1 We have carefully studied the various points raised by the three reviewers and revised the $\mathbf{2}$ manuscript accordingly. For the revised manuscript, we have newly performed a qPCR 3 experiment as reviewer #3 suggested. Combining with the results of the qPCR analysis, we found that the clone library analysis could capture a major group in diazotroph community in 4 each cruise. We also added the results of ammonium concentration in the revised manuscript. 5 Ammonium concentration was not significantly correlated with nitrogen fixation rate (p < p6 0.05). Since phosphate concentration during the KS-14-2_Mar cruise was miscalculated in 78 the previous manuscript, we have revised the data. This correction did not affect our major 9 conclusions. Our responses to the reviewer's comments are detailed below.

10

11 *Referee #1*

12 Currently, dinitrogen (N2) fixation in temperate coastal regions is considered inconsequential

13 *due to the surplus of dissolved inorganic N and the scarceness of known oceanic diazotrophs.*

14 *However, recent data suggest that N2 fixation can occasionally contribute with significant*

15 amounts of reactive N to these systems with unknown implications for the marine N budget.

16 In this paper, Shiozaki et al. present N2 fixation rates of up to 13.6 nmol N L-1 d-1 in coastal

17 regions in the northwestern North Pacific. They also report N2 fixation at depths in the

18 presence of significant amounts of dissolved inorganic N. Through analyses of nitrogenase

19 reductase gene sequences they suggest that unicellular cyanobacteria group A (UCYN-A)

20 diazotrophs may be responsible for the observed N2 fixation.

21

22 General comments:

23 Overall this paper presents valuable data on coastal N2 fixation rates and adds to the

24 growing body of data suggesting that the role of N2 fixation in temperate coastal

25 environments need to be re-evaluated.

26 However, the accompanying nitrogenase reductase gene composition analyses are difficult to

evaluate as it is unclear from where the samples are taken. Only 26 - 38 sequences were

28 analyzed per cruise; each cruise representing multiple sampling stations.

29 How many sequences were obtained per station is unknown, but it must be very few since the

30 approximately 30 sequences per cruise represent multiple sampling stations. Hence, it is

31 *impossible to talk about "diazotrophic diversity". Also the obtained sequences are divided*

32 into phylogenetic subgroups without reporting sequence similarities.

33 Furthermore, contamination of PCR reagents by DNA containing nitrogenase reductase

34 genes is a well-known phenomenon. The authors state that "no DNA was detected from

35 negative controls", but they do not say how they performed these tests. Cloning negative

36 controls that supposedly did not contain amplicons have yielded clones in the past. Were the

- 37 negative controls here checked by mere concentration measurements or gel electrophoresis?
- 38 Or were no clones obtained when cloning with the negative control?
- 39
- 40 In M&M the authors are stating that ammonium concentrations were determined, but in the
- 41 results these data are omitted. Nitrate assimilation acquires the mobilization of eight
- 42 electrons and some bacteria lack the ability to utilize nitrate. Hence, ammonium may be a
- 43 better predictor of N2 fixation than nitrate. Furthermore, it has been shown for some coastal
- 44 diazotrophic communities that N2 fixation is negatively correlated with ammonium
- 45 concentrations and not nitrate. Since the authors have determined ammonium concentrations,
- 46 *I will strongly suggest that they include these data.*
- 47 Also, I advise the authors to present the data in the same order in which they present
- 48 *the materials and methods to facilitate comprehension.*
- 49
- 50 Samples for the clone library analysis were taken from surface water at Stns. OT4, ON1,
- 51 ON5, and ON7 during the KT-12-20_Aug and KT-12-27_Oct cruises, at Stns OT4, ON1,
- and ON5 during the KT-13-2_Jan and KS-14-2_Mar cruises, at Stns OT4, ON1, ON5, and
- 53 ON8 during the KK-13-1_Jun cruise, and at Stns OT4, ON5, ON7 during the
- 54 KK-13-6_Sep cruise (L139-144). The number of recovered sequences ranged from 1 to 15.
- 55 We have added number of recovered sequences at each station in every cruise in Table 1.
- 56Since our obtained clones were included the known *nifH* cluster (Zehr et al., 2003a), they57were labeled (L158-160). As you mentioned, we could not discuss diazotroph diversity
- based on the number of sequences, and thus, we have deleted the word "diversity" fromthe revised manuscript.
- 60 Sterile distilled water was used as the negative control. After the PCR analysis, we
- 61 confirmed there was no band in agarose gel of electrophoresis from the negative control.
- 62 Therefore, we considered that there was no contamination in PCR reagents (L147-149).
- 63 Nevertheless, the sequences with similarity (>97%) at the amino acid level to the
- 64 contaminants were recovered from samples obtained during the KK-13-6_Sep and
- 65 KS-14-2_Mar cruises (10 clones in total), and we do not include these sequences in our
- data analysis (L266-270).
- 67 Furthermore, we have added the data of ammonium concentration in the revised
- 68 manuscript (Fig. 4b and S2). Ammonium concentration was not significantly correlated 69 with nitrogen fixation (p > 0.05) (Table 2).
- We have presented the data in the same order in which we present the materials andmethods in the revised manuscript.
- 72

73	Specific comments:
74	P.2, l.4: Avoid using "diversity" here as you only have approximately 30 sequences per cruise.
75	You can talk about composition at best with these numbers.
76	
77	We agree. We have rephrased the word "diversity" to "community".(L14)
78	
79	P.2, l. 14-15: Here, the authors suggest that Cluster III diazotrpohs rarely have been reported
80	to be abundant in surface waters. This is not really true. In coastal regions, cluster III
81	sequences are often recovered. See for instance the following papers: Short et al. 2004, Appl
82	Environ Microbiol 70, Moisander et al. 2008, ISME J 2, Farnelid et al. 2009, Environ
83	Microbiol Rep 1, Farnelid et al. 2011 PLOS ONE 6, Mulholland et al. 2012 Limnol Oceanogr
84	57, Farnelid et al. 2013 ISME J 7, Bentzon-Tilia et al. 2015 ISME J 9
85	
86	We have changed the related sentences in the abstract as follows.
87	"In contrast, when nitrogen fixation was undetectable (winter to spring), many sequences
88	affiliated with Cluster III diazotrophs (putative anaerobic bacteria) were
89	recovered."(L23-24)
90	
91	P. 4, l. 1-2: The paper does not examine seasonal diazotrophy in the temperate ocean as such,
92	but it does examine diazotrophy in a temperate coastal region during different seasons as
93	Mulholland et al. 2012 Limnol Oceanogr 57, but in the northwestern north Pacific.
94	
95	We have changed the sentence as follows.
96	"the present study is the first to examine diazotrophy during all seasons in the temperate
97	ocean." (L66-67)
98	
99	P. 4 l. 6-13: the cruise names are confusing to me, and I have to revisit this section of the
100	paper every time a cruise is mentioned to see at what season the cruise corresponds to. I
101	recommend renaming the cruises to include the month in which they were conducted.
102	Possibly just by a subsequent letter (June = J).
103	
104	In the revised manuscript, we have changed the cruise ID as follows
105	
106	KT-12-20: KT-12-20_Aug
107	KT-12-27: KT-12-27_Oct
108	KT-13-2: KT-13-2_Jan

109 KK-13-1: KK-13-1_Jun

- 110 KK-13-6: KK-13-6_Sep
- 111 KS-14-2: KS-14-2_Mar
- 112
- 113 *P. 4, l. 19-20: In the results you have nitrate data for several depths. Here you write that you* 114 *took samples for nutrient analyses at* 7 - 15 *m depth at stations outside the bay and at* 1 - 13115 *m inside the bay. Please clarify.*
- 116

117 We wrote incorrectly this sentence. We have revised it as follows.

- 118 "At offshore stations, samples for nutrient analysis were collected from 7–15 different
- depths in the upper 200 m, while at shallower (<200 m) bay stations, samples were
- 120 collected from 4–9 different depths in the entire water column" (L86-89)
- 121

122 P. 4, l. 19-20: I don't understand sentence. Please revise.

123

124 We have revised it as follows.

125 "except at Stn. OT1 where only surface water samples were collected"(L88-89)

126

P. 4, l. 21-24: Here you state that samples for DNA analyses and incubation experiments
were taken at all stations in the surface and at two stations in deeper waters. Later on you
write that nifH composition is only analyzed in DNA from four samples per cruise. Please

130 *revise to avoid confusion.*

131

As I mentioned in the previous manuscript, samples for DNA analyses were collected 132from waters in which incubation experiments were performed. Meanwhile, the clone 133134library analysis was only applied to the samples collected from surface water at Stns. OT4, 135ON1, ON5, and ON7 during the KT-12-20_Aug and KT-12-27_Oct cruises, at Stns OT4, ON1, and ON5 during the KT-13-2_Jan and KS-14-2_Mar cruises, at Stns OT4, ON1, 136ON5, and ON8 during the KK-13-1_Jun cruise, and at Stns OT4, ON5, ON7 during the 137KK-13-6_Sep cruise (Table 1). In the revised manuscript, we have newly performed a 138qPCR analysis using all the DNA samples. We have added this information in L139-144, 139140163-179.

141

142 P. 5, l. 2: Here the authors mention that they determine ammonium concentrations, but it is

143 omitted in the rest of the paper, unfortunately. I would strongly suggest adding these data

144 considering their implications for N2 fixation.

145	
146	We have added the result of ammonium concentration in the revised manuscript (Fig. 4b
147	and S2). Ammonium concentration was not negatively correlated with nitrogen fixation
148	(p>0.05) (Table 2), suggesting that it did not influence nitrogen fixation in this study.
149	
150	P. 5, l. 19: How did the authors determine that the nested PCR did not produce amplicons?
151	Did they clone the negative control? Did they compare sequences from their dataset to those
152	of known contaminants?
153	
154	Sterile distilled water was used as the negative control. After the PCR analysis, we
155	confirmed there was no band in agarose gel of electrophoresis from the negative control.
156	In the revised manuscript, these results are now clearly described (L147-149).
157	We compared our sequence results with those of known contaminants (Zehr et al. 2003b).
158	The sequences with similarity (>97%) at the amino acid level to the contaminants were
159	recovered from samples obtained during the KK-13-6_Sep and KS-14-2_Mar cruises.
160	Since we do not include these sequences in our data analysis, those do not influence our
161	results. (L266-270)
162	
163	P. 5, l. 20: I suggest mentioning here that you have 197 sequences.
164	
165	We have added this number of sequences as suggested (L150-151).
166	
167	P. 6, l. 3-10: Was the incubations done in replicates? Was the T0's done in replicates?
168	
169	Was the incubations done in replicates.
170	
171	Yes. Triplicate bottles were used for mannitol enrichment experiment and for the
172	experiments to compare the bubble and the dissolution methods. For other experiments,
173	duplicate bottles were used. This information is now clearly described in the text
174	(L102-103, 128-129, 133).
175	
176	Was the T0's done in replicates?
177	
178	No it wasn't. This is now stated in the text (L103)
179	
180	P. 6, l. 20: How long did you store these bags? Tedlar bags are not completely impermeable

181	to gas and 15N2 will equilibrate with the atmosphere over time.
182	
183	These bags were stored no more than 1 h after the preparation. We consider that the
184	exchange of the N_2 gas was minimal during this period. In the revised manuscript, we now
185	clearly state this. (L126-127)
186	
187	P. 7, 1. $24 - p$. 8, 1. 2: Consider moving this part to the Discussion.
188	We have more dubin and to the Discussion (L276 201)
189	we have moved this part to the Discussion (L3/6-381).
190	
191	P. 8, 1. 12-21: Here the authors present N2 fixation rates in vertical profiles. I suggest adding
192	the actual rates and referring to figure 3.
193	
194	According to the suggestion, actual rates are now reported (L239-240) and the Fig. 4 $(E_{2}^{2}, 2)$
195	(Fig.3 in the previous manuscript) is referred (L232).
196	
197	P. 9, I. 6: How many sequences were obtained from each cruise and each sample?
198	The number of recovered accuracy report from 1 to 15. We have added the number of
199	The number of recovered sequences ranged from 1 to 15. We have added the number of
200	sequences at each station in every cruise in Table 1.
201	
202	P. 9, 1. 5-22: How and you assign sequences to groups? At what AA sequence similarity level?
203	Our obtained along ware included the known wift cluster (7 chr at al. 2002a) and have α
204	they were labeled in the present study. (L158, 160)
200	they were fabeled in the present study. (E138-100)
200	P 10 1 12. How did they compare to rates from the NE Atlantic coastal waters (e.g. Rees at
207	al 2000 Aguat Microb Ecol 374 Baptzon Tilia et al 2015 ISME LO
208	u., 2009 Aquui Microb Ecoi 374, Benizon-Tittu ei u., 2013 ISME 5 9)
203	We have now compared our data with those reported by Rees et al. and Bentzon Tilia et al.
210 911	in the revised manuscript (I 337-340)
211 919	"Higher nitrogen fixation rates have been determined in other temperate oceans, including
212	the western English Channel (18.9+0.01 and 20.0 nmol N l^{-1} d ⁻¹ : Rees et al. 2009) and the
210 91 <i>1</i>	Baltic Sea estuaries (47-83 nmol N 1^{-1} d ⁻¹ : Bentzon-Tilia et al. (2015)."
215	Danie Sou Ostanios (17 03 milor 141 d., Bentzon Tina et al., 2013).
216	P. 11. 1. 1-4: Iron concentrations were not determined in this study hence it could limit N?
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

