- 1 **Referee #2**
- $\mathbf{2}$

3 General comment:

Nitrogen fixation data is rare in the temperate marine ecosystems, and the authors clarified 4 the accuracy of their rate measurement data. Therefore, this paper can provide significant 5 contribution to our understanding of nitrogen fixation in the ocean. After the revision, the 6 authors added quantitative PCR (qPCR) data of the three major phylotypes, which provided 78 more useful molecular information and compensated the limitation of their sequencing results. 9 Hence, they can explain (discuss) the seasonal and spatial variations of nitrogen fixation in a 10 more convincing way. However, there are still some problems and questions needed to be 11 considered, especially the influences of environmental factors to nitrogen fixation.

12

13 Specific comments:

14P.4, L.72: the methods of Pearson's correlation matrix were missing. At least, the authors should explain what the "surface water" meant (Table 2). Did they average the surface data 15of different stations for each cruise or input each data point during calculation? It seems that 16the error bars of the averaged nitrogen fixation rate and nutrient data were very large. 17Therefore, it is not appropriated if they used averaged data when they were calculating the 18 correlation matrix. The author can simply display the data used for calculation in a table in 1920supplementary information. Also, why didn't the author use the data of other water layers 21during calculation? It seems that nitrogen fixation was also significant in other water layers. 22

We have added the description about statistical analysis (L134-140). We wrote incorrectly the title of the Table 2. Although we wrote that "at the surface", we analyzed the data obtained from the entire water column. Furthermore, since data of phosphate concentration and N/P ratio during KT-12-20_Aug was miscalculated in the previous manuscript, we have revised the data. This correction did not affect our major conclusion. We have added the data we used in supplementary information (Table S1).

29

P.13, L.222: the unit of nitrogen fixation rate should be uniform throughout the paper. The
author used "L" or "l" in different places of the paper.

32

33 We have corrected to "L" throughout the manuscript.

34

P.14, L.252: according to Table 2, correlation between nitrate, phosphate and temperature
was strong, and all this factors had significant correlation with nitrogen fixation rate.

However, it is not necessary that all these factors influenced nitrogen fixation directly. For examples, the negative correlation of nitrate (phosphate) with nitrogen fixation rate can be due to their negative correlations with temperature. Therefore, this issue is needed to be considered during discussion. Especially, both DIN concentration (ammonium should only contribute very small portion) and N:P ratio did not show significant negative correlation with nitrogen fixation rate.

43

44Since nitrogen fixation in the DIN-rich region has been highlighted in recent studies (L53-58), we discussed relationship between nitrate and nitrogen fixation (L342-372). 4546 Nitrogen fixation was negatively related with phosphate as with nitrate, and positively with temperature (Table 2). As the reviewer mentioned, correlation between nitrate, 4748phosphate, and temperature was significant, and thus it is not necessary that all these factors influenced nitrogen fixation directly. Rather, one or more the factors that varied 4950with nitrate could synergistically influence nitrogen fixation. We have added these statements in L376-381. 51

52

P.18, L.308: It is suggested not to use one page to discuss the two rate measurement methods
in the beginning of discussion, as this study was not focusing on this issue.

55 Moreover, if gas dissolution method is better in this study, further discussion of these two 56 methods is not helpful to the objective of this study.

57

58 We agree. In the revised manuscript, the discussion of these two methods has been 59 rewritten more briefly (L195-197).

60

P.22, L388: Correlations of the qPCR result and nitrogen fixation rate and environmental factor are suggested to be analyzed. The authors tried to discuss numbers of different phylotypes with nitrogen fixation rate and environmental factors. Conducting environmental correlation analysis will support their points and provide clear picture. In order to estimate gene copies of different nifH phylotypes accurately, the authors can use qPCR of 16S rRNA to normalize the data of nifH.

67

As we mentioned in L409-421 and L436-444 , *Trichodesmium* and UCYN-B would be delivered by the Tsugaru Warm Current. The delivered organisms do not necessarily adapt the environment in a place where they arrive. Therefore, the relationship between their abundance and environmental variables could not explain their distribution, but rather confuse the interpretation of data. Hence, we have not added the correlation matrix. We used *nifH* qPCR analysis to examine seasonal variation in targeted diazotrophs.
Normalization using 16SrRNA indicates the ratio of diazotrophs to bacteria, and thus is a
bit far from our objectives.

