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Murray Collins and Edward Mitchard 

Response to referee #2 

We thank reviewer #2 for their time and careful consideration of our paper. 

Following the reviewer’s numbering: 

1. We have revised the text to discuss the impact of small plots and thank the referee for the 

reference, which we have now included in the paper. We could certainly improve our 

calibrations were more data from large plots available from the region. However, the lack of 

large plots for calibration remains a major issues for remote sensing more generally. It should 

be noted that the relationships we detect here between Lorey’s height and AGB, and GLAS 

footprint based Lorey’s height and radar backscatter, are identical in form and similar in 

parameter to those described elsewhere (Saatchi et al. 2011, Mitchard et al. 2012).  

2. We have discussed the rationale for condensing the GLAS shots into 26 classes in terms of 

the loss of variation within each class in the methods section 2.4.1. and appreciate the 

reviewers concern with this point. However there are many more small value than high value 

GLAS shots, so regression based on the whole dataset would be biased towards the fit in 

smaller values. By contrast, we're not trying to investigate the precise details of the inter-

relation of the variables, but instead create the best functional relationship between the two to 

allow prediction of height from radar backscatter. We provide below histograms of the 

datasets, showing the bias in lower values of Lorey’s height: 

 

Averaging data within bins and then fitting regressions is normal procedure when trying to 

produce functional relationships between variables. It is common practice in fields such as 

engineering, and produces strong, unbiased, predictive relationships. We are not suggesting 

the resulting r-squared values should be used to predict the strength of the relationship 

between our GLAS data and HV backscatter, nor that errors can be propagated from the 

graph: but we do believe that the regression technique here is appropriate. 



3. We intend to measure the impact of deforestation across a range of forest classes, but 

calibrate our remote sensing data using plot information from a peat swamp forest. We 

included the secondary forest in order to obtain a better functional relationship between the 

radar backscatter and AGB. i.e. we would ideally like a full distribution of AGB data against 

which to compare a distribution of backscatter intensity data, rather than choosing a subset of 

high biomass forest areas, and a subset of backscatter values. This allows for more sensitivity 

in the final analysis since not all pixel backscatter values are at the threshold for biomass 

quantification. In addition, this builds the corpus of research which illustrates the 

relationships between forest biomass and backscatter intensity across a range of values. There 

is no evidence from these data that the functional backscatter-biomass response differs 

between secondary and peat swamp forest: this certainly warrants further investigation, but 

with no evidence to the contrary does not negate our current analysis. 

 

4. This point concerning the inter-annual calibration of backscatter intensity was also raised by 

referee 4, and is clearly fundamental to the analysis we have presented. We appreciate the 

concern that the results of the process improve the relative approximation of data over 

pseudo-invariant features. As such we present data extracted over stable forest in Berbak 

National Park, as outlined in green in the image below (UTM48S): 

 

 

 

Based upon these stable areas, we provide graphical analyses as suggested which shows the 

distribution of pixel values before and after the normalisation procedure. We will include this 

in the body of the text for the final paper:  



 

 

 

5. Point five concerns (a) the consideration of errors in the calculation of plot biomass; and (b) 

errors in the inter-annual calibrations of the HV backscatter. On the first point, in section 

3.5.2. we do ascribe a >20% error to plot level biomass estimations, which we think accounts 

for the errors that derive from plot-level biomass calculations and potential errors deriving 

from regional differences. We have updated the text to reflect this. With regards (b), as we 

have illustrated above, the relative normalisation procedure appears to have been highly 

effective over stable forest areas, and thus we have no added a further term. However we 

understand the reviewers’ point and we will acknowledge in the main body of our revised text 

that this remains a source of uncertainty that is difficult to quantify, due to natural variation in 

the target (forest). In future work with extensive, re-measured field plots we hope to be able 

to fully address this issue. 



 

 

Response to specific comments, listed by line order: 

p.8574 

17-20: We have adapted the text accordingly to reflect the integration of lidar data 

22-24: We are working here from the basis that market failure is the absolute fundamental problem in 

deforestation, and indeed all environmental problem; and that the direct and indirect drivers of 

deforestation arise because of these market failures. If markets were perfect, and externalities actually 

priced into the decision making process over land use (e.g. the costs of soil fertility, biodiversity and 

water provision loss), then we would not observe the socially sub-optimal levels of deforestation that 

we do today. Perhaps this is too much of an economics-focussed argument to make in 

BioGeosciences, so we have changed the text to “yet markets fail to value them full, leading to 

multiple direct and indirect drivers of the extensive deforestation (complete removal of tree cover) 

and forest degradation (removal of a proportion of forest biomass)”. 

24: sentence changed as above 

p.8575  

10-23: UN-REDD added 

24:25: changed to ‘will’  

p.8576 

8-10 and 25-26: we mention that this is less of a problem at P-band on line 25. We have corrected the 

launch date to 2020, and have included the reference, gratefully received, thank you.  

p.8580 

15-16: we think that this method will be able to detect forest degradation, by selecting smaller change 

thresholds, within a system where the errors have been reduced, allowing for greater sensitivity in 

change detection.  

p.8582  

 9:11- dates added 

18-19 units added 

p.8584 

6-7 removed ‘an initial’ 

11-12: we used the ESA GLOBCover data, dated 2009, to remove GLAS ICESat shots which were 

over pixels which were non-forest areas as classified in GLOBCover. We will clarify this in the text. 

17: This document was produced using LaTeX so figure ordering and automatic. We will need to 

liaise with the typesetters to resolve this. Thank you for highlighting the problem. 

19: we have corrected the equation in the text 

 

 



p.8589 

1-6 The procedure successfully masked out pixels that were changing along the river margins. The 

remainder of the changing pixels, particularly the larger areas of plantation occur in swamp but not as 

heavily flooded areas; that is to say not the entire study area floods during the wet season. This 

improved our confidence in the result in terms of removing false positives.  

16-18. The points with lower AGB and height may well be secondary forest. However, at these levels 

of biomass and height there is an overlap with plantations, which are not the focus of this study. We 

felt it was appropriate to exclude these areas in the analysis or to count them as largely deforested 

since such a dramatic reduction in backscatter will involve the removal of the large trees wherein the 

majority of biomass and hence carbon is stored (Slik et al., 2013). Nevertheless, the inclusion of 

auxiliary data (e.g. a classification using high-resolution optical imagery from 2007) may help in 

other analyses to distinguish between natural and plantation forests at least in the first time period. 

However the work was completed under a PhD programme without a budget for purchase of high-

resolution optical data, and this work thus shows what can be produced without relying on such data. 

We have changed the text to reflect that there are in fact 26 bins as the reviewer points out. Thank 

you. 

p. 8592 

6-7 sentence changed to ‘relatively little high biomass forest’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4: we have re-drawn the figure along the lines suggested: 

 

 

p. 8594.  

7-9 We re-drawn figure 3 in order to display confidence intervals as suggested, now using ggplot2 in 

R and displaying 95% confidence intervals on regression line. 



 

 

 

27-28: We took the 20.3% error rate as a published error rate that would serve as an indicative value 

for the errors that occur in forest plot biomass estimation, including errors in height measurements 

and their relationships with AGB, and the problems with not having any specific allometric equations 

for peat swamp forests – this is a matter of ongoing research in Indonesia.   

p. 8597 

12-16 We have changed the text to 42 plots. 
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BioGeosciences Discussion paper: Integrated radar and lidar analysis reveals extensive loss of 

remaining intact forest on Sumatra 2007-2010. 

Murray Collins and Edward Mitchard 

Response to referee #4. 

We thank reviewer #4 for their time and helpful comments. 

General response 

Whilst the methodological descriptions are detailed, we agree with the reviewer that this level of 

detail is required to be entirely transparent in the approach that we took.  

With regards the specific comments, the first concerns mangroves. We excluded the mangrove forest 

areas principally by excluding areas of forest which we had estimated to be below 20m high. Visual 

examination of the resulting radar maps revealed that this process had successfully excluded the 

mangrove forests of Sembilang national park to the south of Berbak national park, the location of 

which we knew from GIS shapefiles, and field experience. 

The reviewer also mentioned the atypical nature of the plots used to quantify AGB at Berbak. The 

ZSL project commissioned an Indonesian forestry specialist to perform these surveys, who followed 

the nested plot approach in order to maximise the number of samples across a forest which is 

particularly difficult to access. The majority of biomass is in the large trees (Slik et al., 2013), which 

improves our confidence that the exclusion of smaller trees <15cm will not have caused significant 

impact upon our results.  

The reviewer mentioned the updated work of Chave (2014), which we appreciate. This work was 

originally undertaken in 2011 when these equations were not available, moreover we need to ensure 

consistency with the approach currently being followed by the ZSL project, including the biomass and 

carbon calculations used in their REDD+ project design documents. This consistency should help 

ensure that the present piece of work has an applied impact on the ground in Sumatra. Future work 

will use the updated equations. It is also relevant here that recalculating biomass using the relevant 

Chave (2005) equations does not significantly change AGB values, in this region at least: values at a 

plot level differ by <2 %. 