217	fixation. What concentrations of iron are usual in this particular environment?
218	
219	Average dissolved iron concentration in the surface mixed layer in this region in spring
220	was reported to be 0.79-8.46 nM (Nishioka et al., 2007) which is higher than in areas
221	where nitrogen fixation is limited by iron (<0.4 nM) (Sohm et al., 2011 and reference
222	therein). Hence, iron would not limit nitrogen fixation in this region. We have added the
223	iron concentration in L356-359.
224	
225	P. 12, l. 6: Delete oligotrophic.
226	
227	Deleted as suggested.
228	
229	P. 12, l. 12-19: The original -24774A11 sequence from the South China Sea is closely related
230	(95% AA sequence similarity) to many Pseudomonas stutzeri-like sequences, which are
231	continuously reported from most waters including temperate coastal regions. At what level do
232	the sequences obtained in this study resemble the original -24774A11 sequence relative to
233	known temperate Pseudomonas stutzeri-like nifH sequences?
234	
235	The nifH sequences that we obtained (KK-13-6_ON7-4 and KT-12-27_ON5-13)
236	resembled the γ -24774A11 sequence at a >97% similarity level, whereas the
237	corresponding similarity level for P. stutzeri was 94%, except that a sequence obtained at
238	Stn. OT4 during the KT-13-2_Jan cruise (KT-13-2_OT4-14) displayed >97% similarity to
239	<i>P. stutzeri</i> . (L431-433, 436-438)
240	
241	P. 12, l. 20-28: It is not rare for Cluster III sequences to make up a substantial part of the
242	surface community. See references listed above.
243	
244	We have deleted this sentence.
245	
246	P. 13, l. 21-24: UCYN-A and the gamma-Proteobacterium -24774A11 are speculated to be
247	responsible for N2 fixation. Consider -24774A11 being a Pseudomonas stutzeri–like
248	sequence: How does the conclusion presented here relate to previous findings from temperate
249	coastal regions (e.g. Bentzon-Tilia et al., 2015 ISME J 9)?
250	
251	The qPCR results, which we have newly added in the revised manuscript, demonstrated
252	that γ -24774A11 was detected from all the cruises except the KS-14-2_Mar (Fig. 7, 8 and

253	S5). Although the <i>P. stutzeri</i> -like <i>nifH</i> sequence (>97% similarity at the AA level) was
254	recovered from Stn. OT4 during the KT-13-2_Jan cruise, γ -24774A11 was not detected
255	there by the qPCR analysis (Fig. S5). Therefore, P. stutzeri-like sequence was not detected
256	as the γ -24774A11 by the qPCR analysis. Bentzon-Tilia et al (2015) found that UCYN-A
257	was one of the major diazotroph in temperate estuaries by their one year observation,
258	which was consistent with our study. Although they recovered many sequences of
259	γ -proteobacteria throughout a year, sequence of γ -24774A11 was not major in the group.
260	They reported that P. stutzeri-like sequence (99% similarity at nucleotide level) was the
261	most abundant in their sample, which was not consistent with our results. We have added
262	these statements in L408-410, 429-440.
263	
264	P. 13, l.2: Here you talk about ammonium. Include these data in Results, please.
265	
266	We have added the data of ammonium in the revised manuscript (in detail, see above).
267	
268	Figure 2: How many replicates? $P < 0.05$, $n = ?$
269	
270	We conducted this comparative experiment in triplicate. We have added the sample
271	number in the text (L102-103, 128-129, 133).
272	
273	Figure 4: Add ammonium to this figure Make symbols identical for each parameter/nutrient
274	you present instead of having circles, triangles, stars, diamonds etc. representing the same
275	things in the different sub-panels. Why are there just straight lines in the last panel? Is this
276	the station where the CTD was not cast? If so provide this info in figure legend.
277	
278	We have added ammonium in Figure 5 (Fig. 4 in the previous manucript), and changed the
279	color to distinguish from the other parameters. The straight lines in the last panel were
280	temperature and nitrate obtained by a CTD cast, which were ascribable to strong mixing.
281	We have stated this in the figure legend.
282	
283	Figure 5: In this figure as anywhere else in the paper it would facilitate comprehension a lot
284	if the cruise names were given names corresponding to sampling time/season/month
285	
286	We have added information of sampling month and season in all revised figures.
287	
288	Figure 6: Consider indicating at what transects you saw high N2 fixation rates, or consider

289	adding the mean rate in relation to the bar so you can couple community composition and the
290	N2 fixation rate. Clarify that the number of sequences is total for that cruise in the legend.
291	
292	We have deleted this figure in the revised manuscript as suggested by reviewer #2.
293	
294	Technical comments:
295	P. 2, l. 6: Add a space between "nmol" and "N" here and throughout the paper including
296	figures.
297	
298	We have added a space as suggested.
299	
300	P. 5, l. 10: Correct the degree-sign in "-80 C" to "-80 C" here and throughout the
301	paper.
302	
303	We have corrected as suggested.
304	
305	P. 10, l. 14: Correct to "through".
306	
307	We have corrected the word.
308	
309	P. 14, l. 2-3: Correct to "Bentzon" and 2014b to "2015"
310	
311	We have corrected the reference.
312	
313	P. 15, l. 7: Correct reference to "ISME J 9, 273-285"
314	
315	We have corrected the reference.
316	

318 **Referee #2**

319 General comments:

320 Nitrogen fixation rate measurements and nifH gene based molecular studies in temperate 321 regions of western North Pacific Ocean is relatively rare, comparing with the intensively 322studied Eastern Pacific Ocean and Atlantic Ocean. The authors reported nitrogen fixation 323rate and some nifH sequences of potential nitrogen fixers in the temperate coastal region of 324 the western North Pacific Ocean, which can provide some missing knowledge in this field. In 325general, the patterns and explanations of nitrogen fixation rate presented in this study are 326good and making sense, while the part of nifH gene based molecular study is too weak to 327reveal the community structures in the studied regions. The authors only included less than 328 200 clones of nifH gene amplicons from the six cruises and tried to discuss "diazotroph community structure", in which any statements made are not convince enough. Besides that, 329 330 there are numbers of unclear issues, related to the methodologies of both rate measurement 331and molecular works, needed to be clarified or addressed. The authors tried to link up the 2011 Tohoku-oki tsunami with the diazotroph community 332

structure in discussion part and conclusion part. However, without comparing the diazotroph
community structures before and after the tsunami, it is inappropriate to make any related
conclusions.

336

337 The number of obtained sequences was not enough to describe diazotroph diversity. As 338 you suggested below, some diazotrophs could not be captured from the small number of clones. The clone library analysis showed that UCYN-A, *Trichodesmium*, and γ -24774A11 339 were likely to be important diazotrophs from early summer to fall when nitrogen fixation 340 341occurred. Therefore, to make up the deficiency, we have quantified these groups by a 342 qPCR analysis. In addition, UCYN-B which is considered a major diazotrophs in the 343tropical and subtropical oligotrophic ocean (Moisander et al., 2010) has been quantified. 344The qPCR analysis demonstrated that the target groups were quantified even at stations where these clones were not recovered from the clone library analysis, suggesting that the 345number of clones was not sufficient to capture the diazotroph community structure on each 346 347 cruise. Despite this limitation, the sequences more frequently recovered in the clone 348 library generally corresponded to the most abundant group revealed by the qPCR analysis. For example, UCYN-A was frequently recovered in the library during the KT-12-20_Aug, 349 350KK-13-1_Jun, and KK-13-6_Sep cruises; for these samples, the qPCR results showed that UCYN-A was the most abundant group among the four examined. Similarly, qPCR data 351352indicated that *Trichodesmium* was the most abundant group during fall, when this group

- 353 was frequently recovered in the library (during the KT-12-27_Oct cruise). This
- consistency in the general results obtained by the clone library and qPCR suggests that
- both of these approaches captured a similar seasonal trend in community composition
- changes for at least the major diazotroph groups. (L163-179, 390-402)
- Regarding the issues related to the methodologies of both rate measurement and molecular works, we have replied to the following comments (see below).
- 359 We would have to compare the diazotroph community before and after the tsunami to
- discuss the influence of the 2011 Tohoku-oki tsunami as you suggested. Therefore we havedeleted the related sentences from the Discussion and Conclusion. Meanwhile, we have
- 362 left the related sentences in the Introduction for the future research.
- 363

364 Specific Comments:

365 A. nifH gene based molecular works:

366 The amount of nifH clones (200 clones) sequenced is really too few to reveal the community

367 structure in 6 cruises. If the clones sequenced were evenly selected from the samples of 6

368 cruises, there should be approximately 33 clones sequenced per cruise and 8 sequences

369 representing the diazotroph community in each sampling stations. In this case, the

370 conclusions about distribution of diazotrophs will be very inaccurate. For examples, absence

371 of Trichodesmium and other cyanobacterial diazotrophs in most of cruises may be due to the

- 372 *low coverage of sequencing and PCR primer induced bias*(*Langlois, Hümmer et al. 2008*).
- 373

As you suggested, the number of *nifH* clones could not be enough to reveal diazotroph 374community structure. The qPCR analysis showed that the target groups were quantified 375even at stations where these clones were not recovered from the clone library analysis. 376 Meanwhile, as I mentioned above, the qPCR analysis indicated that the clone library 377 378analysis could capture dominant group in diazotroph community. In the revised 379manuscript, on the basis of these results, we have shown the major diazotroph (UCYN-A from early summer to late summer, Trichodesmium in fall, and Cluster III from winter to 380 spring), and discussed why they thrive in a particular season. (L390-466) 381

382

P.2, l.4: As mentioned by another referee, the authors should not use the term "diversity"
here. The author can use "diazotroph community" or "identities of potential nitrogen fixers"
to replace the term "diversity".

386

We have rephrased the word to "diazotroph community". (L14)

388

389	P.5 l.9-14: The authors mentioned that DNA was extracted from the samples collected in Stns.
390	OT4, ON1, ON5, and ON7. However, it is unclear that how the data of relative abundances of
391	diazotroph species in different cruises was generated. Did they mix the DNA samples or PCR
392	products or sequence data of different stations in the same cruise? The authors should clarify
393	this part.
394	
395	The <i>nifH</i> sequences were separately obtained from each station. We have written the
396	number of obtained sequences at each station in Table 1 in the revised manuscript.
397	(Table 1).
398	
399	P.5 l.26-27: The bootstrap values of most important branches (dividing the clusters of nifH)
400	in the phylogenetic tree were lower than 50
401	
402	The bootstrap values did not divide the groups as you suggested. In a phylogenetic tree of
403	nifH, a cluster including known sequences is named specific name even though the
404	bootstrap value was lower than 50 (Zehr et al., 2003a). The obtained sequences were
405	assigned to bacterial groups based on known sequences in a cluster within the
406	phylogenetic tree (Zehr et al., 2003a). (L158-160)
407	
408	P.9 l.6-22, fig.6 : the authors should describe the diazotroph community structure in different
409	stations of the same cruise separately (if they would like to sequence more clones), rather
410	than just presenting the total sequencing results of each cruise as one community.
411	Inconsistent nutrient concentration and nitrogen fixation rate were detected in different
412	stations during the same cruise (fig. S2), therefore, the diazotroph community in these
413	stations may also be different.
414	
415	We agree. We have deleted Figure 6 in the previous manuscript.
416	
417	B. Nitrogen fixation rate measurement:
418	P.6 l.7-8: Recently study reported contamination of commercial stock 15-N2 gas with
419	15N-labeled ammonia and nitrate, which could affect the results of nitrogen fixation rate
420	measurement significantly (Dabundo, Lehmann et al. 2014). Therefore, the authors
421	should ensure the purity of their 15-N2 gas.
422	
423	We recognize this important issue. In the present study, we used ${}^{15}N_2$ gas produced by SI
424	Science Co., Ltd. Our recent study demonstrated that the ${}^{15}N_2$ gas of SI Science did not

- 425 show significant contamination of nitrate, nitrite, and ammonium at nanomolar level
- 426 (Shiozaki et al., submitted to PLoS one). This could be due to different production method
- 427 of ${}^{15}N_2$ gas from it indicated by Dabundo et al. (2014). The ${}^{15}N_2$ gas of SI Science is
- 428 produced by oxidation of ¹⁵N-labeled ammonium sulfate with potassium hypobromite, and
- to avoid generation of ammonia and NO_x gas, they added surplus potassium hypobromite
- 430 (Shiozaki et al., submitted to PLoS one). We have added these statements in L104-108.
- 431

432 C. Nitrogen Fixation and environmental data

- 433 P.2 115-16: Previous study showed that ammonia is stronger inhibitor than nitrate (Ito and
- 434 *Watanabe 1983), and the inhibitory effect of nitrate to different diazotrophs is still not clear*
- 435 (Cejudo and Paneque 1986). However, the authors were just caring about nitrate in this
- 436 paper. It seems that the data of ammonia was also included in the supplementary figures. Why
- 437 *did not the authors make use of the ammonia data?*
- 438

In the revised manuscript, we have added ammonium data. There was no noticeable
seasonal difference in surface ammonium concentration such as those seen in nitrate and
phosphate (Fig. 4b). Furthermore, ammonium concentration was not negatively correlated
with nitrogen fixation in this study (p>0.05) (Table 2), suggesting that ammonium did not
influence nitrogen fixation. We have stated this in L214-218, 252-253.

444

445 *P.9 l1-2: As exceptions were found in subsurface layer of OT4, statistical analysis (e.g.*

446 principal component analysis) is needed to find out the important and significant

447 environmental variables. As mentioned before, I suggest the author to include ammonia as

448 one of the environmental variables. Besides the concentrations of DIN, they can use N:P

- 449 *ratio as a better indicator of nitrogen limitation.*
- 450

451 In the revised manuscript, we examined relationship between nitrogen fixation rates and 452 the related environmental variables (temperature, nitrate, ammonium, phosphate, N/P 453 ratio) (Table 2). Nitrogen fixation was positively correlated with temperature and was 454 negatively correlated with nitrate and phosphate concentration (p < 0.01) (Table 2). 455 Meanwhile, nitrogen fixation was not significantly related with ammonium concentration 456 and with N/P ratio (p > 0.05) (L245, 251-255).

