

P3L5: I would provide a more comprehensive discussion of other environmental factors that drive $\delta^{13}\text{C}$ variation in submerged macrophytes (e.g. the influence of light on photosynthetic carbon demand and isotope discrimination) Hemminga & Mateo (1996).

P3L8-11: Slightly confusing. Clearly resultant $\delta^{13}\text{C}$ values hinge upon a multitude of factors, such as carbon source, concentration, degree of HCO_3^- use, and photosynthetic demand (as driven by irradiance). I would revise this paragraph after reviewing Hemminga & Mateo 1996.

P7L7-18: It appears that category (seagrass vs DIC) was not a significant explanatory variable of $\delta^{14}\text{C}$ within the full model, whose AIC score was rather similar to the reduced model, which removed the interaction between salinity and category. Examining Fig 2, it appears that at two of the higher salinity stations (20-30), seagrass $\delta^{14}\text{C}$ was similar to or lower than DIC $\delta^{14}\text{C}$. Can you explain?

P9L1-4: It seems, in my opinion, that exposure time would be a rather large factor in regards to determining the resultant contribution of Cair. This point could be motivated by a stronger statement.

Hemminga MA, Mateo MA (1996) Stable carbon isotopes in seagrasses: Variability in ratios and use in ecological studies. *Mar Ecol Prog Ser* 140:285-298