Section 2.4.2.  We have re-written this section to make it clearer that we believe Lorey’s height at 

20m (plus the associated biomass estimation) to be a useful threshold to distinguish between 

plantations and natural forest, and that we are excluding plantations.  

Section 2.4.3. At this step we are applying a mean value of AGB for pixels which are above the 

saturation limit of the radar and lidar data. Agreed, we would expect that the estimates of peatland 

AGB are lower than terra firme forests in Asia. However in this case we are limited to field data from 

the peat swamp forests, but wanted to model AGB across a broader landscape likely also including 

such dryland forests. The purpose of mentioning the higher average value for Asian forests was to 

indicate that we were being both parsimonious and conservative by using the lower values which we 

had actually obtained from local field data. 

Section 2.6.1. On the radiometric correction: we tried several different approaches to the 

normalisation procedure. Where we used subsets of data which we perceived as not having changed, 

these (a) represented proportionally few pixels in the entire scene, and (b) only represented a subset of 

higher biomass forest; whereas for a normalisation procedure we required a distribution of values 

from high to low backscatter representing different types of forest in different environmental 

conditions. As an indication we have provided a graphical analysis of the pixel values before and after 

the normalisation procedure, which draws the mean values of the annual distributions together: 



 

Section 2.7. We will revise the text to clarify the specific relationships to which we refer.  
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Abstract

Forests with high above ground biomass (AGB), including those growing on peat swamps,
have historically not been thought suitable for biomass mapping and change detection using
Synthetic Aperture Radar (SAR). However, by integrating L-band (λ= 0.23 m) SAR with lidar
data from the ALOS and ICESat earth-observing satellites respectively, and 56 forest plots,
we were able to create a forest biomass and change map for a 10.7 Mha section of eastern
Sumatra that still contains high AGB peat swamp forest. Using a time series of SAR data we
estimated changes in both forest area and AGB. We estimate that there were 274±68 Tg
AGB remaining in natural forest (≥20 m height) in the study area in 2007, with this stock
reducing by approximately 11.4 % over the subsequent 3 years. A total of 137.4 kha of the
study area were deforested between 2007 and 2010; an average rate of 3.8 % yr−1.

The ability to attribute forest loss to different initial biomass values allows for far more ef-
fective monitoring and baseline modelling for avoided deforestation projects than traditional,
optical-based remote sensing. Furthermore, given SAR’s ability to penetrate the smoke and
cloud which normally obscure land cover change in this region, SAR-based forest monitor-
ing can be relied on to provide frequent imagery. This study demonstrates that even at L-
band, which typically saturates at medium biomass levels (ca. 150 Mg ha−1),

::
in

:::::::::::
conjunction

::::
with

::::
lidar

::::::
data, it is possible to make reliable estimates of not just the area but the carbon

emissions resulting from land use change.

1 Introduction

Tropical forests provide multiple ecosystem services such as climate regulation and water
filtration (Naidoo et al., 2008), yet

:
.
:::::::::
However

:
markets fail to value them properly, leading

to extensive deforestation
::::::
forests

::::
and

:::::
their

::::::::
services

:::::
fully,

:::::
with

::::::::
multiple

:::::
direct

:::::
and

:::::::
indirect

:::::::::
processes

::::::::
driving

:::::::::
extensive

:::::::::::::
deforestation

:::::::::::
(complete

::::::::
removal

:::
of

:::::
tree

::::::
cover)

:
and forest

degradation (
::::::::
removal

::
of

::
a
::::::::::
proportion

:::
of

:::::
forest

::::::::::
biomass)

:
(DD; Bulte and Engel, 2006). DD

in developing countries accounts for between 7 and 20 % of anthropogenic CO2 emissions

2
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e.g. 18 % (Grace et al., 2014); 15 % with range 8–20 % (van der Werf et al., 2009), 7–14 %
(Harris, 2012). Ultimately this is leading to between 0.9 and 2.2 Pg C yr−1 being transferred
to the atmosphere (Houghton, 2010). By contrast, the release of carbon dioxide from fos-
sil fuel burning in the tropics is just 0.74 Pg C yr−1 (Boden et al., 2010), so DD dominates
anthropogenic CO2 emissions from tropical countries. Furthermore, there is extensive evi-
dence that intact and secondary forests in the tropics are acting as a significant carbon sink,
absorbing at least as much carbon dioxide than is released through tropical deforestation
(Lewis et al., 2009; Grace et al., 2014). Preventing dangerous climate change will there-
fore be much more difficult if tropical deforestation is not reduced or reversed. DD is also
leading to extensive losses of biodiversity and other ecosystem services (Koh and Sodhi,
2010). Hence there are multiple environmental benefits to be achieved by slowing or re-
versing these processes. Consequently, in the private sector, investors and consumers are
pressurising companies trading in commodities like soy, palm oil and timber (hereafter col-
lectively “High Deforestation Risk Commodities”; HDRC) to monitor and reduce their impact
on the world’s forests.

In the public and “third” sectors (Non-Governmental Organisations, NGOs) , there has
been intense activity in the development of activities leading to Reducing Emissions from
Deforestation and forest Degradation in developing countries, and the sustainable manage-
ment, conservation and enhancement of forest carbon stocks (REDD+; UNFCCC, 2010).
This currently takes the form of inter alia bilateral arrangements (e.g. Governments of Nor-
way and Indonesia’s USD 1bn REDD+ Letter of Intent); large multilateral programs (e.g.
the UK government’s GBP3bn

::::::::
GBP3bn International Climate Fundand

:
, the World Bank’s

Forest Carbon Partnership Facility,
:::::

and
::::::::::
UN-REDD

:::::::::::
programme); and localised projects fi-

nanced through the voluntary carbon market (e.g. see Diaz et al., 2011).
HDRC compliance and REDD+ may

:::
will

:
require (Task I) the quantification of above-

ground forest biomass (AGB), and both will certainly require (Task II) monitoring change
in forest over time. This paper addresses the technical aspects of both of these tasks, fo-
cusing on the quantification of AGB and its change over time in the same analysis. However

3
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Task II can be achieved without initially quantifying AGB (Joshi et al., 2015) e.g. measuring
solely the area deforested.

The forest areas of concern are vast and remote, necessitating the use of remote sensing
(RS) techniques, typically the analysis of images captured from satellites or aircraft. With
existing techniques and cloud-free optical data it is relatively simple to detect forest change.
However, ideally analysts would use time series of high-resolution AGB maps (e.g. from
lidar) to detect accurately DD, any forest regrowth, and quantify the associated biomass
changes simultaneously. Yet there are major challenges to measuring biomass: no satellite
sensor directly measures it (Woodhouse et al., 2012), and relationships between remote
sensing data and biomass tend to break down at medium to high AGB levels, meaning there
is a loss of sensitivity to high biomass forest (Mitchard et al., 2009a). Hence the initial AGB
map (at time t0) will contain errors, as will maps for subsequent time periods (t1, t2...tn).
Therefore detecting biomass change over time is a more troublesome proposition still, since
the errors in each map must be well understood in order to be able to correctly infer their
change over time. In the absence of such well-understood uncertainties, Tasks I and II
must be integrated to measure AGB change. We postulate that by distinguishing between
these tasks, uncertainty in the carbon stocks (typically quite high) can be separated from
uncertainty in the change maps (often low). This should produce change estimates with
narrower and better defined confidence intervals than those created by directly differencing
biomass maps

1.1 Task I: AGB estimation

For Task 1, Mitchard et al. (2012) characterized the options available as (a) the classification
of forest into landcover types, which are then attributed a mean AGB value based upon field
or remote sensing measurements; or (b) the direct regression, or more complex machine-
learning algorithms, between AGB measurements and a single or set of remote sensing
variables. Approach (a) largely maps onto the Tier 1 and Tier 2 approaches for REDD+
monitoring proposed by the United Nations Framework Convention on Climate Change
(UNFCCC).
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Tier 3, which involves local modelling, probably involves approach (b) (Arino et al., 2009).
Option (a), forest classification, can be performed using the properties of sunlight reflected
from the surface of the forest canopy (passive optical remote sensing; e.g. using the LAND-
SAT satellite series). It also can be undertaken using active sensing technologies such
as Synthetic Aperture Radar (SAR) acquired at low (e.g. L-band) frequencies. Sensors
operating at L-band include the ALOS-1 and ALOS-2 PALSAR-1/2. However this forest-
classification approach does not reflect variations in forest within classes, leading to coarse
AGB maps. Furthermore optical imagery typically suffers from interference from cloud and
smoke over forest areas, hence multiple image acquisitions are required to make the final
forest classification. For these reasons, option (b; direct estimation) is more attractive.