457

458 Cejudo, F. J. and A. Paneque (1986). "Short-term nitrate (nitrite) inhibition of nitrogen

- 459 fixation in Azotobacter chroococcum." Journal of bacteriology 165(1): 240-243.
- 460 Dabundo, R., M. F. Lehmann, et al. (2014). "The Contamination of Commercial 15N2 Gas

- 461 Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation
- 462 Measurements." PLoS One 9(10): e110335.
- 463 Ito, O. and I. Watanabe (1983). "THE RELATIONSHIP BETWEEN COMBINED
- 464 NITROGEN UPTAKES AND NITROGEN FIXATION IN AZOLLAâ^{*}AR^{*} ANABAENA
- 465 SYMBIOSIS." New phytologist 95(4): 647-654.
- 466 Langlois, R. J., D. Hümmer, et al. (2008). "Abundances and distributions of the dominant
- 467 nifH phylotypes in the Northern Atlantic Ocean." Applied and environmental microbiology
 468 74(6): 1922-1931.
- 469

471 *Referee #3*

- 472 General comments: This manuscript provides the seasonal variability of nitrogen fixation and
- 473 *diazotrophs in the coastal region of the western North Pacific Ocean where was seriously*
- 474 affected by the 2011 Tohoku earthquake-induced tsunami. The authors showed that the high
- 475 nitrogen fixation rate was observed in summer and fall, and the nifH sequence of UCYN-A
- 476 and -proteobacteria was detected at the same time. They concluded that the origin of these
- 477 diazotroph is Tsugaru warm current and the findings will be re-evaluate the nitrogen fixation
- 478 in temperate ocean. They also recovered nifH sequences assigned with benthic strains or
- 479 terrestrial strains in this region and discussed the influence of the 2011 Tohoku
- 480 *earthquake-induced tsunami. The observation field is relatively interesting. The authors have*
- 481 *made a good attempt at the understanding of nitrogen fixation in the temperate region.*
- 482 *However, I feel that this study is not adequately describe.*
- 483

484 Specific comments:

- 1. The meaning of the transect sampling is not clear. There are some hydrographic difference
- 486 between coastal and offshore stations, due to Tsugaru water current, Kuroshio and Oyashio.
- 487 The authors sometimes mentioned terrestrial effects. However authors showed the average of
- 488 each line. I suggest the analysis region should be divide with each stations or
- 489 coastal/offshore stations. It may be better if the authors would like to discuss about the
- 490 influence of the 2011 Tohoku earthquake induced tsunami. The influence of the damage of
- 491 benthic environment may be clear in coastal stations than those of offshore stations. 2. To
- 492 discuss the seasonal variation of diazotrophic community, the number of recovered nifH
- 493 sequences is not enough. Much more sequences should be analyzed. In addition, I wonder
- 494 why the Richelia, UCYN-B and UCYN-C were not recovered. Were the sequence number and
- 495 *the volume of sampling water appropriate? Furthermore, if the authors describe the benthic*
- 496 strains or terrestrial strains, the data also should be shown as each stations. I think that the
- 497 quantitative PCR also useful method for this study, such as Shiozaki et al (2014).
- 498 I encourage the authors to reanalyzing the nitrogen fixation rate, environmental factors
- 499 *and nifH sequences at each station.*
- 500

Although we set the transect from inside bay to open ocean to examine the gradient of environmental variables and diazotrophy, there were no significant difference between inside and outside the bays (Fig. S2 and S5) except at the OT line during the KK-13-6_Sep when nitrate, ammonium, and phosphate concentration increased inside the bay. This similarity could be because intense exchange of surface waters often occurred between

- inside and outside the bays (Furuya et al., 1993). According to the TS diagram (Fig. 3),
 surface waters collected during the same cruise in a particular season generally belonged
 to the same water system that was prevalent in the investigated region at the time of our
 sampling. Therefore, for simplicity, the average value of each variable was shown in each
 cruise. We have added these statements in L191-201.
- The clone library analysis showed that UCYN-A, *Trichodesmium*, and γ -24774A11 were 511likely important diazotrophs from early summer to fall when nitrogen fixation occurred. 512513Therefore, the present study quantified these *nifH* phylotypes by a qPCR analysis to 514examine their relative importance in these seasons. In addition, UCYN-B which is 515considered a major diazotrophs in the tropical and subtropical oligotrophic ocean 516(Moisander et al., 2010) has been quantified. The qPCR analysis demonstrated that the target groups were quantified even at stations where these clones were not recovered from 517the clone library analysis, suggesting that the number of clones was not sufficient to 518519capture the diazotroph community structure on each cruise. Despite this limitation, the sequences more frequently recovered in the clone library generally corresponded to the 520most abundant group revealed by the qPCR analysis. For example, UCYN-A was 521522frequently recovered in the library during the KT-12-20 Aug, KK-13-1 Jun, and 523KK-13-6_Sep cruises; for these samples, the qPCR results showed that UCYN-A was the most abundant group among the four examined. Similarly, qPCR data indicated that 524525*Trichodesmium* was the most abundant group during fall, when this group was frequently 526 recovered in the library (during the KT-12-27_Oct cruise). This consistency in the general results obtained by the clone library and qPCR suggests that both of these approaches 527captured a similar seasonal trend in community composition changes for at least the major 528diazotroph groups. We are now clearly stated in L390-402. Abundance of *Richelia* is 529generally lower than that of *Trichodesmium* and it inhabits tropical and subtropical regions 530as with Trichodesmium (Shiozaki et al., 2010). The UCYN-B and UCYN-C are also 531532observed in tropical and subtropical regions (Moisander et al., 2010; Taniuchi et al., 2012), and not in the temperate regions (Needoba et al., 2007; Rees et al., 2009; Mulholland et al., 5332012). Our results thus were consistent with the previous ones. We have added number of 534recovered sequences at each station in every cruise in Table 1. 535
- 536

P. 2, l. 11 The nifH sequences were only recovered, not quantified. It is hard to say as 'played
key role' in this study.

539

In the revised manuscript, we have quantified the four diazotroph group as mentionedabove. According to the results of the qPCR analysis. We have revised the description as

542	follows.
543	"Quantitative PCR analysis revealed that UCYN-A was relatively abundant from early to
544	late summer compared with Trichodesmium and y-24774A11, whereas Trichodesmium
545	abundance was the highest among the three groups during fall." (L25-27).
546	
547	P. 7, l. 25 This sentence belongs to the 'discussion'.
548	
549	We have moved the related sentences to the Discussion (L376-381).
550	
551	P. 8, l. 10-11 The horizontal distributions of nitrogen fixation and nutrients should be shown.
552	
553	We have shown these horizontal distributions in Figure S2.
554	
555	P. 9, l. 5-22 It would be shown the stations where the nifH sequences were recovered.
556	
557	The obtained clone number has been shown at each station in every cruise in Table 1.
558	
559	P. 10, l. 4-24 It would be added the discussion about the influence of eddy which seems bring
560	the water mass from Kuroshio. The sea surface temperature showed some currents from south
561	to north around offshore stations in KT-12-27 and KK-13-6 (Fig. S1). And the nitrogen
562	fixation rate of offshore station OT7 was higher than the other stations (Fig.2).
563	
564	Although the geostrophic current fields showed that Stn. ON7 during the KT-12-27_Oct
565	cruise was located in anticyclonic eddy, the nitrogen fixation rate was similar with that at
566	the other stations. Furthermore, according the TS diagram, water belonged to the Kuroshio
567	water system did not exist (Fig. 3).
568	
569	P. 10, l. 25-P. 11 l. 4 The approach is interesting. But the authors should compere the
570	community structure to Blais et al (2012) and discuss the different usage of organic materials
571	of bacteria.
572	
573	Blais et al (2012) suggested this hypothesis on the basis of their observation that gradient
574	of nitrogen fixation rate occurred from the river mouth to the open ocean, and did not
575	mention the specific diazotroph groups.
576	
577	P. 11, I. 5-23 This sense should be improved to clarify the why the low nitrogen fixation rates

578	were observed.
579	
580	High DIN concentration are generally regarded to inhibit nitrogen fixation (Falkowski,
581	1983). We wrote this in L53-54.
582	
583	P. 11, l. 20 Add the nitrogen fixation rate along the OT transect line to the Fig. S3. It would
584	be clear the influence of Typhoon Man-yi.
585	
586	Nitrogen fixation rate in the OT line has been shown in Fig. S2.
587	
588	P. 12, l. 7-11 This part is not convincing. There is no evidence that the cluster III was not exist
589	in this region before the tsunami. It is not clear that the cluster III recovered in this study is
590	the same as those living in sediment or not.
591	
592	We agree. Since we do not have data before the tsunami, we have deleted these sentences.
593	
594	P. 12, l. 11-15 It would be better to show the horizontal distribution of diazotroph.
595	
596	We have added this information in Table 1 and Fig. S5.
597	
598	P. 12, l. 24 The experiments were conducted to surface layer, and did not consider any bottom
599	structure or re-suspending. If the authors would like to evaluate the damage of tsunami, the
600	study should be include the bottom layer and sediments.
601	
602	We have deleted the sentences related with the damage of tsunami from the Discussion.
603	
604	Fig. 4 (b) The line of N2 fixation is hard to see in KK13-6 and KS14-2. To help the reader,
605	seasons should be added with the cruise name, such as Fig.3.
606	
607	In the revised figure, we have used color to distinguish each parameter. Further, we have
608	added information of season in each cruise.
609	
610	Fig. 6 The data should not be summarized with different stations.
611	
612	We have deleted this figure from the revised manuscript.
613	

- 614
- 615 Reference
- 616 Furuya, K., Takahashi, K., Iizumi, H.: Wind-dependent formation of phytoplankton spring
- 617 bloom in Otsuchi Bay, a ria of Sanriku, Japan, J. Oceanogr. 49, 459-475, 1993.
- 618 Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine nitrogen fixation,
- 619 Nat. Rev. Microbiol., 9, 499-508, 2011.
- 620 Taniuchi, Y., Chen, Y.-L. L., Chen, H.-Y., Tsai, M.-L., Ohki, K.: Isolation and
- 621 characterization of the unicellular diazotrophic cyanobacterium Group C TW3 from the
- tropical western Pacific Ocean, Environ. Microbiol., 14(3), 641-654, 2012.
- 623 Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O., Jenkins, B. D.: Nitrogenase
- genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes,
- 625 BioTechniques, 35, 996-1005, 2003b.

Seasonal dynamics of n<u>N</u>itrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific

- 4
- 5 T. Shiozaki^{1,2}, T. Nagata¹, M. Ijichi¹, K. Furuya²

6 [1]{Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564,

7 Japan}

8 [2]{Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences,

9 The University of Tokyo, Tokyo, 113-8657, Japan}

10 Corresponding to: T. Shiozaki (shiozaki@aori.u-tokyo.ac.jp)

11

12 Abstract

Nitrogen fixation in temperate oceans is a potentially important, but poorly understood process that may influence the marine nitrogen budget. This study determined seasonal variations in nitrogen fixation and <u>the *nifH* gene diversitydiazotroph community</u> within the euphotic zone in the temperate coastal region of the northwestern North Pacific. Nitrogen fixation as high as 13.6 nmol_N L⁻¹ d⁻¹ was measured from early summer to fall when the surface temperature exceeded 14.2° C (but was lower than 24.3° C) and the surface nitrate

19	concentration was low ($\leq 0.30 \ \mu$ M), although we also detected nitrogen fixation in subsurface
20	layers (42–62 m) where nitrate concentrations were high (>1 μ M). Clone library analysis
21	results indicated that <i>nifH</i> gene sequences were omnipresent throughout the investigation
22	period. During the period when nitrogen fixation was detected (early summer to fall), the
23	genes affiliated with UCYN-A, <i>Trichodesmium</i> , and γ -proteobacterial phylotype γ -24774A11
24	were frequently recovered. In contrast, when nitrogen fixation was undetectable (winter to
25	spring), many sequences affiliated with Cluster III diazotrophs (putative anaerobic bacteria)
26	were recovered. Quantitative PCR analysis revealed that UCYN-A was relatively abundant
27	from early to late summer compared with <i>Trichodesmium</i> and γ -24774A11, whereas
28	Trichodesmium abundance was the highest among the three groups during fall.

