
1 

 

Submitted to Biogeosciences  1 

 2 

Technical note: Time lag correction of aquatic eddy 3 

covariance data measured in the presence of waves 4 

 5 

P. Berg1* 6 

C. E. Reimers2 7 

J. H. Rosman3 8 

M. Huettel4 9 

M. L. Delgard1  10 

M. A. Reidenbach1 11 

T. Özkan-Haller2 12 

 13 

1) Department of Environmental Sciences, University of Virginia, Charlottesville, 14 

Virginia 15 

2) College of Earth, Ocean and Atmospheric Sciences, Oregon State University, 16 

Corvallis, Oregon 17 

3) Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead 18 

City, North Carolina   19 

4) Department of Earth, Ocean and Atmospheric Science, Florida State University, 20 

Tallahassee, Florida 21 

 22 

* Corresponding author: E-mail: pb8n@virginia.edu 23 

24 

mailto:pb8n@virginia.edu


2 

 

Abstract 1 

Extracting benthic oxygen fluxes from eddy covariance time series measured in the 2 

presence of surface gravity waves requires careful consideration of the temporal alignment 3 

of the vertical velocity and the oxygen concentration. Using a model based on linear wave 4 

theory and measured eddy covariance data, we show that a substantial error in fluxes can 5 

arise if these two variables are not aligned correctly in time. We refer to this error in flux as 6 

the time lag bias. In one example, produced with the wave model, we found that an offset of 7 

0.25 s between the oxygen and the velocity data produced a two-fold overestimation of the 8 

flux. In another example, relying on nighttime data measured over a seagrass meadow, a 9 

similar offset reversed the flux from an uptake of -50 mmol m-2 d-1 to a release of 40 mmol 10 

m-2 d-1. The bias is most acute for data measured at shallow-water sites with short-period 11 

waves and low current velocities. At moderate or higher current velocities (> 5 – 10 cm s-1), 12 

the bias is usually insignificant. The widely used traditional time shift correction for data 13 

measured in unidirectional flows, where the maximum numerical flux is sought, should not 14 

be applied in the presence of waves because it tends to maximize the time lag bias, or give 15 

unrealistic flux estimates. Based on wave model predictions and measured data, we 16 

propose a new time lag correction that minimizes the time lag bias. The correction requires 17 

that the time series of both vertical velocity and oxygen concentration contain a clear 18 

periodic wave signal. Because wave motions are often evident in eddy covariance data 19 

measured at shallow-water sites, we encourage more work on identifying new time lag 20 

corrections. On that premise, we have made all the raw data used in this study available to 21 

interested users.  22 

  23 
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1  Introduction         1 

1.1 Background – Eddy covariance (or eddy correlation) measurements of scalar fluxes 2 

under water have been performed for many years. The earliest studies  focused on 3 

measurements of heat fluxes under sea ice (McPhee 1992; Fukuchi et al. 1997; Shirasawa et 4 

al. 1997) and salt fluxes in a salt wedge estuary (Partch and Smith 1978). More recently, 5 

concurrent heat and salt fluxes have also been measured over marine permeable sandy 6 

sediments as tracers for groundwater seepage (Crusius et al. 2008). Over the last 10 years, 7 

the aquatic eddy covariance technique has become a widely accepted approach for 8 

measuring oxygen fluxes between benthic ecosystems and the overlying water (Berg et al. 9 

2003). In that time,  the number of users has grown rapidly, and the technique has been 10 

applied under very different field settings such as muddy and sandy sediments (Berg et al. 11 

2003; Kuwae et al. 2006; Glud et al. 2010), deep ocean sediments (Berg et al. 2009) coral 12 

reefs (Long et al. 2013; Cathalot et al. 2015; Rovelli et al. 2015), and seagrass meadows 13 

(Hume et al. 2011; Rheuban et al. 2014; Long et al. 2015). With a few exceptions, all of the 14 

recently published aquatic eddy covariance studies have focused on oxygen fluxes. Oxygen 15 

fluxes are also the focus of this study, but its findings apply to all scalar fluxes. 16 

The aquatic eddy covariance technique has advantages over other methods for 17 

measuring fluxes between the benthic environment and the overlying water, including its 18 

non-invasive nature (Lorrai et al. 2010), high temporal resolution (Rheuban and Berg 19 

2013), and ability to integrate over a large benthic surface (Berg et al. 2007). As a result, 20 

the technique is poised for widespread use in aquatic science, analogous to the 21 

development in atmospheric boundary layer research where the equivalent approach is 22 

now the preferred standard method for measuring land-air fluxes (Baldocchi 2003). As 23 

part of the further development of the technique in aquatic environments, a few challenges 24 

must be addressed. Procedures for calculating fluxes from raw data must be refined to 25 

minimize errors and uncertainties that may be unique to aquatic applications.. The 26 

procedures used today are largely adapted directly from atmospheric boundary layer 27 

research, where the eddy covariance technique has been used for more than six decades 28 

(Priestley and Swinbank 1947; Swinbank 1951). 29 
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1.2 Formulation of problem – This study focuses on estimating oxygen fluxes under a set 1 

of field conditions that do not occur in the atmosphere, but are very common under water 2 

at shallow-water sites. Here, surface gravity waves can cause oscillatory motion throughout 3 

the water column to the benthic surface, and give rise to a unique set of challenges when 4 

eddy fluxes are extracted. Some of these challenges are directly linked to limitations of the 5 

eddy covariance instrumentation available today. Although fast-responding oxygen sensors 6 

are used in eddy covariance measurements, their speed is still limited relative to the 7 

velocity sensor (e.g. a Vector Acoustic Doppler Velocimeter (ADV) from Nortek AS). Clark-8 

type oxygen microelectrodes used for eddy covariance typically have response times (t90%) 9 

of 0.2 to 0.5 s (Berg et al. 2003; Attard et al. 2015; Donis et al. 2015). Newer optical sensors 10 

that have been developed in recent years have comparable or somewhat longer response 11 

times of 0.2 to 0.8 s (Chipman et al. 2012; Murniati et al. 2015; Berg et al. in press). This 12 

means that the time series of the two key variables from which eddy fluxes are derived, the 13 

vertical velocity and oxygen concentration, are never perfectly aligned in time. Also, 14 

because the ADV derives its data from acoustic backscatter of suspended particles moving 15 

through its ~2 cm3 measuring volume, the oxygen sensor must be positioned outside of 16 