One of the most promising RS variables for option (b), direct regression, is SAR backscat-
ter. SAR involves focusing a beam of microwave energy at the forest and using the backscat-
tered energy to make inferences about the properties of the target. The longer (than visible
light) wavelengths of SAR means that the signal does not interact with water or particulates
in the atmosphere, hence it can “see” through cloud and smoke. Since the radiation interacts
with the structure of the forest itself, it can be statistically related to AGB (Mitchard et al.,
2012; Morel et al., 2011). However the SAR signal saturates at some level of forest biomass
typically between 60 and 150 Mg ha−1 for L-band, depending on the polarisation and envi-
ronmental conditions (Lu, 2006; Mitchard et al., 2009a). Hence AGB modelling must either
be limited at this maximum level of sensitivity, or else any pixel with AGB greater than this
value can be ascribed a “high biomass forest” value e.g. as taken from forest plots. Longer
wavelength SAR has potential for much higher saturation points, but no satellite collecting
data longer than L-band currently exists. However, the P-band BIOMASS satellite has been
funded by the European Space Agency, and should launch in 2021.

:::::
2020 (Le Toan, 2011)

:
.

The only operational RS technology that can estimate the biomass of tropical forest with-
out saturation at this level is Laser Light Detection and Ranging (lidar). This active sensing
approach involves emitting pulses of light at a target (the forest) to determine structural in-
formation and thereafter AGB (Lefsky, 2010; Asner et al., 2010). Yet landscape coverage
to make AGB maps is only possible using aeroplanes as the sensor platform. For instance
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Asner et al. (2010) measured >5×105 ha in Peru at a spatial resolution of < 1 m, yet
this data needed to integrated with moderate resolution (30 m) satellite data to produce a
final landscape-level map. Moreover, using aeroplanes as the platform makes data acqui-
sition very expensive, and costs rise further due to complex data processing requirements,
especially when repeated acquisition is required for monitoring. This cost representing a
significant barrier to lidar’s wide adoption and operationalisation as a forest monitoring tool.

Hence a monitoring problem: optical imagery typically cannot be related directly to AGB
and hence relies on classification techniques, and is plagued with the problems of cloud
cover. A SAR signal can penetrate cloud and smoke, increasing the regularity of usable
observations (effectively whenever a SAR image is captured, compared with only a small
subset of optical images). Moreover SAR backscatter can be directly related to AGB given a
sufficiently long wavelength. However SAR signals saturate at AGB levels well below those
found in mature tropical forests. Lidar can provide AGB estimates, yet the mapping of large
areas still requires integration with other datasets.

Here we present one solution to this problem that may be implemented now, by combining
the options set out above. This possibility arises because lidar footprints from the Ice, Cloud
and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) sensor
provided dispersed lidar samples across the earth’s surface, including over tropical forests.
These data can be statistically related to – and used in conjunction with – other freely-
available remote sensing data from sensors like SAR which do provide full coverage, and
actively sense forest structure (Shugart et al., 2010). (This is because both approaches
actively sense forest structure, measured either through differentiated laser light returns
in lidar e.g. from forest floor and canopy, and in the present case, the degree of volume
scattering in SAR returns). Though this lidar data is the same fundamental input, the method
we propose is different to that in Saatchi et al. (2011), which involved a machine learning
approach at a coarse resolution, and that of Mitchard et al. (2012), which uses SAR data
to perform a classification and then populate the classes with AGB based on the lidar. Our
approach involves two stages: direct regression for AGB mapping using a single year of
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SAR data, followed by an independent change detection process using multi-temporal SAR
data.

Specifically, our approach is to integrate L-band Synthetic Aperture Radar (Phased Array
L-band Synthetic Aperture Radar, PALSAR, λ= 0.23 m; on board the Advanced Land Ob-
serving Satellite, ALOS) with four years of data from the space-borne lidar sensor (ICESat
GLAS; 10,944 footprints from 2003–2007), in order to greatly supplement a small biomass
field dataset of 56 field plots. By modelling relationships between these three data sets,
we are able to quantify AGB in the reference year 2007, with an increased sensitivity to
higher-biomass forest than would be the case using SAR alone.

1.2 Task II: Forest and AGB change detection

For Task II, the options are to characterise the possible states of the forest system, and to
measure the change in state over time. Typically this involves some form of categorising or
‘binning’ forest into classes. For instance an area of forest may change from intact forest to
degraded forest; from degraded forest to non-forest; or from non-forest to plantation. The
changed pixels can be related back to an original AGB map (if available) and AGB loss and
carbon flux calculated, otherwise statistics on the areas of forest lost and degraded can be
generated.

Historically such change assessments have been undertaken by using optical satellite
imagery. For instance in an assessment of the impacts of protected areas (PAs) in Sumatra,
Gaveau et al. (2009) used LANDSAT images from 1990 and 2000 to measure deforesta-
tion, whilst more recent efforts integrate Moderate Resolution Imaging Spectroradiometer
(MODIS) data in addition to LANDSAT. Broich et al. (2011a) used this combination to map
forest change across Sumatra and Kalimantan. This work highlighted the central problems
both of identifying forest type from optical remote sensing imagery, and the use of com-
posite images from several different time periods. Composites are necessary when clouds
obscure parts of the study area in the first image collected; using cloud-free sections of later
images ultimately allows the creation of a largely cloud-free image. Yet cloud-free imagery
for those areas obscured in the first image may not be available for months or even years
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after the first image is collected. Since forest is being cleared and replaced with plantations
very rapidly in places like Indonesia, this means that composite images do not incorpo-
rate the deforestation and regrowth that has occurred in the time period during which the
composite was created (Hansen et al., 2008, 2009). Change detection based on these
composites may therefore underestimate the extent of forest change. One solution is to use
algorithms to develop pixel forest histories (Broich et al., 2011b), yet this approach seeks
a solution more in inference than in data. A more recent Sumatra-wide study using LAND-
SAT and lidar, Margono et al. (2012) re-iterates these interacting monitoring challenges of
high cloud cover and rapid regrowth. Nonetheless, optical data has been used to produce
impressive multi-year global forest change products across habitat types (Hansen et al.,
2013).

Our novel solution for Task II is to use inter-annual threshold-delimited differencing of L-
band SAR data to provide annual DD estimates. We use these changes in conjunction with
the map produced as a solution for Task 1, in order to measure AGB loss, and estimate CO2

emissions. We test this approach for a section of Sumatra, Indonesia. This is an ideal study
site because Indonesia has an extremely high deforestation rate, which reached 2 Mha yr−1

in 2011 to 12 (Hansen et al., 2013). Simultaneously there is considerable action to being
taken to address this including the proliferation of REDD+ and HDRC monitoring activity, for
instance with Norway committing $1bn to a bilateral REDD+ deal (The Norwegian Embassy,
2011; Solheim and Natalegawa, 2010), and via the Round table on Sustainable Palm Oil,
(RSPO).

2 Methods

2.1 Field Site

Our forest plot data are from Berbak National Park (BNP; 104◦20′ E; 1◦27′ S), a peat swamp
in Jambi province, Sumatra, covering 140 000 ha. It is habitat for the Critically Endangered
Sumatran tiger (Panthera tigris sumatrae, CR; IUCN, 2013) and 23 species of palms, mak-
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ing it the most palm-rich peatland swamp known in SE Asia. The Zoological Society of
London (ZSL) has established a pilot REDD+ project here known as the Berbak Carbon
Initiative (BCI), managed in partnership with the Government of Indonesia (GoI). However
since the SAR data for this study were available at a far larger extent than that of the project
site, we expanded the analysis to a scene which covered portions of both Jambi and South
Sumatra provinces, covering 10.7 Mha. A map of the study area is provided in Fig. 1.

These provinces were once entirely covered by mega-diverse Sundaland lowland rain-
forest, supporting inter alia the world’s largest (Rafflesia sp.) and tallest (Amorphophallus
sp.) flowers; the Sumatran rhinoceros (Dicerorhinus sumatrensis), and stands of Ironwood
(Eusideroxylon zwageri ; Whitten et al., 1984). The forest types range from mangrove forest;
lowland peat swamp forest; lowland terra firme forest; through to hill and montane forest in
the Bukit Barisan mountains (ibid). However this description is now largely historical: the ex-
pansion of industrial logging, followed by transmigration of Javanese settlers; and oil palm
(Elaeis guineensis) plantation development has led to extensive DD e.g. (Whitten et al.,
1984; Gaveau, 2013; Broich et al., 2011a, b; Miettinen et al., 2011). Hence anthropogenic
land cover is increasingly dominant, in particular with oil palm and “fastwood” (Acacia sp.)
plantations expanding to meet international food, energy and wood pulp demand; whilst
coconut plantations have expanded along the coastline.