30 **1. Introduction**

The amount of bioavailable nitrogen introduced into the global ocean via nitrogen fixation is considered to be roughly balanced, at the large spatiotemporal scale, by nitrogen loss through denitrification, as indicated by the sedimentary nitrogen isotope record during the Holocene epoch (Brandes and Devol, 2002; Deutsch et al., 2004). However, the data of rate measurement datas have revealed that denitrification far exceeds nitrogen fixation (Codispoti, 2007). This discrepancy in the nitrogen balance has raised the possibility that the current

37	estimate of marine nitrogen fixation, which is primarily based on data collected in tropical
38	and subtropical oceans where large cyanobacterial diazotrophs (e.g., Trichodesmium spp. and
39	Richelia intracellularis) are considered to be mainly responsible for nitrogen fixation (e.g.,
40	Capone et al., 1997), might be too low (Codispoti, 2007). This is supported by the results of
41	recent studies using molecular approaches that have increasingly revealed that marine
42	diazotrophs are more diverse and widespread than previously thought (Riemann et al., 2010;
43	Zehr, 2011). Recently discovered marine diazotrophic taxa, including those belonging to
44	unicellular cyanobacteria and heterotrophic bacteria, are abundant in oceanic regions where
45	large cyanobacterial diazotrophs are scarce (Needoba et al., 2007; Moisander et al., 2010;
46	Halm et al., 2012; Bonnet et al., 2013; Rahav et al., 2013; Shiozaki et al., 2014a), suggesting
47	that a failure to account for nitrogen fixation mediated by these diazotrophs might result in
48	underestimation of marine nitrogen fixation.
49	The temperate coastal ocean is one of the regions where nitrogen fixation rates have been
50	understudied and potentially underestimated. Conventionally, nitrogen fixation in temperate
51	oceans has been assumed to be low because of the relatively low temperatures (<~20°C),
52	which generally inhibits the growth of large cyanobacterial diazotrophs (Breitbarth et al.,
53	2007), and development of high dissolved inorganic nitrogen (DIN) concentrations (>1 μ M).
54	High DIN concentrations are generally regarded to inhibit nitrogen fixation (Falkowski,

55	1983), especially during mixing periods. However, recent studies have indicated that
56	nitrogen fixation, presumably mediated by unicellular cyanobacteria and heterotrophic
57	bacteria, is detectable even in the relatively cold (<10°C) and DIN-rich waters (>1 μ M) of the
58	Atlantic coast (Mulholland et al., 2012) and the Baltic Sea estuaries (Bentzon-Tilia et al.,
59	2014a2015). These results highlight the necessity of re-evaluating the extent, variation, and
60	control mechanisms of nitrogen fixation in temperate oceans, with recognition of the
61	widespread occurrence of diverse diazotrophic microbes.
62	This study examined the seasonal variation in nitrogen fixation in the temperate inside bays
63	and open ocean located in the interfrontal zone of the northwestern North Pacific. In this
64	region, physical, chemical, and biological properties vary widely between seasons (Shiozaki
65	et al., 2014b), due to the confluence of three currents: the Kuroshio (warm current), the
66	Tsugaru Warm Current, and Oyashio (cold current). Data on nitrogen fixation rates in the
67	temperate Pacific are limited (Needoba et al., 2007), and, to the best of our knowledge, the
68	present study is the first to examine seasonal diazotrophy during all seasons in the temperate
69	ocean. The <u>This</u> study was conducted as part of a project to monitor the dynamics of the
70	coastal ecosystem and the recovery thereof after the 2011 Tohoku-oki tsunami, which struck
71	the region on 11 March 2011.

2. Materials and Methods 73

74	The experiments were conducted during six cruises in the temperate coastal region of the
75	western North Pacific. These cruises covered a full seasonal cycle, including spring
76	(KS-14-2 <u>Mar</u> , 14–19 March 2014), early summer (KK-13-1 <u>Jun</u> , 24–29 June 2013),
77	summer (KT-12-20 <u>Aug</u> , 7–12 August 2012), late summer (KK-13-6 <u>Sep</u> , 14–21 September
78	2013), fall (KT-12-27 <u>Oct</u> , 15–22 October 2012), and winter (KT-13-2 <u>Jan</u> , 19–25 January
79	2013). Sampling stations were located along the transect lines OT (39 ^o -20 ^o -20),
80	141 <u>°</u> -56 <u>'</u> -142 <u>°</u> -50 <u>'</u> °E) and ON (38 <u>°</u> -25 <u>°</u> N, 141 <u>°</u> -29 <u>'</u> -142 <u>°</u> -20 <u>°</u> E). Eight stations were
81	located offshore (OT4-6, ON4-8,-), while two stations were deployed in with additional
82	stations being deployed in the Otsuchi (OT1) and Onagawa (ON13) bays (Fig. 1). Just
83	before the KK-13-6 <u>Sep</u> cruise, Typhoon Man-yi passed from southwest to northeast in the
84	study area (Fig. S1).
85	Temperature, salinity, and dissolved oxygen profiles to of regions near the bottom floor were
86	measured using a SBE 911-plus Conductivityconductivity-tTemperature-pPressure (CTD)
87	system (Sea-bird Electronics, Bellevue, WA, USA). Water samples were collected in an
88	acid-cleaned bucket and Niskin-X bottles. At offshore stations, sSamples for nutrient
89	analysiss were collected from a depth of 7–15 different depths m in the upper 200 m, while at
90	shallower (<200 m) bay stations, samples were collected from 24 at stations outside the bays

and from a depth of 1 13-9 different depths m-in the upper bottom floor at stations inside the
baysentire water column, except at Stn. OT1 where only surface water samples were
collected. _Samples for DNA analysis and incubation experiments were collected from the
surface at almost every station, and from depths corresponding to 10% and 1% of the surface
light intensities at Stns. OT4 and ON5. Light attenuation was determined using a
submersible PAR sensor.

97 2.1. Nutrients

Samples for nutrient analysis were stored in 10-mL polyethylene tubes and kept frozen until onshore analyses. Nitrate, nitrite, ammonium, and phosphate concentrations were determined using an AACSII auto-analyzer (Bran+Luebbe, Norderstedt, Germany). The detection limits of nitrate, nitrite, ammonium, and phosphate ranged from 0.01–0.04 μ M, 0.01–0.02 μ M, 0.01–0.03 μ M, and 0.01–0.02 μ M, respectively. The nitracline was defined as the depth where nitrate concentrations increased above 1 μ M.

104 2.2. DNA analysis

Samples (0.38 1 L) for DNA analysis were filtered through 0.2-μm pore-sized Nuclepore
 filters and stored in a deep freezer (-80°C) until onshore analysis. Total DNA was extracted
 using a ChargeSwitch Forensic DNA Purification Kit (Invitrogen, Carlsbad, CA, USA) with
 slight modification of the manufacturers protocol (Shiozaki et al., 2014a). Partial *nifH*

i i	
109	fragments were amplified from samples collected from surface water at Stns. OT4, ON1,
110	ON5, and ON7 using a nested PCR strategy (Zehr and Turner, 2001). PCR chemicals were
111	applied as described by Shiozaki et al. (2014a). The first and second PCRs were run using
112	the same cycling conditions: 95°C for 30 s followed by 30 cycles of 98°C for 10s, 52°C for
113	30s, and 72°C for 30 s; followed by a final extension at 72°C for 7 min. The PCR products
114	were cloned and sequenced according to Shiozaki et al. (2014a). No DNA was detected
115	from negative controls of the PCRs. The nifH sequences were translated into amino acid
116	sequences and searched against the protein database of the National Center for Biotechnology
117	Information using the BLASTp algorithm. Clones with 100% amino acid sequence
118	similarity were defined as the same operational taxonomic units (OTU) using the CD-HIT
119	suite (Huang et al., 2010). The amino acid sequences were aligned using multiple sequence
120	comparisons by the log-expectation (MUSCLE) module in the MEGA5 package (Tamura et
121	al., 2011). A phylogenetic tree was constructed using the maximum likelihood method
122	employing the Dayhoff matrix-based mode, and 1,000 bootstrap replicates were run. The
123	sequences from this study were deposited in the DNA Data Bank of Japan (DDBJ) with
124	accession numbers LC013480 to LC013676.
125	2.3.2.2. Nitrogen fixation activity and mannitol enrichment experiment

126 Nitrogen fixation was determined by the ${}^{15}N_2$ gas bubble method (hereafter, the bubble

127	method; Montoya et al., 1996). Samples for incubation were collected in <u>duplicate</u>
128	acid-cleaned $2-2-L$ polycarbonate (PC) bottles. <u>and t</u> he time-zero samples (n=1) were
129	immediately filtered onto precombusted GF/F filters. Two milliliters of ${}^{15}N_2$ gas [SI
130	Science Co. Japan, for this gas, contaminations of nitrate, nitrite, and ammonium were
131	determined to be low (< nM level), indicating that the overestimation of nitrogen fixation
132	rates due to the uptake of ¹⁵ N-labeled contaminants (Dabundo et al. 2014) was minimal
133	(Shiozaki et al., unpublished data)] were injected directly into the incubation bottles through
134	a septum using a gastight syringe. The tracer-added samples were covered with
135	neutral-density screens to adjust the light level and incubated for 24 h in an on-deck incubator
136	filled with flowing surface seawater. After the incubation, the samples were filtered onto
137	precombusted GF/F filters. The isotopic analyses were performed as described previously
138	(Shiozaki et al., 2009). The rate of nitrogen fixation was calculated using the equations of
139	Montoya et al. (1996).
140	Because of To examine the possibility of underestimation of nitrogen fixation as determined
141	by the bubble method (Mohr et al., 2010; Großkopf et al., 2012), we also determinecompared
142	<u>the</u> d nitrogen fixation rates <u>determined</u> using the ${}^{15}N_2$ gas dissolution method (hereafter, the
143	dissolution method; Mohr et al., 2010) with those determined using the bubble method (see
144	<u>above)</u> during the KK-13-6 <u>Sep</u> and KS-14-2 <u>Mar</u> cruises. For the dissolution method,

145	$^{15}N_2$ -enriched seawater was prepared according to Mohr et al. (2010) and Großkopf et al.
146	(2012). Briefly, filtered seawater was degassed using a Sterapore membrane unit
147	(20M1500A: Mitsubishi Rayon Co., Ltd., Tokyo, Japan) at a flow rate of ~500 mL min ⁻¹
148	(recirculation period, 10 min). Degassed seawater was stored in $\frac{1}{1}$ L Tedlar bags without
149	headspaces and 10 mL $^{15}N_2$ gas was added. After complete dissolution, the $^{15}N_2$ -enriched
150	seawater was added to seawater samples contained in 2-L PC bottles, which were incubated
151	and used for isotopic analyses as described above. The ${}^{15}N_2$ -enriched seawater was
152	prepared at each station, and was added to the incubation bottles within 1 h after-the
153	preparation. The nitrogen fixation rate was calculated according to Mohr et al. (2010).
154	For this comparison, triplicate samples were used for both the dissolution and bubble
155	methods
156	To examine if sugar addition affected nitrogen fixation rates (Bonnet et al., 2013; Rahav et al.,
157	2013; Moisander et al., 2011), we determined nitrogen fixation rates (the ${}^{15}N_2$ gas bubble
158	method, see above) for surface seawater samples (stations ON4 and OT6 during the
159	KS-14-2 <u>Mar</u> cruise) with and without addition of mannitol (final conc. 0.8 μ M) <u>(n=3)</u> .
160	2.3. DNA analysis
161	2.3.1. DNA extraction, sequencing, and phylogenetic analysis
162	Samples (0.38-1 L) for DNA analysis were filtered through 0.2-µm-pore-sized Nuclepore

163	filters and stored in a deep freezer (-80° C) until onshore analysis. Total DNA was extracted
164	using a ChargeSwitch Forensic DNA Purification Kit (Invitrogen, Carlsbad, CA, USA) with
165	slight modification of the manufacturer's protocol (Shiozaki et al., 2014a). Partial nifH
166	fragments were amplified using a nested PCR strategy (Zehr and Turner, 2001) from samples
167	collected from surface water at Stns. OT4, ON1, ON5, and ON7 during the KT-12-20_Aug
168	and KT-12-27_Oct cruises, at Stns. OT4, ON1, and ON5 during the KT-13-2_Jan and
169	KS-14-2_Mar cruises, at Stns. OT4, ON1, ON5, and ON8 during the KK-13-1_Jun cruise,
170	and at Stns OT4, ON5, ON7 during the KK-13-6_Sep cruise (Table 1). PCR reagents were
171	applied as described by Shiozaki et al. (2014a). The first and second PCRs were run using
172	the same cycling conditions: 95° C for 30 s followed by 30 cycles of 98° C for 10 s, 52° C for
173	30 s, and 72° C for 30 s; followed by a final extension at 72° C for 7 min. Sterile distilled
174	water was used as the negative control. After PCR analysis, we confirmed there was no
175	band in agarose gel of electrophoresis from the negative control. The PCR products were
176	cloned and sequenced according to Shiozaki et al. (2014a). The present study obtained 197
177	nifH sequences in total. The nifH sequences were translated into amino acid sequences and
178	searched against the protein database of the National Center for Biotechnology Information
179	using the BLASTp algorithm. Clones with 100% amino acid sequence similarity were
180	defined as the same operational taxonomic unit (OTU) using the CD-HIT suite (Huang et al.,

181	2010). The amino acid sequences were aligned using multiple sequence comparisons by the
182	log-expectation (MUSCLE) module in the MEGA5 package (Tamura et al., 2011). A
183	phylogenetic tree was constructed using the maximum likelihood method employing the
184	Dayhoff matrix-based mode, and 1,000 bootstrap replicates were run. The obtained
185	sequences were assigned to bacterial groups based on known sequences included in a cluster
186	within the phylogenetic tree (Zehr et al., 2003a). The sequences from this study were
187	deposited in the DNA Data Bank of Japan (DDBJ) as accession numbers LC013480 to
188	<u>LC013676.</u>
189	2.3.2. Quantitative PCR (qPCR) analysis
190	The clone library analysis showed that UCYN-A, Trichodesmium, and γ -proteobacterial
191	phylotype γ -24774A11 (hereafter γ -24774A11) were likely important diazotrophs from early
192	summer to fall when nitrogen fixation occurred (see below). Therefore, the present study
193	quantified these <i>nifH</i> phylotypes by qPCR analysis to examine their relative importance
194	duing these seasons. In addition, UCYN-B which is considered to be a major diazotroph in
195	the tropical and subtropical oligotrophic ocean (Moisander et al., 2010), was quantified.
196	TaqMan primer and probe sets previously designed for these four <i>nifH</i> phylotypes were used
197	for quantification y (Shiozaki et al., 2014a,c). The 20 μL qPCR reactions contained 10 μL 2
198	× Premix Ex Taq (Probe qPCR; Takara), 5.6 μ L of nuclease-free water, 1 μ L each of the

199	forward and reverse primers, 0.4 μ L of TaqMan probe, and 2 μ L of template DNA. The
200	qPCR assays were performed using LightCycler 480 System (Roche Applied Science,
201	Germany). The qPCR assays were run in triplicate reactions. Linear regression r ² values
202	for the standard curves were >0.99 for all reactions. The efficiency of the qPCR assays
203	ranged from 90.9 to 98.4%, with an average of 95.1%. As the negative control, sterile
204	distilled water was used, from which no amplification signals were detected. The detection
205	limit was 75 copies L^{-1} .

