Supplement of Biogeosciences Discuss., 12, 8353–8393, 2015 http://www.biogeosciences-discuss.net/12/8353/2015/doi:10.5194/bgd-12-8353-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.

Supplement of

Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis

J. E. Vonk et al.

Correspondence to: J. E. Vonk (j.e.vonk@uu.nl)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

INCUBATION PROTOCOL

REQUIRED MATERIAL PER INCUBATION

- Clean 1L sampling flask
- Clean 1L flask to use for filtration
- Nitrile or rubber gloves
- Labeling tape and waterproof pen
- Temperature sensor/thermometer
- 30 pre-ashed (minimal 6h at 450 °C) transparent or amber 40 mL glass vials (15 vials needed for experiment, 15 vials needed for transport)
- 30 vial caps with clean silicone septa
- Pre-ashed (minimal 6h at 450 °C) glass fiber filters (nominal pore size 0.7 μm) with diameter 25 or 47mm depending on your filtration set-up
- Filtration unit (e.g. filter tower with (manual) vacuum pump, in-line filter holder connected to peristaltic pump), see Figure 1
- Concentrated HCl, and pipet to use for HCl
- Material for experimental add-ons or optimization:
 - For nutrient-amended incubations: prepare nutrient solutions from KNO₃, NH₄Cl, and K₂HPO₄.
 - Oven or incubator to maintain a constant temperature.

SAMPLE COLLECTION

- Collect water samples using gloves in clean sample container, pre-rinse with sample three times.
- Measure water temperature and latitude/longitude, and make additional field notes when desired (e.g. pH, conductivity, O₂, turbidity).
- Transport the sample in chilled (but not frozen) and dark conditions back to the location where the incubation will be performed.
- As soon as possible after collection, we recommend maximally within 12 hours, start with the filtration (see next step). Do not freeze the samples.
- If sampling soil leachate, a collection of soil for determination of dry bulk density and soil moisture is desirable (Lajtha et al. 1999).

Figure S1. Examples of (a) filter towers (b) inline filter holders, and (c) vacuum or pressure devices which could be used.

FILTRATION AND PREPARATION

- Filter water samples through ashed and pre-rinsed glass fiber filter (Figure 1), collect the filtrate in the clean 1L flask. Use gloves.
- Pre-label 15 vials (40mL) with sample code, incubation time point and triplicate number (e.g. K-0-a, K-0-b, K-0-c, K-2-a, K-2-b, K-2-c, etc.)
- Pour the filtrate into the glass vials (40mL), and fill each vial with 30 mL filtrate. Use 15 vials in total, consisting of five triplicate sets for each time point: T = 0, T = 2, T = 7, T = 14 and T = 28 days.
- Use caps with silicone septa.

INCUBATION AND ANALYSIS

- Incubate vials in the dark.
- Incubate with loose caps and shake regularly (once a day, temporarily tightening caps) to avoid O₂ depletion.
- Incubate samples at room temperature (ca. 20 °C). Document the temperature throughout the incubation and use an oven or incubator if available.
- At every time point (including T=0 days): re-filter the incubated samples through ashed and pre-rinsed 0.7 μ m filters. Store the filtered samples in pre-ashed 40mL glass vials, acidify to pH 2 with 30 μ L concentrated HCl (36% or 11.6M). Cap tightly and store dark and chilled until analysis.
- Determine DOC concentration, and calculate BDOC (biodegradable dissolved organic carbon; in %) from the change in DOC concentration during the 28 day incubation, relative to the initial DOC concentration.

In the main text, we suggest and describe a few protocol extensions that could be used to assess further methodological and environmental controls on BDOC.

References

- Cory, R. M., Crump, B. C., Dobkowski, J. A., and Kling, G. W.: Surface exposure to sunlight stimulates CO₂ release from permafrost soil carbon in the Arctic, P. Natl Acad Sci USA, 110, 3429-3434, doi:10.1073/PNAS1214104110, 2013
- Holmes, R. M., McClelland, J. W., Raymond, P. A., Frazer, B. B., Peterson, B. J., and Stieglitz, M.: Lability of DOC transported by Alaskan rivers to the Arctic Ocean, Geophys. Res. Lett., 35, L03402, doi:10.1029/2007GL032837, 2008.
- Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E.: Biodegradation of soil-derived dissolved organic matter as related to its properties, Geoderma 113, 273-291, 2003.
- Lajtha, K., et al. (1999) Collection of Soil Solution. In: Standard Soil Methods for Long-term Ecological Research. (eds Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P.) pp 166-178. New York, Oxford University Press.

 Table S1
 Site characteristics and BDOC results from our standardized circumarctic incubation experiments.