Using land-use planning GIS shapefiles provided by the Indonesian government to ZSL,
we calculated that 1 % of the area is designated as community forest; 26 % as production
forest; and 10 % protected forest. The majority is designated for non-forest use (60 %) e.g.
for cities and agriculture. It should be noted that these are aspirant land use designations:
their implementation in Indonesia is complicated (Collins et al., 2011).

2.2 Field plot data

ZSL undertook a carbon stock assessment during the initial phase of the REDD+ pilot
project. ,

:::::::::
collecting

:::::
data

:::::::::
between

::::::::
October

:::::
2010

::::
and

:::::::
August

::::::
2011.

:
This involved including

forest AGB estimation using forest plots. Plot locations were chosen through stratified ran-
dom sampling, based upon a habitat classification map

:
of

::::::::
Berbak

::::::::
National

::::
Park

:
using 2008
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SPOT V imagery analysed by ZSL Indonesia. In the field, plot locations were verified with
a Garmin 60CsX handheld GPS unit. A total of 56 plots were sampled, with 36 in primary
swamp forest, 14 in swamp bush and 6 in secondary peat swamp forest. The plots were
nested, constituting:

1. The main plot of 20×125 m plot recording stem ≥1.05 m circumference

2. a 20×20 m sub-plot recording stems >0.30 m and <1.05 m circumference

3. a 10×10m subplot recording stems ≥0.15 m and ≤0.30 m circumference.

The AGB for each tree in each sub-plot was then calculated using an allometric equation
for wet tropical forests, where:

AGB = exp
(
−2.557 + 0.940× ln

(
ρd2η

))
(1)

where ρ= oven-dry wood over green volume (wood density,
::
g

:::::
cm−3), d= diameter

::::
(cm) at

breast height (
:::::
DBH; 1.3 m), η = tree height

:::::::
(metres)

:
(Chave et al., 2005). Wood densities

were collected from the literature for Indonesia peat swamp trees (Murdiyarso et al., 2010).
There were no palms recorded in the plot data, yet they may be among the 5.3 % of the
stems that were unidentified by the field team. Future research may identify these species
and identify specific allometric equations and wood densities. However for the present anal-
ysis, we followed the Food and Agriculture Organisation recommendation of the use of an
arithmetic mean for tree wood density where trees are not individually identifiable in the field
plots. This is 0.57 g cm−3 for Asia (Reyes et al., 1992), or a generic 0.58 g cm−3 (Chave
et al., 2004). We used the former figure.

2.2.1 Calculating tree height

Tree height data was not recorded from the forest plots by the field team. Equations pub-
lished by Morel et al. (2011) were therefore used to relate tree height to DBH for S.E. Asian
trees, whereby height η:
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For stems where d < 20 cm:

η = 8.61× ln(d) + (−8.85) (2)

and where d > 20 cm:

η = 16.41× ln(d) + (−33.22) (3)

where d is diameter at breast height. The estimated height for each stem was then used
to calculate Lorey’s height (L) for each of the plots. We did this because L is the closest
to what the ICESat GLAS waveforms measure (Lefsky, 2010). Lorey’s height weighs the
contribution of trees to the stand height by their basal area. It is calculated by multiplying
tree height η by its basal-area α, and dividing the sum of this by the total stand basal area.

L =

∑
(η×α)∑

(α)
(4)

2.2.2 Estimating the relationship between the measured biomass and height

The next step was to calibrate the relationship between plot-level AGB estimates and
Lorey’s height estimated in the steps above. This involved following the approach of Saatchi
et al. (2011) and Mitchard et al. (2012), which is to estimate a non-linear least-squares re-
gression: y = a×(xb). We estimated this using the NLS function in R (R Core Team, 2013).

2.3 SAR and lidar data

We downloaded ALOS-PALSAR mosaics from 2007 to 2010 from the Japanese Aerospace
Exploration Agency (JAXA) website (JAXA, 2014). The Polarimetric L-band Phased-Array
Synthetic Aperture Radar (PALSAR) data are collected in two polarisations: Horizontal-send
Horizontal-receive (HH) and Horizontal-send Vertical-receive (HV), and is provided at 25 m
resolution. We aggregated this by taking the mean of a 4×4 pixel window, as an initial

:
a

multilooking procedure to reduce speckle. Since an initial change detection produced noisy
11



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

images, we then used an Enhanced Lee filter with a 3×3 window on each of the now 100 m
HH and HV rasters, using ENVI (Exelis) and the default parameters.

Lidar data were taken from the ICESat GLAS sensor. These data were collected between
2003-2007, and provide waveforms for transects across the earth’s surface. The final data
used here were the estimates of Lorey’s height from each waveform derived from coinci-
dent tropical ground data, as used by Saatchi et al. (2011). On examining the data in a
GIS, there were clearly many footprints over areas that were known to be covered in for-
est (from field observations) but that were influenced by smoke and cloud cover because
they had Lorey’s height values of 0 m. To deal with this we filtered the lidar footprints for
any false negatives, using an

:::::::
resolve

::::
this

::::::::
problem

:::
we

::::::
used independent land cover data

set from the European Space Agency (ESA) called GLOBCover (Bicheron et al., 2009).
This provides estimated land cover type across the study area, and at 300 m resolution it
is the highest resolution land cover data available. We then removed lidar footprints from
the dataset

:::::::::
extracted

:::
the

::::::::::::
GLOBCover

:::::
land

::::::
cover

::::
type

:::
for

:::::
each

:::::::::
footprint,

::::
and

:::::
then

:::::::
filtered

:::
the

::::
lidar

::::::::::
footprints

:::
for

::::
any

:::::
false

::::::::::
negatives,

:::
by

:::::::::
removing

::::::
those

:::::::::
footprints which had Lorey’s

height values of 0 m but which were over forest in the GLOBCoverdata
:::::::::
classified

::
as

::::::
forest

::
in

::::::::::::
GLOBCover.

:::
We

:::::::::
excluded

::::
any

:::::
data

::::::
points

::::::
which

::::::
were

::::
over

::::::::::
non-forest

::::::
areas. By this pro-

cess 11 031 lidar footprints were removed, leaving 10 944 points remaining for calibrating
the SAR data.

2.4 Calculating natural forest AGB stocks

2.4.1 Calibration of SAR and lidar data: creating a forest height map

For 2007 we calibrated the SAR data in decibels (dB) with the lidar data by modelling a
functional relationship between the Lorey’s height measurements and the HV backscatter
value of the pixels in which the lidar footprints fell.

However lidar data over this type of mixed and degraded forest landscape typically con-
tains far

:::::
many

:
more data points at lower values of Lorey’s height, with very few readings

greater than 30m. Yet for
:::
We

:::
are

::::::::
wanted

::
to

:::::::
develop

::::
the

::::
best

::::::::::
functional

:::::::::::
relationship

::::::::
between

12
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:::::
these

:::::::
values

::
to

::::::
allow

::
a

::::::::::
prediction

::
of

:::::::
height.

::::
For

:::::
such

:
an ideal regression a similar num-

ber of Lorey’s height estimates are necessary at all SAR backscatter levels.
::
By

::::::::
contrast

::
a

::::::::::
regression

:::
on

::
all

:::::::
values

::::::
would

:::
be

:::::::
biased

::::::::
towards

::
a

::
fit

::
at

::::::::
smaller

::::::
values

:::
of

:::::
both

:::::::::
variables.

Therefore we binned the data, whereby we calculated the mean backscatter at each Lorey’s
height interval (

::
0,

:
1, 2, 3.

::
2...25 m) using the aggregate function in R (R Core Team, 2013).

A physical limitation of the L-band SAR data is that it does not fully penetrate the for-
est canopy, and the signal saturates at higher biomass levels (Mitchard et al., 2009a,
2011). This is demonstrated by a change in the functional relationship between the Lorey’s
height measurement from lidar and the HV backscatter, which occurs at approximately 25 m
Lorey’s height in this instance, corresponding to 190.6 Mg ha−1, and as shown in Fig. 3.
Therefore we modelled the relationship using a non-linear regression estimated in R, taking
the natural logarithm of the Lorey’s height i.e.

HV
:::

dB
2007 = ln(Loreyβ ln(L

:::::
) + e (5)

The relationships using the HV backscatter were superior to those developed using the HH
backscatter, and so we continued the analysis using only this polarisation (e.g. Mitchard
et al., 2009b).

We then applied the functional relationships between backscatter and Lorey’s height to
the 2007 HV backscatter raster using equation 1. In practice this meant calculating Lorey’s
Height L using:

L2007 = e((HVdB
2007+α)/β) (6)

This created a map for 2007 which estimated Lorey’s height per pixel.