3. RESULTS

3.1. Comparison of the bubble method and the dissolution method

209	Nitrogen fixation rates determined by the bubble and dissolution methods were compared
210	during the KK-13-6 <u>Sep</u> and KS-14-2 <u>Mar</u> cruises (Fig. 2). Both methods failed to detect
211	nitrogen fixation in samples collected during the KS-14-2 cruise. During the KK-13-6_Sep
212	cruise, the nitrogen fixation rates determined by the dissolution method were significantly (p
213	$\leftarrow 0.05$ higher (1.5–2.2 fold) than those determined by the bubble method at <u>Stns. OT6 and</u>
214	<u>ON5</u> two of four stations ($p < 0.05$). At other stations <u>Stns. OT4 and ON7</u> , the nitrogen
215	fixation rates determined by the two methods did not differ significantly. The following
216	nitrogen fixation results were obtained by the bubble method; we sought to standardize

values among all cruises and to compare them with previous results. Hence, the levels are
underestimates.

219 **3.2.** Seasonal variations in nitrogen fixation rates

220	According to the temperature-salinity (TS) diagram proposed by Hanawa and Mitsudera
221	(1987), -both the offshore and bay waters collected during this investigation primarily
222	belonged to either the surface layer water system (SW) or to-the Tsugaru Warm Current water
223	system (TW) (Fig. 3), with the exception of waters collected from the 1% light depth (119 m)
224	at Stn. ON5 during the KT-13-2_Jan cruise and those collected at the surface of OT5 during
225	the KS-14-2_Mar cruise, which were classified as belonging to the Oyashio water system
226	(OW) and the Coastal Oyashio water system (CO), respectively. These water classifications
227	based on the TS diagram were generally consistent with the geostrophic current field of the
228	investigated region (Fig.S1). Based on these results, it was considered that surface waters
229	collected during the same cruise in a particular season generally belonged to the same water
230	system that was prevalent in the investigated region at the time of our sampling.
231	<u>Sea</u> surface temperatures (SST) (range, 1.5 to 24.3°_C) (Figs. <u>3a-4a</u> and S1) and surface
232	nutrient nitrate and phosphate concentrations (Figs. 3b and S2) determined during each cruise
233	were averaged to emphasize the seasonal variability of these parameters (Fig. 4b) In
234	general, surface nitrate and phosphate concentrations were low ($\leq 0.07 \ \mu M$ and $\leq 0.20 \ \mu M$,

235	respectively) in the warmer seawaters (14.2-24.3°_C) sampled in early summer
236	(KK-13-1_Jun), summer (KT-12-20_Aug), and fall (KT-12-27_Oct), whereas they were
237	relatively high ($\geq 0.75 \ \mu$ M and $\geq 0.28 \ \mu$ M, respectively) in the colder seawaters (1.5–9.8°_C)
238	sampled in <u>during</u> winter (KT-13-2_Jan), and spring (KS-14-2_Mar). During the
239	KK-13-6_Sep cruise (late summer), , although the nitrate concentrations were relatively high
240	and variable (mean \pm SD; 2.92 \pm 7.90 μ M) in samples collected in summer during the
241	KK-13-6 cruise. This was because During the KK-13-6 cruise, low-salinity surface waters
242	spread offshore along the OT transect line (Fig. S3). Concomitantly, the highest nitrate
243	concentration (22.6 µM) was determined at the near-shore Stn. OT1 (Fig. S2). Similar to
244	nitrate, surface phosphate concentrations tended to be high during winter (KT-13-2_Jan) and
245	spring (KS-14-2_Mar), while they were low during the warmer seasons. The seasonal
246	variation pattern of the average ammonium concentration at the surface differed from those
247	of nitrate and phosphate concentrations (Fig. 4b), characterized by $-low$ concentrations (≤ -1
248	μ M) throughout the year. The high variation in surface ammonium concentration during the
249	KK-13-6 Sep cruises were due to relatively high ammonium concentrations at Stn. OT1
250	(1.41 μ M) (Fig. S2). These results suggest that anomalously high nitrate concentrations were
251	likely attributable to terrestrial surface discharge enhanced by Typhoon Man-yi that passed
252	over the region immediately before the cruise.

253	Nitrogen fixation was detected in the surface waters of most samples collected during the
254	four cruises conducted in early summer (KK-13-1_Jun), summer (KT-12-20_Aug-and
255	KK-13-6), late summer (KK-13-6 Sep), and fall (KT-12-27 Oct), and varied in the range of
256	0.33–13.6 nmol_N L ⁻¹ d ⁻¹ (Figs. $\frac{3e}{4c}$ and S2). Relatively high nitrogen fixation rates were
257	determined for samples collected during the KT-12-20_Aug cruise, although the highest
258	value was obtained at StaStn. ON7 during the KK-13-6 <u>Sep</u> cruise. Nitrogen fixation was
259	not detected in seawater samples collected during the winter and spring cruises, even after
260	addition of mannitol (KS-14-2 <u>Mar</u>). Furthermore, nitrogen fixation was not detected in
261	DIN-replete water at Stn. OT1 in <u>late</u> summer (KK-13-6 <u>Sep</u>).
262	The rates of nitrogen fixation in samples collected at different depths (0-119 m) were
263	examined at Stns. OT4 and ON5 (Fig. 4 <u>5</u>). Nitrogen fixation was detectable only during the
264	four cruises conducted in early summer (KK-13-1 Jun), summer (KT-12-20 Aug), late
265	summer-and (KK-13-6_Sep), and fall (KT-12-27_Oct), the same seasons during which
266	surface nitrogen fixation was observed (Fig. 4). Nitrogen fixation rates tended to be higher
267	at the surface than in_the deeper layers in- <u>during</u> summer (KT-12-20 <u>Aug) and late summer</u>
268	and(-KK-13-6 <u>Sep</u> (at Stn. OT4)), whereas this vertical trend was less evident in-during fall
269	(KT-12-27_Oct) and early summer (KK-13-1_Jun). At Stn. OT4, nitrogen fixation was
270	detectable even in deeper layers below the nitracline, where <u>nitrate</u> concentrations were

271	relatively high (KT-12-27 <u>Oct</u> , depth = 62 m; KK-13-1 <u>Jun</u> , depth = 42 m). In this layer,
272	the ammonium concentrations were 0.05 µM (KT-12-27_Oct) and 0.62 µM (KK-13-1_Jun).
273	The nitrogen fixation rate below the nitracline (1.56 nmol N $L^{-1} d^{-1}$) was higher than that at
274	the surface (0.87 nmol N L^{-1} d ⁻¹) during the KK-13-1_Jun cruise The maximum
275	depth-integrated nitrogen fixation (294 μ mol_N m ⁻² d ⁻¹) was observed at Stn. OT4 in-during
276	summer (KT-12-20 <u>Aug</u>).
277	3.3. <u>Relationship</u> between nitrogen fixation <u>rates and environmental</u>
278	variables
279	Nitrogen fixation rates tended to increase with temperature ($p < 0.01$) (Fig. 6a and Table 2).
280	Nitrogen fixation was detected only when seawater temperatures exceeded 11.7° C, with
281	higher rates (>6 nmol N $L^{-1} d^{-1}$) noted in waters warmer than 19.5° C. However, there were
282	exceptions to this general relationship between the nitrogen fixation rate and temperature.
283	For example, from the data collected during the KK-13-1_Jun cruise the nitrogen fixation
284	rate was highest at 15.4° C, while it was low (undetectable) at higher temperatures.—
285	Nitrogen fixation rates were negatively correlated with nitrate and phosphate concentrations
286	(p < 0.01) (Table 2). There was no significant correlation between nitrogen fixation rates
287	and h ammonium concentration ($p > 0.05$). We also found no significant correlation between
288	nitrogen fixation rates and the ratio of total inorganic nitrogen (nitrate + nitrite + ammonium)

289 <u>to phosphate (Table 2).</u>

290	A plot of the nitrogen fixation against nitrate concentrations indicated that nitrogen fixation
291	was generally detectable <u>only</u> when nitrate was depleted (Fig. <u>5b6b</u>), except that relatively
292	high nitrogen fixation rates were determined in the subsurface layer of Stn. OT4
293	(KT-12-27_Oct and KK-13-1_Jun). Active nitrogen fixation tended to occur at low
294	ammonium concentration \leq ~0.1 μ M. However, seasonal variation in ammonium
295	concentration was small and no statistically significant relationship with nitrogen fixation
296	was observed (Fig. 6c).
297	
298	3.4. Seasonal variation in the phylogenetic compositions of the nifH
298 299	3.4. Seasonal variation in the phylogenetic compositions of the nifH genediazotroph community
298 299 300	 3.4. Seasonal variation in the phylogenetic compositions of the nifH genediazotroph community 3.4.1. Diazotroph community
298 299 300 301	 3.4. Seasonal variation in the phylogenetic compositions of the nifH genediazotroph community 3.4.1. Diazotroph community PCR reagents have been suggested to be a potential source of nifH genes during analysis of
298 299 300 301 302	 3.4. Seasonal variation in the phylogenetic compositions of the niffl genediazotroph community 3.4.1. Diazotroph community PCR reagents have been suggested to be a potential source of niffl genes during analysis of the diazotroph community (Zehr et al., 2003ab)., Although we confirmed the absence of
298 299 300 301 302 303	 3.4. Seasonal variation in the phylogenetic compositions of the niffl genediazotroph community 3.4.1. Diazotroph community PCR reagents have been suggested to be a potential source of niffl genes during analysis of the diazotroph community (Zehr et al., 2003ab)., Although we confirmed the absence of any bands from the negative control in agarose gel electrophoresis, sequences with similarity
 298 299 300 301 302 303 304 	 3.4. Seasonal variation in the phylogenetic compositions of the nifH genediazotroph community 3.4.1. Diazotroph community PCR reagents have been suggested to be a potential source of nifH genes during analysis of the diazotroph community (Zehr et al., 2003ab)., Although we confirmed the absence of any bands from the negative control in agarose gel electrophoresis, sequences with similarity (>97%) at the amino acid level to contaminants in PCR reagents were recovered from
 298 299 300 301 302 303 304 305 	 3.4. Seasonal variation in the phylogenetic compositions of the niffl genediazotroph community 3.4.1. Diazotroph community PCR reagents have been suggested to be a potential source of niffl genes during analysis of the diazotroph community (Zehr et al., 2003ab)., Although we confirmed the absence of any bands from the negative control in agarose gel electrophoresis, sequences with similarity (>97%) at the amino acid level to contaminants in PCR reagents were recovered from samples obtained during the KK-13-6_Sep and KS-14-2_Mar cruises (10 clones in total).
307	The <i>nifH</i> gene was recovered from all samples that we collected during this study across
-----	---
308	different stations and seasons (Table 1). Sixty-six-one operational taxonomic units (OTUs)
309	were grouped from <u>197–187</u> nifH clones, based on 100% amino acid sequence similarity.
310	The OTUs were assigned to cyanobacteria, α -, β -, γ -, and δ -proteobacteria, and Cluster III
311	diazotrophs (Zehr et al., 2003 <u>a</u>) (Figs. <u>S4-S3</u> and S <u>45</u>).
312	The detected cyanobacterial sequences belonged to Trichodesmium, UCYN-A, and
313	Leptolyngbya. The nifH sequences of UCYN-B, UCYN-C, and Richelia intracellularis
314	were not recovered. The <i>nifH</i> sequence of <i>Trichodesmium</i> was recovered only during the
315	KT-12-27 <u>Oct</u> cruise (Fig. 6Table 1). The UCYN-A was generally observed from early
316	summer to fall, while <i>Leptolyngbya</i> nifH <u>of Leptolyngbya</u> was detected in <u>during</u> winter. On
317	During the KS-14-2 Mar spring cruise, all recovered sequences were derived from
318	heterotrophic bacteria, and were dominated by Cluster III diazotrophs <u>at Stns. OT4 and ON5</u> .
319	The Cluster III diazotroph <i>nifH</i> sequences were recovered on on all cruises except the
320	KK-13-1 <u>Jun</u> cruise. Note that $\frac{69-58}{58}$ out of $\frac{197-187}{187}$ sequences displayed >97% similarity,
321	at the amino acid level, to terrestrial diazotroph sequences derived from soil, mudflats, and
322	lakes (Fig. <u>S4–S3</u> and <u>S5S4</u>). These sequences were mainly affiliated with α - and
323	δ-proteobacterial diazotrophs, with $\frac{39}{29}$ of $\frac{49}{39}$ α-proteobacterial sequences and $\frac{21}{22}$ of
324	24 δ -proteobacterial sequences being similar to terrestrial diazotroph sequences.