this volume to avoid disturbing the velocity measurements. Depending on the 17 

instantaneous flow direction and magnitude, this physical separation can increase or 18 

decrease the time lag between the two time series. 19 

1.3 Traditional time lag correction – For measurements in unidirectional flows with thin 20 

fast-responding Clark-type microelectrodes (t90% < 0.3 s) that can be positioned at the edge 21 

of the ADV’s measuring volume, the temporal misalignment usually has insignificant effects 22 

on the flux estimate (Berg et al. 2013). Inspection of the cumulative co-spectrum between 23 

the vertical velocity and the oxygen concentration can confirm or reject this on a case-by-24 

case basis. Specifically, a correction is unnecessary in the absence of a local extremum in 25 

the co-spectrum near 1 Hz (Berg et al. 2013). In situations when the misalignment does 26 

affect the calculated eddy flux, a straight-forward correction has been adapted from 27 

atmospheric boundary layer research, in which the oxygen data are successively shifted in 28 

time relative to the velocity data in order to find the maximum numeric flux, or cross-29 
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correlation (Fan et al. 1990; McGinnis et al. 2008; Lorrai et al. 2010).  Figure 1 shows an 1 

example of this correction applied to data measured in a river with a unidirectional flow of 2 

~16 cm s-1 and using a new dual oxygen-temperature sensor. This sensor has a 1 cm tip 3 

diameter and a response time (t90%) for oxygen of 0.51 s, which was measured by inserting 4 

it from air into a water bath (Berg et al. in press). The center of the sensor was positioned 5 

~2.5 cm downstream from the center of the ADV’s measuring volume.  6 

 1.4 Scope of work – We will show that even small temporal misalignment between the 7 

vertical velocity and the oxygen concentration, inherently imbedded in all present eddy 8 

covariance data, can lead to significant errors in the fluxes extracted from data measured in 9 

the presence of waves. We refer to this error as the time lag bias, and show that the 10 

traditional time lag correction illustrated in Fig. 1 will fail. Using a model based on linear 11 

wave theory and measured data, we explain the cause of the bias and examine its potential 12 

magnitude. We then propose a new correction for this time lag, which minimizes the time 13 

lag bias, and test it on two sets of measured data. We encourage more work on identifying 14 

new time lag corrections and provide a link from where all of the raw data used in this 15 

study can be downloaded. 16 

2  Methods  17 

2.1 Illustration of the problem using a wave model – The two-dimensional model for 18 

progressive waves and their effect on the oxygen concentration at a fixed height above the 19 

sediment surface is presented in Appendix A. In short, the model, which is based on linear 20 

wave theory, describes the horizontal and vertical wave orbital velocities and the variation 21 

in oxygen concentration generated by the up-and down movement of the natural oxygen 22 

gradient as a function of time as they would be recorded under ideal conditions, without 23 

any time lag and at exactly the same location. It is assumed that any local horizontal 24 

variations in oxygen uptake or release at the sediment surface has been smeared out by 25 

turbulent mixing at this location. Model parameter values (Table A1, Appendix A), 26 

including a sediment uptake of  -368 mmol m-2 d-1 were adapted or estimated from the 27 

eddy covariance data reported by Berg and Huettel (2008) from a shallow-water site 28 
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exposed to surface waves. The values are well within the range for which linear wave 1 

theory applies. Specifically, ratios of wave amplitude to wavelength and wave amplitude to 2 

water depth should both be <<1 (Kundu 1990). Using the equations listed in Appendix A, 3 

gives a wavelength of 7 m, and therefore, ratios of 0.008 and 0.04, respectively. The model 4 

was used to generate theoretical time series of the wave velocity and wave-generated 5 

variation in oxygen concentration that were then shifted in time relative to one another to 6 

illustrate how a time lag can affect the flux calculation. 7 

The modeled data were found to mimic the averaged nighttime conditions reported 8 

by Berg and Huettel (2008) well. As illustrated in Fig. 2a, the simulated vertical wave 9 

velocity (𝑤𝑤�) varied between ~±2 cm s-1, while the associated up-and down movement of 10 

the natural oxygen gradient established by the sediment’s uptake produced O2 11 

concentration oscillations (O�2) of ~±1 µmol L-1. These data are for the case where the 12 

velocity and oxygen concentration are “recorded” without any time lag and at exactly the 13 

same location. Furthermore, the simulated data exclude any current-driven turbulence so 14 

that variations in velocity and concentration are due to wave orbital motion only. The 15 

potential for a significant time lag bias(either positive or negative), which can arise from 16 

the wave signal alone in eddy covariance data, becomes apparent when shifting the oxygen 17 

data stepwise in time relative to the velocity data and recalculating the eddy flux for each 18 

shift (Fig. 2b).   19 

 The model and its results in Fig. 2 reveal key characteristics of the time lag bias due 20 

to waves: 21 

1) As soon as there is a time lag between the velocity and the oxygen measurements 22 

(time shift ≠ 0, Fig. 2b), a bias in the flux estimate will arise. 23 

2) Because oxygen sensors do not have an instant response, and because velocity and 24 

oxygen data are not measured at exactly the same location, fluxes may be biased if 25 

wave-driven fluctuations in velocity and oxygen concentration can be identified. 26 

3) The size of the time lag bias scales with the mean oxygen concentration gradient in 27 

the water column, therefore, it scales with the real flux. 28 



7 

 

4) The time lag bias can have the opposite sign of the real flux. 1 

5) The maximum time lag bias can exceed the real flux. 2 

6) For short-period waves, here 2.3 s, a time lag of only 0.20 s can give a bias equal to 3 

the real flux. 4 

7) The traditional time shift correction, which works well in unidirectional flow (Fig. 5 

1), will tend to identify the time shift associated with the maximum time lag bias. 6 

8) The time lag bias can be minimized if the appropriate time shift is applied (Fig. 2b). 7 

The vertical gradient in oxygen concentration is less pronounced for field situations 8 

with substantial vertical turbulent mixing. As a result, eddy fluxes calculated from data 9 

measured at sites with significant unidirectional currents and rough sediment surfaces,  10 

that stimulate vertical mixing (Rattray and Mitsuda 1974; Boudreau and Jorgensen 2001), 11 

will be less sensitive to time lag bias, even if orbital wave motions are present. The example 12 

in Fig. 2, where the maximum bias was found to be 180% of the real flux, was based on a 13 

mean current velocity of 1.0 cm s-1 and a sediment surface roughness parameter of 2 mm 14 