2.4.2 Excluding agriculture and plantations from the Lorey’s height map

Since our analysis concerns the loss of natural forest only rather than AGB in all land cover
types, we excluded those pixels which had a modelled lorey’s height < 20 m from the sub-
sequent analysis. We considered that trees at this height would be natural forest rather than
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plantation. Further, our model estimates that forest 20 m high has AGB of 123.7 Mg ha−1,
whereas a study on neighbouring Borneo also using ALOS PALSAR found that the mean
biomass of plantations was 53 Mg ha−1, with values above this on average representing
natural forests (Morel et al., 2011). So by choosing this forest height limit of 20 m hence
AGB 123.7 Mg ha−1, we greatly increase our confidence that we have excluded plantations
from our maps, and hence also plantation cropping cycles in the subsequent change anal-
yses. We also deemed our restriction to be in keeping with the definition of “forest” under
the Marrakesh Accords (UNFCCC, 2001).

Next we undertook spatial filtering. We wrote a bespoke moving window in R based
on the focal function from the raster package (Hijmans, 2013), and applied it to the 2007
Lorey’s height map. For each 5×5 pixel window, if ≥20 (80 %) of the pixels were estimated
to contain forest of ≥20 m lorey’s height, we included all of those pixels in the subsequent
analysis. Otherwise, if < 20 pixels were estimated as forest, we excluded all these pixels.
This will result in the exclusion of small patches of remnant natural forest, hence ultimately
to underestimation of the 2007 AGB stocks. However, it allows us further to increase our
confidence that we are excluding plantations from the analysis, and allows us to focus in-
stead upon mapping the biomass and the deforestation of Sumatra’s last intact contiguous
high biomass forest. Visual comparisons of the resulting map with GoogleEarth data and
our own field knowledge suggested that these processes had indeed masked out planta-
tions without removing any large areas of natural forest.

2.4.3 Creating the 2007 biomass map

In order to create the final biomass map for 2007, we applied the relationship between
Lorey’s height and forest plot biomass (Eq. 10) to the Lorey’s height raster created above.
We processed all data with UTM projection (48S) at 100 m resolution in order to readily
calculate biomass stocks per hectare.

To account for the saturation of the HV backscatter signal and hence functional relation-
ship at this point, we limited the modelled biomass estimate at 196.6 Mg ha−1. For any pixel
> 196.6 Mg ha−1, we attributed a mean biomass value taken from the Berbak forest plots
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with > 25 m Lorey’s height. This was 236.5 Mg ha−1 (n= 8; SD = 75.7 Mg ha−1). This figure
is more conservative than the generic 350 Mg ha−1 for Asian forests as suggested by the
IPCC (Eggleston et al., 2006; Penman et al., 2003).

2.5 Calculating errors and uncertainties

In a study estimating biomass there are a combination of random and systematic errors
propagating throughout the calculations. Mitchard et al. (2011) characterises the errors as
those concerning (a) accuracy and (b) precision. Accuracy concerns the distance of the
mean from the true value and hence systematic biases. Precision concerns the distance of
a measurement from the mean of multiple measurements of the same attribute and is this
due to random errors. In a comprehensive review of errors in biomass estimations, Chave
et al. (2004) highlight how in practice these errors can occur when for instance taking the
measurements of the individual trees themselves; random errors in the identification of tree
species; spatial errors relating to geo-location.

We considered each of the potential sources of error in turn, namely those deriving from
the binary forest map from the ESA; the tree species identification, and height and AGB
estimations; errors in the lidar data and Lorey’s height estimates; and the relationships esti-
mated between lidar and SAR backscatter. In order to combine these multiple errors, which
we assume to be uncorrelated, we used the following formula to determine uncertainty (U ;
Saatchi et al., 2011):

Utotal =
√
U2
1 + .....+U2

n (7)

2.6 Deforestation detection

2.6.1 Radiometric normalisation of the 2008 : 2010 HV backscatter rasters to the
2007 dataset, and additional processing

Annual variations in measurement conditions, such as moisture on the ground and in vege-
tation introduces variance in backscatter between years which does not constitute changes
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in forest state. In the wet tropics these changes can be large. For change analysis this rep-
resents a problem. Any differencing between data sets over time for change detection could
result in errors whereby backscatter changes reflect differences in moisture rather than real
changes in the forest. In order to correct for this, the data needs to be radiometrically nor-
malised such that the measured properties of a pixel in year t0 approximate the properties
of the pixel in year t1 where no land use change has occurred. In order to do this with the
SAR data, we randomly extracted 25 000 pixels from all four HV backscatter mosaics from
2007 : 2010

::
in

:::::
order

:::
to

:::::::
ensure

::
a

::::::::::
distribution

:::
of

:::::::::::
backscatter

:::::::
values. We used these data to

develop a linear relationship between each pixel over time, using a Reduced Major Axis
Regression model estimated in R (Legendre, 2014), and assuming

:::
on

:::
the

::::::
basis

:
that any

sampled pixels which
::::
were

:
deforested during the study period would constitute errors in the

regression. We applied the resulting relationships to the 2008 : 2010 data so that the mean
backscatter of each scene approximated that of 2007.

:::
We

::::::::::::
demonstrate

::::
the

:::::::
results

::
of

::::
this

::::::::
process

::
in

::::::
figure

::
6.

:::::
The

:::::
figure

:::::::
shows

:::
the

:::::::::::
distribution

::
of

::::::
values

:::
of

:::::::
48,977

::::::
pixels

:::::::::
extracted

::::
from

:::::::
stable

::::
core

::::::
forest

::::::
areas

::
of

:::::::
Berbak

:::::::::
National

:::::
Park.

::::
Prior

:::
to

::::
the

::::::::::::::
normalisation

:::::::::::
procedure,

:::::
there

:::
is

::::::::::::
inter-annual

:::::::::
variation

::
in
::::

the
::::::::::::

backscatter

:::::::
values,

::::::::::
particularly

:::
in

::::::
2009.

:::::::::
However,

:::::::::
following

::::
the

::::::::::
procedure

:::
the

::::::::::::
distributions

::::::::::
converge.

::::::
Hence

:::
we

::::::::::
increased

:::::::::::
confidence

::::
that

::::
any

:::::
large

::::::::
changes

::
in
::::
the

:::::::::::
backscatter

:::::::
values

:::
per

:::::
pixel

::::
were

:::::::::::
attributable

:::
to

::::::::
changes

::
in

::::
the

::::::::::
properties

::
of

:::
the

:::::
SAR

:::::::
target,

::::::::::
specifically

::::::::::::::
deforestation.

Finally, the data provided by JAXA is already terrain-corrected and provided in Gamma
nought (Γ0) geometry. Hence we did not apply any further terrain correction.

2.6.2 Exclusion of flooded areas

Seasonal flooding can cause changes in SAR backscatter that could subsequently be mis-
interpreted as deforestation, that is unlikely to be corrected using radiometric calibration.
Flooded forest has high backscatter values in the Horizontal send, Horizontal receive (HH)
polarisation relative to the Horizontal send Vertical Receive (HV) polarisation. This is be-
cause in the HH polarisation, there is a double bounce of the SAR signal between the water
surface and the structure of the forest which increases the HH backscatter value relative to
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HV. So flooded forest can be detected by looking at changes across space in the ratio of
these two polarisations. We excluded any areas identified as natural forest (calculated in
the section above; ≥ 20m height but which had an HH value of >−5 dB. These excluded
areas appear as white “ribbons” through the in-tact forest blocks in Fig. 4, alongside the
region’s rivers. Additional visual verification of the efficacy of the approach is provided in
Fig. S1 in the Supplement.

2.7 Change detection: the determination of deforestation

In order to determine deforestation we calculated the difference in Lorey’s height for each
time step: 2007–2008; 2008–2009 and 2009–2010. We used the Lorey’s height maps for
two reasons. First, the relationship between Lorey’s height and HV backscatter is non-linear.
Hence the change in backscatter in a pixel implies a change in Lorey’s height and therefore
forest state that is conditional upon the original backscatter value of that pixel. This means it
was not possible to simply take a difference in the HV backscatter between years to detect
change. Second, forest height is a more intuitive property than HV backscatter.

Whilst there is small-scale degradation in addition to deforestation at the study site, we
are concerned here with land use change as a binary, exclusive event in natural high
biomass forest. The threshold we used to define change between years represents a trade-
off between sensitivity and uncertainty. The lower the threshold for change detection, the
more sensitive the process is. However, the more sensitive the process is, then the greater
the chances that SAR speckle is detected as false positive deforestation. Ultimately we
used a threshold of 10m reduction in lorey’s height per pixel per year to indicate deforesta-
tion. This is because a change of this magnitude in a pixel we had assessed to be natural,
non-flooded forest in 2007, would necessarily reflect a movement from high HV backscat-
ter, high lorey’s height and high biomass (i.e. intact high biomass natural forest), to a low
backscatter value associated with low lorey’s height and low biomass (deforested pixel).
This explanation is more readily understood with reference to Fig. 3.

