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Abstract  11 

Changes in Southern Ocean (SO) phytoplankton distributions with future warming have the 12 

potential to significantly alter nutrient and carbon cycles as well as higher trophic level 13 

productivity both locally and throughout the global ocean. Here we investigate the response of 14 

SO phytoplankton productivity and biomass to 21st century climate change across the CMIP5 15 

Earth System Model suite. The models predict a zonally-banded pattern of phytoplankton 16 

abundance and production changes within 4 regions: the subtropical (~30°S to 40°S), 17 

transitional (~40°S to 50°S), subpolar (~50°S to 65°S) and Antarctic (south of ~65°S) bands. 18 

We find that shifts in bottom-up variables (nitrate, iron, and light availability) drive changes 19 

in phytoplankton abundance and production on not only interannual, but also decadal and 100-20 

year timescales: the timescales most relevant to climate change. Spatial patterns in the modeled 21 

mechanisms driving these biomass trends qualitatively agree with recent observations, though 22 

longer-term records are needed to separate the effects of climate change from those of 23 

interannual variability. Because much past observational work has focused on understanding 24 

the effects of the Southern Annular Mode (SAM) on biology, future work should attempt to 25 

quantify the precise influence of an increasingly positive SAM on SO biology within the 26 

CMIP5 models. Continued long-term in-situ and satellite measurements of SO biology are 27 

clearly needed to confirm model findings. 28 

 29 
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1   Introduction  1 

The photosynthetic activity of marine phytoplankton provides the ultimate source of food for 2 

virtually all marine biota, including organisms of vast commercial value. This phytoplanktonic 3 

activity also drives the biological pump, the process by which surface carbon dioxide and 4 

nutrients are drawn down via photosynthesis with subsequent sinking of organic matter to the 5 

deep ocean that effectively removes carbon from the atmosphere for centuries to millennia 6 

(Eppley and Peterson, 1979; Heinze et al., 1991). The warming trend recorded in the global 7 

surface ocean since the mid-20th century is projected to continue in the 21st century (Stocker 8 

et al., 2013) and can impact phytoplankton activity both directly via the physiological effect of 9 

temperature on growth rate and/or indirectly by altering key environmental factors such as 10 

nutrient and light availability (e.g., Marinov et al. 2010). The responses of phytoplankton 11 

communities to climate change may have profound ecological and biogeochemical 12 

repercussions with potential feedbacks on climate, the net sign and magnitude of which are still 13 

largely uncertain. Documenting and understanding these responses is one of the main goals of 14 

global change science today (Falkowski et al., 2000; Geider et al., 2001). 15 

As a major region of deep, intermediate, and mode water formation, the Southern Ocean (SO) 16 

is one of the few places on earth where there is direct communication between the atmosphere 17 

and the deep ocean. Because of this, the SO plays a critical role in the global climate system 18 

via its significant impacts on the global heat and carbon budgets. Additionally, intermediate 19 

and mode waters formed here allow for large advective transfers of macronutrients such as 20 

nitrate, phosphate, and silicate from the SO to the low-latitude oceans, indirectly accounting for 21 

up to 75% of phytoplankton production north of 30oS (Sarmiento et al., 2004a; Marinov et al., 22 

2006). Thus, potential changes in SO productivity can affect not only local nutrient and carbon 23 

cycles, but may also drastically alter nutrient and carbon cycles as well as phytoplankton 24 

distributions throughout the global ocean.  25 

Much of the SO is a so-called HNLC (high-nutrient, low-chlorophyll) region, where 26 

chlorophyll concentrations (and implicitly phytoplankton biomass and production) are 27 

relatively low, in spite of a large upwelled supply of macronutrients (e.g., Martin et al., 1990; 28 

Cullen, 1991; Pitchford and Brindley, 1999). Here insufficient light availability may help 29 

explain why biological productivity is not as high as it could be. Because light is a potentially 30 

stronger limiting factor than macronutrient supply for photosynthesis here, warming is 31 

generally postulated to be advantageous for algal communities within these regions because 32 
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shallower mixed layer depths (MLDs) (due to enhanced stratification and increased freshwater 1 

influx with future warming) are expected to increase light availiability to phytoplankton and 2 

prolong the growing season (Bopp et al., 2001; Le Quéré et al., 2005; Doney, 2006). Warming 3 

may also directly enhance productivity by alleviating growth rate limitations due to low 4 

temperatures (Steinacher et al., 2010). If this line of reasoning holds, we should observe an 5 

increase in phytoplankton biomass and chlorophyll concentrations in the high-latitude SO with 6 

future warming. A further complicating factor, however, is that SO phytoplankton are also 7 

limited by iron and silicate, such that they can be light-iron-silicate (or any combination of the 8 

three) co-limited (Moore et al., 2013a). Thus, changes in any of these factors will affect 9 

phytoplankton productivity and biomass within the SO. Because of the complicated 10 

multifactorial nature of the problem, a synergy of observations and models is needed to 11 

understand the driving mechanisms of projected changes in SO phytoplankton distributions. 12 

Recent studies have suggested that SO phytoplankton biomass and productivity will change in 13 

response to rising atmospheric CO2 concentrations, but the direction, significance, and causes 14 

of these changes are still under debate (Bopp et al., 2001; Bopp et al., 2005; Schmittner et al., 15 

2008; Steinacher et al., 2010; Wang and Moore, 2012; Bopp et al., 2013; Marinov et al., 2013; 16 

Cabré et al., 2014; Laufkötter et al., 2015). Here we use the newest generation of fully-coupled 17 

CMIP5 (Coupled Model Intercomparison Project 5) Earth System Models to systematically 18 

study the response of SO phytoplankton to 21st century climate change, assuming the rcp8.5 19 

emissions scenario. To this end, we borrow some statistical methods developed in Cabré et al. 20 

(2014) (namely, the model weighting scheme and the bootstrap technique, both described in 21 

Section 2 below) to conduct our work. All 16 of the CMIP5 models that incorporate ecological 22 

subroutines and provide their output on the CMIP5 portal are included in our study. We also 23 

summarize and review past field studies of SO phytoplankton to see what has already been 24 

observed and to understand where there may be disagreement over mechanisms and/or recent 25 

directions of changes between the models and field data. We find that over the next 100 years, 26 

the CMIP5 models predict a zonally-banded pattern of SO phytoplankton abundance and 27 

productivity changes driven by shifts in light, nitrate, and iron availability with future warming. 28 

We show that the SO south of ~30°S can be separated into 4 zonally-defined biomes: the 29 

subtropical (~30°S to ~40°S), transitional (~40°S to ~50°S), subpolar (~50°S to ~65°S) and 30 

Antarctic (south of ~65°S) bands. Each of these biomes shows consistent ecological responses 31 

to 21st century climate change across most of the CMIP5 models studied. We further find that 32 

this banded structure is in general qualitative agreement with patterns and mechanisms of 33 
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phytoplankton distribution changes which have emerged from observations over recent 1 

decades.  2 

 3 

2   Methods    4 

2.1   CMIP5  model  description  5 

A list of the models used along with relevant model details are summarized in Table 1. The 6 

scenarios used in our study are the historical and rcp8.5 scenarios from the IPCC’s Fifth 7 

Assessment Report, with output data downloaded from http://cmip-8 

pcmdi.llnl.gov/cmip5/data_portal.html. See Table 2 for a description of the variables 9 

downloaded and how they were used within this study. For all model analyses conducted here 10 

we use yearly time series, which were sometimes calculated from CMIP5 monthly output and 11 

sometimes taken straight from CMIP5 yearly output depending on availability. Some models 12 

lacked output data for certain variables. Table S1 shows which models had output for which 13 

variables. Only the first ensemble members (r1ip1) within the archives are used here. The 14 

historical scenario, spanning years 1850-2005, is forced with observed atmospheric CO2 15 

concentrations and is used to represent present-day conditions. The rcp8.5 scenario, spanning 16 

years 2006-2100, is representative of future unmitigated climate change conditions with 17 

radiative forcing increasing by 8.5 W/m2 relative to preindustrial by year 2100. See Taylor et 18 

al. (2012) and van Vuuren et al. (2011) for further details on CMIP5 experimental design and 19 

forcing scenarios. Absolute 100-year mean changes are calculated as the mean value from years 20 

1980-1999 within the historical simulation subtracted from the mean value from years 2080-21 

2099 within the rcp8.5 simulation. Relative change is defined as the 100-year absolute change 22 

divided by the historical 1980-1999 mean. 23 

For multi-model statistical analysis, we weight models based on their similarity to avoid double 24 

counting and to preserve model independence. If two models are very similar in terms of their 25 

ocean biogeochemistry or physics (typically because they are two slightly different versions of 26 

the same basic model coming from the same modeling center – see Fig. S1 comparing 27 

phytoplankton biomass changes in HadGEM2-CC and HadGEM2-ES, for example), we give 28 

them each a weight of 0.5 instead of 1. See Table 1 for a list of model weights and Cabré et al. 29 