(Table A1). For rougher surfaces, for example with a roughness of 10 mm, additional 15 

simulations showed that the maximum bias decreased from 180 to 110% of the real flux. A 16 

much larger reduction in maximum bias was seen with increasing current velocity as 17 

illustrated in Fig. 3. For example, an increase in velocity from 1 to 5 cm s-1 or from 1 to 10 18 

cm s-1 reduced the time lag bias by a factor of 5 and 10, respectively, as the vertical gradient 19 

was reduced.  20 

When using the eddy covariance instrumentation available today, there will always 21 

be a time lag between the velocity and the oxygen data, and therefore, the sensitivity of the 22 

flux calculation to even small time lags, as illustrated in Fig. 2b, can compromise the eddy 23 

flux estimated from data measured in the presence of waves.  24 

2.2 Illustration of new time lag correction using wave model data – In addition to 25 

illustrating the time lag bias, the modeled data in Fig. 2a also point to a new approach for a 26 

time lag correction. From 𝑤𝑤� , the vertical displacement due to wave orbital motion, �̃�𝑧, can be 27 

estimated as  28 
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�̃�𝑧 = ∫𝑤𝑤� 𝑑𝑑𝑑𝑑                                                                          (1) 1 

This variable, also shown in Fig. 2a, expresses the instantaneous relative elevation of a 2 

water parcel that is moved up and down at the vertical wave orbital velocity 𝑤𝑤� . Defining 3 

the positive z-direction upward, �̃�𝑧 increases when 𝑤𝑤�  is positive, and vice versa (Fig. 2a). 4 

Due to the positive gradient in mean oxygen concentration created by the sediment’s 5 

consumption of oxygen, a minimum in O�2 will coincide exactly with a maximum in �̃�𝑧 in the 6 

absence of a time lag, and vice versa (Fig. 2a). Because this combination corresponds to a 7 

minimum in cross-correlation (most negative cross-correlation) of �̃�𝑧 and O�2, a new 8 

correction for the time lag in measured data can be defined by shifting the O�2 data relative 9 

to the �̃�𝑧 data until this minimum is located. If instead, the sediment releases oxygen due to 10 

benthic photosynthetic production, the mean oxygen concentration gradient is negative 11 

and a minimum in O�2 will be matched by a minimum in �̃�𝑧, and vice versa. In this case, the 12 

time lag correction can be defined as giving a maximum in cross-correlation of �̃�𝑧 and O�2. As 13 

a result of these two different situations, in which the sediment consumes or releases 14 

oxygen, a general correction can be defined by locating maxima or minima in the cross-15 

correlation of �̃�𝑧 and O�2. Complications in this correction arise if there is no clear vertical 16 

gradient in mean oxygen concentration, for example at dawn and dusk, when oxygen 17 

production may match respiration, or in situations where vertical mixing due to substantial 18 

current is so vigorous that the vertical oxygen gradient diminishes. These cases are 19 

discussed in detail below. 20 

2.3 Illustration of new time lag correction using measured data – Figure 4 21 

shows an example of the new correction applied to a 15 min measured eddy covariance 22 

data segment, which is the typical time interval used to calculate one eddy flux value (Berg 23 

et al. 2003). The data were measured during nighttime over a dense seagrass meadow 24 

using a new robust oxygen optode with no stirring sensitivity and a response time (t90%) of 25 

0.51 s when inserted from air into a water bath (Berg et al. in press). The measuring height 26 

was 30 cm above the sediment surface, water depth 90 cm, significant wave height 5 cm, 27 

wave velocity 2.6 cm s-1, and the mean current velocity 0.8 cm s-1. To isolate the wave signal 28 

from other less dynamic variations in the velocity and oxygen concentration before 29 
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calculating the cross-correlation of �̃�𝑧 and O�2, a 385 data point ( 6.02 s) running average was 1 

removed from the raw 64 Hz data. An example of the resulting data is shown in Fig. 4a. The 2 

eddy flux itself (Figs. 4b, 4c) was calculated following standard flux calculation procedures 3 

based on linear de-trending (Lee et al. 2004; Berg et al. 2009; Attard et al. 2014). Therefore, 4 

the estimated eddy flux represents the real flux plus any time lag bias. The 15 s data 5 

segment in Fig. 4a shows a distinct wave signal in �̃�𝑧 and O�2, which is a prerequisite for the 6 

time lag correction to work. Furthermore, these results, based on measured data, confirm 7 

the modeled results shown in Fig. 2, and reveal that the eddy flux (here the real flux plus 8 

the time lag bias) can vary substantially and attain both positive and negative values 9 

depending on the time shift applied (Fig. 4b). The results underline the notion that 10 

obtaining the best estimate of the real flux hinges on a properly determined time shift. In 11 

this case, the corrected flux was associated with a time shift of 0.78 s, defined by a distinct 12 

minimum in cross-correlation of �̃�𝑧 and O�2 (Fig. 4b). This shift should be seen in relation to 13 

the sensor’s own response time (t90% = 0.51 s). These values and how they relate are 14 

discussed in detail below. The correction reduced the derived flux from -117 to -51 mmol 15 

m-2 d-1, or to a value corresponding to 44% of the non-corrected flux (Fig. 4c).  16 

Finally, the data revealed that the traditional time shift correction, where the 17 

maximum numerical flux is sought, will lead to substantial overestimation of the flux (Fig. 18 

4b) if negative time shifts are allowed (moving the oxygen data forward in time relative to 19 

the velocity data). On the contrary, if negative time shifts are excluded, a positive flux will 20 

be predicted (Fig. 4b) which does not make sense for nighttime measurements.   21 

3  Results 22 

The new time lag correction was tested on two eddy covariance data sets that were 23 

4 h and 16 h long. Both were measured at shallow-water sites and were characterized by 24 

relatively low current velocities and short-period waves, which caused clear wave-driven 25 

fluctuations in vertical velocity and oxygen concentration. Consequently, these two data 26 

examples had the characteristics expected to produce sizeable time lag biases.  In both 27 

cases, the wave signal was separated from other less dynamic variations before calculating 28 
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the cross-correlation of �̃�𝑧 and O�2. The prior was done by subtracting a running average 1 

produced using a filter width of 4 times the wave period from the measured data.  2 

