance, to faclitate community-level adaptation to

environmental change. In effect, current DGVMs largely ignore the potential stabilizing

effects of biodiversity on ecosystem function. Taking account of biodiversity in a more

realistic way should be possible within a quantitative trait framework by analysing the extent

of trait plasticity within species (e.g. Ackerly and Cornwell, 2007). We suggest this as an

important research topic, which could capitalize on the growing body of quantitative plant

trait data sets based on comprehensive floristic sampling in different environments.
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Figures

Figure 1: Left: Geographic variation in the mean Cramer-Prentice moisture index (o) and
annual growing degree days above 0°C (GDDy) in China. Right: frequency distribution of 10-

km grid cells (grey squares) and location of sampling sites (red circles) in climate space.
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Figure 2: Optima and tolerances of PFTs in climate space, based on data from the sampling

sites. The grey dots represent the climates of all grid cells in China.

Q
© _|
o
S ® evergreen broadleaf tree
® evergreen needleleaf tree
8 ® deciduous tree
. ® evergreen shrub
S 7 © deciduous shrub
© erect dwarf shrub
© forb
o grass
= ® liana
© geophyte
® climber
g | e fern
T T T T T T
0 2000 4000 6000 8000 10000
GDDO0,

27



Figure 3: Partial residual plots for the relationships between leaf traits and the Cramer-
Prentice moisture index (a), from the GLM analysis summarized in Table 2. Each point

denotes a species-site combination; PFTs are indicated by colours. Only significant regression

wm Rk W

slopes (P <0.01) are shown.
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Figure 4: Partial residual plots for the relationships between leaf traits and growing degree

days (GDDy), from the GLM analysis summarized in Table 2. Each point denotes a species-

site combination; PFTs are indicated by colours. Only significant regression slopes (P < 0.01)

are shown.
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1 | Figure 5: Illustrative plots showing means and standard deviations of trait values within PFTs

2 | for In Ny combined with LDMC, In Py, and SLA.
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Tables

Table 1: Principal components of climate data based on the 80 sampling sites. Each

component (axis) represents a linear combination of variables. Loadings for variables

represent the contribution of each variable to the axis. Values are shown in bold when their

magnitude > 0.5.

PC1 PC2 PC63
MAT 0.870 -0.462 0.12§
GDD, 0.865 —-0.474 0.092
MTCO 0946 -0.219 0.030
MTWA 0.572 -0.727 0.223
PARy 0.642 -0.701 0.106
MAP 0.899 0.427 -0.014
o 0.603 0.753 0.106
MI 0.824 0.560 0.000
Ppyr 0917 0.200 -0.263
Pjja 0.747 0.599 0.238
Timing -0.833 —-0.021 0.143
Seasonality -0.314  0.204  0.900
Variance explained 59.8% 25.1%  8.8%
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Table 2: Regression coefficients for the GLM with only climate variables as predictors.

Values in bold are significant at P < 0.01.

intercept alpha GDDO
slope + sd error slope + sd error slope + sd error
InLA 1.8167 0.1433 5.8373 0.2025 —0.3682 0.3413
In SLA 2.3234 0.0434 1.5550 0.0588 -1.5061 0.0979
In LDMC 5.7544 0.0347 —0.3542 0.0468 0.6490 0.0779
In Fy/Fry —0.2400 0.0136 0.1168 0.0196 —0.4191 0.0250
In QY —0.7823 0.0213 0.5820 0.0306 —-0.1321 0.0391
In Cass 6.1961 0.0276 —0.0792 0.0424 —0.0831 0.0547
In Niass 3.1357 0.0419 0.2511 0.0605 -1.0920 0.1033
In Pass 0.1243 0.0476 0.6884 0.0733 0.4798 0.0944
In Kinass 3.2124 0.0696 -0.1766 0.1072 -1.0956 0.1381
In Narea 0.8419 0.0462 -1.1027 0.0670 0.0638 0.1142
In Parea —2.4890 0.0676 -0.2141 0.1043 1.4426 0.1347
In Karea 0.5975 0.0767 -1.0796 0.1185 —0.1282 0.1530
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Table 3: Variation (%) in traits accounted for by climate and PFTs together, and the unique

contributions (%) of climate and PFTs, based on the first two axes of a redundancy analysis

for the sites with data for all traits.

climate and PFTs climate PFTs
In LA 48.7 23.1 6.4
In SLA 15.0 12.7 5.8
In LDMC 25.9 39 24.8
In F,/F, 277 20.8 14
In QY 36.6 124 5.0
In Cnags 3.5 0.6 0.8
In Ninass 29.8 16.4 3.8
I P 29.8 7.3 2.9
10 Kpnass 20.7 23 K.
In Pyrey 23.2 6.7 8.1
In Karea 18.6 8.1 3.4

All 40.1 33.6 21.1