(2014) for a more detailed discussion on weighting. We do not attempt to weight models 30 

according to how well they reproduce observed chlorophyll-a (chl) concentrations or primary 31 
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productivities for the following reasons: (1) We cannot tell if they reproduce current mean-state 1 

values of these variables for the right reasons, and (2) we would like to understand equally the 2 

reasons for each individual CMIP5 model’s predictions and the reasons for the entire suite’s 3 

predictions on average. 4 

2.2   Bootstrap  analysis  (Figs.  1,  5,  6)  5 

To quantify the significance of multi-model mean 100-year trends, we calculate the percentage 6 

of simulated model realizations that agree on the sign of a predicted trend for a given variable, 7 

using the statistical technique known as bootstrapping. We built 1,000 realizations of the 100-8 

year trend by randomly selecting n models (where n is the number of models with data available 9 

for any given variable) with replacement among the n available models. Within a single 10 

realization, one model may be represented more than once, while other models may not be 11 

represented at all. We take into account interannual variability by randomly selecting one of the 12 

20 years from the present-day historical scenario (1980-1999) and one of the 20 years from the 13 

future rcp8.5 climate change scenario (2080-2099) for each selected model. For every variable 14 

of interest at every spatial grid point, we then create a realization of the 100-year trend by 15 

finding the difference between the two randomly chosen years. We then obtain the multi-model 16 

significance of this trend at each grid point by calculating the percentage of 1,000 realizations 17 

that predict a positive change. Thus, the higher (lower) the bootstrap percentage above (below) 18 

50%, the greater the significance of the positive (negative) trend at a given location. This 19 

bootstrapping procedure provides a more robust measure of significance than simply 20 

calculating the percentage of models that agree based on single model runs alone because it 21 

both takes into account interannual variability and greatly increases the number of permutated 22 

realizations. See Cabré et al. (2014) for further details on application of the bootstrapping 23 

method to the CMIP5 dataset. 24 

 25 

3   Results  and  Discussion  26 

In this study, we attempt to understand how the general characteristics of SO phytoplankton 27 

may change with future warming by investigating biomass and productivity at both peak bloom 28 

times and averaged over the entire year. To this end, we choose to study the following two 29 

variables: (1) maximum annual surface phytoplankton biomass (henceforth PB, representative 30 

of phytoplankton biomass at the peak of an annual bloom) and (2) average annual primary 31 
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production vertically integrated down to 100-m depth (henceforth PP, representative of average 1 

yearly water column integrated conditions). We conducted all of our analyses with both of these 2 

variables, but only show results for the variable which made the most sense to use in the context 3 

of the analysis. For example, whenever we analyze individual models, we show PB because we 4 

frequently only have monthly model output (with which to generate maximum, minimum, or 5 

average annual data) at the surface of the ocean (i.e., monthly NO3, iron, and light output are 6 

only available at the surface) and want to keep the variables we are cross-correlating spatially 7 

consistent whenever possible (either all variables at the surface only or all vertically-integrated 8 

only). Although PB and PP are obviously different biological quantities (PB is surface 9 

phytoplankton biomass concentration and is directly affected by grazing, while PP is the 10 

integrated product of growth rate and biomass and is only indirectly affected by grazing – see 11 

references cited in Table 1 for model equation details), the direction of projected changes in the 12 

two variables are highly similar in our regions of interest (Fig. 1a, b; Figs. S1-2). Some 13 

exceptions to this occur between ~50-65°S in models GISS-E2-H-CC and CESM1-BGC (Figs. 14 

S1-2); here PP increases while PB decreases, suggesting that the effects of top-down controls 15 

(grazing) win out over the effects of bottom-up controls (nutrients, light, temperature). Among 16 

the other models as well as other regions within these two models, however, changes in bottom-17 

up controls appear to explain most of the projected phytoplankton response such that patterns 18 

of predicted PP and PB change overlap significantly. Because of this and large uncertainties in 19 

how well the models’ grazing parameterizations approximate the real ocean due to their 20 

incomplete foodweb dynamics (see references cited in Table 1 for model equation details), we 21 

focus mostly on understanding the effects of bottom-up controls within all of the models. One 22 

other notable difference between PB and PP is that trends in PP appear to be slightly more 23 

regionally consistent across the models than trends in PB (Figs. S1-2; Figs. 5-6), so that 24 

whenever we look at relationships across models, we use PP instead of PB. PP output is also 25 

available for a larger number of the models. 26 

3.1   Zonally-banded  all-model  mean  100-year  changes  (Fig.  1)  27 

Predicted multi-model mean 100-year changes in both PB and PP exhibit a zonally-banded 28 

pattern similar to those predicted by individual models alone (Fig. 1a, b; Figs. S1-2; Tables S2-29 

3). This leads to a natural division of the SO into four zonally-banded biomes separated by 30 

switches in the sign of predicted PB and PP changes, as follows: 31 
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(1) Subtropical – Within the first zonal band (~30°S to ~40°S), there is a predicted decrease in 1 

PB, PP, and wintertime nitrate concentrations (Fig. 1c; Fig. S3). Here shallower wintertime 2 

MLDs (Fig. S4) and resulting decreases in nitrate supply are associated with increases in water 3 

column stratification and the climate-driven poleward expansion of subtropical gyres observed 4 

across all CMIP5 models (Meijers et al., 2012; Cabré et al., 2014).  5 

(2) Transitional – Within the second zonal band (~40°S to ~50°S), the models predict an 6 

increase in PB and PP with climate change, which we attribute to a shoaling of the summertime 7 

MLD (which alleviates light limitation) present during the peak of phytoplankton blooms (Fig. 8 

1d; Fig. S5), as well as an increase in surface iron (Fig. 1e; Fig. S6).  9 

(3) Subpolar – Within the third zonal band (~50°S to ~65°S), we ascribe a predicted drop in 10 

modeled PB and PP over the 21st century to deeper summertime MLDs (Fig. 1d; Fig. S5) and 11 

decreased summertime IPAR (incident photosynthetically active radiation) (Fig. 1f; Fig. S7) 12 

due to increased total cloud fraction (Fig. 1g; Fig. S8), both of which exacerbate phytoplankton 13 

light limitation in this region. 14 

(4) Antarctic – South of ~65°S, a second region of predicted PB and PP increase is associated 15 

with enhanced iron supply (Fig. 1e; Fig. S6) and increased light availability due to accelerated 16 

melting of sea ice (Fig. 1f; Fig. S7, S9). 17 

These abovementioned factors are proximate physical and biogeochemical drivers of predicted 18 

phytoplankton responses within the models, but what is the ultimate driver of all of these 19 

physical and biogeochemical changes? 20 

Historical and projected 21st century increases in the strength of the principal mode of 21 

variability in the SO—called the Southern Annular Mode (SAM)—due to a combination of 22 

elevated CO2 concentrations and ozone depletion could be one explanation. One highly agreed 23 

upon dynamical change captured within all of the CMIP5 models analyzed here is an 24 

intensification and poleward shift of the SO westerly wind belt (Fig. 1h; Fig. S10) associated 25 

with an increasingly positive phase of the SAM with future warming, as seen both here (Fig. 26 

S11) and in previous work (e.g., Yin, 2005; Arblaster and Meehl, 2006; Russell et al., 2006; 27 

Gillett and Fyfe, 2013; Zheng et al., 2013). This highly consistent increase in wind stress (which 28 

is most pronounced in the summer – plots not shown) south of 50°S may explain the deepening 29 

of summertime MLDs south of 50°S, while the decrease in wind stress between 30°S and 50°S 30 

may explain the shoaling of summertime MLDs in that region (Fig. 1d; Fig. S5). These changes 31 

in MLD can then affect nutrient supply to the surface, perhaps leading to the large decreases in 32 
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surface nitrate concentrations between 30°S and 50°S (Fig. 1c; Fig. S3). Warming, tropospheric 1 

stability changes, and southward-shifted storm tracks can also lead to shifts in cloudiness (e.g., 2 

Yin, 2005; Bender et al., 2012; Ceppi et al., 2014; Kay et al., 2014), which may help explain 3 

the increase in summertime cloud cover south of 50°S (Fig. 1g; Fig. S8) and the concomitant 4 

decrease in summertime IPAR between 50°S and 65°S across the models (Fig. 1f; Fig. S7). 5 

South of ~65°S in most models, sea ice melt (see Fig. S9; Turner et al., 2013; Mahlstein et al., 6 

2013) allows more light to reach the surface of the ocean, resulting in a net increase in IPAR 7 

despite concurrent cloud cover increases. A robust analysis of the effects of SAM and SO 8 

westerly wind stress changes on the various proximate drivers we study here is out of the scope 9 

of this paper, but is a key issue that should be addressed in future work. 10 

As for the ultimate driver of increases in surface iron concentrations, which contribute to 11 

increases in PB and PP in the Transitional (~40-50°S) and Antarctic (south of 65°S) bands, 12 

there may be other complicating factors at work. Parameterizations of the marine iron cycle 13 

differ from model to model and include processes such as atmospheric dust deposition, 14 

phytoplankton-community dependent biological uptake and remineralization, vertical particle 15 

transport, scavenging, and the release of iron from sediments (e.g., Moore et al. 2013b). While 16 

atmospheric dust deposition is kept constant in the CMIP5 simulations, other processes listed 17 

above may change, thus altering surface iron inventories. For example, the increase in iron in 18 

the 40°-50°S Transitional band can be explained by enhanced vertical supply due to deeper 19 

wintertime mixed layers (Fig. S4) or by increases in summertime water column stratification, 20 

which can trap and concentrate iron deposited from the atmosphere closer to the surface. On 21 

the other hand, Misumi et al. (2014) showed that in the CESM1-BGC model (rcp8.5 scenario), 22 

a southward expansion of the subtropical gyre and changes in low-latitude iron utilization 23 

resulted in increased lateral advection of iron into the SO over the 21st century. Another 24 

potential iron enhancing mechanism in the SO is increased release of iron from sediments, a 25 

mechanism important within at least the GFDL models (J. Dunne, private communication). 26 