3.1 Application of new time lag correction, first example – The first data set (Fig. 5) was 3 

measured at dusk over the same dense seagrass meadow and with the same fast-4 

responding oxygen optode (Berg et al. in press) as described in Section 2.3. Again, the 5 

measuring height was 30 cm above the sediment.    6 

The 60 s data segment (Fig. 5a) shows, as the previous example (Fig. 4a), a distinct 7 

wave signal in �̃�𝑧 and O�2 with a ~1.5 s period. Wave groups (i.e. sets of 1.5 s waves) with a 8 

~11 s period are also visible. The significant wave height averaged 4 cm (Fig. 5b), wave 9 

velocity averaged 2.4 cm s-1, and the current changed in direction and also in strength 10 

between 0.2 and 2.5 cm s-1 with an average of 1.0 cm s-1, while the water depth varied 11 

between 80 and 140 cm. Unambiguous variations in �̃�𝑧 and O�2, with amplitudes of ~0.5 cm 12 

and ~0.5 µmol L-1, respectively, allowed precise determination of minima in cross-13 

correlation of �̃�𝑧 and O�2 which gave virtually the same time shift for every 15 min time 14 

interval used for individual flux estimates (Fig. 5c). The averaged time shift was 0.85 ± 15 

0.013 s (SE, n = 16), and the correction reduced the averaged flux from -117 ± 8.9 to -70 ± 16 

9.7 mmol m-2 d-1 (SE, n = 16), or by a factor of 0.60 (Fig. 5d). 17 

3.2 Application of new time lag correction, second example – The 16-h long data set, 18 

covering a period from late afternoon into the next day, was measured over a permeable 19 

sandy sediment as previously reported by Berg and Huettel (2008). The measuring height 20 

was 12 cm above the sediment, and the oxygen concentration was measured with a Clark-21 

type microelectrode. Parameters for the wave model (Figs. 2, 3) were determined from 22 

nighttime data from this deployment. 23 

The 60 s data segment shown in Fig. 6a depicts the time when the wave action was 24 

at its maximum (Time ~620 min). Currents were stronger and waves larger during this 25 

deployment, but the segment contains the same clear correlations between the wave 26 

driven fluctuation in �̃�𝑧 and O�2 as found in the previous examples (Figs. 4a,  5a). The period 27 

of the waves was ~2.3 s and �̃�𝑧 and O�2 had amplitudes of ~1 cm and ~2.5 µmol L-1, 28 
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respectively. The significant wave height averaged 13 cm (Fig. 6b), wave velocity averaged 1 

6.2 cm s-1, and the current velocity changed in direction and also in strength between 0.6 2 

and 5 cm s-1 (Fig. 6b) with an average of 2 cm s-1. In all 67 of the 15 min long time intervals 3 

used for individual flux estimates, an extremum was found in the cross-correlation of �̃�𝑧 and 4 

O�2. The optimum time shift corresponded to a minimum correlation for the first part of the 5 

deployment (Time < 1200 min) when the oxygen flux was negative, and a maximum 6 

correlation for the rest of the deployment, consistent with an oxygen release (Fig 6c). 7 

Averaged over the night, the correction reduced the flux from the previously reported -368 8 

± 21 to -182 ±  11 mmol m-2 d-1 (SE, n = 45), or by a factor of 0.49 (Fig. 6d). This corrected 9 

flux is still almost twice the size of the flux derived from concurrent in situ chamber 10 

measurements (Huettel and Gust 1992; Berg and Huettel 2008). The averaged time shift for 11 

the entire deployment was  1.11 ± 0.04 s (SE, n = 67). 12 

Fluxes shown in Fig. 5 were calculated without a traditional rotation (nullification of 13 

the transverse and vertical mean velocities for each 15 min based flux calculation, Lee et al. 14 

(2004); Lorrai et al. (2010); Lorke et al. (2013)). The current velocities were too small to 15 

produce robust rotation estimates for most of the deployment. However, for the first part 16 

of the deployment, which had current velocities >2 cm s-1, fluxes calculated without and 17 

with rotation equaled -70.3 ± 12.0 and 72.1  ± 11.0 mmol m-2 d-1 (n = 3, SE), respectively. 18 

The rotation angle with the vertical direction was 7°. We see the small difference in the flux 19 

of 2% as an indication of marginal effects of so-called wave bias due to sensor tilt (Grant 20 

and Madsen 1986; Trowbridge 1998; Shaw and Trowbridge 2001). The deployment shown 21 

in Fig. 6 had larger current velocities, and the calculation of fluxes included the rotation 22 

described above. 23 

The filter width of 4 times the wave period in the running average used to separate 24 

the wave signal from other less dynamic variations before calculating the cross-correlation 25 

of �̃�𝑧 and O�2, was not critical for the outcome of the time lag correction. For example, for the 26 

data shown in Figs. 5 and 6, the corrected average nighttime fluxes varied within ±4 and 27 

±11%, respectively, when the filter width was changed between 2 to 6 times the wave 28 

period. 29 
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4  Discussion 1 

 The results of this study show that oxygen fluxes extracted from eddy covariance 2 

data measured at shallow-water sites with short-period waves and low current flows can 3 

be affected by a so-called “time lag bias”. The bias arises because of displacement of the 4 

natural vertical oxygen gradient by wave orbital motions, combined with temporal 5 

misalignments of the oxygen concentration time series relative to the vertical velocity data. 6 

This misalignment cannot be entirely avoided with any eddy covariance instrumentation 7 

for aquatic scalar flux measurements available today. As a result, time lag bias, documented 8 

here using both modeled and measured data, should be considered when eddy covariance 9 

data are measured under such field conditions. Time lag corrections that will minimize this 10 

bias are possible, and one is presented in this study.  11 

The theoretical example (Fig. 2), produced with a simple model based on linear 12 

wave theory (Appendix A) and fitted to measured data reported by Berg and Huettel 13 

(2008), illustrates that the time lag bias can be substantial. The modeled data (Fig. 2a), 14 

where all variations were due to wave orbital motions, contain no time lag and represent 15 

an idealized situation in which velocity and oxygen data were aligned perfectly in time and 16 

space. In this case, there is no time lag bias (time shift = 0, Fig. 2b). The data also showed 17 

that an imposed time shift of the simulated oxygen data relative to the velocity data of only 18 

0.20 s led to a bias of 100% of the real flux (Fig. 2b), and that the maximum bias, equaling 19 

180%, was found at a time lag of 0.58 s. The model parameters that gave these substantial 20 

time lag biases, including an 11 cm surface displacement amplitude of the waves and a 21 

current velocity of 1 cm s-1 (Appendix A), represent common conditions at many near-22 

shore sites. Additional model calculations showed that the maximum bias, not the 23 

magnitude of the time lag itself, diminishes rapidly at increasing current velocity due to 24 

enhanced turbulent mixing, which reduces the vertical oxygen concentration gradient (Fig. 25 