325	3.4.2. Diazotrophs abundances
326	The nifH sequence of Trichodesmium was detected by qPCR assay during the KT-12-27_Oct
327	and KK-13-6 Sep cruises (Fig. 7 and 8). During these two cruises, the abundance of
328	<u>Trichodesmium</u> ranged from below the detection limit to 8.7×10^4 copies L ⁻¹ at all depths.
329	Trichodesmium abundance at the surface was higher than those of UCYN-A, UCYN-B, and
330	γ-24774A11 at most stations during the KT-12-27_Oct cruise (Fig. 7 and S5). UCYN-A
331	was detected on all cruises except for the KS-14-2 Mar cruise (Fig. 7 and 8). The
332	maximum abundance of UCYN-A generally occurred at the surface except at Stn. OT4
333	during the KK-13-6_Sep cruise where the peak $(1.2 \times 10^3 \text{ copies } L^{-1})$ was observed at 72 m
334	(Fig. 8). The abundance of UCYN-A varied from below the detection limit to 2.6×10^5
335	copies L^{-1} at all depths. At the surface, UCYN-A was the most abundant among the four
336	groups at almost of the stations investigated during the KT-12-20 Aug, KT-13-2 Jan,
337	KK-13-1_Jun, and KK-13-6_Sep cruises (Fig. 7 and S5). UCYN-B was detected only at
338	Stn. ON7 during the KK-13-6_Sep cruise (Fig. 7, 8, and S5). γ-24774A11 was detected
339	duringin all cruises except for the KS-14-2 Mar cruise (Fig. 7 and 8). The abundance of
340	γ -24774A11 ranged from below the detection limit to 1.8×10^4 copies L ⁻¹ , with a tendency of
341	a subsurface peak at both stations (Fig. 8).

343	4. DISCUSSION
344	4.1. Differences in nitrogen fixation rates between the bubble method and
345	the dissolution method
346	The present study revealed that a significant difference between the bubble and the
347	dissolution methods was not always present. Großkopf et al. (2012) indicated that the
348	difference was smaller when Trichodesmium dominated in the diazotroph community than
349	when unicellular cyanobacteria and γ -proteobacteria dominated presumably because
350	<u>Trichodesmium can float to the top of the bottle and directly use the added ${}^{15}N_2$ in the bubble</u>
351	method. Interestingly, Trichodesmium abundance was higher than or similar to those of
352	UCYN-A, UCYN-B, and γ -24774A11 at Stns. OT4 and ON7, at which there was no
353	significant difference detected between the two methods. On the other hand,
354	Trichodesmium was not detected and UCYN-A was the most abundant among the four groups
355	at Stns. OT6 and ON5, at which nitrogen fixation determined by the dissolution method was
356	significantly higher than that by the bubble method. These results were consistent with the
357	report by Großkopf et al. (2012). The larger variations in nitrogen fixation at Stns. OT4 and
358	ON7 than at Stns. OT6 and ON5 were probably due to the heterogeneity of Trichodesmium
359	abundance (Carpenter et al., 2004). Although nitrogen fixation rates determined by the
360	bubble method in the present study were underestimated on all cruises, the level of

361 <u>underestimation was relatively small during the KT-12-27_Oct cruise when *Trichodesmium*362 <u>was dominant at most of the stations.</u>
</u>

363

364 3.5.4.2. Seasonal variations in nitrogen fixation rates in the temperate coastal 365 regionocean

366 Nitrogen fixation rates were measurable mainly from early summer to fall when nitrate was generally depleted in sample seawaters, although there were some exceptions. 367 Our estimates of the nitrogen fixation rates (0.33–13.6 nmol N $l^{-1} d^{-1}$) were significantly (p < 0.05) 368 higher than the corresponding values previously reported in the temperate region of the 369 eastern North Pacific (0.15–0.31 nmol N l⁻¹ d⁻¹; Needoba et al., 2007) and the oligotrophic 370 region of the western and central North Pacific (0.17-3.62 nmol N l⁻¹ d⁻¹; Shiozaki et al., 3712010), whereas they were comparable to those determined in the Kuroshio (0.54-28 nmol_N 372 $l^{-1} d^{-1}$; Shiozaki et al., 2010) and the western Atlantic coastal regions (1.3–49.8 nmol N $l^{-1} d^{-1}$; 373 Mulholland et al., 2012). Higher nitrogen fixation rates have been determined in other 374temperate oceans, including the western English Channel (18.9±0.01 and 20.0 nmol N l⁻¹ d⁻¹; 375Rees et al., 2009) and the Baltic Sea estuaries (47–83 nmol N $l^{-1} d^{-1}$; Bentzon-Tilia et al., 3762015). 377

378 <u>In our study, spatiotemporal variability in The relatively high</u> nitrogen fixation rates appeared

379	to be partly related to s could be due to an influence of theTsugaru Warm Current_path.
380	This current, which flows from the north (after passage thorough the Tsugaru Strait) to the
381	study region (Fig. S1), may carry active diazotrophs and therefore enhance nitrogen fixation
382	in our study region. This is supported by the fact that nitrogen fixation rates during
383	individual cruises tended to be higher at Stn. OT4 than <u>at Stn. ON5.</u> These stations were
384	located up- and down-stream of the Tsugaru Warm Current, respectively. In addition,
385	variations in nitrogen fixation rates among stations and seasons might also be related to the
386	extent of vertical mixingin the Tsugaru Warm Current. It has been suggested that vertical
387	mixing may introduce iron-rich subsurface water to the surface of the Tsugaru Strait (Saitoh
388	et al., 2008). Such input of iron may enhance nitrogen fixation rates. Consistent with this
389	notion, our results showed that the nitrogen fixation rate was relatively high at Stn. OT4,
390	where the nitracline was relatively deep.
391	Blais et al. (2012) proposed that nitrogen fixation can proceed even in nutrient-replete waters,
392	if large amounts of iron and organic materials are available for consumption by bacterial
393	diazotrophs. In the presentis study, we examined this this possibility was examined by
394	conducting mannitol addition experiments using where mannitol was added to _surface
395	seawaters collected in <u>during</u> spring. These waters, belonging to when the iron supply was
396	considered to be high due to intrusion of the Oyashio Current system -(Nishioka et al., 2007,

397	2011; Shiozaki et al., 2014b),). were considered to be rich in iron induring spring, as
398	indicated by a previous study (iron conc., 0.79-8.46 nM; Nishioka et al. 2007). Despite
399	potentially high iron concentrations, our results showed that nitrogen fixation was
400	undetectable even after the mannitol addition, suggesting that, contrary to the Blais et al.
401	proposition, diazotrophs remained inactive under our experimental settings.
402	Our data showed that nitrogen fixation rates were below the detection limit during winter,
403	spring, and <u>late</u> summer (KK-13-6 <u>Sep</u>), when nitrate concentrations were high. <u>These</u>
404	results These results are were consistent with the results of previous studies in the Pacific
405	Ocean, which indicated that nitrogen fixation rates were low or undetectable in DIN-replete
406	waters (Shiozaki et al., 2010). In contrast, Mulholland et al. (2012) reported that, in
407	temperate regions of the Atlantic Ocean, nitrogen fixation rates were high even in
408	DIN-replete (>1 µM) and cold (<10°C) surface seawaters. Their study was conducted
409	downstream of the Gulf Stream, where diazotrophs could be delivered from subtropical
410	oceans where DIN is depleted. Previous studies have suggested that cyanobacterial
411	diazotrophs can travel over long distances (>1,000 km) in currents, without losing their
412	capacity for N_2 fixation (Shiozaki et al., 2013), and that activity is not lost immediately even
413	after mixing with DIN-replete seawaters (Holl and Montoya, 2005; Dekaezemacker and
414	Bonnet, 2011). In our region, because the Tsugaru Warm Current flows from north to south,

415	diazotrophs entrained by the current have little chance of meeting high-DIN water inatat the
416	surface. DIN-replete water in- <u>during</u> summer was observed at the inside bay station OT1
417	(Fig. S2). Concomitantly, low-salinity surface waters spread offshore along the OT transect
418	line (Fig. S6), suggesting that anomalously high DIN concentrations were likely attributable
419	to terrestrial surface discharge enhanced by Typhoon Man-yi, which passed over the region
420	immediately before the cruise. , with a low salinity, attributable to the washout of terrestrial
421	water after the passage of a typhoon. Subramaniam et al. (2008) reported that nitrogen
422	fixation rates near the Amazon River estuary, with low salinity and high nitrate levels, were
423	fairly low. Their results are , consistent with ours results. Ammonium inhibits nitrogen
424	fixation, especially when ammonium concentrations exceed 1 μ M, as demonstrated by
425	Trichodesmium (Mulholland et al. 2001). In our study, no negative relationship between
426	nitrogen fixation and ammonium concentration was found. This can likely be explained by
427	relatively low ammonium concentrations ($\leq \sim 1 \mu M$) throughout the year and across the
428	investigated regions.
429	
430	3.6.<u>4.3.</u> Seasonal variation in <u>the</u>diazotrophic community structure in the
431	temperate coastal region<u>ocean</u>
432	The qPCR analysis demonstrated that the target groups were quantifiable even at stations at

433	which their sequences were not recovered by the clone library analysis, suggesting that the
434	number of clones was not sufficient to capture the diazotroph community structure on each
435	cruise. Despite this limitation, the sequences more frequently recovered in the clone library
436	generally corresponded to the most abundant group revealed by the qPCR analysis. For
437	example, UCYN-A was frequently recovered in the library during the KT-12-20_Aug,
438	KK-13-1_Jun, and KK-13-6_Sep cruises; for these samples, the qPCR results showed that
439	UCYN-A was the most abundant group among the four examined. Similarly, qPCR data
440	indicated that <i>Trichodesmium</i> was the most abundant group during fall, when this group was
441	frequently recovered in the library (during the KT-12-27_Oct cruise). This consistency in
442	the general results obtained by the clone library and qPCR suggests that both of these
443	approaches captured a similar seasonal trend in community composition changes for at least
444	the major diazotroph groups. In the discussion below, we discuss possible factors
445	responsible for seasonal variation in the diazotroph community by focusing on the major
446	diazotroph groups.
447	UCYN-A was detected by qPCR in all seasons except spring (KS-14-2_Mar), Many
448	recovered <i>nifH</i> sequences were similar to terrestrially derived sequences. These results
449	agree with previous data collected in coastal regions, where terrestrially derived <i>nifH</i>
450	sequences were also found (Rees et al., 2009; Mulholland et al., 2012; Blais et al., 2012). In

451	addition to the terrestrially derived <i>nifH</i> sequences, the cyanobacterium UCYN-A was
452	regularly observed from early summer to fall, suggesting that this group of diazotrophs could
453	be important agents of nitrogen fixation in this regionduring these periods (although we do
454	not have direct evidence of nitrogen fixation by UCYN-A). Especially from early to late
455	summer, the abundance of UCYN-A was generally higher than that of Trichodesmium,
456	<u>UCYN-B, and γ-24774A11.</u> UCYN-A has been widely detected in oligotrophic temperate
457	regions, and is considered to be one of the major diazotrophs of these locations (Needoba et
458	al., 2007; Rees et al., 2009; Mulholland et al., 2012; Bentzon-Tilia et al., 2015). UCYN-A
459	is known to be most abundant in relatively warm waters around ~20° C (Needoba et al., 2007;
460	Moisander et al., 2010). UCYN-A was detected by qPCR even during winter at some
461	stations, yet, was not observed during spring. This could be because UCYN-A abundance
462	decreased from fall to winter with decreasing temperatures, eventually disappearing during in
463	spring.
464	Trichodesmium was detected from late summer to fall by qPCR analysis, when water
465	temperatures ranged from 19.1 to 23.4° C at the surface. Given that the optimal growth
466	temperature for Trichodesmium has been reported to be high (24-30° C) (Breitbarth et al.,
467	2007), Trichodesmium detected in the investigated region likely existed under suboptimum
468	conditions. The relatively high abundance of <i>Trichodesmium</i> observed during fall, despite

469	the suboptimal temperature conditions, might indicate that Trichodesmium was transported
470	from the adjacent subtropical region where seawater temperatures were high (>24° C). In
471	the western North Pacific subtropical region, Trichodesmium is abundant from July to
472	September (Marumo and Nagasawa, 1976; Chen et al., 2008). Trichodesmium that
473	flourished in the subtropical region during summer could be transported by the Tsugaru
474	Warm Current, displaying peak abundance during fall in the investigated region. This could
475	support the above discussion that waters containing active nitrogen fixation were delivered to
476	this region by the Tsugaru Warm Current.
477	We observed γ -24774A11 by qPCR analysis during all cruises except for the KS-14-2_Mar
478	cruise. The absence of UCYN-A in spring and winter was likely to be due to the low
479	temperature (the SST in winter and spring ranged from 2.0 to 9.4°C), because UCYN-A is
480	known to be most abundant in relatively warm waters around ~20°C (Needoba et al., 2007;
481	Church et al., 2009; Moisander et al., 2010).
482	During the KT-12-27 (fall) and KK-13-6 (summer) cruises, we detected the γ -proteobacterial
483	diazotroph closely related to phylotype γ-24774A11 (Fig. S4). This phylotype has not been
484	reported previously in other temperate regions oceans (Needoba et al., 2007; Rees et al.,
485	2009; Mulholland et al., 2012). The <i>nifH</i> sequence of γ -24774A11 was similar to that of
486	Pseudomonas stutzeri (94% similarity at the amino acid level), which was observed in waters

487	including temperate regions (Bentzon-Tilia et al., 2015). Bentzon-Tilia et al. (2015)
488	reported that <i>P. stutzeri</i> -like <i>nifH</i> genes (99% similarity at the nucleotide level) were the most
489	abundant sequences among their samples collected from the temperate Baltic Sea estuary.
490	In the present study, we recovered P. stutzeri-like nifH genes (>97% similarity at the amino
491	acid level) from Stn. OT4 during the KT-13-2_Jan cruise by the clone library analysis.
492	However, γ -24774A11 was not detected on that occasion by qPCR analysis, suggesting that
493	γ -24774A11 was not quantified as <i>P. stutzeri</i> and that <i>P. stutzeri</i> was not a major diazotroph
494	in this study region. , although this <i>nifH</i> gene is known to occur widely in the oligotrophic
495	subtropical and tropical oceans, where it is considered to be one of the key agents of nitrogen
496	fixation globally (Moisander et al., 2014). The ecology of γ-24774A11 is still fairly
497	unknown. It remains to be seen, in future studies, if whether this phylotype contributes to
498	the nitrogen fixation that we saw in summer and fall.in this region.
499	UCYN-B was not detected by qPCR except forat one station. This result is consistent with
500	previous knowledge. UCYN-B becomes abundant with increasing temperature, similar to
501	Trichodesmium (Moisander et al., 2010), and is rarely observed in the temperate region
502	(Needoba et al., 2007; Rees et al., 2009; Mulholland et al., 2012; Bentzon-Tilia et al., 2015).
503	Furthermore, UCYN-B abundance is low in shallow nitracline regions (Shiozaki et al.,
504	2014a,c). The nitracline depth in this region (≤ 60 m) was shallower than that of >100 -m