76

77 *P.24, L.415: "disappearing during in spring" seems grammatically incorrect to me.*

78

79 We have corrected to "disappeared in spring".

80

81 p.26, L.452: as the author did not do *qPCR* of cluster III, it is inappropriate to imply that 82 cluster III was increased in abundance with "suspension of sediment". The abundance of cluster III might not be changing a lot throughout different seasons, and their higher relative 83 abundance in cold condition may be simply due to repression of the cyanobacterial 84 diazotrophs. Therefore, without qPCR data of cluster III, the author should not strengthen the 85 86 importance of cluster III in cold conditions. Also, the nitrogen fixation of marine cluster III is still not well confirmed and this study was based on DNA works, so, it is not helpful and 87 convince to mention too much about cluster III in discussion and conclusion. Besides that, 88 relatively abundant cluster III was also reported in Arctic (Farnelid et al 2001). 89

90

In the revised manuscript, we have deleted the related sentences that Cluster III diazotrophs were derived from resuspension of sediment. Further, we have not mentioned seasonal variation in abundance of Cluster III. We have just mentioned that Cluster III diazotrophs were recovered almost throughout a year and the Cluster III activity was likely suppressed in the water column because of the high oxygen concentration. (L445-455)

96

97 S3,Phylogenetic tree: the Trichodesmium should not be clustering with cluster I
98 proteobacteria. The tree was not stable, and the reason may be due to insufficient sequences
99 of cyanobacteria. The author can consider adding more reference sequences of cyanobacteria,
100 which should make the tree more stable.

101

In figure S3 of the previous manuscript, cluster of cyanobacteria was separated from that of proteobacteria, and *Trichodesmium* was in the cluster of cyanobacteria. To avoid such misunderstanding, we have separated cyanobacterial sequences from the original phylogenetic tree of Cluster I (Fig. S3 and S4).

- 106
- 107

108	
109	Referee #3
110	
111	The paper has been substantially improved by revision. Especially, I appreciated the addition
112	by the authors of the qPCR analysis. However, on one point we continue to disagree. As all of
113	the reviewers mentioned, the number of the recovered nifH sequence was not enough. The
114	authors did not change this point. It is still difficult to discuss about the dominance or
115	seasonal variation from the clone library analysis, even if the results was similar to those of
116	qPCR.
117	
118	I suggest that the authors discuss about the abundance and variation of four groups based on
119	the results of qPCR. The result of clone library experiments shows only the existence of the
120	other diazotroph (Leptolyngbya, δ -Proteobacteria, and Cluster III) if the number of the
121	sequences will not be changed.
122	
123	As the reviewer suggested, the result of clone library analysis have been shown only the
124	existence of the other diazotroph in the revised manuscript. Please see the following
125	individual responses.
126	
127	Line 315-317: I suggest adding the cruise KK-13-6 and referring to figure S5.
128	
129	Since this part is pointed out by the reviewer #2 not to fit with the study objectives, we
130	have deleted it from the revised manuscript.
131	
132	Line 399-402: The result of clone library analysis cannot say "seasonal trend".
133	
134	We have deleted this sentence and changed as follows. (L394-397)
135	"Therefore, the diazotrophs targeted by the qPCR analysis were likely important for
136	nitrogen fixation in this study region. In the discussion below, we mainly discuss possible
137	factors responsible for seasonal variation in the diazotrophs targeted by the qPCR
138	analysis."
139	
140	Line 452-453: The result of clone library analysis cannot say "dominant".
141	
142	We have changed the sentence as follows. (L445-446)
143	"In nitrate-rich water during winter and spring, Cluster III diazotrophs were detected at

144	most of the stations."
145	
146	Line 455-456: The number of the recovered sequence is not enough to say "major
147	diazotroph".
148	
149	We have not used the word "major diazotroph" in the revised manuscript. We have
150	changed the sentence as follows. (L448)
151	"Therefore, Cluster III diazotrophs likely presented throughout a year."
152	
153	Line 472-474: It is difficult to say that the organism was inactivated by the flushed out from
154	the coastal region. There is no data which shows the organism condition (active or inactive)
155	before the flushed out.
156	
157	We agree. We have changed the sentence as follows. (L461-462)
158	"Because nitrogen fixation was not detected during the KT-13-2_Jan cruise, the organism
159	was considered not to perform nitrogen fixation."
160	
161	Fig. 7 the number of copies should be shown with log scale.
162	

163 We have changed it with log scale.

Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific T Objection 12 T Neget 1 M Working K Formula

- 4 T. Shiozaki^{1,2}, T. Nagata¹, M. Ijichi¹, K. Furuya²
- 5 [1]{Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564,

