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Abstract 7	  

Fires are used as a tool in the deforestation process. Yet, the relationship between fire and 8	  

deforestation may vary temporally and spatially depending on the type of deforestation and 9	  

climatic conditions. This study evaluates spatiotemporal dynamics of deforestation and fire 10	  

represented by burned area over the 2002 – 2012 period in the Brazilian Legal Amazon. As a 11	  

first step, we compared newly available Landsat-based maps of gross forest cover loss from the 12	  

Global Forest Change (GFC) project with maps of deforestation extent from the Amazon 13	  

Deforestation Monitoring Project (PRODES) produced by the Brazilian National Institute for 14	  

Space Research (INPE). As a second step, we rescaled the Landsat-based data to the 500 meter 15	  

resolution of the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data 16	  

(MCD64A1) and stratified this using MODIS land cover data to study the role of burned area in 17	  

forest cover loss and deforestation. We found that while GFC forest cover loss and PRODES 18	  

deforestation generally agreed on spatial and temporal dynamics, there were several key 19	  

differences between the datasets. Both showed a decrease in the extent of forest cover loss or 20	  

deforestation after 2004, but the drop was larger and more continuous in PRODES than in GFC. 21	  

The observed decrease in forest cover loss or deforestation rates over our study period was 22	  

mainly due to lower clearing rates in the evergreen broadleaf forests in the states of Mato 23	  

Grosso, Pará and Rondônia. GFC indicated anomalous high forest cover loss in the years 2007 24	  

and 2010 not reported by PRODES. The burned area data indicated that this was predominantly 25	  

related to increased burned area occurring outside of the tropical forest area during these dry 26	  

years, mainly in Pará. This indicated that fire and forest loss dynamics in woodlands or 27	  

secondary forests may be equally important as deforestation in regulating atmospheric CO2 28	  

concentrations. In addition to the decrease in forest cover loss rates, we also found that post-29	  
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deforestation fire use declined; burned area within 5 years after forest cover loss decreased from 1	  

54% to 39% during our study period.  2	  

1 Introduction: 3	  

In the tropics, fires are regularly used as a cheap means to dispose of vegetative debris on 4	  

deforested land for the purpose of agriculture or pasture, and to maintain an open landscape. Fire 5	  

represents a major source of carbon emissions in the Amazon, especially in the southern fringe of 6	  

the Amazon known as the arc of deforestation (Fearnside et al., 2009). Various factors contribute 7	  

to relatively high rates of deforestation in this region, including available infrastructure and 8	  

capital and relatively long dry seasons (Kirby et al., 2006). Fire susceptibility is influenced by 9	  

factors such as deforestation, forest management, cultivation and reforestation (Osborne, 2000). 10	  

Development of human infrastructure including road construction, and the spread of residential 11	  

settlements in general increase deforestation and fire activity in more remote regions (Nepstad et 12	  

al., 2001; Malhi et al., 2009). In 2005, approximately 90% of the observed burning in the 13	  

southeast of Rondônia and the northwest of Mato Grosso occurred in previously deforested 14	  

areas, thereby demonstrating the link between fire and land use and land cover change (LULCC) 15	  

processes (Lima et al., 2012). 16	  

The objectives of landowners partly govern the degree to which fire is used in the deforestation 17	  

process. In general, three stages can be distinguished: logging, clearing and maintenance. In 18	  

tropical logging, by only harvesting selected trees, bulldozers create networks of forest roads, 19	  

killing non-harvested trees and fragmenting the forest and its canopy (Johns et al., 1996). This 20	  

practice increases the amount of dead wood in the understory and the likelihood of fires. The 21	  

damaged canopy allows light and wind to penetrate, increasing desiccation (Holdsworth and Uhl, 22	  

1997; Cochrane and Laurance, 2008). If fires occur they can affect forest composition and 23	  

structure. Recovery is diminished due to the impact of surface fires on seed availability (Van 24	  

Nieuwstadt et al., 2001). For clearing, slash-and-burn is a very efficient technique to clear land 25	  

intentionally for cattle or pasture (Tinker et al., 1996). To prepare the field, vegetation is cut and 26	  

left on the ground to dry. At the end of the dry season this is subsequently burned. If biomass 27	  

remains after the first fire, the remains are piled up and burned again, often until all biomass is 28	  

removed. Once everything is cleared, planting can be done directly in the ashes. Forest edge 29	  

biodiversity is impoverished by grass invasion due to repetitive burning in rapid agricultural 30	  
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expansion (Balch et al., 2009). Maintenance fires are used regularly to prevent trees from 1	  

invading pastures after deforestation, for nutrient recycling and to remove crop residues (van der 2	  