505	depths of regions where UCYN-B is abundant (Shiozaki et al., 2014a). Therefore, although
506	UCYN-B might also have been delivered from subtropical region, it could not survive in the
507	shallower nitracline region.
508	In nitrate-rich water in-during winter and spring, Cluster III diazotrophs were dominant at
509	most of the stations, excluding terrestrially derived sequences. Furthermore, from early
510	summer to fall, <u><i>nifH</i> sequences of</u> Cluster III diazotrophs were <u>recovered</u> by the clone library
511	analysis in samples from all cruises (except KK-13-1 Jan) and were the major diazotrophs in
512	samples collected during the KT-12-27 cruise. Because UCYN-A, Trichodesmium, and
513	γ-24774A11 were scarce during winter and spring, Cluster III diazotrophs were likely to be
514	major diazotrophs at these times.
515	It is rare for Cluster III diazotrophs to be dominant in the surface diazotrophic community.
516	Because anaerobic diazotrophs are Cluster III diazotrophs are putative anaerobes (Hamersley
517	et al., 2011; Farnelid et al., 2013; Bentzon-Tilia et al., 2014b), and hence, they are usually
518	dominant in the diazotrophic community of recovered from oxygen-depleted waters
519	(Hamersley et al., 2011; Farnelid et al., 2013) orand marine sediments (Bertics et al., 2013).
520	In this study, dissolved oxygen was not depleted (>3.16 ml L^{-1}) in the upper winter maximum
521	mixed layer depth in this region (~200 m; Shiozaki et al., 2014b) (Fig. S6S7). Therefore, t,
522	and hence, hereit is a possibilitye that the Cluster III diazotrophs that we detected inat the

523	surface layer might be were derived from resuspensions of from coastal marine sediments in
524	which anoxic conditions may prevail because of organic matter decomposition. The Cluster
525	III activity was likely strongly suppressed in the water column because of the high oxygen
526	concentration.
527	Many nifH sequences recovered by the clone library analysis were similar to terrestrially
528	derived sequences. These results agree with previous data collected in coastal regions,
529	where terrestrially derived nifH sequences were also found (Rees et al., 2009; Mulholland et
530	al., 2012; Blais et al., 2012). The 2011 Tohoku-oki tsunami substantially altered the benthic
531	environment of the region (Seike et al., 2013; Urabe et al., 2013). Such environmental
532	change might be related to detection of Cluster III diazotrophs at the surface. We obtained a
533	Leptolyngbya-like nifH gene during the KT-13-2 Jan cruise. The organism has been is
534	found on beaches or coastal land areas (Brito et al. 2012), and is but rarely detected not in the
535	open ocean. Because nitrogen fixation was not observed detected during the KT-13-2_Jan
536	cruise, the bacteria organism must have been inactivated after being flushed out from the
537	coastal region.

539 4.5. CONCLUSION AND REMARKS ON THE IMPACT OF THE TSUNAMI

540 This study demonstrated that nitrogen fixation <u>did indeed occurcan</u> and <u>does proceed at high</u>

541	rates, depending on the season, in the temperate region of the northwestern North Pacific,
542	although we failed to detect nitrogen fixation in DIN-replete cold waters. <i>nifH</i> sequences
543	were omnipresent and recovered throughout thea year, displaying a marked seasonality in
544	their composition. UCYN-A was a major diazotroph during summer, whereas
545	Trichodesmium was abundant induring fall, despite low temperatures. It has been suggested
546	that Trichodesmium was laterally transported forrom the adjacent subtropical region, which
547	displays high temperatures. The Cluster III diazotrophs were abundant in surface waters
548	induring winter, which was ascribed to their delivery from the anoxic sediments via bottom
549	resuspension. The failure to detect nitrogen fixation when Cluster III was abundant implied
550	that the activity of this diazotroph group was strongly suppressed in oxic water columns.
551	We found that UCYN-A and the γ -proteobacterial phylotype γ -24774A11 were generally
552	recovered during the period when nitrogen fixation rates were high, raising the possibility
553	that these phylotypes play key roles in the diazotrophy of our study region. This study was
554	conducted in coastal regions heavily damaged by the 2011 Tohoku earthquake-induced
555	tsunami. The tsunami substantially changed the coastal geography and benthic environment,
556	and impacted on benthic ecosystems (Seike et al., 2013; Urabe et al., 2013). Given that
557	nitrogen fixation in a temperate estuary could be an important source of new nitrogen for
558	adjacent coastal waters, and that such fixation is influenced by the condition of the benthic

environment (Bentson-Tilia et al., 2014b), the tsunami-induced alteration in and the
following recovery of benthic ecosystems could affect nitrogen fixation and the distribution
of the diazotroph community in the coastal waters. In future studies, continuous monitoring
of nitrogen fixation and recovery of the benthic environment would produce a unique dataset
that could be used to explore possible links between benthic environmental conditions and
pelagic diazotrophy in temperate coastal regions.
Author Contributions
T.S., T.N., and K.F. designed the experiment and T.S. collected the samples at sea. T.S.
determined nitrogen fixation and nutrient concentrations and analyzed satellite datasets. T.S.
and M.I. conducted the genetic analyses. T.S. prepared the manuscript with contributions
from all co-authors.

572 Acknowledge<u>ments</u>

573	We acknowledge K. Kogure, K. Hamasaki, A. Tsuda, Y. Tada, R. Fujimura, R. Kaneko, H.
574	Takasu, T. YokogawaYokokawa, K. Seike, and T. Kitahashi for their assistance in the sample
575	collections and analysies. We thank the captains, crew-members, and participants on board
576	the R/V Tansei-maru, No.3 Kaiyo-maru, Shinsei-maru for their cooperation at sea. We also

577	the KS-14-2 cruise. We
578	appreciate acknowledge the National Aeronautics and Space Administration (NASA) and the
579	Archiving, Validation, and Interpretation of Satellite Data in Oceanography data center at the
580	Centre National d'Etudes Spatiales (CNES AVISO)NASA and CNES AVISO for providing
581	satellite data sets. This study was financially supported by Tohoku Ecosystem-Associated
582	Marine Sciences (TEAMS) sponsored by Ministry of Education, Culture, Sports, Science and
583	Technology (MEXT), by a Grant-in-Aid for Scientific Research on Innovative Areas
584	(24121001), by the Japan Science and Technology Agency (JST CREST), and by
585	Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (25-7341) from
586	MEXTMinistry of Education, Culture, Sports, Science and Technology (MEXT)

588	References	
	1	

I	
589	Bentzon-Tilia, M., Farnelid, H., Jürgens, K. and Riemann, L.: Cultivation and isolation of
590	N ₂ -fixing bacteria from suboxic waters in the Baltic Sea, FEMS Microbiol. Ecol., 88,
591	<u>358-371, 2014.</u>
592	Bentzon-Tilia, M., Traving, S.J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S.,
593	Markager, S., and Riemann, L.: Significant N2 fixation by heterotrophs, photoheterotrophs
594	and heterocystous cyanobacteria in two temperate estuaries, ISME J., 9, 273-285advance
595	online publication, doi:10.1038/ismej.2014.119, 2014a2015.
596	Bentzon-Tilia, M., Farnelid, H., Jürgens, K. and Riemann, L.: Cultivation and isolation of
597	N2-fixing bacteria from suboxic waters in the Baltic Sea, FEMS Microbiol. Ecol., 88,
598	358-371, 2014b.
599	Bertics ,V. J., Löscher, C. R., Salonen, I., Dale, A. W., Gier, J., Schmitz, R. A., and Treude,
600	T.: Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the
601	seasonally hypoxic Eckernförde Bay, Baltic Sea, Biogeosciences, 10, 1243-1258, 2013.
602	Blais, M., Tremblay, JE., Jungblut, A. D., Gagnon, J., Martin, J., Thaler, M., and Lovejoy,
603	C.: Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic, Glob.
604	Biogeochem. Cycles 26, GB3022, doi:10.1029/2011GB004096, 2012.
605	Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R. M., Grosso, O.,

- 606 Zehr, J. P., and Capone, D. G.: Aphotic N₂ fixation in the Eastern Tropical South Pacific
- 607 Ocean, PLoS one 8(12), e81265, doi:10.1371/journal.pone.0081265, 2013.
- Brandes, J. A., and Devol, A. H.: A global marine-fixed nitrogen isotopic budget:
 Implications for Holocene nitrogen cycling, Glob. Biogeochem. Cycles. 16, 4, 1120,
- 610 doi:10.1029/2001GB001856, 2002.
- 611 Breitbarth, E., Oschlies, A., and LaRoche, J: Physiological constraints on the global
- 612 distribution of Trichodesmium -effect of temperature on diazotrophy, Biogeosciences, 4,
- 613 53-61, 2007.
- Brito, A., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A.,
- 615 Mota, R., Frazão, B., Martins, R., Vasconcelos, V., and Tamagnini, P.: Culture-dependent
- 616 characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A
- 617 polyphasic study, Syst. Appl. Microbiol. 35, 110-119, 2012.
- 618 Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.: Trichodesmium, a
 619 globally significant marine cyanobacterium, Science, 276, 1221-1229, 1997.
- 620 Carpenter, E. J., Subramaniam, A., Capone, D. G.: Biomass and primary productivity of the
- 621 cyanobacterium *Trichodesmium* spp. in the tropical N Atlantic ocean, Deep-Sea Res., 51,
 622 <u>173-203, 2004.</u>
- 623 Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and Karl, D. M.: Physical

624	forcing of nitrogen fixation and diazotroph community structure in the North Pacific
625	subtropical gyre, Glob. Biogeochem. Cycles., 23, GB2020, doi:10.1029/2008GB003418,
626	2009.
627	Chen, YL. L., Chen, HY., Tuo, SH., and Ohki, K.: Seasonal dynamics of new production
628	from Trichodesmium N ₂ fixation and nitrate uptake in the upstream Kuroshio and South
629	China Sea basin, Limnol. Oceanogr., 53(5), 1705-1721, 2008.
630	Codispoti, L. A.: An oceanic fixed nitrogen sink exceeding 400 TgN a ⁻¹ vs the concept of
631	homeostasis in the fixed-nitrogen inventory, Biogeosciences, 4, 233-253, 2007.
632	Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A., Moisander, P. H.,
633	and Granger, J.: The contamination of commercial ¹⁵ N ₂ gas stocks with ¹⁵ N-labeled nitrate
634	and ammonium and consequences for nitrogen fixation measurements, PLoS ONE, 9(10),
635	e110335, doi:10.1371/journal.pone.0110335, 2014.
636	Dekaezemacker, J., and Bonnet, S.: Sensitivity of N2 fixation to combined nitrogen forms
637	$(NO_3^- \text{ and } NH_4^+)$ in two strains of the marine diazotroph Crocosphaera watsonii
638	(Cyanobacteria), Mar. Ecol. Progr. Ser., 438, 33-46, 2011.

- 639 Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N., and Haug, G. H.: Isotopic
- 640 constraints on glacial/interglacial changes in the oceanic nitrogen budget, Glob. Biogeochem.
- 641 Cycles., 18, GB4012, doi:10.1029/2003GB002189, 2004.

- 642 Falkowski, P.G.: Enzymology of nitrogen assimilation, in: Carpenter, J., Capone, D. G. (eds)
- 643 Nitrogen in the marine environment, Academic Press, New York, 839-868, 1983.
- 644 Farnelid, H., Bentzon-Tilia, M., Andersson, A. F., Bertilsson, S., Jost, G., Labrenz, M.,
- 545 Jürgens, K., and Riemann, L.: Active nitrogen-fixing heterotrophic bacteria at and below the
- 646 chemocline of the central Baltic Sea, ISME J., 7, 1413-1423, 2013.
- Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M. M., Lavik, G.,
- 648 Schmitz, R. A., Wallace, D. W. R., and LaRoche, J.: Doubling of marine dinitrogen-fixation
- rates based on direct measurements, Nature, 488, 361-364, 2012.
- Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J., D'Hondt, S., and
- 651 Kuypers, M.M.M.: Heterotrophic organisms dominate nitrogen fixation in the South Pacific
- 652 Gyre, ISME J., 6, 1238-1249, 2012.
- Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P., Gunderson, T., and
- 654 Capone, D. G.: Nitrogen fixation within the water column associated with two hypoxic basins
 655 in the Southern California Bight, Aquat. Microbial. Ecol., 63, 193-205, 2011.
- Hanawa, K., and Mitsudera, H.: Variation of water system distribution in the Sanriku coastal
 area, J. Oceanogr. Soc. Jap., 42, 435-446, 1987.
- Holl, C. M., and Montoya, J. P.: Interactions between nitrate uptake and nitrogen fixation in
- 659 continuous cultures of the marine diazotroph *Trichodesmium* (Cyanobacteria), J. Phycol., 41,

660 1178-1183, 2005.