 27 
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3.2   Multiple   time-scale   analysis   within   models   GFDL-ESM2G,   HadGEM2-ES,  1 

IPSL-CM5A-MR  2 

3.2.1   Interannual  to  decadal  time-scale  analysis  (Fig.  2)  3 

To check the significance and robustness of the associations between phytoplankton abundance 4 

and the physical-biogeochemical variables of interest (the bottom-up controls) discussed in 5 

Sect. 3.1 above, we use regression and correlation analysis to study these associations in greater 6 

detail within three individual models with well-established, complex ocean biogeochemical 7 

modules (GFDL-ESM2G, HadGEM2-ES, and IPSL-CM5A-MR). An important point to note 8 

is that multi-model mean changes in a given variable may be dominated by models with the 9 

biggest changes in some cases, so the analysis of individual models here is helpful in better 10 

illuminating particular relationships between variables. 11 

In Fig. 2, we show scatter plots of PB versus our variables of interest on multiple timescales, 12 

across the four chosen zonally-banded biomes (as defined in Sect. 3.1 above). We use only the 13 

grid points within each of the four zonal bands in a given model where the 100-year change in 14 

PB is predicted to go in the same direction as the entire band in the all-model average. As an 15 

example, in Fig. 1a, we see that PB is expected to increase with future warming in the Antarctic 16 

band (south of 65°S) in the all-model average; accordingly, we mask the grid points south of 17 

65°S within each individual model where PB increases and study those grid points alone to 18 

understand what is driving PB increases within the south-of-65°S band as a whole. By this same 19 

procedure, we mask and investigate only the areas where PB decreases between 30-40°S, where 20 

it increases between 40°S-50°S, where it decreases between 50°S-65°S, and where it increases 21 

south of 65°S. We undertake this masking procedure because we would like to tease out the 22 

dominant driver of the net phytoplankton response within the zonal band of interest and 23 

masking helps to further amplify the signal we are looking for by focusing on what the majority 24 

of points we are interested in are doing, thus effectively diluting the confounding effects of 25 

natural background variability. To confirm that masking does not significantly alter our results 26 

besides by potentially enhancing the signal-to-noise ratio of our correlations, we repeat any 27 

analyses (namely, Figs. 2-4) involving masking with all (both masked and unmasked) grid 28 

points. Results from these all-inclusive analyses agree with those presented here for masked 29 

points only, but with slightly weaker correlation coefficients between phytoplankton biomass 30 

or productivity and a given driving variable of interest in some cases, as expected (see 31 

discussion below). 32 



 10 

After spatially averaging PB and our variables of interest over the masked grid points within 1 

each zonal band, we then created different time series representing multiple timescales. To 2 

remove the effects of climate change and isolate interannual variability, we subtracted a 25-3 

year running mean from every spatially averaged yearly data point within each scenario’s raw 4 

yearly time series (historical from 1911-2005, rcp8.5 from 2006-2100). To capture variability 5 

and mechanisms which act on a longer than interannual but shorter than decadal timescale in 6 

the absence of confounding climate change effects, we took the 5-year running mean of the raw 7 

yearly time series data and then subtracted a 25-year running mean from each 5-year running 8 

mean-smoothed annual value. Here we purposely chose to use detrended historical scenario 9 

time series rather than preindustrial control scenario time series (forced with constant 10 

preindustrial CO2 concentrations) for practical reasons (not all the models provided all the 11 

necessary variables in the preindustrial control experiment). We did, however, prove that in at 12 

least model GFDL-ESM2G, the interannual drivers affect phytoplankton biomass in the same 13 

direction and with a similar magnitude in the preindustrial control case and the detrended 14 

historical and rcp8.5 cases, as expected. Finally, to investigate and emphasize the effects of 15 

climate change, we created a set of historical and rcp8.5 "climate change" time series by taking 16 

10-year averages (not running means, but rather averages of non-overlapping 10-year intervals) 17 

of the same raw yearly spatially averaged time series as before.  18 

A quick summary of the making of Fig. 2 is as follows: we spatially averaged PB and our 19 

driving variables of interest over each masked zonally-banded biome and temporally correlated 20 

them across three distinct timescales of variability. Only those variables of interest which were 21 

significantly correlated with PB over at least two of the three (interannual, 5-year, and decadal) 22 

studied timescales are shown (see Fig. S12 for examples of how correlations between PB and 23 

variables which were not chosen looked in comparison to the correlations between PB and the 24 

variable which was chosen). The driving variables shown are thus the ones whose relationships 25 

with PB hold on interannual, five-year, as well as longer-term climate change timescales in both 26 

the historical and rcp8.5 scenarios. Significantly, this implies that changes in these particular 27 

variables are the likely drivers of changes in phytoplankton biomass on an interannual as well 28 

as a longer-term timescale associated with future warming. It is important to note here that these 29 

inferred linkages are based only on correlations, but in all cases are also supported by model 30 

equations and previous studies. 31 
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PB between 30°S and 40°S is strongly positively correlated with maximum annual surface 1 

nitrate concentration in all three models on all timescales (Fig. 2a). This suggests that predicted 2 

future decreases in PB between 30°S and 40°S are largely driven by climate warming-induced 3 

decreases in macronutrient supply to the surface during winter. This decreased supply is in turn 4 

a consequence of increased water column stratification and decreased maximum annual 5 

wintertime MLD associated with future warming, as was suggested by the analysis of multi-6 

model mean maps discussed in Sect. 3.1 above.  7 

Between 40°S and 50°S, projections of enhanced PB are driven by either increases in iron 8 

concentrations (GFDL-ESM2G and IPSL-CM5A-MR) or reduced light limitation associated 9 

with shoaling of the summertime mixed layer (HadGEM2-ES) (Fig. 2b), again in agreement 10 

with the analysis in Sect. 3.1. 11 

Within the 50°S to 65°S band, where PB is predicted to decrease across all three models, light 12 

and iron are the most important limiting factors (Fig. 2c). For GFDL-ESM2G, in regions within 13 

this band where PB decreases with climate change, cloud cover (which is negatively correlated 14 

with PB – plot not shown) increases, leading to a concomitant decrease in surface light 15 

availability, which is positively correlated with PB (Fig. 2c). Furthermore, in both GFDL-16 

ESM2G and HadGEM2-ES, the summertime MLD is predicted to deepen with climate change, 17 

creating an even more light-limited environment for phytoplankton here (Fig. 2c), as was 18 

deduced using multi-model means in Sect. 3.1. In contrast to the first two models and missing 19 

from the analysis in Sect. 3.1, IPSL-CM5A-MR’s wintertime surface iron concentrations 20 

appear to play the biggest role in determining PB between 50-65°S (wintertime MLD was also 21 

well-correlated with PB on all studied timescales here, most likely because it drives the supply 22 

of iron from the deep ocean) (Fig. 2c).  23 

South of 65°S, iron is significantly positively correlated with PB on all three timescales within 24 

the models GFDL-ESM2G and IPSL-CM5A-MR (Fig. 2d), as was expected from multi-model 25 

mean change analyses in Sect. 3.1. For HadGEM2-ES, both average annual sea ice fraction and 26 

maximum annual IPAR were significantly correlated with PB south of 65°S, such that available 27 

light at the ocean surface is likely the limiting factor within this model’s Antarctic band. An 28 

increase in IPAR due to a decrease in sea ice fraction is thus the most probable cause of 29 

projected phytoplankton abundance increases here, again in agreement with the reasoning in 30 

Sect. 3.1. 31 
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In sum, these findings from Fig. 2 agree well with those deduced from Fig. 1, as discussed in 1 

Sect. 3.1 above. In particular, within each zonally-banded biome, the proposed drivers of 2 

projected phytoplankton responses in the all-model means are the same ones driving 3 

phytoplankton responses within the individual models studied here (with the possible exception 4 

of the 50-65°S band, where iron appears to play a role within IPSL-CM5A-MR, but not in the 5 

all-model mean). Results for Fig. 2 were the same but with slightly smaller correlation 6 

coefficients when using all (both masked and unmasked) grid points (see Fig. S13). 7 

 8 

3.2.2   Centennial  time-scale  analysis  (Fig.  3)  9 

To confirm that the bottom-up controls on PB proposed in Sects. 3.1 and 3.2.1 hold across the 10 

four SO biomes on even longer 100-year timescales, we undertake a spatial correlation analysis 11 

within the same three models as before. In Fig. 3, we show the results of this spatial correlation 12 

analysis in which we look at the relationship between 100-year changes in PB and the variables 13 

of interest at every grid point within each masked latitudinal band. Each dot in a scatter plot 14 

represents a masked grid point which undergoes a 100-year change in a variable of interest and 15 

an associated change in PB at that same grid point. By plotting only those variables with the 16 

largest magnitude correlation coefficients when correlated with PB, we are able to discover 17 

which variables affect PB most in each latitudinal band over 100-year timescales within each 18 

of the three models studied in detail (see Fig. S14 for an example of how correlations between 19 