Werf et al., 2009).  3	  

The vast scales of fire and deforestation have become increasingly evident as a result of 4	  

developments in remote sensing and research that has used the continuously increasing data 5	  

streams associated with this.  Often these deforestation-focused studies used NASA’s Landsat 6	  

data (Tucker et al., 2004), but coarser scale Moderate Resolution Imaging Spectroradiometer 7	  

(MODIS) data is also used for rapid identification of deforestation location areas and trends in 8	  

dynamics (Morton et al., 2005). Landsat generated deforestation datasets allow accurate 9	  

quantification of the total area of deforestation (Broich et al., 2009). Now spanning a time frame 10	  

of approximately 25 years, the Brazilian National Institute for Space Research (INPE) has 11	  

created the Amazon Deforestation Monitoring Project (PRODES) to quantify deforestation rates 12	  

in the Brazilian Legal Amazon (BLA) (INPE, 2014). Initially only available in a tabular format, 13	  

digital maps were created using a new methodology based on the work of Shimabukuro et al. 14	  

(1998) from 1997 onwards (Hansen et al., 2008). PRODES has been used in many studies to 15	  

evaluate the effects of deforestation (e.g., Morton et al., 2006; Broadbent et al., 2008). Also 16	  

using Landsat satellite imagery, the Global Forest Change project (GFC) has compiled a global 17	  

forest cover loss dataset at the same spatial resolution as PRODES with an annual time step for 18	  

the period 2001 – 2013 (Hansen et al., 2013). The objectives of these two datasets diverge as 19	  

PRODES only focuses on primary forest loss, while GFC includes forest changes in every type 20	  

of vegetation taller than 5m in height and is a global data set while PRODES only focuses on the 21	  

BLA.  22	  

Fire has been used as part of the clearing process since the inauguration of the Transamazon 23	  

Highway in 1970 (Fearnside, 2005). Different remotely sensed datasets allow the quantity and 24	  

intensity of fires to be estimated. Active fire algorithms (e.g., Giglio et al., 2003) detect a fire at 25	  

the time of satellite overpass, while burned area algorithms (e.g., Roy et al., 2008) use satellite 26	  

time series of vegetation indices and other information to classify whether a pixel was burned or 27	  

not. Burned area algorithms are less sensitive to cloud cover and smoke and are therefore more 28	  

reliable for spatiotemporal studies allowing better analysis of spatial association between 29	  

landscape attributes and burning events, while active fires are better for identifying smaller fires 30	  

and yield near-real time information (Roy et al., 2008). 31	  
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After the first fire following deforestation there is generally still too much biomass on the ground 1	  

to enable agriculture or cattle grazing. Usually, repetitive burning is carried out to remove 2	  

remaining biomass. The number of fires is thought to depend on the post-deforestation land use 3	  

with agriculture requiring more complete combustion than pastures. For example, in a previous 4	  

modeling exercise pasture combustion completeness was set between 50-90%, while conversion 5	  

to cropland may lead to 100% combustion completeness over a period of 1-3 years (Morton et 6	  

al., 2008). The connection between these fires and deforestation is well established. For example, 7	  

according to a study focusing on one Landsat 5 TM tile (231/67 in the WR-2 indexing system) at 8	  

the border of Rondônia and Mato Grosso, 31% of the area burned in 2005 was deforested in one 9	  

of the preceding 3 years (Lima et al., 2012). 10	  

Deforestation and forest cover loss rates are impacted by numerous socio-economic factors, and 11	  

via the fire – deforestation link drought also plays a role in explaining spatio-temporal variability 12	  

(van der Werf et al., 2008). In general, drier than normal dry seasons see increased fire activity 13	  

(Chen et al., 2013) which can inhibit rainfall, creating a feedback mechanism (Nobre et al., 1991; 14	  

Nepstad et al., 2001). In addition, the vulnerability of these forests may increase due to climate 15	  

change (Aragão et al., 2008) with increased temperatures and stronger droughts (IPCC, 2007). In 16	  

2005, 2007, and 2010, three strong droughts occurred in the Amazon. Standardized anomalies of 17	  

dry-season rainfall showed that in 2005 37%, and in 2010 57%, of the total area was 18	  

experiencing rainfall more than 1 standard deviation below the long-term mean (Lewis et al., 19	  