6 Japan}

7 [2]{Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences,

8 The University of Tokyo, Tokyo, 113-8657, Japan}

9 Corresponding to: T. Shiozaki (shiozaki@aori.u-tokyo.ac.jp)

10

11 Abstract

Nitrogen fixation in temperate oceans is a potentially important, but poorly understood process that may influence the marine nitrogen budget. This study determined seasonal variations in nitrogen fixation and the diazotroph community within the euphotic zone in the temperate coastal region of the northwestern North Pacific. Nitrogen fixation as high as 13.6 nmol N L⁻¹ d⁻¹ was measured from early summer to fall when the surface temperature exceeded 14.2° C (but was lower than 24.3° C) and the surface nitrate concentration was low ($\leq 0.30 \mu$ M), although we also detected nitrogen fixation in subsurface layers (42–62 m)

19	where nitrate concentrations were high (>1 μ M). Clone library analysis results indicated
20	that <i>nifH</i> gene sequences were omnipresent throughout the investigation period. During the
21	period when nitrogen fixation was detected (early summer to fall), the genes affiliated with
22	UCYN-A, <i>Trichodesmium</i> , and γ -proteobacterial phylotype γ -24774A11 were frequently
23	recovered. In contrast, when nitrogen fixation was undetectable (winter to spring), many
24	sequences affiliated with Cluster III diazotrophs (putative anaerobic bacteria) were recovered.
25	Quantitative PCR analysis revealed that UCYN-A was relatively abundant from early to late
26	summer compared with <i>Trichodesmium</i> and γ -24774A11, whereas <i>Trichodesmium</i> abundance
27	was the highest among the three groups during fall.

29 **1. Introduction**

The amount of bioavailable nitrogen introduced into the global ocean via nitrogen fixation is considered to be roughly balanced at the large spatiotemporal scale by nitrogen loss through denitrification, as indicated by the sedimentary nitrogen isotope record during the Holocene epoch (Brandes and Devol, 2002; Deutsch et al., 2004). However, rate measurement data have revealed that denitrification far exceeds nitrogen fixation (Codispoti, 2007). This discrepancy in the nitrogen balance has raised the possibility that the current estimate of marine nitrogen fixation, which is primarily based on data collected in tropical and

37	subtropical oceans where large cyanobacterial diazotrophs (e.g., Trichodesmium spp. and
38	Richelia intracellularis) are considered to be mainly responsible for nitrogen fixation (e.g.,
39	Capone et al., 1997), might be too low (Codispoti, 2007). This is supported by the results of
40	recent studies using molecular approaches that have increasingly revealed that marine
41	diazotrophs are more diverse and widespread than previously thought (Riemann et al., 2010;
42	Zehr, 2011). Recently discovered marine diazotrophic taxa, including those belonging to
43	unicellular cyanobacteria and heterotrophic bacteria, are abundant in oceanic regions where
44	large cyanobacterial diazotrophs are scarce (Needoba et al., 2007; Moisander et al., 2010;
45	Halm et al., 2012; Bonnet et al., 2013; Rahav et al., 2013; Shiozaki et al., 2014a), suggesting
46	that a failure to account for nitrogen fixation mediated by these diazotrophs might result in
47	underestimation of marine nitrogen fixation.
48	The temperate coastal ocean is one of the regions where nitrogen fixation rates have been
49	
	understudied and potentially underestimated. Conventionally, nitrogen fixation in temperate
50	understudied and potentially underestimated. Conventionally, nitrogen fixation in temperate oceans has been assumed to be low because of the relatively low temperatures (<~20°C),
50 51	
	oceans has been assumed to be low because of the relatively low temperatures (<~20°C),
51	oceans has been assumed to be low because of the relatively low temperatures (<~20°C), which generally inhibit the growth of large cyanobacterial diazotrophs (Breitbarth et al.,

55	nitrogen fixation, presumably mediated by unicellular cyanobacteria and heterotrophic
56	bacteria, is detectable even in the relatively cold (<10°C) and DIN-rich waters (>1 μ M) of the
57	Atlantic coast (Mulholland et al., 2012) and the Baltic Sea estuaries (Bentzon-Tilia et al.,
58	2015). These results highlight the necessity of re-evaluating the extent, variation, and
59	control mechanisms of nitrogen fixation in temperate oceans, with recognition of the
60	widespread occurrence of diverse diazotrophic microbes.
61	This study examined the seasonal variation in nitrogen fixation in the temperate inside bays
62	and open ocean located in the interfrontal zone of the northwestern North Pacific. In this
63	region, physical, chemical, and biological properties vary widely between seasons (Shiozaki
64	et al., 2014b) due to the confluence of three currents: the Kuroshio (warm current), the
65	Tsugaru Warm Current, and Oyashio (cold current). Data on nitrogen fixation rates in the
66	temperate Pacific are limited (Needoba et al., 2007), and to the best of our knowledge, the
67	present study is the first to examine diazotrophy during all seasons in the temperate ocean.
68	This study was conducted as part of a project to monitor the dynamics of the coastal
69	ecosystem and the recovery thereof after the 2011 Tohoku-oki tsunami, which struck the
70	region on 11 March 2011.