3, Appendix A). Thus, concern over a substantial time lag bias should only be under 26 

relatively low-current flow conditions.  27 
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The modeled example also shows that if the oxygen concentration and the vertical 1 

velocity are aligned correctly in time, there is no time lag bias (Fig. 2b), which points to the 2 

foundation of the correction proposed in this study. This correction identifies the time shift 3 

that gives a minimum in cross-correlation (most negative cross-correlation) of the wave-4 

generated fluctuation in oxygen concentration (O�2) and the vertical displacement (�̃�𝑧, Eq. 1) 5 

in situations when the benthic system takes up oxygen (Fig. 4b). Opposite to this, where the 6 

system releases oxygen, a maximum in cross-correlation is sought. 7 

Essentially, the same correction could be defined by using the cross-correlation 8 

between O�2 and either the fluctuating water pressure or horizontal wave velocity. The 9 

pressure is recorded by standard ADVs at the same sampling frequency as the velocity and 10 

usually at very low noise levels. However, the ADV we are using (a fixed stem Vector from 11 

Nortek AS) measures the pressure at its lower end bell which is located ~37 cm above the 12 

ADV’s measuring volume where the velocities are measured. As a result, even a small tilt of 13 

the ADV during measurements can introduce a time lag between the cross-correlated 14 

variables and lead to false corrections. Similarly, the horizontal wave velocity is split in two 15 

when recorded as the ADV’s two horizontal x and y velocities. Thus, a rather complex 16 

rotation is needed to orient the x component in the direction of the waves (Reimers et al. 17 

2012). In addition, the ADV’s x and y velocities are associated with substantially higher 18 

noise levels than the vertical z velocity. For these reasons, we relied on the integrated 19 

vertical wave velocity (Eq. 1) for the new time lag correction.  20 

An attractive feature of the correction is its simplicity, but it has limitations too as it 21 

requires that both the measured vertical velocity and the oxygen concentration contain a 22 

clear periodic wave signal. Consequently, at shallow-water sites with photosynthesizing 23 

sediment surfaces, it may fail during periods at dusk and dawn when the oxygen flux 24 

changes from a release to an uptake, or vice versa, reversing the vertical mean oxygen 25 

concentration gradient. Likewise, the correction may also fail, if the wave signal cannot be 26 

clearly identified due to broad-spectrum wave activity.  27 
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The new correction identifies one single time shift that is applied to the entire time 1 

interval, typically 15 min, for which a flux is calculated (Figs. 4c, 5c, 6c). Although most of 2 

the temporal misalignment of the oxygen data relative to the velocity data is caused by the 3 

oxygen sensor’s response time, the physical distance between the ADV’s measuring volume 4 

and the oxygen sensors can play a role too. Because the horizontal wave velocity fluctuates 5 

and reverses in direction in each wave cycle, the optimal instantaneous time shift varies 6 

somewhat in time. It is unknown how much the use of one single time shift for each 7 

individual flux calculation affects the correction.  8 

A future refinement of a time lag correction would be to include two contributions, a 9 

larger constant one representing the response time of the oxygen sensor, and a smaller 10 

dynamic one accounting for the spatial separation between the velocity and the oxygen 11 

sensor. The latter contribution, which would obtain both positive and negative values, 12 

could easily be determined from known instantaneous horizontal x and y velocities relative 13 

to the position of the two sensors. As an added benefit, this proposed correction would be 14 

more versatile and work in both unidirectional and wave-driven flows.  15 

Another possible correction would be to remove the flux contribution associated 16 

with waves in the frequency domain, instead of the time domain used here. This flux 17 

contribution can, for example, be identified fairly easily in the co-spectrum or cumulative 18 

co-spectrum of the vertical velocity and the oxygen concentration, and then be removed. 19 

This, or similar approaches, are already widely used to remove wave contributions to 20 

Reynolds stresses for wave dominated near-bottom flows (Bricker and Monismith 2007). 21 

However, such corrections should be applied with caution here because part of the real 22 

vertical oxygen flux may be facilitated by wave motions, and thus occur at the wave 23 

frequency. Wave motions over rough benthic surfaces can give rise to eddies or water 24 

parcel ejections at wave frequencies, which expand up into the bottom water, well above 25 

the wave boundary layer (Kemp and Simons 1982; Sleath 1987; Reidenbach et al. 2007).  26 

The removal of wave contributions to the covariance of vertical and horizontal 27 

velocity components, usually termed wave bias in Reynolds stress calculations, addresses a 28 
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somewhat similar, yet different problem than that focused on here. Wave bias arises from 1 

an angular misalignment of the ADV relative to the principal axes of the wave-induced 2 

velocity field and is usually caused by a sensor tilt (Grant and Madsen 1986; Trowbridge 3 

1998; Shaw and Trowbridge 2001). Although there is no time lag between the horizontal 4 

and the vertical velocity components, which are measured by the same instrument, this 5 

angular misalignment can cause significant artificial contributions to Reynolds stress 6 

estimates. The time lag bias addressed here is caused by a temporal misalignment between 7 

the velocity and the oxygen concentration measured with two individual sensors. 8 

The relatively large time lag bias found in the modeled example (Fig. 2) was also 9 

seen in the measured data example recorded over a dense shallow-water seagrass meadow 10 

(Fig. 4). The data, covering a 15 min time interval, had an inherent time lag between the 11 

measured oxygen concentration and the velocity, and showed a similar high sensitivity to 12 

imposed time shifts (Fig. 4b vs. 2b). For example, time shifts of 0, 0.27, and 0.47 s led to 13 

eddy fluxes, here representing the real flux plus time lag bias, of -117, 0, and 40 mmol m-2 14 

d-1, respectively, or a change from a clear uptake, to no flux, to a clear release (Fig. 4b). This 15 

rather extreme, but real, example also shows how important it is to identify the 16 

appropriate time shift to minimize the time lag bias. It further illustrates how the 17 

traditional time shift correction, where the maximum numerical flux is sought, would tend 18 

to give the maximum time lag bias if negative time shifts are allowed (Fig. 4b), or an 19 

unrealistic positive flux, i.e. a net release of oxygen, during nighttime. 20 

The wave-driven periodic variation in O�2 and �̃�𝑧 (Fig. 4a) produced a clear minimum 21 