2011). The 2005 event increased the number of fires observed by satellite-derived monthly and 20	  

annual time series by 33% compared to the 1999-2005 mean (Aragão et al., 2007). Droughts are 21	  

associated with the El Niño – Southern Oscillation, but are also impacted by tropical Atlantic sea 22	  

surface temperature (SST) anomalies related to the Atlantic Multidecadal Oscillation (AMO) 23	  

(Marengo et al., 2008). Eastern Amazonia is more vulnerable to fire during El Niño whereas the 24	  

south and southwest is more linked to AMO (Chen et al., 2011). Southern and Eastern states in 25	  

the Amazon basin are relatively dry with lower annual rainfall and stronger dry seasons, while 26	  

the interior of the Amazon is more humid (Nepstad et al., 1994). 27	  

In this study we focus on the relationship between burned areas and forest cover loss using newly 28	  

available data. We discuss and highlight the patterns seen in the forest cover loss, deforestation, 29	  

and burned area datasets. Our main objective is to identify the role that fires play in these 30	  

differences, and how droughts influence the fire – tree cover loss dynamics. We also focus on the 31	  
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spatial and temporal variability in the use of fire as a tool for deforestation for different states 1	  

and land cover types. 2	  

2 Datasets and Methods: 3	  

Our study area is the Brazilian Legal Amazon or BLA, which consists of 9 Brazilian states in the 4	  

northern part of Brazil (Fig. 1). Its geographic area is approximately 5 million km2. 62% of the 5	  

Amazon forest lies within Brazilian boarders. It consists predominantly of closed tropical forest 6	  

but also of cerrado (wooded savanna), agriculture, and pasture land (Carreiras et al., 2006). 7	  

Deforestation is concentrated in the arc of deforestation along the southern and eastern edges of 8	  

the BLA (Fearnside, 2005). We used four satellite-derived datasets characterizing forest 9	  

dynamics and fire: GFC forest cover loss, PRODES deforestation, MODIS burned area, and 10	  

MODIS land cover. After describing these datasets in more detail, we explain what steps we 11	  

have taken to study relationships between the various datasets.  12	  

The PRODES deforestation dataset is derived from Landsat data using algorithms described by 13	  

Shimabukuro et al. (1998). Landsat TM bands 3, 4 and 5 are used to generate the fraction of 14	  

vegetation, soil, and shade within each pixel using the constrained least squares method. The 15	  

image fraction is then classified using image segmentation followed by unsupervised image 16	  

classification and image editing to determine primary forest deforestation (Valeriano et al., 17	  

2004). This methodology has been used since 1997 and once an area is detected as deforested, it 18	  

is masked out and not considered anymore in following years.  19	  

GFC defines forest cover loss as a stand-replacement disturbance or the complete removal of tree 20	  

cover canopy for the period 2001 – 2013. GFC uses pre-processed cloud-free Landsat images to 21	  

calculate time series spectral metrics. Over the study interval three groups of per-band metrics 22	  

were employed: reflectance values, mean reflectance and slope of linear regression of band 23	  

reflectance value versus image date. Using these time-series metrics, a decision tree was used to 24	  

find forest cover loss (Hansen et al., 2013). A key difference between GFC and PRODES is that 25	  

PRODES only quantifies primary forest loss while GFC includes changes in “all vegetation taller 26	  

than 5m in height”. This may include the clearing of secondary forest or certain types of cultures 27	  

such as palm oil production, and in general one expects that GFC flags more area than PRODES.  28	  

MODIS burned area (MCD64A1) is based on 500 meter MODIS imagery coupled with 1km 29	  

MODIS active fire observations. It produces composite imagery to detect persistent changes and 30	  

then uses spatial and temporal active-fire information to create probabilistic thresholds to classify 31	  
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each pixel as burned or unburned (Giglio et al., 2009). To identify land cover changes, we used 1	  

the MODIS MCD12Q1 Land cover type product version 051 (Loveland and Belward, 1997; 2	  

Friedl et al., 2010) with the International Global Biosphere Program (IGBP) global land cover 3	  

classification scheme.  4	  

To combine forest cover loss, burned area and land cover datasets we used ArcMap10 to rescale 5	  