PB and variables not chosen looked in comparison to correlations between PB and the variable 20 

chosen). For each chosen variable, scatter plots of either relative or absolute 100-year changes 21 

are shown, depending on which type of change generated the clearest relationship between PB 22 

and the variable of interest. Least squares best-fit lines are drawn for each scatter plot to help 23 

visualize the slopes and enable comparison with the corresponding slopes in Fig. 2. Because it 24 

is difficult to accurately test for significance in this type of spatial correlation (neighboring grid 25 

points are likely highly correlated, leading to large significance overestimates), these regression 26 

lines may or may not be statistically significant. Thus, the lines are meant only to serve as a 27 

qualitative visual guide. As in Fig. 2, Fig. 3 showed the same results but with potentially slightly 28 

smaller correlation coefficients when using all (both masked and unmasked) grid points (see 29 

Fig. S15).  30 
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Together, Figs. 2 and 3 show that the variables of interest within each zone that drive PB on 1 

decadal and shorter timescales also tend to be those that drive PB on an even longer 100-year 2 

climate change timescale. There are, however, a couple of important discrepancies. The first 3 

occurs in GFDL-ESM2G within the 50-65°S band, where light limitation is shown to be most 4 

important on decadal and shorter timescales (Fig. 2c) while iron limitation appears to take over 5 

on a 100-year timescale (Fig. 3c). This suggests the presence of iron-light co-limitation in this 6 

region within GFDL-ESM2G, in agreement with previous studies (e.g., Sunda and Huntsman, 7 

1997; Boyd et al., 2001; Feng et al., 2010). The second discrepancy occurs in IPSL-CM5A-MR 8 

within the south-of-65°S band, where iron limitation is most important on decadal and shorter 9 

timescales (Fig. 2d) while increases in sea surface temperature (SST) become the dominant 10 

driver of PB increases on a 100-year timescale (Fig. 3d) (though iron is still somewhat important 11 

on the centennial timescale with R = 0.703 when spatially correlated with PB change – plot not 12 

shown).  13 

In sum, we find that for the most part, the mechanisms within each zonal band that determine 14 

PB on decadal and shorter timescales tend to be those that determine PB on longer, centennial 15 

climate change-driven timescales as well. The magnitude of each driver’s effect on 16 

phytoplankton biomass (as seen from the slopes of best-fit lines in Figs. 2-3, summarized in 17 

Table 3) also remains the same across the relevant timescales, further supporting the notion that 18 

the same mechanisms act on the different timescales studied. Importantly, the magnitude of 19 

100-year changes in the chosen variables of interest are also hypothetically large enough to 20 

drive most of the 100-year change in PB. We note, however, that in the real ocean, 21 

phytoplankton adaptation and evolution could alter the driver-response relationship observed 22 

at the interannual scale within these models. 23 

 24 

3.3   Consistency   of   trends   and  mechanisms   driving   phytoplankton   changes  25 

across  all  models  26 

3.3.1   Drivers  of  100-year  phytoplankton  changes  across  all  models  (Fig.  4)  27 

Finally, we ask whether the mechanisms proposed in Sects. 3.1 and 3.2 above hold across all 28 

16 CMIP5 models with explicit phytoplankton biology. To answer this, we plot 100-year 29 

changes in PP versus 100-year changes in chosen variables of interest across all of the models 30 

and look for among-model agreement as to the effect of these variables on PP within each 31 
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masked zonal band (Fig. 4). These variables were chosen by first plotting all of the potential 1 

drivers of interest (listed in Table 2) and then choosing the ones which showed the strongest 2 

correlations or most consistent directions of changes across the models, guided by the 3 

relationships found in Figs. 1-3. Here each point in a scatter plot represents a 100-year change 4 

in PP versus a 100-year change in the variable of interest spatially averaged over the given 5 

model’s masked zonal band. We box only the points driven by processes which could be 6 

logically predicted from previously discussed mechanisms or model equations. For example, 7 

although almost all models undergo increases in cloud fraction and primary production south 8 

of 65°S, we do not box the orange points in the PP versus average annual cloud cover plot (Fig. 9 

4e) because we know that an increase in cloud fraction would decrease light availability and 10 

consequently lead to decreases, not increases, in primary production. Thus, we can safely ignore 11 

changes in cloud cover as a driver of changes in primary production among the models south 12 

of 65°S and instead view these changes in cloud cover as merely a consequence of underlying 13 

dynamical changes already occurring in that region. Via this technique, we find a consistent set 14 

of mechanisms driving 100-year changes in productivity across the CMIP5 model suite 15 

(highlighted by colored boxes in Fig. 4), in agreement with the mechanisms brought to light by 16 

the analyses in Sections 3.1 and 3.2. 17 

Nitrate emerges as the driver for changes in PP within the 30-40°S band across all models (i.e., 18 

all red points lie in the third quadrant and within the red box in Fig. 4b). Models with greater 19 

relative decreases in wintertime surface nitrate concentrations undergo significantly (p<0.05) 20 

greater decreases in average production within the 30-40°S band. It is worth noting that this is 21 

the only significant, highly linear intermodel relationship within any of the zonal bands. In the 22 

rest of the bands, we mostly interpret only the sign, rather than the linearity, of PP changes 23 

related to the driving variables of interest across models. Within the 40-50°S band, in general, 24 

models with increases in relative iron concentration and decreases in summertime MLD also 25 

experience relative increases in PP (Fig. 4a, c, purple boxes). Models NorESM1-ME and IPSL-26 

CM5A-LR are exceptions to this, however, in that PP still increases while iron concentrations 27 

decrease (Fig. 4c, purple unboxed). In these models, increases in light availability due to 28 

shoaling of summertime MLDs (Fig. 4a) and decreases in cloud cover (Fig. 4e) are large enough 29 

to cancel out the PP-suppressing effects of iron concentration decreases (Fig. 4c) between 40-30 

50°S. Further solidifying the importance of climate-driven changes in light availability within 31 

the 50-65°S band, models predicting relative increases in summertime MLD or average annual 32 

cloud cover, along with decreases in maximum annual IPAR, also predict relative decreases in 33 
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PP in this region (Fig. 4a, d, e, green boxes). Iron also emerges as a potential driver of PP 1 

decreases within the 50-65°S band, but not across all of the models (Fig. 4c). In models which 2 

undergo PP decreases concurrent with iron concentration increases (GISS-E2-R-CC, GISS-E2-3 

H-CC, HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-LR, NorESM1-ME, and MPI-ESM-LR; 4 

see Fig. 4c, green unboxed), reductions in light availability tend to be relatively large such that 5 

they win out in determining overall PP change. For example, GISS-E2-R-CC exhibits the 6 

largest relative iron increase between 50-65°S out of all the models (Fig. 4c), but also the 7 

greatest relative summertime MLD deepening (Fig. 4a), leading to vast reductions in light 8 

supply to phytoplankton during the most productive time of year. An increase in both IPAR and 9 

iron supply across the models results in PP increases south of 65°S, as highlighted by the orange 10 

boxes in Fig. 4c and Fig. 4d. Models IPSL-CM5A-LR, IPSL-CM5A-MR, and GFDL-ESM2G 11 

deviate from this trend slightly in that they experience small relative decreases in IPAR south 12 

of 65°S, while still experiencing increases in PP. However, these three models also exhibit 13 

shoaling of the summertime MLD here, which would increase light availability, likely 14 

canceling the effects of decreased IPAR at the surface. Note that for all models except for the 15 

three just mentioned, IPAR increases despite an increase in cloud cover (Fig. 4e, orange dots). 16 

This suggests that sea ice fraction, rather than cloud cover, is the most important factor in 17 

determining IPAR changes in this region within most models. As sea ice cover declines near 18 

the Antarctic continent within the models (Fig. S9), more light is able to reach the ocean surface, 19 

ultimately leading to increased IPAR and PP here. 20 

While general agreement on the mechanisms driving 100-year phytoplankton changes among 21 

models is high, one noteworthy result is that there appear to be two distinct groups of models: 22 

one group with phytoplankton which are highly sensitive to changes in iron concentrations 23 

south of ~40°S (consisting of GFDL-ESM2, CESM1-BGC, IPSL-CM5A, CMCC-CESM – see 24 

Fig. S16, for models where zonal PB or PP changes closely follow zonal iron changes) and a 25 

second group with phytoplankton which are less iron-sensitive (NorESM1-ME, HadGEM2, 26 

GISS-E2, MPI-ESM) or do not include iron at all (CanESM2, MIROC-ESM, MRI-ESM1). Iron 27 

cycling within the ocean remains poorly characterized and is typically crudely parameterized 28 