in cross-correlation of these two variables that could easily be located (Fig. 4b). This 22 

minimum occurred at a time shift of 0.78 s, which gave a corrected flux that was 44% of the 23 

uncorrected flux (Fig. 4c). For reference, the optimal time shift found for the same oxygen 24 

sensor in unidirectional river flow was on average 0.83 s (Berg et al. in press) and 0.88 s in 25 

the example shown here in Fig. 1. The sensor’s own response time (t90%) was measured in 26 

lab tests to be 0. 51 s, when inserted from air into a water bath. The somewhat slower 27 

response found in the field, where the sensor was permanently under water, was likely 28 

caused by oxygen concentration equilibration through the thin boundary layer flow that 29 
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forms over the oxygen sensing foil (Berg et al. in press). Through detailed model 1 

calculations, Berg et al. (in press) showed that a sensor with this response time will 2 

virtually capture the entire flux signal if a time lag correction is applied. Specifically, the 3 

underestimation of the flux was found to be less than 5%, even in challenging situations at 4 

shallow-water sites with substantial unidirectional current flow, where small rapid eddies 5 

dominated the vertical turbulent mixing.  6 

In both of the two longer-period data examples covering 4 and 16 h (Figs. 5, 6), the 7 

new time lag correction led to considerable reductions in the derived eddy flux. In the first 8 

example, including 16 individual flux estimates, each based on 15 min time intervals (Fig. 9 

5c), the average corrected flux was 60% of the uncorrected flux (Fig. 5d), and the time 10 

shifts were very similar across all time intervals with an average of 0.85 s (Fig. 5c). The fact 11 

that fluctuating variations in velocity and oxygen concentration included both longer-12 

period wave groups and short-period waves (Fig. 5a) did not prevent location of optimal 13 

time shifts. In the second example, which used data reported earlier by Berg and Huettel 14 

(2008) and included 67 individual flux estimates (Fig. 6c), the average corrected nighttime 15 

flux was 49% of the uncorrected flux (Fig. 6d). The individual time shifts showed more 16 

variation than in the previous example (Fig. 6c) which was likely caused by the more 17 

pronounced variations in the two horizontal velocities and significant wave height (Fig. 18 

6B). The relatively large average time shift which had an average of 1.11 s was not expected 19 

because Clark-type electrodes used for eddy covariance typically have response times 20 

(t90%) between 0.2 to 0.5 s (Berg et al. 2003; Attard et al. 2014; Rovelli et al. 2015). The 21 

most likely reason for the large shift is that the electrode was damaged or coated with 22 

phyto-detritus near the beginning of the deployment, notably at min ~460 (Fig. 6C), when 23 

the time shift abruptly doubled from a value well below 1 s. However, it should be noted 24 

that the large time shift is not the reason for the substantial reduction in oxygen flux 25 

associated with the correction. In the examples given above, much smaller time shifts had 26 

similar large effects on the flux (Figs. 2b, 4b). The corrected flux is still roughly twice the 27 

size of the flux that was measured with in situ chambers deployed concurrently (Fig. 6d). 28 

Fundamental differences between the two flux methods, especially when applied to 29 
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permeable sandy sediments, may explain this disagreement (Glud 2008; Reimers et al. 1 

2012; Berg et al. 2013). 2 

One effect of using a slow-responding electrode is that it may not capture the full 3 

amplitude of a short-period wave signal in oxygen concentration, which, in itself, will add 4 

time lag to the recorded periodic wave signal. Specifically, Berg et al. (in press) showed 5 

through modeling that when for example a 0.5 Hz sinusoidal wave signal in oxygen 6 

concentration is measured with a sensor with a response time (t90%) of 0.5 s, a 0.20 s phase 7 

shift, or time lag, is introduced in the recorded data. While this inevitably will add 8 

substantial time lag bias to calculated fluxes unless a time lag correction is applied (Fig. 2, 9 

4), it may not have a large effect on the electrodes ability to capture the fluctuations 10 

associated with current-driven turbulence. Co-spectral analyses of the oxygen 11 

concentration and vertical velocity typically show that only a small fraction of the flux 12 

contribution is associated with frequencies higher than 0.5 Hz. So, even if a sizeable portion 13 

of the flux signal is lost at high frequencies, it may not affect the total flux significantly. 14 

The data in Figs. 4 and 5 were measured with a new robust oxygen optode that in 15 

lab tests showed no stirring sensitivity (Berg et al. in press), whereas the data in Fig. 6 were 16 

recorded with a Clark-type microelectrode, a sensor-type that is known to be affected by 17 

the instantaneous water velocity at its tip due to its consumption of oxygen (Gust et al. 18 

1987; Revsbech 1989; Gundersen et al. 1998). Two new studies have focused on how this 19 

stirring sensitivity can affect eddy flux estimates in unidirectional flows (Holtappels et al. 20 

2015) and in wave environments (Reimers et al. accepted). We cannot rule out that the 21 

oxygen measurements shown in Fig. 6 were affected to some extent by the varying wave 22 

velocity. However, typical characteristic patterns of stirring sensitivity in wave 23 

environments as documented by Reimers et al. (accepted) were not seen in these data. 24 

Firstly, stirring sensitivity tends to have an asymmetric dependency on wave velocity, 25 

meaning that oxygen concentration is more affected by the velocity from one direction than 26 

from the other (Holtappels et al. 2015; Reimers et al. accepted). Signs of this characteristic 27 

pattern are easy to identify, but were not seen in our data (Fig. 6a), which contained more 28 

of a sinusoidal variation in oxygen concentration. Secondly, if instead stirring sensitivity 29 
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presents itself as a symmetric dependency on wave velocity, which can happen for example 1 

if the fluctuating velocity is perpendicular to the sensor, it would appear as a fluctuations in 2 

concentration with a frequency double that of the wave frequency. This also was not seen 3 

in our data (Fig. 6a).  4 

To examine further if stirring sensitivity affected our flux calculations, we assumed 5 

that the microelectrode used to measure the data shown in Fig. 6 had a stirring sensitivity 6 

as characterized by Holtappels et al. (2015), using their fitting function and specific fitting 7 

parameter values (Ssen = 0.7%, n = 0.65, and B = 30). This particular dependency was found 8 

when the electrode was pointing into the mean current which represents the orientation 9 

that gives the most dramatic stirring sensitivity (Holtappels et al. 2015). We then applied 10 

this function to our data assuming this maximum sensitivity for all horizontal velocity 11 

directions. For each time point in our data, we calculated the size of the horizontal velocity, 12 

from that, the associated stirring sensitivity, and finally, the oxygen concentration as it 13 

should have been measured in the absence of stirring sensitivity. Fluxes calculated using 14 

the same velocity data and the uncorrected and corrected oxygen concentrations were then 15 

compared. The average nighttime flux for the original data was -368.0 ± 20.6 mmol m-2 d-1 16 