PRODES and GFC to the 500-meter MODIS grid using the most common Z value. The rescaled 6	  

dataset slightly overestimated the area of forest loss in the BLA by approximately 4%. However, 7	  

this bias was uniform over time and space, and did not change the general trend and patterns in 8	  

which we are interested here. We performed all analyses at 500 meter resolution and rescaled the 9	  

results to 0.1 degree to facilitate visual interpretation of the figures.  10	  

Because of the annual time step in the GFC and PRODES data, we have also merged the 11	  

monthly burned area data into annual files to compare that layer with deforestation and forest 12	  

cover loss. We have simplified the land cover classification scheme to three classes with the 13	  

dominant vegetation types in the BLA: Evergreen Broadleaf forest (EB), Low Tree Cover (LT, 14	  

which includes shrublands and savannas) and Cropland (C, including croplands interspersed with 15	  

natural vegetation). Other land cover type, such as grassland, needle leaf forest or permanent 16	  

wetland, have been merged (Other) but excluded in our analyses as they only represent a very 17	  

small portion of BLA land cover. We further analysed the land use for each land cover group in 18	  

the two states most affected by fires: Mato Grosso and Pará. We used the Landsat-based 19	  

TerraClass land use dataset from INPE, rescaled at 500-meter, available for 2008 and 2010 for 20	  

this exercise (de Almeida et al., 2009). 21	  

Finally, we aimed to not only better understand how burned area and forest cover loss are 22	  

related, but also how frequently burned area is observed after land cover transition and whether 23	  

this varies between post tree cover loss land use. For each evergreen broadleaf pixel where GFC 24	  

indicated forest cover loss, we summed burned area occurrence during the 5 years following this 25	  

event. This 5 years time period was chosen to balance the number of years we had for analysis 26	  

(which decreases when we lengthen our time period) and the time required for conversion. The 5 27	  

year time window was also used by Lima et al. (2012), who showed that 15% of the fires in their 28	  

study area in 2005 occurred in land deforested in 2000. We tested time periods from 2 to 6 years 29	  

and found that shorter time periods lowers this number somewhat (e.g., 3 years yields 37%) 30	  

while longer time periods make a marginal difference. Because our time series ended in 2012 we 31	  
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could only do this for 2002 through 2007. In the process, we kept track of the post tree cover loss 1	  

land use defined by the land cover type 5 years after tree cover loss. For each year of evergreen 2	  

broadleaf forest cover loss, we calculated the fraction burned in the subsequent 5 years, and 3	  

associated them with the initial year of tree cover loss. Finally, we stratified these summed 4	  

fractions by post tree loss land cover type to evaluate potential trends in conversion and the use 5	  

of fire in them.  6	  

3 RESULTS: 7	  

During our study period, within the BLA, both tree cover loss and burned areas were 8	  

concentrated along the arc of deforestation (Fig. 2). The largest difference between GFC and 9	  

PRODES on one hand and burned area on the other hand is that forest loss and deforestation are 10	  

concentrated along the edge of the Amazon forest while most fire activity is observed further 11	  

away from the deforestation frontier. In addition to the arc of deforestation, forest cover loss and 12	  

deforestation occurs along the Amazon River and close to roads. A state-level breakdown shows 13	  

that Mato Grosso (both GFC and PRODES indicate 33% of the total BLA loss), Pará (32% for 14	  

GFC, 36% for PRODES) and Rondônia (12%, 13%) were the states with most forest cover loss 15	  

over our full study period. There is spatial overlap between forest cover loss / deforestation and 16	  

burned area, mainly in the Southeast of Pará and in Eastern Mato Grosso. However, regions with 17	  

more shrubland or savannas, further away from the arc of deforestation (e.g. Tocantins and 18	  

Maranhão) have the highest burned area. 19	  

Over our study period, PRODES and GFC annual forest cover loss increased up to the year 2004 20	  

and decreased afterwards (Fig. 3). While both datasets demonstrated this post-2004 decline, the 21	  

extent differed. PRODES showed a continuous decrease except for 2008, while GFC plateaued 22	  

towards the end of the study period at a higher level. In both datasets, all states showed a 23	  

decrease between 2004 (highest year of deforestation during our study) and 2012. Mato Grosso, 24	  

Pará and Rondônia showed the largest reduction between 2004 and 2012 in both datasets, 25	  

respectively 63%, 50% and 56% in GFC and, 94%, 80% and 80% with PRODES. While all other 26	  

states had a decrease of at least 40% according to PRODES, GFC does not show any other state 27	  

having more than a 30% decrease. In addition, GFC has annual peaks in forest cover loss during 28	  

dry years, especially in 2010, while PRODES does not show this variability in deforestation.  29	  
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Partitioning GFC forest cover loss by land cover, we found that until 2006 most loss occurred in 1	  

evergreen broadleaf forests (Fig. 4a). From 2002 to 2009, the amount of annual evergreen 2	  

broadleaf forest loss dropped from approximately 16,000 km2 to almost 5,000 km2 and stayed 3	  

relatively constant in the following years. The most significant decrease came again from Mato 4	  