(if at all) compared to the macronutrients. These models also differ considerably in many 29 

aspects of their treatment of iron including but not limited to the magnitude and location of 30 

sources (from both the atmosphere and the sediments), ligand dynamics, scavenging losses, and 31 

iron to carbon biomass ratios (Moore et al., 2013b). It is out of the scope of this paper to assess 32 

all of these differences, but at first glance, it appears that the models with more complex iron 33 
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cycling dynamics have phytoplankton that are more sensitive to iron changes. For example, the 1 

more iron-sensitive GFDL-ESM2, CESM1-BGC, and IPSL-CM5A models have variable iron 2 

to carbon ratios and include sedimentary sources of iron (however crudely parameterized) 3 

(Dunne et al., 2013; Moore et al., 2013b; Aumont and Bopp, 2006), while the less iron-sensitive 4 

NorESM1-ME, HadGEM2, GISS-E2, MPI-ESM models do not (Assmann et al., 2010; Collins 5 

et al., 2011; Gregg, 2008). Models within the more iron-sensitive group tend to exhibit less 6 

well-defined latitudinally-banded 100-year phytoplankton changes, while the other models tend 7 

to exhibit a more obviously banded PB and PP change structure (see Figs. S1-2). These less 8 

iron-sensitive models also frequently display iron and phytoplankton changes of opposite signs 9 

south of 40°S (Fig. 4c, unboxed purple and green points; Fig. S16). In these cases, changes in 10 

light availability due to changes in MLD and IPAR are able to explain predicted phytoplankton 11 

trends (see Fig. S16, for models where zonal PB or PP changes closely follow zonal MLD 12 

and/or IPAR changes). Within the group of models with iron-sensitive phytoplankton, changes 13 

in physical variables altering light availability are also occurring, but their effects are much less 14 

pronounced because iron plays a more dominant role. As was discussed in Sect. 3.1, changes 15 

in MLD and IPAR in both groups of models are in turn driven by first-order changes in ocean-16 

atmosphere dynamics associated with climate warming and an increasingly positive SAM 17 

index, such as westerly wind intensification, alterations to tropospheric stability and thermal 18 

structure (e.g., Ceppi et al., 2014; Kay et al., 2014), and poleward displacement of extratropical 19 

storm-tracks and associated clouds (e.g., Yin, 2005; Bender et al., 2012). 20 

3.3.2   Spatial  agreement  on  projected  changes  across  all  models  (Figs.  5-21 

6)  22 

To get a wider sense of spatial agreement among models throughout the SO, we look at maps 23 

of intermodel consistency in projected SO phytoplankton trends and their proposed drivers 24 

across all 16 CMIP5 models with ocean biogeochemistry in Fig. 5 (complementary to Fig. 1). 25 

The maps in Fig. 5 detail the fraction of model realizations (via the bootstrap technique 26 

explained in Section 2.2 above) that predict a positive trend in the listed variable at each grid 27 

point. Thus, the closer the fraction to one at a given location, the greater the intermodel 28 

agreement on a positive trend at that point, and the closer the fraction to zero, the larger the 29 

intermodel agreement on a negative trend at that point (0.5 denotes the greatest amount of 30 

intermodel disagreement, where 50% of model realizations predict an increasing trend and 50% 31 

predict a decreasing trend). To also get a better idea of how well models agree with one another 32 
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within each zonal band, Fig. 6 shows zonally-averaged all-model mean projected trends (zonal 1 

averages of Fig. 1) and zonal band averaged intermodel agreement percentages (areal averages 2 

over each zonal band of Fig. 5, listed above each zonal band accompanied by an arrow 3 

indicating the direction of the trend agreed upon by the majority of model realizations). Only 4 

percentages for variables which are most important within each zonal band (as determined by 5 

Figs. 1-4 above) are listed and as such, represent a summary of the important drivers of 6 

projected phytoplankton change discussed here. Agreement among models is highest at the 7 

center of each zonal band (Fig. 5), but decreases towards the edges due to offsets in the precise 8 

boundaries of water masses among the models. These slight offsets lower the zonal band-9 

average agreement among models shown in Fig. 6, such that if one were able to perfectly 10 

compare water masses among models, consistency in predicted trends within each zonally-11 

banded biome would likely be even higher. Fig. S17 complements Fig. 6 by showing zonally-12 

averaged all-model historical means and 100-year absolute changes in all variables of interest. 13 

Within the subtropical (30°S to 40°S) band, the majority of model realizations predict a 14 

decrease in both PB (64%) and PP (62%), accompanied by a highly consistent decrease in 15 

wintertime nitrate supply (77%) (Fig. 5a-c; Fig. 6). This projected change agrees with the 16 

general expectation from previous theoretical and modeling studies that warming should stratify 17 

the watercolumn, decrease macronutrient supply, and consequently lower biological 18 

productivity within the subtropics (e.g., Sarmiento et al., 2004b; Doney, 2006; Cabré et al., 19 

2014). Within the transitional (40°S to 50°S) band, most of the model realizations predict an 20 

increase in PP (70%) while only around half of the models predict an increase in PB (55%) 21 

(Fig. 5a-b; Fig. 6). These predicted shifts are accompanied by a decrease in summertime MLD 22 

(71%) and an increase in wintertime iron concentration (64%) (Fig. 5c-d; Fig. 6). Because of a 23 

predicted poleward shift of the westerly winds in all of the models (Fig. 5h; Fig. S10), winds 24 

will weaken here, shoaling the MLD and prolonging the growing season by allowing 25 

phytoplankton to remain within the well-lit surface layers for longer. Thus, enhanced future 26 

phytoplankton populations within this transitional band are not unexpected. Within the subpolar 27 

(50°S to 65°S) band, models are not as consistent in their predictions of phytoplankton changes 28 

compared with the other regions. The majority of model realizations predict an increase in PP 29 

(59%), while 55% predict a decrease in PB (Fig. 5a-b). Predicted changes in driving variables 30 

are somewhat more consistent within this region, however, with a decrease in summertime 31 

MLD predicted by 56% of model realizations, a decrease in IPAR predicted by 71%, and an 32 

increase in cloud cover predicted by 60% (Fig. 5c, f, g; Fig. 6). With a projected poleward shift 33 
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of the westerlies, cloud cover should increase (due to a concomitant shift in storm-track 1 

cloudiness and/or altered tropospheric stability with future warming) and MLDs should deepen 2 

as winds intensify within this band, both of which act to decrease phytoplankton populations, 3 

exactly as we see here. Within the Antarctic (south of 65°S) band, 76% of model realizations 4 

predict an increase in PP, while 64% predict an increase in PB, both of which are associated 5 

with projected increases in wintertime iron concentrations (72%) and summertime light 6 

availability (59%) (Fig. 5a-b, e-f; Fig. 6). This goes with our expectation that the melting of sea 7 

ice projected by the models will lead to higher amounts of light reaching the ocean surface and 8 

that intensified westerlies will bring a larger supply of upwelled iron to the surface in this 9 

region, both of which act to increase phytoplankton populations, just as we see here. 10 

3.4   Linking  CMIP5  model  projections  to  observations  11 

Because the same interannual mechanisms for phytoplankton growth hold on 5-year, decadal, 12 

and even longer-term timescales within the CMIP5 models, it is reasonable to compare recent 13 

observations to future model projections if it is also assumed that short-term drivers of observed 14 

phytoplankton variability propagate up to longer-term timescales in the real ocean as well. 15 

However, it is out of the scope of this paper to compare recent observations to historical model 16 

output from the same period. Instead, we would like to understand how our modeled 21st 17 

century SO predictions compare to observed mechanisms and trends thus far. 18 

The SO satellite chl record is not yet long enough to separate the effects of climate change from 19 

those of interannual processes driven by the leading modes of shorter-term variability in the SO 20 

(e.g., Boyd et al., 2008; Strutton et al., 2012; Henson et al., 2010;	  Beaulieu et al., 2013), the 21 

most important being the SAM (Thompson and Solomon, 2002); in-situ data from field 22 

campaigns suffer from the same temporal constraint. Furthermore, while models generate 23 

perfectly continuous data, observations tend to contain many more gaps, such that a longer 24 

observational time series is needed to detect significant trends compared to model data when 25 

the same threshold of significance is applied. For these reasons, many observational studies 26 

have looked at the effects of SAM and other modes of variability, rather than climate change, 27 

on phytoplankton abundance and productivity. These types of studies can, however, still 28 

provide essential insight into the mechanisms driving possible longer-term changes. For 29 

example, as was mentioned before, the SAM index is expected to become increasingly positive 30 

as SO westerlies strengthen and move poleward with future warming (see Fig. S11 for projected 31 

SAM time series within the CMIP5 models). We have shown here that at least within the 32 
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CMIP5 models, mechanisms responsible for changes in phytoplankton biomass on interannual 1 

and five-year timescales are also responsible for projected 100-year trends within the SO. Thus, 2 

understanding the effects of a more positive SAM on SO phytoplankton may help predict the 3 

direction of phytoplankton changes in a warmer future climate. 4 

Another important caveat to keep in mind when looking at observational data is that 5 

observations rarely span consistent timeframes, making it difficult to compare studies in a 6 

perfectly congruent way. For instance, it has been shown that the magnitude and sign of 7 

observed trends can be very sensitive to the start and end years analyzed (e.g., Fay et al., 2014). 8 

Thus, rather than directly comparing recently observed trends with 21st century CMIP5 9 

projections, we seek only to qualitatively understand whether there are common mechanisms 10 

and directions of change within the observational data and model projections. The observational 11 

studies cited in the following paragraphs are visually and tabularly summarized in Fig. 7 and 12 