(SE, n = 45), whereas the oxygen data with stirring sensitivity removed gave a flux of -370.0 17 

± 20.5 mmol m-2 d-1 (SE, n = 45), or a difference of 0.6%.  The equivalent calculations for the 18 

data with the time lag correction applied, gave averaged fluxes of -181.6 ± 11.2 and -182.7 19 

± 11.1 mmol m-2 d-1, respectively, or as before, a difference of 0.6%. We, therefore, assess 20 

that stirring sensitivity did not play a significant role in any of the data presented in this 21 

study.  22 

5  Summary and recommendations  23 

The results presented here illustrate that substantial time lag biases can arise in flux 24 

estimates from eddy covariance data measured in the presence of surface gravity waves. 25 

The problem is most acute for data measured at shallow-water sites with short-period 26 

waves and low current flows. At moderate or high current velocities (> 5 to 10 cm s-1), the 27 
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bias usually is insignificant under typical field conditions.  In most situations, the problem 1 

can be effectively addressed by applying the appropriate correction.  2 

A simple, but helpful, additional flux calculation that will indicate if time lag bias 3 

should be of concern, is to impose a small time shift (~0.1 – 0.2 s) on the measured raw 4 

data and re-calculate the flux. If a significant change in flux is found, time lag bias should be 5 

investigated further. 6 

The widely used traditional time shift correction in unidirectional flows, where the 7 

maximum numerical flux is sought, tends to amplify the time lag bias, or give unrealistic 8 

flux estimates, and should not be applied if clear wave signals are seen in the data. 9 

Although the new correction presented here will minimize the time lag bias, one should 10 

always strive to measure eddy covariance data using oxygen sensors with minimum time 11 

delay and to measure both the velocity and the oxygen concentration as close to the same 12 

location as possible. 13 

We encourage more work on these issues because wave motion more often than not 14 

appears in eddy covariance data measured at shallow-water marine sites.  15 

6  Access to data used in this study 16 

To facilitate more work on eddy flux calculation from data measured in the presence 17 

of waves, the data used in this study can be downloaded from: 18 

http://faculty.virginia.edu/berg/ 19 
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Appendix A  1 

A model based on linear wave theory for orbital velocities associated with 2 

progressive waves and their effect on the oxygen concentration at a given height over the 3 

sediment surface was developed and fitted to existing measured eddy covariance data. The 4 

model was used to generate theoretical time series of the wave orbital velocity and the 5 

corresponding oxygen concentration at the measuring point of an eddy covariance system. 6 

These time series were then shifted in time relative to one another to illustrate how a time 7 

lag can bias the flux calculation.  8 

The horizontal and vertical wave orbital velocity components, 𝑢𝑢�  and 𝑤𝑤� , can be 9 

expressed as (Dean and Dalrymple 1991) 10 

𝑢𝑢� = 𝑎𝑎𝑎𝑎 cosh(𝑘𝑘ℎ)
sinh(𝑘𝑘𝑘𝑘)

cos(−𝑎𝑎𝑑𝑑)                                                                  (A1) 11 

and 12 

𝑤𝑤� = 𝑎𝑎𝑎𝑎 sinh(𝑘𝑘ℎ)
sinh(𝑘𝑘𝑘𝑘)

sin(−𝑎𝑎𝑑𝑑)                                                                  (A2) 13 

where a is the wave surface displacement amplitude, 𝑎𝑎 the angular frequency (𝑎𝑎 = 2𝜋𝜋𝜋𝜋, f 14 

is the wave frequency in Hz), k is the angular wavenumber (𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄ , 𝜆𝜆 is the wave 15 

length), h is the measuring height above the bottom, and H is the total water depth.  16 

A value of k (or 𝜆𝜆) is difficult to assess from measured velocity time series, but can 17 

be estimated from the dispersion equation (Dean and Dalrymple 1991) that relates k, 𝑎𝑎, 18 

and H as  𝑎𝑎 =  �𝑔𝑔𝑘𝑘 tanh(𝑘𝑘𝑘𝑘) where g is the acceleration due to gravity. Rearranging this 19 

equation, k can be calculated by iteration as  20 

𝑘𝑘𝑗𝑗+1 = 𝜔𝜔2

𝑔𝑔 tanh(𝑘𝑘𝑗𝑗𝑘𝑘)
                                                                          (A3) 21 

 where j is the iteration step number. 22 

The relative vertical displacement of a water parcel, �̃�𝑧, can be found by integrating 23 

Eq. A2 24 
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�̃�𝑧 = ∫ 𝑤𝑤�𝑡𝑡0 𝑑𝑑𝑑𝑑 = 𝑎𝑎 sinh(𝑘𝑘ℎ)
sinh(𝑘𝑘𝑘𝑘)

cos(−𝑎𝑎𝑑𝑑)                                                          (A4) 1 

Assuming that a vertical gradient in mean oxygen concentration, 𝑑𝑑O�2 𝑑𝑑𝑧𝑧⁄ , exists near the 2 

bottom due to the uptake or release of oxygen by the sediment, the relative concentration 3 

fluctuation can be approximated to first order as 4 

O�2~ 𝑑𝑑O�2
𝑑𝑑𝑑𝑑

(−�̃�𝑧) = −𝑎𝑎 𝑑𝑑O�2
𝑑𝑑𝑑𝑑

sinh(𝑘𝑘ℎ)
sinh(𝑘𝑘𝑘𝑘)

cos(−𝑎𝑎𝑑𝑑)                                                   (A5) 5 

 6 

The vertical gradient can be estimated from Fick’s first law of diffusion applied to vertical 7 

turbulent mixing as 8 

𝑑𝑑O�2
𝑑𝑑𝑑𝑑

=  − 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑖𝑖𝑖𝑖
𝐸𝐸𝑧𝑧

                                                                        (A6) 9 

where Jbenthic is an assumed known benthic flux and Ez is the turbulent eddy diffusivity. The 10 

latter can be estimated by the semi-empirical equation (Businger and Arya 1975) 11 