Grosso and Rondônia with an absolute forest cover loss reduction in evergreen broadleaf forests 5	  

of 93% and 81% respectively (Fig. 4b). The decrease in forest cover loss started earlier in Mato 6	  

Grosso (in 2004) than in Rondônia (in 2005) probably related to the strong 2005 drought, which 7	  

was most prominent in the western BLA. The state with on average the second highest amount of 8	  

forest cover loss, Pará, showed a slower diminution in evergreen broadleaf forest loss (60%). 9	  

Total loss in other types of land cover remained relatively stable during our study period (Fig. 10	  

4c-d). Mato Grosso is the only state with a significant decrease in clearing in the low tree cover 11	  

biome, halving the amount of shrubland and savannas cleared between 2004 and 2012.  12	  

In contrast to these trends in deforestation and forest cover loss, total burned area remained 13	  

relatively stable over our study period except in drier years, such as 2007 and 2010, when burned 14	  

area increased markedly, especially in low tree vegetation. These peaks mainly occurred in 15	  

southern and eastern states such as Mato Grosso, Pará, Maranhão and Tocantins (Fig. 5a,b). In 16	  

2008, pastures as classified by TerraClass covered 15% of Mato Grosso’s and 12% of Pará’s 17	  

surface. For a large part, pastures overlapped with our low tree cover class (80% and 65% of the 18	  

pastures were in that class for those two states). In Mato Grosso pasture fires represented only 19	  

7% of all burned area in 2008 and 9% in 2010, while most of the burned area occurred in the 20	  

“unmanaged land use” classes  (respectively 86% and 87%). In Pará, pasture fires comprised 21	  

19% and 34% of the burned area in 2008 and 2010, also much lower than burned area in 22	  

unmanaged areas (69% to 56%). 23	  

Focusing on burned area coinciding with GFC forest cover loss (so observed in the same grid 24	  

cell in the same year), we found that they occur mainly in evergreen broadleaf forest and that this 25	  

is only a small fraction of the total burned area in the BLA (Fig. 5c,d). The general trend is 26	  

similar to total GFC although the decrease starts after 2005 due to a drought in the southwest of 27	  

the BLA, mainly in Acre and Amazonas. Looking into more detail at 4 years (2004, 2005, 2007 28	  

and 2010) with above-average tree cover loss and/or burned area, we found that the spatial 29	  

distribution of coinciding forest cover loss and burning has changed (Fig. 6). Especially in 2004 30	  

but also in 2005, most of this was observed in northern Mato Grosso and Rondônia. These 31	  
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regions featured less prominently in the latter part of this analysis during the dry years of 2007 1	  

and 2010. In contrast, Pará had very little burned area in 2004, but started to have a major 2	  

hotspot in the southeast in 2005 and in following dry years. The central region of Pará had also 3	  

more activity from 2005 onwards  4	  

Using burned area and GFC to evaluate the time interval between forest cover loss and fire we 5	  

found that a substantial part (46% when averaged over the full study period) of cleared evergreen 6	  

broadleaf forest was burned within 5 years after forest cover loss, with the use of fire decreasing 7	  

over time. Of all forest loss grid cells, 24.5% was converted to shrubland or savannas, 18% was 8	  

converted to cropland and the remaining 3.5% had no permanent conversion (Fig. 7). We also 9	  

found that 10% of the land converted to shrubland or savanna was burned the same year as forest 10	  

cover loss was detected in these grid cells (we could not identify whether it was the cause of 11	  

conversion), while conversions to cropland were burned in the first year in about 7.5% of the 12	  

grid cells. Grid cells identified as forest cover loss but remaining evergreen broadleaf forest had 13	  

little burned area, between 0-2%.  14	  

Strikingly, when looking at the temporal trend of burned area after evergreen broadleaf GFC 15	  

loss, we found that the use of fire after conversions to shrubland, savannas or cropland decreased 16	  

over our study period (Fig. 8). The fraction that burned for conversion to shrubland or savannas 17	  

decreased from over 31% between 2002 and 2007 to 17% between 2007 and 2012. Combining 18	  

all conversion types, post tree cover loss burned area was most frequent for the grid cells that had 19	  

forest loss in 2003 where 60% burned in the following 5 years, decreasing to 29% for 2006, and 20	  

increasing again to 39% in 2007. This trend came mainly from grid cells that underwent any kind 21	  

of conversion. In the grid cells without permanent conversion the use of fire actually increased 22	  

somewhat (Fig. 8) 23	  

4 Discussion  24	  

Multiple lines of evidence demonstrate the successful decrease of deforestation within the BLA 25	  

under the 2004 Action Plan for the Prevention and Control of Deforestation in the Legal 26	  