In practice, to detect change, we had to both calculate a series of Lorey’s height maps,
and account for how the errors in the HV Lorey’s height relationship would propagate into
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the change maps. First, to produce Lorey’s height maps for each year, we applied Eq. (6)
to each of the radiometrically corrected annual SAR scenes 2008,9 and 10. We then con-
sidered the proportional errors (δ; ratio of regression error RMSE to maximum height esti-
mated, 25 m) in the relationship between HV backscatter and Lorey’s height. To be conser-
vative, for each time-step, we calculated the minimum estimated Lorey’s height for time t
(Ltmin) , and from this subtracted the maximum estimated Lorey’s height for t+ 1 (Lt+1max).
We calculated the minimum Lorey’s height estimate by multiplying the Lorey’s height esti-
mate map by 1− δ, and maximum by 1 + δ.

Therefore the forest height change (∆L) calculation for a given time-step was:

∆L = (Ltmin)− (Lt+1max) (8)

We may now substitute in Eq. (6) for each of the Lorey’s height estimates and apply the
minimum and maximum error calculations:

∆L=
((
e((HV dB

t +α)/β)
)
× (1− δ)

)
−
((
e((HV dB

t+1+α)/β)
)
× (1 + δ)

)
(9)

This provided change maps between 2007 and 8; between 2008 and 9; and between 2009
and 10. Once a pixel had been detected as deforested or heavily degraded, it was excluded
from consideration in the next time-step.

In summary, a pixel was only classified as having lost forest if it originally had forest
≥20 m height in 2007; and was not flooded (exclude HH >−5 dB ); whose height was
reduced by > (10 m) in the subsequent year; and if it had not experienced deforestation in
any of the previous time periods.

3 Results

3.1 The relationships between Lorey’s height and forest plot biomass

The forest plot data from Berbak national park yielded a power relationship between esti-
mated values of Lorey’s height and AGB, which explained almost two-thirds of the variation
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in the data (R2 = 0.61; RMSE = 113 Mg ha−1). The plot data range from those with very few
trees and hence low AGB and Lorey’s height values, through to the primary forest plots of
AGB > 300 Mg ha −1 and Lorey’s height values of ≈30 m. The resulting equation is shown
in Eq. (10), and is plotted in Fig. 2.

AGB = 0.37L1.94 (10)

3.2 The relationship between SAR HV backscatter and Lorey’s height from lidar

The relationship between HV backscatter and Lorey’s height appears to be approximately
linear from very low values of Lorey’s height clustered at a mean of ≈0 m through to high
values of ≈25 m. Figure 3 illustrates this relationship. Values in the upper-right portion of the
graph have both high Lorey’s height values and high HV backscatter values. We interpret
these as representing mature forest with high AGB. In the bottom left of the graph are data
points which have low AGB and low Lorey’s height values, which we interpret as being
deforested.

This graph is also central to the change detection procedure since it demonstrates the
logic behind the choice of the 10m height change threshold. If a pixel with forest ≥20 m
in t (top right of graph) experiences a height reduction of > 10 m in time t+ 1 (moves to
the lower-left of the graph), we interpret this as a deforestation event (though note Eq. (9)
which illustrates how we deal with error propagation). This is the deforestation process with
respect to HV backscatter and is represented by the arrow pointing downwards to the left.
The functional form of this relationship is summarised in Table 1.

3.3 Forest biomass stocks

Integrating the field plot data, the Lorey’s height data and the HV backscatter data; and
excluding flooded forest pixels, and summing the stocks across all the 100 m×100 m pixels
produces an estimate of 274 Tg AGB in natural forest ≥20 m in height across the 10.7 M ha
study area in 2007. We provide an AGB and uncertainty map in Fig. 5. Relatively little
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of this forest type
:::
high

:::::::::
biomass

::::::
forest

:
remained in 2007, and what did still remain was

highly fragmented. The largest block of remaining intact forest in the study area was Berbak
National Park/BCI in the north-east tip of the scene. The large treeless area in the centre of
the park in this image is a burn scar from the devastating El Niño fires of 1996/1997.

3.4 Change detection and AGB loss

Our analyses suggest that a total of 137,367 1 ha pixels were deforested between 2007 and
2010 in our study area. This represents a loss of 11.4 % of the 2007 high biomass forest
cover, a mean deforestation rate of 3.8 % yr−1. This deforestation constitute a loss of 11.3 %
of the 2007 AGB. The figures differ since not all (89 %) of the deforested pixels were in the
highest biomass forest of 236.5 Mg ha−1. This suggests first that deforestation is occurring
in different forest types, both in the last remaining old-growth high-AGB forest, and in the
lower-AGB intact forest (the minimum forest height we consider is 20 m; 123.7 Mg ha−1).
Second, a visual inspection of the patterns of forest loss suggests two different types of
deforestation across space. The first may be characterised as scattered losses in forest
that was already highly fragmented in 2007. We suggest that this represents clearance by
small-scale loggers and farmers. This kind of deforestation is typified by the forest lost be-
tween 2007–2008 in the central-southern part of Fig. 4b. The second type of deforestation
we observe is large-scale geometric patterns, which we suggest are characteristic of timber
concessions developement and their conversions into plantations, a process via which virtu-
ally all AGB is removed. This is typified by Fig. 4c

:::
4d. In the west of this image, we observe

forest clearance which advances into the remaining natural forest in annual waves from
2007–2010, which we visually verified using high resolution imagery from 8 May 2009 in
GoogleEarth at 1◦53′40.71′′ S, 103◦52′56.69′′ E, as shown in Fig. 4d

:::
4e. In 2008–2009 we

observe the construction of a road or canal which links two newly-cleared areas diagonally
(
:::::::
running

:::::::
NE-SW,

:::::::::::
connecting

::::
two

:::::
large

:::::::::
clearings

::::
(the

:::::::
feature

::
is

::::::
shown

::
in

:::
the

:
south-west

::::
part

of Fig. 4c
:::
4d, zoomed in 4e

::::
upon

::
in

::::
4c). This particular image demonstrates well the level of

detail which is possible to map using this approach. Discussions with the ZSL team suggest
that the deforestation in the east of Fig. 4c is

::
4d

:::::
was the result of a road building project
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linking Jambi to South Sumatra , the area surrounding which is also
::::::::::
provinces,

:::::
whilst

::::
the

:::::
forest

::::::
either

::::
side

:::
of

:::
the

:::::
road

::::
was

:
beset by illegal logging.

Berbak national park is experiencing no large scale deforestation, however the maps
do show more scattered pockets of small scale forest loss which are more typical of the
creation of small fields and small-scale illegal logging operations that affected many of
Indonesia’s national parks during the study period (Collins et al., 2011).

By aggregating all the changes across the scene we were able to estimate the total
amount of AGB removed from the study area annually. We also provide potential emissions
from this loss of AGB, based on an extreme scenario in which all the AGB was completely
oxidised following its removal from the landscape. However, there are uncertainties involved
in these calculations. Their estimation and subsequent integration into the final results are
discussed below.

3.5 Errors and Uncertainties

3.5.1 Binary forest map from ESA

We used a binary forest/non-forest map from the 2005 ESA Globcover (MERIS) to remove
lidar points which suffered cloud and smoke interference. This had the potential to cause
three potential problems: (1) this land cover classification contains errors, which are in-
troduced into lidar-backscatter relationships for non-forest vegetation. Indeed the classifi-
cation’s creators describe forest area overestimation where data are poor (Bicheron et al.,
2009); (2) The lidar data were collected between 2003 and 2007, and so overlap the MERIS
dataset. Nonetheless, given the rate of change observed in this study, land cover change
could have occurred between the collection of the two datasets; (3) The GLOBCOVER data
has a relatively coarse resolution of 300 m, meaning some non-forest areas will have been
classified incorrectly as forest and vice versa. Artefacts relating to these errors will increase
noise in the relationship shown in Fig. 3, but should not change the absolute relationship
which is dominated by the signal in the data. We do not believe that these errors are sig-
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nificant, see Fig. 3 for the clear relationship between lidar-derived lorey’s height and HV
backscatter, with the fit having an R2 of 0.91.