- Huang, Y., Niu, B. F., Gao, Y., Fu, L. M., and Li, W.Z.: CD-HIT Suite: a web server for
 clustering and comparing biological sequences, Bioinformatics, 26, 680-682, 2010.
- 663 Marumo, R., and Nagasawa S.: Seasonal variation of the standing crop of a pelagic
 664 blue-green alga, *Trichodesmium* in the Kuroshio water, Bull. Plankton Soc. Japan, 23(1),
- 665 <u>19-25, 1976 (in Japanese with English abstract).</u>
- 666 Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A.,
- 667 Montoya, J. P., and Zehr, J. P.: Unicellular cyanobacterial distributions broaden the oceanic
- 668 N₂ fixation domain, Science, 327, 1512-1514, 2010.
- 669 Moisander, P.H., Zhang, R., Boyle, E.A., Hewson, I., Montoya, J.P., Zehr, J.P.: Analogous
- 670 nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific
- 671 Ocean, ISME J., 6, 733-744, 2011.
- 672 Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J.P.:
- 673 Gammaproteobacterial diazotrophs and *nifH* gene expression in surface waters of the South
- 674 Pacific Ocean, ISME J., 8, 1962-1973, 2014.
- 675 Mohr, W., Großkopf, T., Wallace, D. W. R., and LaRoche, J.: Methodological
- 676 underestimation of oceanic nitrogen fixation rates, PLoS ONE, 5(9), e12583,
- 677 doi:10.1371/journal.pone.0012583, 2010.

678	Montoya, J. P., Voss, M., Kähler, P., and Capone, D. G.: A simple, high-precision,
679	high-sensitivity tracer assay for N ₂ fixation, Appl. Environ. Microbiol., 62(3), 986-993, 1996.
680	Mulholland, M. R., Ohki, K., and Capone, D. G.: Nutrient controls on nitrogen uptake and
681	metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria), J.
682	<u>Phycol., 37, 1001-1009, 2001.</u>

- 683 Mulholland, M. R., Bernhardt, P. W., Blanco-Garcia, J. L., Mannino, A., Hyde, K.,
- Mondragon, E., Turk, K., Moisander, P. H., and Zehr, J. P.: Rates of dinitrogen fixation and
- the abundance of diazotrophs in North American coastal waters between Cape Hatteras and
- 686 Georges Bank, Limnol. Oceanogr., 57(4), 1067-1083, 2012.
- 687 Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P, and Johnson, K. S.: Nitrogen fixation
- 688 by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean,
- 689 Limnol. Oceanogr., 52(4), 1317-1327, 2007.
- 690 Nishioka, J., Ono, T., Saito, H., Nakatsuka, T., Takeda, S., Yoshimura, T., Suzuki, K., Kuma,
- 691 K., Nakabayashi, S., Tsumune, D., Mitsudera, H., Johnson, W. K., and Tsuda, A.: Iron supply
- 692 to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk, J.
- 693 Geophys. Res., 112, C10012, doi:10.1029/2006JC004055, 2007.
- 694 Nishioka, J., Ono, T., Saito, H., Sakaoka, K., and Yoshimura, T.: Oceanic iron supply
- 695 mechanisms which support the spring diatom bloom in the Oyashio region, western subarctic

- 696 Pacific, J. Geophys. Res., 116, C02021, doi:10.1029/2010JC006321, 2011.
- 697 Rahav. E., Bar-Zeev, E., Ohayon, S., Elifantz, H., Belkin, N., Herut, B., Mulholland, M. R.,
- and Berman-Frank, I.: Dinitrogen fixation in aphotic oxygenated marine environment, Front.
- 699 Microbiol., 4, 277, doi:10.3389/fmicb.2013.00227, 2013.
- Riemann, L., Farnelid, H., and Steward, G. F.: Nitrogenase genes in non-cyanobacterial
- plankton: prevalence, diversity and regulation in marine waters, Aquat. Microbial Ecol. 61,
- 702 235-247, 2010.
- Rees, A. P., Gilbert, J. A., and Kelly-Gerreyn, B. A.: Nitrogen fixation in the western English
- Channel (NE Atlantic Ocean), Mar. Ecol. Progr. Ser., 374, 7-12, 2009.
- Saitoh, Y., Kuma, K., Isoda, Y., Kuroda, H., Matsuura, H., Wagawa, T., Takana, H.,
- Kobayashi, N., Nagao, S., and Nakatsuka, T.: Processes influencing iron distribution in the
- coastal waters of the Tsugaru Strait, Japan, J. Oceanogr., 64, 815-830, 2008.
- Seike, K., Shirai, K., and Kogure Y.: Disturbance of shallow marine soft-bottom
 environments and megabenthos assemblages by a huge tsunami induced by the 2011 M9.0
 Tohoku-Oki Earthquake, PLoS ONE 8(6), e65417, doi:10.1371/journal.pone.0065417, 2013.
 Shiozaki, T., Furuya, K., Kodama, T., and Takeda, S.: Contribution of N₂ fixation to new
 production in the western North Pacific Ocean along 155°E, Mar. Ecol. Progr. Ser. 377,
- 713 19-32, 2009.

714	Shiozaki, T., Furuya, K., Kodama, T., Kitajima, S., Takeda, S., Takemura, T., and Kanda, J.:
715	New estimation of N_2 fixation in the western and central Pacific Ocean and its marginal seas,
716	Global. Biogeochem. Cycles., 24, GB1015, doi:10.1029/2009GB003620, 2010.
717	Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K.: Advective transport of
718	diazotrophs and importance of their nitrogen fixation on new and primary production in the
719	western Pacific warm pool, Limnol. Oceanogr., 58(1), 49-60, 2013.
720	Shiozaki. T., Ijichi, M., Kodama, T., Takeda, S., and Furuya, K.: Heterotrophic bacteria are
721	major nitrogen fixers in the euphotic zone of the Indian Ocean, Glob. Biogeochem. Cycles,
722	28, doi:10.1002/2014GB004886, 2014a.
723	Shiozaki, T., Ito SI., Takahashi, K., Saito, H., Nagata, T., and Furuya, K.: Regional
724	variability of factors controlling the onset timing and magnitude of spring algal blooms in the
725	northwestern North Pacific, J. Geophys. Res., 119, 1-13, doi:10.1002/2013JC009187, 2014b.
726	Shiozaki, T., Chen, YL. L., Lin, YH., Taniuchi, Y., Sheu, DS., Furuya, K., and Chen,
727	HY.: Seasonal variations of unicellular diazotroph groups A and B, and Trichodesmium in
728	the northern South China Sea and neighboring upstream Kuroshio Current, Cont. Shelf Res.,
729	<u>80, 20-31, 2014c.</u>
730	

731 Subramaniam, A., Yager, P. L., Carpenter, E. J., Mahaffey, C., Björkman, K., Cooley, S.,

732	Kustka, A. B., Montoya, J. P., Sañudo-Wilhelmy, S. A., Shipe, R., and Capone, D. G.:
733	Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic
734	Ocean, Proc. Natl. Acad. Aci. U.S.A., 108, 2184-2189, 2008.
735	Tamura, K., Peterson, N., Peterson, G., Stecher, M., Nei, M., and Kumar, S.: MEGA5:
736	Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance,
737	and maximum parsimony methods, Mol. Biol. Evol., 28, 2731-2739, 2011.
738	Urabe, J., Suzuki, T., Nishita, T., and Makino, W.: Immediate ecological impacts of the 2011
739	Tohoku Earthquake Tsunami on intertidal flat communities, PLoS ONE, 8(5), e62779,
740	doi:10.1371/journal.pone.0062779, 2013.
741	Zehr, J. P., and Turner, P. J.: Nitrogen fixation: nitrogenase genes and gene expression, Meth.
742	Microbiol., 30, 271-285, 2001.
743	Zehr, J. P., Jenkins, B. D., Short, S. M., and Steward, G. F.: Nitrogenase gene diversity and
744	microbial community structure: a cross-system comparison, Environ. Micorbiol., 5(7),
745	539-554, 2003 <u>a</u> .
746	Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O., Jenkins, B. D.: Nitrogenase
747	genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes,
748	BioTechniques, 35, 996-1005, 2003b.
749	Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trends Microbiol. 19, 162-173, 2011.
750	

Table 1. Summary of recovered *nifH* sequences belonging to *Trichodesmium* (Tri), UCYN-A
(UA), Leptolyngbya (Lep), α-proteobacteria (α-Pro), β-proteobacteria (β-Pro),
γ-proteobacteria (γ-Pro), δ-proteobacteria (δ-Pro), and Cluster III (CIII)

<u>Cruise</u>	Station	No. of clone	<u>s Cya</u>	nobacte	eria.	<u>a-Pro</u>	<u>β-Pro</u>	<u>y-Pro</u>	<u>δ-Pro</u>	<u>CIII</u>
			<u>Tri</u>	<u>UA</u>	<u>Lep</u>					
<u>KT-12-20</u>	<u>OT4</u>	<u>12</u>		<u>9</u>		<u>3</u>				
	<u>ON1</u>	<u>5</u>		<u>2</u>						<u>3</u>
	<u>ON5</u>	<u>8</u>		<u>8</u>						
	<u>ON7</u>	<u>7</u>		<u>1</u>		<u>6</u>				
<u>Total</u>		<u>32</u>	<u>0</u>	<u>20</u>	<u>0</u>	<u>9</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>3</u>
<u>KT-12-27</u>	<u>OT4</u>	<u>7</u>	<u>1</u>							<u>6</u>
	<u>ON1</u>	<u>9</u>							<u>4(2)</u>	<u>5(5)</u>
	<u>ON5</u>	<u>6</u>						<u>1</u>		<u>5</u>
	<u>ON7</u>	<u>13</u>	<u>6</u>	<u>1</u>		<u>5(5)</u>		<u>1(1)</u>		
<u>Total</u>		<u>35</u>	<u>7</u>	<u>1</u>	<u>0</u>	<u>5(5)</u>	<u>0</u>	<u>2(1)</u>	<u>4(2)</u>	<u>16(5)</u>
<u>KT-13-2</u>	<u>OT4</u>	<u>11</u>			<u>10</u>			<u>1</u>		
	<u>ON1</u>	<u>1</u>								<u>1</u>
	<u>ON5</u>	<u>14</u>				<u>5(5)</u>			<u>2(2)</u>	<u>7</u>
<u>Total</u>		<u>26</u>	<u>0</u>	<u>0</u>	<u>10</u>	<u>5(5)</u>	<u>0</u>	<u>1</u>	<u>2(2)</u>	<u>8</u>
<u>KK-13-1</u>	<u>OT4</u>	<u>10</u>		<u>2</u>		<u>8(8)</u>				
	<u>ON1</u>	<u>15</u>		<u>3</u>				<u>2</u>	<u>10(10)</u>	
	<u>ON5</u>	<u>11</u>		<u>4</u>		<u>7(7)</u>				
	<u>ON8</u>	<u>1</u>					<u>1</u>			
<u>Total</u>		<u>37</u>	<u>0</u>	<u>9</u>	<u>0</u>	<u>15(15)</u>	<u>1</u>	<u>2</u>	<u>10(10)</u>	<u>0</u>
<u>KK-13-6</u>	<u>OT4</u>	<u>7</u>							<u>4(4)</u>	<u>1</u>
	<u>ON5</u>	<u>11</u>		<u>11</u>						
	<u>ON7</u>	<u>10</u>		<u>2</u>		<u>1</u>		<u>7</u>		
<u>Total</u>		<u>28</u>	<u>0</u>	<u>13</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>7</u>	<u>4(4)</u>	<u>1</u>
<u>KS-14-2</u>	<u>OT4</u>	<u>10</u>							<u>1(1)</u>	<u>9</u>
	<u>ON1</u>	<u>13</u>				<u>3(3)</u>	<u>3</u>	<u>1(1)</u>	<u>3(3)</u>	
	<u>ON5</u>	<u>15</u>				<u>2(2)</u>				<u>9</u>
<u>Total</u>		<u>38</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>5(5)</u>	<u>3</u>	<u>1(1)</u>	<u>4(4)</u>	<u>18</u>

754

Numbers in parentheses indicate the number of sequences with >97% similarity at the amino

755acid level to terrestrial diazotroph sequences.

756Table 2 Pearson's correlation matrix of N2 fixation rates and water properties at the

757 <u>surface (n=73).</u>

	Temperature	<u>Nitrate</u>	<u>Ammonium</u>	Phosphate	<u>N/P ratio</u>	<u>N₂ fixation</u>
Temperature	<u>1</u>					
<u>Nitrate</u>	-0.722**	<u>1</u>				
<u>Ammonium</u>	<u>-0.038</u>	0.440**	<u>1</u>			
Phosphate	<u>-0.863**</u>	<u>0.867**</u>	<u>0.135</u>	<u>1</u>		
<u>N/P ratio</u>	<u>-0.125</u>	<u>0.216</u>	<u>0.171</u>	<u>0.009</u>	<u>1</u>	
N ₂ fixation	0.435**	<u>-0.325**</u>	<u>-0.124</u>	<u>-0.335**</u>	<u>-0.130</u>	<u>1</u>

758

p < 0.05, p < 0.01

759

<u>N/P ratio denotes the ratio of (nitrate + nitrite + ammonium) to phosphate</u>

779	system, Tsugaru Warm Current water system, Oyashio water system, and Coastal Oyashio
780	water system, respectively.
781	

Fig. <u>34</u>. Average (a) temperature [°C], (b) nitrate, and ammonium levels 783<u>concentrations</u> [μ M], and (c) nitrogen fixation [nmol_N L⁻¹ d⁻¹] at the surface for during each

785 cruise.

Fig. 4<u>5</u>. Time-series variations in the vertical profiles of temperature [°C] (black), temperature [°C]ammonium (purple) and, nitrate (green) concentration [μ M], and nitrogen fixation (red) [nmol_N L⁻¹ d⁻¹] at Stns (a) OT4 and (b) ON5. Open symbols indicate that nitrogen fixation was not detected. The horizontal dashed line indicates the nitracline depth. The strait lines of temperature and nitrate were ascribable to strong mixing.