Amazon. This plan introduced innovative procedures for monitoring, environmental control and 27	  

territorial management (Assunção et al., 2012). In the same year, the collaboration between 28	  

INPE and the Center for Environment Monitoring (CEMAM) from the Brazilian institute of 29	  

environment and renewable natural resources (IBAMA), created the System for Detection of 30	  
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Deforested areas in Real Time (DETER). This new program generated maps of areas with 1	  

critical forest cover changes in near real time which proved to be an important tool for law 2	  

enforcement (May et al., 2011). In both datasets used in this study, the post-2004 drop in tree 3	  

cover loss and deforestation can be clearly identified. According to GFC, the resulting downward 4	  

trend is mainly occurring in states within the arc of deforestation. In 2006, the soy moratorium 5	  

was implemented to prohibit the trade of soybean produced in deforested areas (Meyfroidt and 6	  

Lambin, 2011). After 5 year of application, Rudorff et al. (2011) concluded that although it was 7	  

premature to attribute the decrease in deforestation in the Amazon biome to this moratorium, it 8	  

had undoubtedly created an inhibitory effect on the expansion of soybean in this biome. After 9	  

this moratorium, 90% of the soybean plantation expansion occurred on land previously used as 10	  

rangeland (Lapola et al., 2010).  11	  

In the future, the Brazilian government is willing to significantly increase the production of 12	  

biofuel (Bergmann et al., 2013). One consequence could be the migration of cattle ranchers to 13	  

other regions and thereby increasing deforestation (Nepstad et al., 2006). According to GFC, 14	  

forest cover loss ceased to decrease shortly after the implementation of this moratorium. This 15	  

study cannot connect these two facts, but one hypothesis could be that more non-primary forest 16	  

has been cleared to allow the soybean extension or the resettlement of cattle ranchers without 17	  

breaching the moratorium agreements.  18	  

Pará ranked second with regard to forest cover loss and deforestation in 2002, behind Mato 19	  

Grosso. Mato Grosso drastically reduced its tree clearing rates, and so did Pará but to a lesser 20	  

extent. Mato Grosso had only 44% of its state covered by evergreen broadleaf forest in 2002 21	  

compared to 80% for Pará. The availability of land accessible to clear may explain part of the 22	  

difference in absolute trend strength. We observed that some regions in Pará that were not 23	  

substantially impacted by clearing fires early in our study period became hotspots towards the 24	  

end. For example, in the region of Tucumã in central Pará, fire and clearing were not collocated 25	  

in 2004, but became really active in 2005, 2007 and 2010. A highly fragmented forest region 26	  

may potentially explain this, as a close access to the Rio Xingu, tributary of the Amazon River, 27	  

facilitates tree removal. Further north in Pará, we noted that strong tree cover loss was occurring 28	  

without burned area being observed. This could be due to higher annual rainfall, which can limit 29	  

the use of fire in forest clearing.  30	  
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During our study period, the BLA faced severe drought years in 2005, 2007 and 2010. According 1	  

to PRODES, these events did not influence the rate of deforestation, except in 2008 when there 2	  

was a small increase possibly related to the 2007 drought. GFC shows more sensitivity to 3	  

droughts. This is most evident in 2010 when there was an increase in forest cover loss compared 4	  

to the previous year, the first time since 2004. But also 2005 and 2007 showed less of a decline 5	  

compared to the previous year in GFC than in PRODES. These dry years had also a significant 6	  

effect on fire in southern and western states. Maranhão and Tocantins had a very strong burning 7	  

peak, but this did not influence forest cover loss, probably because savannas are by far the 8	  

dominant land cover here. On the other hand, Mato Grosso and Pará have also seen elevated 9	  

burning activity increasing the burning of evergreen broadleaf forest, which could explain part of 10	  

GFC plateau towards the end of our study period.  11	  

Previous work has shown a strong correlation between deforestation and fire occurrences 12	  