3.5.2 Tree species identification, height estimations and AGB estimations on forest
plots

Tree identification is an ongoing endeavour in Indonesian peat swamp forests. Accordingly
the field team botanist had difficulty identifying some tree species (5.3 % stems). Hence
it was not possible to specify wood densities for these individuals. We would be able to
increase the accuracy of the biomass map were improved tree identification and wood
densities to become available. In addition the forest plots data did not contain tree height
measurements, requiring using a published height to DBH relationship for S.E. Asia from
Morel et al. (2011). Yet morphological differences between peat swamp trees and those
measured by Morel may introduce errors into our biomass estimations. In addition the
model for stems where d < 20 cm was poor with an R2 value of only 0.16. This means
that the predictions for the smaller stems are likely to have quite low accuracy, which is ex-
pected to have introduced further errors into the estimates of height. However the majority
of forest biomass is typically found in large trees (Slik et al., 2013), rendering this prob-
lem marginally important

::
of

:::::::::
marginal

:::::::::::
importance. Nonetheless, more forest plot data that

included tree height measurements would improve our calibrations. A
::::::
further

:::::::::::::
consideration

::
is

::::
that

:::
the

:::::::::
relatively

:::::
small

::::
plot

::::
size

:::::
may

:::::
have

::::::::::
introduced

::::::
errors

::::
into

::::
our

:::::::::::
calibrations (Rejou-

Mechain et al., , 2014)
:
.
:::::::::::::
Nonetheless,

::
it

:::::::
should

:::
be

::::::
noted

::::
that

::::
the

::::::::::::
relationships

::::
we

::::::
detect

::::
here

:::::::::
between

:::::::
Lorey’s

::::::
height

::::
and

::::::
AGB;

::::
and

:::::::::
between

::::::
GLAS

::::::::
footprint

::::::
based

::::::::
Lorey’s

::::::
height

:::
and

::::::
radar

::::::::::::
backscatter,

::::
are

::::::::
identical

:::
in

:::::
form

::::
and

:::::::
similar

::
in

:::::::::::
parameter

::
to

::::::
those

::::::::::
described

:::::::::
elsewhere

:
(Saatchi et al., 2011; Mitchard et al., 2012).

:::::
This

:::::::::
increases

::::
our

:::::::::::
confidence

::
in

:::
the

::::::::::
robustness

::
of

::::
the

::::::::::::
calibrations.

::
A final issue is that in order to calculate AGB, it was necessary to use pan-tropical rather

than regional allometric equations. In order to account for these errors , we ascribe 20.3error
to potential differences in regional

:::
the

::::::
errors

::
in

::::
the

::::::::::
estimation

::
of

:::::::::
biomass

::
in

:::
our

::::::
plots,

::::
and
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::::::::
potential

::::::::
regional

:::::::::::
differences

::
in
:

estimates of biomass
:::
we

:::::::
ascribe

::
a
:::::
20.3 %

:::::
error (Djomo

et al., 2010).

3.5.3 Lidar and Lorey’s height estimates

The relationship that was used to develop estimates of Lorey’s height from lidar returns is
based upon field plots in the Amazon (Lefsky, 2010). To deal with the errors that this will
create, a 5 % error is ascribed to potential differences in regional estimates of Lorey’s height
from the waveforms as suggested by Mitchard et al. (2012).

3.5.4 Relationship between lidar and SAR backscatter

There are errors in the estimated relationship between the estimated Lorey’s height and
SAR backscatter. The Root Mean Squared Error was used to quantify this, which is a mea-
sure of the difference between the values implied by an estimator in a statistical relationship
and the true value of the parameter being estimated. For the relationship estimated between
the 2007 HV backscatter data and the Lorey’s height data, the RMSE is 3.3 m. We calcu-
lated the percentage by dividing 3.3 by 25 m (the maximum height we used from the lidar
data)×100 = 13.2 %.

3.5.5 Combining uncertainties, and final forest change results

With 20.3 % error for the biomass calculations for the trees and 5 % Lorey’s height errors,
and 13.2 % error for the relationship between Lorey’s height and HV backscatter, we esti-
mate 24.7 % total uncertainty using Eq. (7). We applied these uncertainties to the biomass
and change calculations to produce the final results :

– 2007–2008: 27.7 kha forest containing 6.3±1.6 Tg AGB cleared; 2.3 % of the 2007
AGB total; potential emissions of 11.5±2.9 Tg CO2e.

– 2008–2009: 75.3 kha forest containing 16.9±4.2 Tg AGB cleared; 6.2 % of the 2007
AGB total; potential emissions of 30.9±7.7 Tg CO2e.
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– 2009–2010: 33,955 kha forest containing 7.8±1.9 Tg AGB cleared; 2.8 % of the 2007
AGB total; potential emissions of 14.2±3.5 Tg CO2e.

We illustrate the uncertainty in the AGB map in Fig. 5.

3.6 Calibration over space

We calibrated the SAR data using ground plots from the peat swamps of Berbak. However,
the relationship may differ in other forest types type, and so the analysis may be enhanced
by having calibrations in different areas by partitioning the backscatter data and using addi-
tional regional plot data. However, in the absence of additional forest plot data sets this was
not possible.

3.6.1 Detecting biomass in mangrove forests

Not all ecosystems are equally well detected by SAR. An extensive mangrove forest south
of Berbak (Sembilang National Park) appeared to have very low biomass in the biomass
map. This may be because Mangrove forest’s low, open canopy and extensive prop root
networks absorbs much of the L-band radiation. There is even evidence that the relation-
ship between AGB and HH backscatter is negative (Cohen, 2014). Our study therefore
likely misrepresents biomass in Sembilang.

::::
This

::
is

::::::::
relevant

:::::::::
because

:::::
there

::
is
::
a
::::::::::
mangrove

:::::
forest

::
in
::::

our
::::::
study

:::::
area

::
to

::::
the

::::::::::
south-east

:::
of

::::::::
Berbak,

::::::
within

::::::::::
Sembilang

:::::::::
National

:::::
Park.

::::
We

::::::::
removed

::::
this

:::::::::
mangrove

::::::
forest

:::::
from

:::
the

::::::::
analysis

:::::::
during

:::
the

::::::::
process

::::::::
whereby

:::
all

::::::
pixels

::
in

:::
the

::::::::
modelled

:::::::
height

::::::
raster

::::
with

::
a

:::::
value

::
≤

:::::
20m

:::::
were

::::::::::
excluded,

::::::
verfied

:::
by

::::::
visual

::::::::::::
examination

::
of

:::
the

::::::::
resulting

:::::::
maps,

::
as

:::::::
shown

::
in

::::
Fig.

::
4.

:

3.6.2 Underestimation of biomass loss overall

The biomass loss and emissions estimates provided are conservative. First, the maximum
biomass estimate of mature forest is limited, due to SAR backscatter saturation. Second,
mangrove forest biomass is underestimated. Third, the large below ground biomass emis-
sions associated with the clearance of forest on peat soils are not included (Page et al.,

24



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2002). Fourth, the forest plots from Berbak are not likely to be representative of all the
forest types across Sumatra. Fifth, we apply a very restrictive threshold of forest > 20 m
height, plus a majority-value window to focus solely on the intact high biomas forests in the
change analyses. Therefore we strongly expect the true carbon loss values to exceed those
given here, by an undetermined amount. The bottom of our confidence intervals should be
considered as the minimum emissions that have resulted from this land-use change, and
provide a conservative estimate that could be used in a GHG accounting framework.

4 Discussion

We have demonstrated for the first time that it is possible to employ use a fusion of SAR, li-
dar and forest plot data to map AGB and its change across a tropical forest landscape. From
a broader perspective our findings have implications (a) for forest monitoring technology
and methodologies, and (b) for inter alia biodiversity and ecosystem services, particularly
climate regulation.

4.1 A: Forest monitoring technology and methodologies

Concerning the first set of issues, our results demonstrate the value of integrating multi-
ple existing datasets in order to map AGB in an area with high biomass forest, including
peatlands. This was enabled by the establishment of robust relationships between (i) AGB
and Lorey’s height estimates from forest plots and (ii) HV backscatter and Lorey’s height
estimates from lidar data, which increases by two orders of magnitude the number of ob-
servations of Lorey’s height which we have from the 56

::
42

:
forest plots alone.

Rapidly changing forest provides a challenging context for analysis: the deforestation
rates we observed would appear to substantiate the concern that multi-year optical com-
posites to remove cloud cover may mask the very changes that the researcher intends to
detect in the first instance (Hansen et al., 2008, 2009). Hence our approach may be used
either as an alternative to traditional optical analyses, or as a complement for those areas
particularly affected by cloud and smoke.
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Examining the per-pixel HV backscatter values over time allowed us to make spatially ex-
plicit estimates of forest biomass loss annually, and with quantified uncertainties. This rep-
resents a methodological deviation from the work to map deforestation using optical data.
This provides a contribution to the call for accurate forest monitoring data for Indonesia to
contribute to REDD+ (Broich et al., 2011a). Being able to directly map biomass at 100 m
spatial resolution unencumbered by cloud or atmospheric particulates represents a signif-
icant advance in the ability to monitor tropical forests for many stakeholders, and should
be of interest to governments as well as firms in HDRC sectors, and NGOs interested in
forestry.

Nonetheless there are some technical barriers to continued efforts using the methodology
we present. Principally, following the failure of the sensor on ALOS1, L-band SAR data was
not collected again until 2014 with the launch of ALOS2, leaving a three-year data gap.
Nonetheless, whilst browsing the LANDSAT archives for images of Berbak, the majority of
images were obscured by cloud and smoke, meaning that despite the data gap from ALOS
being sub-optimal, it is nonetheless comparable with LANDSAT data over that same period.