𝐸𝐸𝑑𝑑 =  𝜅𝜅𝑢𝑢∗ℎ𝑒𝑒−2ℎ 𝑘𝑘⁄                                                           (A7) 12 

where 𝜅𝜅 is von Karman’s constant (0.41) and 𝑢𝑢∗ is the friction velocity. Finally, 𝑢𝑢∗, the 13 

sediment surface roughness parameter, z0, and the current velocity at the measuring 14 

height, 𝑢𝑢� , are related by the classic log velocity profile 15 

𝑢𝑢� =  𝑢𝑢∗
𝜅𝜅

ln �ℎ
𝑑𝑑0
�                                                              (A8) 16 

The model was applied to the eddy covariance data reported by Berg and Huettel 17 

(2008) for a shallow-water sandy sediments exposed to waves. Model parameter values in 18 

Table A1 were found to give good agreement between modeled and measured fluctuations 19 

in velocity and oxygen concentration. 20 

 21 

 22 

 23 



22 

 

 1 

 2 

 3 

 4 

Water depth, H  140 cm 

Measuring height, h  12 cm 

Wave surface displacement amplitude, a 11 cm 

Wave frequency, f 0.43 s-1 

Wavenumber, k 0.0089 rad cm-1 

Current velocity, 𝑢𝑢�  1 cm s-1 

Sediment surface roughness parameter, z0 0.2 cm 

Benthic oxygen flux (uptake), Jbenthic  -368 mmol m-2 d-1 

 5 

Table A1: Wave model parameters used to produce results in Figs. 2 and 3. 6 

  7 
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Appendix B  1 

The application of the new time lag correction is straightforward and consists of the 2 

step-wise calculations outlined below. The input is two parallel time series of the vertical 3 

velocity, wi, and the oxygen concentration, O2 i, each with N values Δt apart. 4 

Compute: 5 

1) z1 = 0.   For i = 2 to N: Calculate zi = zi-1 + wi Δt. 6 

 7 

2) For i = 1 to N: De-trend zi to get the relative vertical displacement due to waves, 8 

�̃�𝑧𝑖𝑖 , using for example a running average with a filter width of 4 times the wave 9 

period. 10 

 11 
3) For i = 1 to N: De-trend O2 i the same way to get O�2 𝑖𝑖 . 12 

 13 
4) Find the minimum or maximum in cross-correlation of �̃�𝑧𝑖𝑖 and O�2 𝑖𝑖  depending on 14 

if the sediment consumes or releases oxygen, respectively. 15 

 16 
5) Shift the O2 i data (input data) according to (4), and calculate the flux as usual. 17 

  18 
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Fig. 1: Example of traditional time lag correction of 8 Hz eddy covariance data measured with a dual oxygen-12 
temperature sensor in unidirectional river flow. The oxygen data are moved back in time relative to the velocity 13 

data. The ‘best’ flux estimate is defined as the maximum numeric flux value and corresponds to an optimal time 14 

shift of 0.875 s.  15 
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Fig. 2: Illustration, using modeled data, of the substantial error, or time lag bias, that can arise in eddy flux 8 
estimates from data measured in the presence of waves. Parameters for the model were taken from Berg and 9 

Huettel (2008). (a) Fluctuations due to wave motion only in vertical velocity (𝑤𝑤�), oxygen concentration (O�2), and 10 
vertical displacement, (�̃�𝑧, see its definition and use in the text). (b) Time lag bias (blue line) at different imposed 11 
time shifts, relative to the assumed real flux (red line) which was used to parameterize the model. Positive time 12 
shifts move the oxygen data back in time relative to the velocity data.  13 
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Fig. 3: Reduction in maximum bias with increasing current velocity. The star represents the modeled data shown 10 
in Fig. 2b where the maximum bias is 180% of the assumed real flux. Except for the current velocity, and derived 11 
friction velocity and turbulent eddy diffusivity (see Appendix A), all other model parameters were kept constant.  12 
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Fig. 4: Illustration of the new time lag correction for a 15 min long data segment measured during nighttime over a 7 
dense seagrass meadow. (a) Fifteen s data segment of the larger 15 min segment showing oxygen concentration 8 

fluctuations due to wave motions before (O�2) and after the time lag correction (O�2 corr), and vertical displacement 9 
(�̃�𝑧) calculated from Eq. 1. The 64 Hz data were smoothed by a 17 point (0.27 s) running average to better illustrate 10 
the wave signal. (b) Eddy flux calculated for the 15 min period for different time shifts and the associated cross-11 

correlation of �̃�𝑧 and O�2. Positive time shifts move the oxygen data back in time relative to the velocity data. (c) 12 
Oxygen flux calculated without time shift correction and with the new time lag correction (new corr.). The latter 13 

was defined as the shift that gave a minimum in cross-correlation of �̃�𝑧 and O�2 as illustrated in b.  14 
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Fig. 5: Application of the new time lag correction applied to a 4-h long data segment measured over a dense 3 

seagrass meadow. (a) Sixty s segment of wave-driven variation in oxygen concentration after correction (O�2 corr) 4 
and vertical displacement (�̃�𝑧) as calculated from Eq. 1. The 64 Hz data were smoothed by a 17 point (0.27 s) 5 
running average to better illustrate the wave signal. (b) Fifteen min averages of the two horizontal velocity 6 
components (u and v), mean current velocity, water depth, and significant wave height. (c) Oxygen flux, one per 15 7 
min, determined without and with the new correction, light (PAR) measured above the seagrass canopy, and the 8 
time shift. (d) Average flux for nighttime (Time > 18.25 h) before and after correction. 9 
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Fig. 6: Application of the new time lag correction applied to a 16-h long data segment measured over a permeable 2 
sandy sediment and reported earlier by Berg and Huettel (2008). (a) Sixty s segment of wave-driven variation in 3 

oxygen concentration after correction (O�2 corr) and vertical displacement (�̃�𝑧) as calculated from Eq. 1. The data are 4 
from when the wave action was at its maximum (Time ~620 min). The 64 Hz data were smoothed by a 17 point 5 
(0.27 s) running average to better illustrate the wave signal. (b) Fifteen min averages of the two horizontal velocity 6 
components (u and v), mean current velocity, water depth, and significant wave height. (c) Oxygen flux, one per 15 7 
min, determined without and with the new correction, light measured above the sand, and the time shift. (d) 8 
Average flux for nighttime (450 min < Time < 1095 min) before and after correction and measured concurrently 9 
with in situ chambers.  10 