(Aragão et al., 2008; Chen et al., 2013). Although deforestation and forest cover loss have 13	  

declined sharply since 2004, burned area did not follow this trend because only a small fraction 14	  

of burned area is associated with forest cover loss and because droughts have a strong impact on 15	  

the inter-annual variability in burned area. Although the effects of droughts are not uniform 16	  

between all states, general impacts are evident. Burned area always exceeded forest cover loss 17	  

area due to the fact that fires in grassland and on agricultural grounds are not part of 18	  

deforestation or forest cover loss. States with a relatively small fraction of evergreen broadleaf 19	  

forest but a larger portion of cerrado (low tree cover), such as Mato Grosso, Tocantins and 20	  

Maranhão have in general more fire activity in the conversion to agriculture or grazing process 21	  

(Mistry, 1998). In Mato Grosso and Pará, we found that relatively speaking, less burned area in 22	  

our low tree cover class occurred in pastures compared to non-managed land. This indicates that 23	  

management in general decreases burned area for this land cover class. 24	  

Our results on time intervals between forest cover loss and burned area show that although large 25	  

fire years occurred throughout our study period, the overall rate of burned area per unit forest 26	  

loss is decreasing. In other words, over our study period the post-conversion use of fire 27	  

decreased. About 54% of the evergreen broadleaf forest that was cleared in 2002 burned in the 28	  

following 5 years, dropping to 29% for the evergreen broadleaf forest cleared in 2006. However, 29	  

this number was somewhat higher (39%) in 2007, which was a dry year and the second highest 30	  

fire year during our study period. Longer time series will enable us to see whether the increase in 31	  
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post-forest loss fire use in 2007 was a temporary result because of the drought or that the 1	  

downward trend is increasing again. Lima et al. (2012) showed in one Landsat 5 TM tile located 2	  

between Rondônia and Mato Grosso that 53% of the 2005 fires occurred in land deforested 3	  

within the prior 5 years. Aragão and Shimabukuro (2010), however, found that between 2000 4	  

and 2007, 59% of areas experiencing reduction in deforestation rates had an increase in fire 5	  

events. Using 0.25-degree spatial resolution, they explain that this reverse trend could come from 6	  

secondary forest clearing, not detected by PRODES. Our results on 500-meter resolution indicate 7	  

that within the same time period (2000-2007), more than 50% of the cleared vegetation taller 8	  

than 5m in height was burned within a few years but this number dropped below 40% after 2004. 9	  

This shows that burned area per unit forest loss area decreased after Aragão and Shimabukuro 10	  

(2010) study period. 11	  

By combining the three different datasets we have aimed not only to understand the differences 12	  

between them, but also to highlight uncertainties associated with relying on one dataset. Our 13	  

study shows that, at least for the Brazilian Amazon, secondary forest loss and fire dynamics 14	  

outside the primary tropical forest domain may be equally important in regulating atmospheric 15	  

CO2 concentrations as the much better studied dynamics within the primary forest. The exact 16	  

impact of these processes requires taking into account the biomass density (e.g., Baccini et al. 17	  

(2012)) , which will be the subject of a follow-up study. These types of fires are also important in 18	  

other regions outside the BLA (e.g. Chen et al., 2014) and expanding the current focus on 19	  

deforestation regions to also include woodland dynamics may be an important step in better 20	  

understanding biosphere-atmosphere interactions and biodiversity issues. For example, large 21	  

scale carbon budget studies often use deforestation rates in their assessments of sources and sinks 22	  

of carbon (Le Quéré et al., 2013).  23	  

One key uncertainty we have not addressed here is the use of burned area to study fire extent. 24	  

The burned area algorithms are often geared towards detecting relatively large fires and not all 25	  

fires in tree cover loss or deforestation zones may be flagged as burned by them. In addition, it is 26	  

not well known how reliable the burned area data is in tree cover loss or deforestation regions. 27	  

The use of active fires instead of or in combination with burned area may mitigate some of these 28	  

issues (Randerson et al., 2012). However, these approached rely on statistics between active fires 29	  

and burned area that can only be derived from coarse scale analyses; in the study by Randerson 30	  

et al. (2012) a 0.25° spatial resolution was used which is far too coarse for our purposes. On 31	  
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native resolution, active fires are still 4 times coarser than burned area but the key issue is that 1	  

active fires can be associated both with a small agricultural burn and with a large fire consuming 2	  

all biomass in the grid cell. Because of this lack of quantitative information we refrained from 3	  

using active fires.	   In the future, higher resolution observations from for example VIIRS 4	  

(Schroeder et al., 2014) may enable simultaneous use of burned area and active fires in native 5	  

resolution applications like ours. 6	  

5 Conclusions 7	  

We used satellite observation of deforestation (PRODES), forest cover loss (GFC), burned area 8	  