Table S4. 13 

Analyzing satellite data over years 1997-2004, Lovenduski and Gruber (2005) (LG2005) found 14 

a negative correlation (though not significant) between SAM and chl concentrations within the 15 

SO Subtropical Zone (~30-40°S), due to increased stratification and decreased upwelling of 16 

macronutrients during positive SAM periods. Assuming that SAM will continue to increase 17 

with future warming and that the same driving mechanisms will hold on timescales ranging 18 

from interannual to centennial, phytoplankton biomass would be expected to decrease over the 19 

21st century within the Subtropical Zone (~30-40°S) due to enhanced macronutrient limitation, 20 

which is indeed what the CMIP5 models predict. 21 

Via a combination of satellite, reanalysis, and model data, Johnston and Gabric (2011) (JG2011) 22 

found that both summertime chl concentrations and primary productivity increased within the 23 

Australian sector between 40-50°S over the years 1997-2007, which they attribute to increased 24 

water column stratification or enhanced mineral dust deposition from Australia. Gregg et al. 25 

(2005) (G2005) likewise found an increase in chl concentrations just south of Australia (~35-26 

55°S) from satellite data over the period 1998-2003, accompanied by an increase in springtime 27 

SST, likely associated with a shoaling of the mixed layer. Using satellite chl concentrations 28 

(1997-2010) calculated in two different ways, Siegel et al. (2013) (S2013) also reported an 29 

increase in chl concentrations between ~40-50°S. These proposed mechanisms and directions 30 

of trends are consistent with those of the CMIP5 models, which predict that increased dissolved 31 
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iron concentrations together with decreased light limitation due to shallower MLDs during 1 

blooms will drive 21st century phytoplankton increases within the 40-50°S band. 2 

From satellite data (1997-2004), LG2005 found a significant negative correlation between 3 

SAM and chl concentrations within the ~mid-40 to mid-50°S latitudes below Australia, which 4 

they ascribe to increased light limitation due to deeper summertime mixed layers in positive 5 

SAM phases. Consistent with LG2005 and an increasingly positive SAM index, Takao et al. 6 

(2012) (T2012) found a decreasing trend in summertime net primary productivity within the 7 

Indian Ocean sector of the Polar Frontal Zone (centered slightly north of ~55°S) using satellite 8 

ocean color data from 1997-2007. Within the Australian sector, JG2011 observed similar 9 

decreases in summer and springtime chl concentrations between 55-60°S from 1997-2007, 10 

allegedly due to a decrease in the northward Ekman transport and supply of iron here. Based 11 

on both in situ shipboard measurements and satellite-derived chl concentrations, Montes-Hugo 12 

et al. (2009) (MH2009) also reported a decrease in phytoplankton biomass between 1978-1986 13 

and 1998-2006 within the northern subregion of the West Antarctic Peninsula (61.8 to 64.5°S) 14 

because of deeper summertime mixed layers, in turn driven by stronger winds and decreased 15 

sea ice extent. Compiling net haul data from 9 different countries, Atkinson et al. (2004) 16 

(A2004) found significant decreases in krill density between 1976 and 2003 within the 17 

southwest Atlantic sector of the SO between ~50-65°S, which they attributed to decreases in 18 

phytoplankton populations. These findings fit with the previously discussed CMIP5 model 19 

predictions of 21st century decreases in phytoplankton biomass between ~50-65°S, which we 20 

attribute to more stressful light (as in LG2005 and MH2009) and/or iron conditions for 21 

phytoplankton (as in JG2011).  22 

In the Antarctic Zone (south of ~60°S), Ayers and Strutton (2013) (AS2013) found a correlation 23 

between a more positive SAM and increased upwelling of nutrients based on multiple repeat 24 

hydrographic sections. LG2005 found a similar positive correlation between SAM and chl 25 

concentrations here due to increased upwelling and iron supply in positive SAM periods (also 26 

in agreement with a modeling study by Hauck et al., 2013). Again, assuming that SAM will 27 

continue to increase with future warming and that the same driving mechanisms will hold on 28 

timescales ranging from interannual to centennial, we expect increases in iron supply to drive 29 

phytoplankton biomass increases south of ~60°S with future warming, which is indeed what 30 

the CMIP5 models predict. In terms of trends, MH2009 report an increase in southern West 31 

Antarctic Peninsula (63.8 to 67.8°S) summertime phytoplankton populations between 1978-32 
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1986 and 1998-2006, which they ascribe to decreased light limitation, driven by a decrease in 1 

cloudiness and wind intensity and an increase in the number of ice-free summer days. 2 

Meanwhile, S2013 observed a thin band of chl increase around ~65°S over the years 1997-3 

2010. These observations are also consistent with future CMIP5 model projections, which 4 

predict that decreased sea ice cover will drive phytoplankton abundance increases south of 5 

~65°S in spite of an increase in cloud cover (contrary to the decrease in cloudiness measured 6 

by MH2009). Lastly, Smith and Comiso (2008) (SC2008) calculate an increase in annual 7 

primary productivity over the entire Southern Ocean (defined as south of 60°S) between 1997 8 

and 2006, while Arrigo et al. (2008) (A2008) calculate no significant trend over the same 9 

period. The discrepancy between these two works is partly due to the fact that A2008 define 10 

the Southern Ocean as south of 50°S instead of 60°S, and the region in between 50-60°S 11 

underwent a decrease in productivity over both studies’ time periods (reducing the magnitude 12 

of the increasing trend over the rest of the SO), again consistent with model projections of future 13 

phytoplankton biomass decrease between 50-65°S and increase south of 65°S. 14 

To conduct our own analysis, we obtained monthly global satellite chl fields generated by the 15 

latest version of SeaWiFS’ (Sea-viewing Wide Field-of-view Sensor) band-ratio algorithm 16 

(OC4v6) (http://oceancolor.gsfc.nasa.gov/cgi/l3) from September 1997 to December 2010.  17 

The linear trend in Fig. 7c was calculated from yearly-averaged monthly chl anomalies, which 18 

ensures minimal autocorrelation. To look at trends in observed summertime MLD, monthly 19 

ocean temperature and salinity reanalysis products from the Met Office Hadley Centre’s EN3 20 

dataset (http://www.metoffice.gov.uk/hadobs/en3/) were used to calculate minimum monthly 21 

MLDs for each year from 1950-2013. To look at trends in observed summertime cloud cover, 22 

synoptic monthly mean ERA-INTERIM (http://www.ecmwf.int/en/forecasts/datasets/era-23 

interim-dataset-january-1979-present) reanalysis products of total cloud cover from December 24 

1980 - February 2013 were averaged over the summer months (December to February) of each 25 

year to generate a yearly summertime cloud cover time series.  26 

We found that recently observed spatial distributions of SO chl trends over the SeaWiFS period 27 

(1998-2010) (Fig. 7b, c) generally correspond well with CMIP5 all-model mean projections 28 

(Fig. 1a, b), with the largest observed chl increases occurring between ~40-50°S and south of 29 

~65°S and decreases occurring between ~50-65°S. We also found that spatial distributions of 30 

recent trends in summertime MLD and cloud cover generally match with CMIP5 model 31 

projections as well. For example, the largest observed increases in summertime MLD (over the 32 
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years 1950-2013) and cloud cover (over the years 1980-2013) occur south of ~50°S, while the 1 

largest decreases occur north of ~50°S (Fig. 7d, e compared with Fig. 1d, g, respectively). 2 

In sum, the observed spatial distribution in trends of phytoplankton productivity, MLD, and 3 

cloud cover over the past few decades qualitatively matches the latitudinally-banded structure 4 

of the respective 100-year 21st century trends predicted by the CMIP5 models. We have found 5 

that (a) in CMIP5 simulations, interannual effects propagate up to 100-year timescales and (b) 6 

drivers for short-term biomass change are similar in models and observations within individual 7 

zonally-banded biomes. If the CMIP5 model mechanisms and projections are to be trusted, then 8 

this suggests that observations may already contain a climate change signal even though this 9 

signal cannot be teased apart from decadal variability and shorter-term noise just yet (e.g., 10 

Henson et al., 2010). In agreement with previous discussions above, the fact that long-term 11 

model projections appear to agree with the sign of observed SAM-driven effects throughout the 12 

SO further suggests that an increasingly positive SAM may be responsible for the predicted 13 

zonally-banded pattern of phytoplankton biomass changes in the models, though further work 14 

is needed to precisely quantify SAM’s contribution to PB and PP changes and variability within 15 

the CMIP5 model suite.  16 

 17 

4   Conclusions  18 

The 16 CMIP5 models with explicit phytoplankton ecology predict a zonally-banded pattern of 19 

21st century phytoplankton biomass and productvity changes within the Southern Ocean: a 20 

decrease in the subtropical band (~30-40°S), an increase in the transitional band (~40-50°S), a 21 

decrease in the subpolar band (~50-65°S), and an increase in the Antarctic band (south of 22 

~65°S). In line with previous studies, light (controlled by cloud cover, summertime MLD 23 

during blooms, and sea ice fraction) and iron supply are found to be the most important factors 24 

driving phytoplankton changes in the transitional and subpolar Southern Ocean (south of 25 