Finally, the estimation of per-pixel biomass requires contemporaneous lidar data for cali-
brating the AGB map. However the only freely available data set (ICESat) stopped collecting
data in 2007. Yet plans are afoot for the deployment of ICESat 2 and GEDI which will allow
calibration of future SAR images. Furthermore, demand for forest monitoring has spurred
a development in other options, particularly aerial lidar transect sampling. This takes the
same approach as ICESat, using lidar as a sampling tool only, recording data in transects
rather than across the landscape. This offers some of the benefits of landscape level lidar
mapping, by enabling providing accurate biomass estimations for different forest types, but
with lower costs since only transects are recorded. Such data could be used as an alter-
native to ICESat 2 data, to calibrate L-band data to produce AGB maps. In addition, future
work may not be restricted to ALOS2 data, with Argentina’s SAOCOM and NASA’s NISA
L-band satellite planned for launch during this decade. These additional satellites may in-
crease data availability and frequency of observations.
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4.2 B: Significance of deforestation and forest degradation on Sumatra

Concerning the second set of issues, our results have broad implications. Indonesia is
already well-known to have very high deforestation rates. However, even in this context,
forest loss in Sumatra is particularly high. By 2010, the eastern regions of Sumatra had
lost approximately half of the peat swamp forests existing a decade earlier, an extremely
high loss rate of 5 % yr−1 (Miettinen et al., 2011). In one case in June 2013, 140 000 ha
of forest were destroyed by fire in a 3.5 M ha area in Riau province (Gaveau, 2013). Even
on the conservative and unlikely assumption that the entire area was forested previously,
this represents the extraordinary loss of 4 % of the remaining forest in a single month. Our
results serve to confirm these findings: the high national means of forest loss in Indonesia
mask remarkably high losses on a local scale.

Such extensive forest loss on Sumatra is having large impacts on biodiversity losses.
Flagship species like tigers (Panthera tigris sumtrae) are Critically Endangered (IUCN,
2013). Even a decade ago, tiger biologists were already concerned about tigers being scat-
tered as meta-population living in increasingly disconnected forest fragments (Linkie et al.,
2006): the rapid deforestation we have observed thus simply represents a ongoing and un-
mitigated trend in habitat loss. Our maps show how very little high biomass natural forest
now remains in this part of Sumatra.

As Sumatra’s forest is cleared, there are huge associated CO2 emissions both from fires
and organic decomposition of AGB, but also from below ground biomass. These emissions
are particularly high in the eastern Sumatran lowlands due to the presence of a blanket
of peat which may contain an order of magnitude more carbon than the forest growing on
it (Page et al., 2002; Jaenicke et al., 2008; Hooijer et al., 2010, 2012). Hence there is a
spatially explicit issue: deforestation in peat swamps is likely contributing disproportionately
highly to climate forcing than forest loss elsewhere, with peatland drainage and oxidation
now accounting for up to 3 % of total anthropogenic CO2 emissions (van der Werf et al.,
2009).
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Optimistically, the increase in the range of technologies available to monitor forest, includ-
ing peatland forest, irrespective of cloud and smoke cover may go some way to improving
the transparency and sustainability of land use management practices. For instance, better
data may contribute to the monitoring and verification of pulp paper, and oil palm firms’
commitments to zero deforestation, hence mitigating some of the impacts of the very rapid
environmental change we have quantified here.

The Supplement related to this article is available online at
doi:10.5194/bgd-0-1-2015-supplement.
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Table 1. Regression equation for relationship between 2007 HV backscatter and the binned Lorey’s
height data taken from the ICESat dataset.

RMA Regression: PALSAR dB HV to Lorey’s height RMSE R2 n

Lorey’s height t= e(((HVdB
t +14.9)/0.88)) 3.31 m 0.91 26
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Figure 1. A map of the western islands of the Indonesian archipelago. The island oriented north-
west to south-east is Sumatra. The section highlighted is our study area of 10.7 Mha. The underlying
data for that section is our estimate of AGB for 2007. Dark greens areas are those with high AGB,
and lighter coloured areas have very low AGB. In the northern-most tip of the image is the dark green
of Berbak national park, reflecting its relatively intact status. It was from this site that we gathered
our field data via ZSL which operates a pilot REDD+ project there. The south of the study area
terminates at the Bukit Barisan mountain range.
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Figure 2. Relationship between Lorey’s height and biomass as measured in the forest plot data from
Berbak National Park. R2 = 0.61; RMSE = 113 Mg ha−1
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Figure 3. Non-linear relationship between HV backscatter and Lorey’s height. This diagram demon-
strates the logic behind the selection of the 10 m height threshold for the definition of deforestation.
Values in the upper right of the graph have both high Lorey’s height values and high HV backscat-
ter values, which we interpret as being natural high biomass forest. In the bottom left of the image
are data points which have low AGB and low Lorey’s height values, which we interpret as being
degraded forest, through to cleared forest. If the value of a pixel moves from the upper right of the
plot to the lower left, such that the height reduction is ≥10 m during one year, we interpret this as a
deforestation event. This process is represented by the arrow pointing downwards to the left.
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Figure 4. (a) Location of study area on Sumatra, Indonesia. (b) Study area. Non-forest,
:::::::::
mangrove

:::::
forest,

:
and forest of low

:::::
height

:
(< 20 m in 2007) height in grey, which areas are excluded from

the analysis; and forest in green (height ≥20 m in 2007). Few large blocks of intact forest remain
except Berbak national park, obvious as an area of dark green in the far north. The large area in
the centre of the park burned in the 1996/7 fires. The “ribbons” of non-forest areas running through
the park indicate where we have removed flooded forest. Deforestation after 2007 is yellow, blue,
orange for each subsequent year. (c)

:::
We

:::
are

::::
able

::
to

:::::
detect

::::::::::::
deforestation

:::::::::::
infrastructure

::::::::::::
development,

::::
here

:
a
::::::::::
road/canal

:::::::::
connecting

::::::::
different

:::::
areas

::
of

:::::::::
plantation.

:::
(d)

:
Demonstrates the annual progression

of forest loss in large geometric patterns consistent with forest clearance for roads, canals and
plantations. (d)

::
(e) High resolution GoogleEarth image from 8 May 2009, providing optical verification

of changes detected using SAR. This image may be viewed at full resolution in GoogleEarth at
1◦53′40.71′′ S, 103◦52′56.69′′ E.(e) We are able to detect forest infrastructure development, here a
road/canal connecting different areas of plantation.

:
.
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Figure 5. Left image: uncertainty of the 2007 AGB for our 10.7 Mha study area. We created the
uncertainty map by applying the 24.7 % total uncertainty across the landscape. Hence those ar-
eas which have higher estimates of AGB have the highest absolute uncertainties associated with
them.The uncertainties appear to be fairly constant across the landscape because we are consid-
ering only the high biomass forests in the analysis. Right image: the AGB map for 2007. The AGB
legend is scaled continuously between minimum and maximum values. The largest remaining block
of forest in the north-east of the image is Berbak national park, and the forests of ZSL’s pilot REDD+
project, the Berbak Carbon Initiative.
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Figure 6.
::::
The

:::::
figure

:::::::
displays

:::
the

:::::::::
frequency

:::::::::::
distributions

::
of

:::
HV

::::::::::
backscatter

::::
(dB)

::::::
before

::::
and

::::
after

:::
the

::::::
relative

::::::::::::
normalisation

::::::::::
procedure.

::::::
These

::::
data

:::
are

:::::::::
extracted

::::
from

::::
over

::::::
areas

::
of

:::::
stable

:::::
core

:::::
forest

::
in

::::::
Berbak

:::::::
national

:::::
park.

::::
They

:::::::
indicate

::::
how

:::::
prior

::
to

:::
the

:::::::::::
normalisation

:::::::::
procedure

:::::
there

:::::
were

::::::::::
inter-annual

::::::::
variations

::
in

:::
the

:::::
pixel

::::::
values

::::
over

:::
the

::::::
stable

:::::::::::::::
(pseudo-invariant)

::::::
forest,

::::::::::
particularly

::
in

:::::
2009,

::::
and

::::
how

::::
after

:::
the

::::::::::::
normalisation

:::::::::
procedure

::::
this

:::::::::
difference

::
is

::::::
greatly

:::::::
reduced

::::
and

:::
the

:::::::::::
distributions

:::::::::
converge.

::::
This

::::::::
suggests

::::
that

:::
we

::::
have

:::::::::
consistent

:::::::::::
backscatter

::::::
values

::::
over

::::
time

::::
over

:::::::::::
unchanging

:::::
forest,

::::::
hence

:::
that

::::
any

::::
large

::::::::
changes

::
in

::::::::::
backscatter

::::::
values

:::
per

::::
pixel

::::::::
between

:::::
years

::::
may

:::
be

::::::::
attributed

::
to

:::::::::
significant

:::::::
changes

::
in

:::
the

:::::
SAR

:::::
target

:::
i.e.

:::
the

:::::::::
clearance

::
of

::::::
forest.
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