Location Location		Country	Lat °N	Lon ¹	Time	JD ²	Site characteristics			BDOC results ⁵					
	Sampling				Date T=0		Water-	Category ³	Perma- frost zone ⁴	DOC at T=0	BDOC loss				Inoculum
							shed km²				T=2	T=7	T=14	T=28	
Aquatic incub	bations														
Yukon River	Mainstem	US	61.94	-162.86	4-Jul	185	831386	river	Discont.	4.6	0.7	6.3	11.2	12.2	no inocolum
	at Pilot									4.5	0.4	5.0	6.2	7.9	1% inoculum
	Station									4.5	1.6	6.0	8.0	9.2	10% inoculun
Richardson	Tributary	US	65.65	-149.08	4-Jul	185	9.8	stream	Cont.	32.5	2.3	2.4	2.4	4.3	no inocolum
Creek	Yukon									32.5	-0.9	3.8	2.4	3.1	1% inoculum
										32.7	1.5	4.3	3.6	4.6	10% inoculun
Kolyma	Mainstem	Russia	68.74	161.28	24-Jun	175	652924	river	Cont.	6.5	-1.8	3.5	3.4	24.1	no inocolum
River	at Cherskii									6.8	1.0	3.1	3.9	26.1	1% inoculum
										6.4	-3.7	-0.5	-2.0	18.9	10% inoculun
					18-Jul	199				3.4	-3.9	-18.6	-15.2	-14.2	no inocolum
										3.3	0.3	-17.2	-16.7	-14.0	1% inoculum
										3.4	-0.8	-17.1	-18.4	-15.0	10% inoculun
					30-Aug	242				7.6	1.3	1.3	-17.8	1.6	no inocolum
										7.6	1.1	2.4	2.2	3.3	1% inoculum
										7.6	3.2	2.4	-6.0	5.0	10% inoculun
Y3 stream	Tributary	Russia	68.76	161.45	18-Jun	169	17	stream	Cont.	27.1	2.8	5.5	7.3	9.4	no inocolum
	Pantaleikha									25.7	5.4	6.1	6.1	9.2	1% inoculum
										25.4	7.0	7.6	6.9	9.3	10% inoculun
					21-Jul	202				19.9	-5.5	-16.0	-16.8	-15.0	no inocolum
										20.0	-3.1	-17.4	-13.5	-14.7	1% inoculum
										19.7	-4.3	-16.9	-17.1	-15.7	10% inoculun
					30-Aug	242				18.1	0.3	0.6	1.1	3.3	no inocolum
										18.1	0.2	0.4	1.2	3.5	1% inoculum
										18.1	0.5	0.0	2.3	2.2	10% inoculun
Mackenzie	Mainstem	Canada	67.45	-133.77	9-Jun	160	175000	river	No	6.5	-1.0	-1.9	-0.4	-3.7	no inocolum
River	at								perma-	6.5	-0.5	-3.3	-0.8	-1.7	1% inoculum
	Tsiigehtchic								frost	6.5	-1.0	-3.3	-0.6	-1.3	10% inoculun
					22-Jul	203				5.0	1.5	0.0	0.0	-0.9	no inocolum
										5.0	0.2	-0.9	1.0	-0.7	1% inoculum
										5.0	-0.1	0.1	1.1	-0.7	10% inoculun

Soil leachate incubations															
Toolik, near	core 1	US	68.61	-149.59	27-May	147	n.r.	soil	Cont.	2.5	18.7	22.5	21.3	23.7	no inocolum
LTER site								leachate		2.3	11.8	5.6	12.6	30.8	1% inoculum
										2.3	13.3	7.6	20.0	33.4	10% inoculum
					15-Sep	258				22.1	18.4	26.7	31.9	34.6	no inocolum
										22.1	35.3	23.6	42.4	48.4	1% inoculum
										23.2	36.8	24.8	45.1	39.4	10% inoculum
Toolik, near	core 2	US	68.61	-149.59	27-May	147	n.r.	soil	Cont.	3.2	14.4	27.2	33.6	37.4	no inocolum
LTER site								leachate		3.0	19.1	10.1	25.4	33.2	1% inoculum
										2.8	14.3	23.2	9.7	28.2	10% inoculum
					15-Sep	258				16.2	10.4	3.8	0.0	17.5	no inocolum
										15.9	-20.6	4.2	16.1	13.5	1% inoculum
										15.4	10.4	14.1	12.4	18.8	10% inoculum
Toolik ,	core 3	US	68.61	-149.59	27-May	147	n.r.	soil	Cont.	2.1	-3.8	-24.0	-0.3	16.4	no inocolum
near LTER								leachate		2.2	12.8	14.0	12.0	31.4	1% inoculum
site 3										2.1	-30.4	15.8	21.7	29.2	10% inoculum
					15-Sep	258		•		16.5	17.3	21.3	20.3	28.1	no inocolum
										15.7	16.0	17.2	22.4	23.3	1% inoculum
										16.1	11.3	11.8	12.1	22.4	10% inoculum

^{1 °}W is listed as negative degrees

² JD is Julian day

³ Categories defined as soil leachates, streams (<250km²), large streams (>250km² and <25,000km²), rivers (>25,000km² and <500,000km²) and large rivers (>500,000km²)

⁴ Watersheds are categorized according to dominant permafrost zonation, e.g. Mackenzie watershed has 16%, 29%, 55% continuous, discontinuous and no permafrost, respectively, and is here classified as "no permafrost".

⁵ BDOC is biodegradable dissolved organic carbon; it is calculated as the change in DOC concentration (mg/L) during the incubation, relative to the initial DOC concentration, and is reported in percent for each time step. A negative BDOC loss has been set to 0 in statistical analysis.