~40°S), while nitrate is found to be the most important driving factor in the subtropical Southern 26 

Ocean (~30-40°S). Shifts in these driving variables consistently bring about changes in 27 

phytoplankton abundance and production on multiple timescales. In particular, within a given 28 

zonally-banded biome in an individual model, the same mechanisms are generally responsible 29 

for phytoplankton biomass changes on an interannual, decadal, and 100-year basis. This 30 

suggests that the mechanisms affecting shorter-term phytoplankton variability and which can 31 

in principle be gaged from in-situ or satellite observations are also likely to be the mechanisms 32 
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responsible for climate-driven phytoplankton changes over the 21st century. It is important to 1 

note that the relationships between phytoplankton responses and their potential drivers 2 

discussed here are based on correlative analysis and thus do not perfectly prove causation. It is 3 

promising, however, that in all cases the significant and most strongly correlated phytoplankton 4 

and potential driver relationships matched with expectations based on both previous studies and 5 

model equations.  6 

21st century trends in phytoplankton productivity predicted by the CMIP5 models go in the 7 

same direction as observed trends over the last couple of decades and tentatively agree with the 8 

sign of established SAM-driven changes. This suggests that an increasingly positive SAM may 9 

be responsible for the projected zonally-banded trends in phytoplankton productivity and 10 

biomass that we observe in the CMIP5 models, though more work is needed to carefully test 11 

this hypothesis. Additionally, since the observed trends in and drivers of short-term biomass 12 

change seem to agree with those of modeled decadal and centennial projections, it is possible 13 

that climate change is already having an effect on SO phytoplankton biology within the real 14 

ocean.  15 

With such short and discontinuous observational records, our model-observational data 16 

intercomparison is clearly only qualitative at this point in time. We advocate for longer and 17 

more continuous in-situ phytoplankton biomass and satellite chl data collection in this 18 

important but massively under-sampled region of the ocean to allow for the emergence of a 19 

climate change signal from short-term variability. The main result of this study – a consistency 20 

of the model-projected phytoplankton trends within 4 distinct SO bands over the 21st century – 21 

suggests a framework for selecting a minimum number of sites for future SO biogeochemical 22 

observational time series stations or repeat sampling campaigns; at a minimum, one or two 23 

representative time series are needed from each of the 4 SO bands described here. These 24 

datasets (and any observational datasets, for that matter) are subject to all manner of spatial and 25 

temporal caveats, but over time and in combination with larger-scale satellite observations, 26 

longer-term in situ time series will allow us to distinguish natural variability from the climate 27 

change signal and more readily compare observed mechanisms and trends with those predicted 28 

by our models.  29 

Follow-up work is needed to determine how projected changes in phytoplankton biomass and 30 

productivity will affect SO carbon and nutrient cycling, as well as how changes in the 31 

characteristics of regional SO seasonality can affect these long-term trends (Thomalla et al., 32 



 24 

2011). Driving higher trophic level models with projected CMIP5 phytoplankton abundances 1 

may also yield important insights into how ecologically and economically important species 2 

such as zooplankton, krill, marine mammals, penguins, and seabirds will respond to climate 3 

change. Given the critical importance of the SO in driving global carbon and nutrient cycles as 4 

well as low-latitude productivity, our results highlight the need for both long-term in-situ and 5 

satellite monitoring of Southern Ocean biology and biogeochemistry. 6 
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Table 1: CMIP5 model details. Summary of all the CMIP5 models that keep track of 3 

phytoplankton biomass and primary production with information on the following for each 4 

model: spatial resolution in the atmosphere and ocean, explicitly modeled nutrients, ecology 5 

subroutine, references, and weight applied in the all-model averages. (*Note: CMCC-CESM 6 

runs did not appear to reach equilibrium, which was a necessary condition we imposed in order 7 

to work with a model; thus, we only show CMCC-CESM data in the supplementary figures, 8 

but do not take it into account in the all-model averages.)  9 

Model	  
Atm	  

(levels,	  
lon/lat)	  

Ocean	  
(levels,	  
lon/lat)	  

Nutrients	   Ecology	  
module	   Reference	   Wt.	  

CanESM2 
L35	  

2.8/2.8	  
L40	  

1.4/0.9	  

N	  (but	  also	  
accounts	  for	  
Fe	  limitation)	  

NPZD	  
Denman	  and	  
Peña	  (1999)	  

Zahariev	  et	  al.,	  2008	   1 

CESM1-BGC 
L26	  

1.25/0.94	  

L60	  
1.125/0.27–

0.53	  
(P),	  N,	  Fe,	  Si	   MET	   Moore	  et	  al.,	  2004;	  

Moore	  et	  al.,	  2006	   1 

CMCC-
CESM 

L39	  
3.8/3.7	  

L31	  
2/	  0.5–2	   (P),	  N,	  Fe,	  Si	   PELAGOS	   Vichi	  et	  al.,	  2007	   0* 

GFDL-
ESM2G 

L24	  
2.5/2.0	  

L63	  
1/0.3-‐1	   P,	  N,	  Fe,	  Si	   TOPAZ2	   Dunne	  et	  al.,	  2013	   1 

GFDL-
ESM2M 

L24	  
2.5/2.0	  

L50	  
1/0.3–1	   P,	  N,	  Fe,	  Si	   TOPAZ2	   Dunne	  et	  al.,	  2013	   1 

HadGEM2-
CC 

L60	  
1.25	  /1.875	  

L40	  
1/0.3–1	   N,	  Fe,	  Si	   Diat-‐	  

HadOCC	  (NPZD)	  
Palmer	  and	  

Totterdell,	  2001	   0.5 

HadGEM2-ES 
L38	  

1.25	  /1.875	  
L40	  

1/0.3–1	   N,	  Fe,	  Si	   Diat-‐	  
HadOCC	  (NPZD)	  

Palmer	  and	  
Totterdell,	  2001	   0.5 

IPSL-CM5A-
LR 

L39	  
3.75/1.875	  

L31	  
2/0.5–2	   P,	  N,	  Fe,	  Si	  

PISCES	  (from	  
HAMOCC5)	  

	  

Aumont	  and	  Bopp,	  
2006;	  Séférian	  et	  

al.,	  2013	  
0.5 

IPSL-CM5A-
MR 

L39	  
2.5/1.25	  

L31	  
2/0.5–2	   P,	  N,	  Fe,	  Si	  

PISCES	  (from	  
HAMOCC5)	  

	  

Aumont	  and	  Bopp,	  
2006;	  Séférian	  et	  

al.,	  2013	  
0.5 

MIROC-ESM 
L80	  
2.8	  

L44	  
1.4/0.5-‐1.7	   N	   NPZD-‐type	  

Oschlies	  (2001)	  
Watanabe	  et	  al.,	  

2006	   0.5 

MIROC-
ESM-CHEM 

L80	  
2.8	  

L44	  
1.4/0.5-‐1.7	   N	   NPZD-‐type	  

Oschlies	  (2001)	  
Watanabe	  et	  al.,	  

2006	   0.5 

MPI-ESM-
MR 

L47	  
1.9	  

L40	  
0.4	   P,	  N,	  Fe,	  Si	   HAMOCC5.2	  

(NPZD)	   Ilyina	  et	  al.,	  2013	   0.5 

MPI-ESM-LR 
L47	  
1.9	  

L40	  
1.5	   P,	  N,	  Fe,	  Si	   HAMOCC5.2	  

(NPZD)	   Ilyina	  et	  al.,	  2013	   0.5 

MRI-ESM1 
L23	  

1.125/1.121	  
L51	  
1/0.5	   P,N	   NPZD	  

Oschiles	  (2001)	   Yukimoto	  et	  al.,	  2011	   1 

NorESM1-ME 
L26	  

1.9/2.5	  
L53	  

1/1.25	   P,	  N,	  Fe,	  Si	   HAMOCC5.1	  
(NPZD)	   Assmann	  et	  al.,	  2010	   1 

GISS-E2-H-
CC 

L40	  
2.5/2	  

L26	  
1/1	   N,	  Fe,	  Si	   NOBM	   Gregg,	  2008	   1 

GISS-E2-R-
CC 

L40	  
2.5/2	  

L32	  
1.25/1	   N,	  Fe,	  Si	   NOBM	   Gregg,	  2008	   1 
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Table 2: Details of the CMIP5 variables studied here.  1 

 2 

 3 

  4 

Variable	  description	  

Variable	  

abbreviation	  used	  

in	  this	  study	  

CMIP5	  variable	  

downloaded	  with	  

units	  (raw	  monthly	  

data)	  

Calculations	  to	  generate	  yearly	  

data	  used	  in	  this	  study	  

Variable	  used	  in	  the	  following	  

figures	  

Phytoplankton	  surface	  carbon	  

biomass	  concentration	  
PB	   phyc	  [mol	  m-‐3]	   Annual	  max	   Figs.	  1-‐3,	  5-‐6,	  S1,	  S12-‐17	  

Vertically-‐integrated	  total	  

primary	  production	  by	  

phytoplankton	  

PP	   intpp	  [mol	  m-‐2	  s-‐1]	   Annual	  avg	   Figs.	  1-‐2,	  4-‐6,	  S2,	  S16-‐17	  