(MCD64A1) and land cover (MCD12Q1) between 2002 and 2012 in the Brazilian Legal 9	  

Amazon (BLA) to study relationships between the different datasets. The PRODES dataset 10	  

indicated that deforestation has sharply declined since 2004, something also seen in the GFC 11	  

forest cover loss data but to a smaller extent. The states with the strongest decline were in the 12	  

south of the BLA. Most tree cover loss and deforestation occurred on the edge of the Amazon 13	  

forest while more burned area was located on the outskirt of the arc of deforestation. Looking at 14	  

coinciding forest cover loss and burned area, we found variability in the spatial distribution 15	  

during our study period. This was most predominantly found in the state of Pará, where burned 16	  

area and forest cover loss were not linked up to 2004, which changed later when large patches of 17	  

burned area coinciding with forest cover loss were observed in the southwest and the centre of 18	  

the state during the dry years of 2007 and 2010. This indicates that droughts not only enhance 19	  

burned area, but also increase forest cover loss in for example secondary forests. These dynamics 20	  

are not necessarily monitored by PRODES, which excludes grid cells that have been deforested 21	  

before, but are important to be included in large-scale carbon cycle studies. 22	  

Early in our study period, more than 50% of cleared evergreen broadleaf forest was burned 23	  

throughout the subsequent 5 years, reducing to below 40% during the last time segment studied 24	  

(2007-2012). In other words, besides the well-documented decrease in deforestation rates we 25	  

also showed that burned area per unit forest loss area decreased over our study period. More 26	  

research is required to better understand these dynamics; one potential reason could be that with 27	  

lower deforestation rates the previously deforested lands are becoming more intensively 28	  

managed. This is partly supported by our finding that in Mato Grosso and Pará burned area in in 29	  

managed pasture is on average 5 times less frequent than in unmanaged land. 30	  
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 5	  

Figure 1: MODIS MCD12Q1 (v051) Land cover in the Brazilian Legal Amazon (BLA). EB = 6	  

Evergreen Broadleaf forest, LT = Low Tree cover (shrubland and savannas) and C = Cropland 7	  

and Cropland/Natural Vegetation Mosaic. Other includes all remaining land cover such as 8	  

grassland, needle leaf forest, permanent wetlands or urban areas. Letter codes for the states in the 9	  

BLA are clockwise: AP, Amapá; PA, Pará; MA, Maranhão; TO, Tocantins; MT, Mato Grosso; 10	  

RO, Rondônia; AC, Acre; AM, Amazonas; RR, Roraima. 11	  

  12	  
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 1	  

Figure 2: 2002-2012 mean forest loss (a, based on GFC), deforestation (b, based on PRODES), 2	  

and burned area (c, based on MCD64A1). All data sets are regridded to 0.1° resolution. Note the 3	  

order of magnitude difference between forest loss and deforestation one hand and burned area on 4	  

the other hand. 5	  
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 1	  

Figure 3: Annual forest loss estimates from the Global Forest Change (GFC) project and 2	  

deforestation estimates from the Amazon Deforestation Monitoring Project (PRODES) for 2002-3	  

2012 in all of the BLA (a), and partitioned on state level for GFC (b) and PRODES (c). 4	  

  5	  
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 1	  

Figure 4: Annual state-level GFC forest loss for the Brazilian legal amazon and three land cover 2	  

classes defined at the year of forest loss.  3	  
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 1	  

Figure 5: Burned area stratified by land cover (a, c) and by state (b, d). Top panels (a and b) 2	  

indicate total burned area; bottom panels show burned area coinciding with GFC forest loss.3	  
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 1	  

Figure 6:  Fraction of GFC forest loss coinciding with burned area for the 4 highest fire and/or 2	  

tree cover loss years in our study period, averaged on a 0.1° resolution.  3	  
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 1	  

Figure 7: The degree to which fire is used in the deforestation process for different post-forest 2	  
loss land cover, shown for the year of forest loss (FL) and 5 years afterwards. Data is averaged 3	  
for the 6-year periods starting between 2002 and 2007. The right y-axis indicates the burned area 4	  
as a percentage of 2002-2007 averaged evergreen broadleaf forest loss (14,211 km2 year-1) and in 5	  
total sums up to 46% of total forest loss.   6	  
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 1	  

Figure 8: Fraction of forest loss grid cells where burned area is observed in the 5 years following 2	  

forest loss. Results are shown for three different post-forest loss land cover types defined as the 3	  

land cover type observed 5 years after the forest loss event.  4	  