Dissolved	  surface	  nitrate	  

concentration	  
Nitrate	   no3	  [mol	  m-‐3]	  

Annual	  max	  (representing	  

winter)	  
Figs.	  1-‐6,	  S3,	  S12-‐17	  

Mixed	  layer	  depth	   MLD	   mlotst	  [m]	  
Annual	  max	  (winter),	  annual	  min	  

MLD	  (summer)	  
Figs.	  1-‐6,	  S4-‐5,	  S12-‐17	  

Dissolved	  surface	  iron	  

concentration	  
Iron	   dfe	  [mol	  m-‐3]	   Annual	  max	  (winter)	   Figs.	  1-‐6,	  S6,	  S12-‐17	  

Incident	  photosynthetically	  

active	  radiation	  
IPAR	   rsntds	  [W	  m-‐2]	   Annual	  max	  (summer)	   Figs.	  1-‐6,	  S7,	  S12-‐17	  

Total	  cloud	  area	  fraction	   Cloud	  cover	   clt	  [%]	  
Annual	  avg,	  avg	  over	  months	  

Dec-‐Feb	  (summer)	  
Figs.	  1-‐6,	  S8,	  S12-‐17	  

Zonal	  wind	  stress	   Wind	  stress	   tauu	  [Pa]	  
Annual	  avg,	  annual	  average	  

(winter)	  
Figs.	  1-‐5,	  S10,	  S12-‐15	  

Sea	  ice	  area	  fraction	   Sea	  ice	  cover	   sic	  [%]	  
Annual	  avg,	  annual	  min	  

(summer)	  
Figs.	  2-‐3,	  S9,	  S13,	  S15	  

Dissolved	  surface	  silicate	  

concentration	  
Silicate	   si	  [mol	  m-‐3]	   Annual	  max	  (winter)	   Figs.	  2-‐3,	  S12-‐15	  

Sea	  surface	  temperature	   SST	   tos	  [K]	   Annual	  max	   Figs.	  2-‐3,	  S12-‐15	  

Sea	  surface	  salinity	   Salinity	   sos	  [psu]	   Annual	  avg	   Figs.	  2-‐3,	  S12-‐15	  
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Table 3:   Summary of the best-fit line slopes between phytoplankton biomass and given 1 

variables of interest, corresponding to Figs. 2 and 3. The first of the three numbers in each 2 

table entry is the historical 10-year average slope between PB and the given variable of 3 

interest, while the second number is the rcp8.5 10-year average slope, both from Fig. 2. The 4 

third number in each entry is the 100-year change spatial correlation slope from Fig. 3. For 5 

variable units, see Figs. 2 and 3.6 

	   HadGEM2-‐ES	   GFDL-‐ESM2G	   IPSL-‐CM5A-‐MR	  

30-‐40°S	   Nitrate	  max:	  1.38,	  1.36,	  1.14	  	   Nitrate	  max:	  0.57,	  0.73,	  0.48	   Nitrate	  max:	  0.32,	  0.43,	  0.33	  

40-‐50°S	   MLD	  min:	  -‐0.50,	  -‐0.22,	  -‐0.22	   Iron	  max:	  6.4e-‐3,	  3.7e-‐4,	  2.59e-‐4	   Iron	  max:	  1.1e-‐3,	  1.1e-‐3,	  1.07e-‐3	  

50-‐65°S	   MLD	  min:	  -‐0.15,	  -‐0.20,	  -‐0.18	  
IPAR	  max:	  3.2e-‐3,	  1.3e-‐2	  

Iron	  max:	  5.02e-‐4	  
Iron	  max:	  7.8e-‐3,	  1.0e-‐3,	  1.16e-‐3	  

South	  
of	  65°S	   SIC	  avg:	  -‐0.12,	  -‐0.03,	  -‐0.13	   Iron	  max:	  6.4e-‐4,	  6.7e-‐4,	  6.19e-‐4	  

Iron	  max:	  1.2e-‐3,	  1.2e-‐3	  

SST	  max:	  0.83	  
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List of Figures: 1 

 2 
Figure 1: All-model mean 100-year changes. 100-year all model mean changes in (a) 3 

maximum annual surface phytoplankton biomass (PB), (b) average annual 100-m depth 4 

vertically integrated primary production (PP), (c) wintertime surface nitrate concentration, (d) 5 

summertime mixed layer depth (MLD), (e) wintertime surface dissolved iron concentration, (f) 6 

summertime incident photosynthetically available radiation (IPAR), (g) summertime 7 

percentage area of grid cell covered by clouds, and (h) average annual zonal wind stress. 8 

Hatched areas are where greater than 80% of model realizations agree on the sign of the change 9 

using a bootstrap significance test (see Sect. 2.2 for methodological details). Zero contours for 10 

PP change are plotted over each map. The number of models (n) and the total model weight (w) 11 

taken into account for each variable are listed in Fig. 5. Historical all-model mean maps are 12 

presented in Figs. S1-10. 13 

 14 
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 1 

Figure 2: Drivers of phytoplankton biomass on multiple timescales. Scatter plots of PB 2 

versus the listed variable on interannual and 5-year (both with their climate change signals 3 

removed) as well as 10-year timescales. Each column corresponds to a different model, while 4 

each row corresponds to a different zonal band. Slopes of the historical and rcp8.5 10-year 5 

average best-fit lines are listed. Only variables with significant (p < 0.05) best-fit lines on at 6 

least two out of the three timescales studied (interannual, 5-year, and 10-year) are shown. Best-7 

fit lines are drawn only when correlations are significant (p < 0.05). Variables tested are all 8 

those listed in Table 2. 9 

*Wintertime MLD was also significant on all three timescales. 10 

**Summertime MLD and avg annual cloud cover were also significant on all three timescales. 11 

***Wintertime MLD was also significant on all three timescales. 12 

****The y-axis here is PP (umol m-2 s-1), instead of PB because no variables were significantly 13 

correlated on at least two timescales with PB. Summertime IPAR was also significant on the 14 

same timescales as average annual sea ice cover. 15 
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 2 

Figure 3: Spatial correlation scatter plots of 100-year changes in phytoplankton biomass 3 

versus 100-year changes in driving variables of interest. Each column corresponds to a 4 

different model, while each row corresponds to a different zonal band. Only the variable of 5 

interest with the largest magnitude correlation coefficient is plotted for each zone within each 6 

model. Variables tested are all those listed in Table 2. Relative changes are plotted for PB vs. 7 

nitrate, while absolute changes are plotted for PB vs. all other variables. Best-fit lines are forced 8 

to have a zero-intercept. Correlation coefficients and slopes of best-fit lines corresponding to 9 

absolute 100-year changes (to facilitate comparison with slopes in Fig. 2) are listed beneath the 10 

variable names. 11 
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 1 

Fig. 4. Drivers of 100-year phytoplankton productivity changes across CMIP5 models, by 2 

model and latitudinal band. Scatter plots of each model’s 100-year relative change in PP 3 

versus its corresponding relative change in the listed variable within each zonal band. Each 4 

color represents a different zonal band, while each symbol represents a different model. Colored 5 

boxes enclose points which behave in line with our expectations and proposed mechanisms 6 

based on Figs. 1-3. Best-fit lines are drawn only when correlations are significant (p < 0.05). 7 
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 1 

Fig. 5: Spatial agreement among models on the sign of predicted trends, represented by maps 2 

of the fraction of model realizations that agree on a positive 100-year change in variables of 3 

interest at each grid point, based on a bootstrap analysis test (see Sect. 2.2). The closer to 1 the 4 

grid point, the greater the agreement among models on an increase. The closer to 0 the grid 5 

point, the greater the agreement among models on a decrease. 6 
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 1 

Fig. 6. Summary of predicted phytoplankton responses and their drivers within each zonal 2 

band. Here each colored line represents normalized 100-year all-model mean zonal changes in 3 

the listed variable. Each variable was normalized by first computing the all-model mean 4 

zonally-averaged 100-year change at every latitude and then dividing by the absolute value of 5 

the largest of these changes occurring south of 30°S. Listed above each band is the spatially 6 

averaged percentage of model realizations that agree on the sign of the change (based on a 7 

bootstrap analysis – see Sect. 2.2 and Fig. 5) in each variable over that band. The colored 8 

arrows denote the direction of the trend agreed upon by the majority of models. The number 9 

of models (n) and the total model weight (w) taken into account for each variable are listed in 10 

Fig. 5. 11 
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 1 

Fig. 7. Observed phytoplankton trends and variability. (a) Summary of past studies looking 2 

at trends and SAM-driven variability in phytoplankton biomass and productivity. Orange/red 3 

regions are areas where past studies have found positive trends in phytoplankton biomass or 4 

productivity, whereas blue regions are areas where past studies have found negative trends. 5 

Each colored region or point is labeled with the corresponding publication. See Table S4 for 6 

further details on each study. (b) Average monthly SeaWiFS chl concentrations, along with 7 

yearly trends in (c) chl, (d) summertime cloud cover from ERA-INTERIM reanalysis, and (e) 8 

summertime MLD from Hadley reanalysis. Hatching denotes regions where trends calculated 9 

as least-squares best-fit lines to the time series are significant using a two-tailed t-test at p < 10 

0.05. 11 