2. Materials and Methods

73	The experiments were conducted during six cruises in the temperate coastal region of the
74	western North Pacific. These cruises covered a full seasonal cycle, including spring
75	(KS-14-2_Mar, 14-19 March 2014), early summer (KK-13-1_Jun, 24-29 June 2013),
76	summer (KT-12-20_Aug, 7-12 August 2012), late summer (KK-13-6_Sep, 14-21 September
77	2013), fall (KT-12-27_Oct, 15-22 October 2012), and winter (KT-13-2_Jan, 19-25 January
78	2013). Sampling stations were located along the transect lines OT (39°20'N,
79	141°56'-142°50'E) and ON (38°25'N, 141°29'-142°20'E). Eight stations were located
80	offshore (OT4-6, ON4-8), while two stations were deployed in the Otsuchi (OT1) and
81	Onagawa (ON1) bays (Fig. 1). Just before the KK-13-6_Sep cruise, Typhoon Man-yi
82	passed from southwest to northeast in the study area (Fig. S1).
82 83	passed from southwest to northeast in the study area (Fig. S1). Temperature, salinity, and dissolved oxygen profiles of regions near the bottom floor were
83	Temperature, salinity, and dissolved oxygen profiles of regions near the bottom floor were
83 84	Temperature, salinity, and dissolved oxygen profiles of regions near the bottom floor were measured using a SBE 911-plus conductivity-temperature-pressure (CTD) system (Sea-bird
83 84 85	Temperature, salinity, and dissolved oxygen profiles of regions near the bottom floor were measured using a SBE 911-plus conductivity-temperature-pressure (CTD) system (Sea-bird Electronics, Bellevue, WA, USA). Water samples were collected in an acid-cleaned bucket
83 84 85 86	Temperature, salinity, and dissolved oxygen profiles of regions near the bottom floor were measured using a SBE 911-plus conductivity-temperature-pressure (CTD) system (Sea-bird Electronics, Bellevue, WA, USA). Water samples were collected in an acid-cleaned bucket and Niskin-X bottles. At offshore stations, samples for nutrient analysis were collected
83 84 85 86 87	Temperature, salinity, and dissolved oxygen profiles of regions near the bottom floor were measured using a SBE 911-plus conductivity-temperature-pressure (CTD) system (Sea-bird Electronics, Bellevue, WA, USA). Water samples were collected in an acid-cleaned bucket and Niskin-X bottles. At offshore stations, samples for nutrient analysis were collected from 7–15 different depths in the upper 200 m, while at shallower (<200 m) bay stations,

91 depths corresponding to 10% and 1% of the surface light intensities at Stns. OT4 and ON5.

92 Light attenuation was determined using a submersible PAR sensor.

93 **2.1.** Nutrients

Samples for nutrient analysis were stored in 10-mL polyethylene tubes and kept frozen until onshore analyses. Nitrate, nitrite, ammonium, and phosphate concentrations were determined using an AACSII auto-analyzer (Bran+Luebbe, Norderstedt, Germany). The detection limits of nitrate, nitrite, ammonium, and phosphate ranged from 0.01–0.04 μ M, 0.01–0.02 μ M, 0.01–0.03 μ M, and 0.01–0.02 μ M, respectively. The nitracline was defined as the depth where nitrate concentrations increased above 1 μ M.

100 **2.2.** Nitrogen fixation activity and mannitol enrichment experiment

Nitrogen fixation was determined by the ${}^{15}N_2$ gas bubble method (hereafter, the bubble 101 102method; Montoya et al., 1996). Samples for incubation were collected in duplicate acid-cleaned 2-L polycarbonate (PC) bottles. The time-zero samples (n=1) were 103 immediately filtered onto precombusted GF/F filters. Two milliliters of ¹⁵N₂ gas [SI 104Science Co. Japan, for this gas, contaminations of nitrate, nitrite, and ammonium were 105106 determined to be low (< nM level), indicating that the overestimation of nitrogen fixation rates due to the uptake of ¹⁵N-labeled contaminants (Dabundo et al. 2014) was minimal 107 (Shiozaki et al., unpublished data)] were injected directly into the incubation bottles through 108

109	a septum using a gastight syringe. The tracer-added samples were covered with
110	neutral-density screens to adjust the light level and incubated for 24 h in an on-deck incubator
111	filled with flowing surface seawater. After the incubation, the samples were filtered onto
112	precombusted GF/F filters. The isotopic analyses were performed as described previously
113	(Shiozaki et al., 2009). The rate of nitrogen fixation was calculated using the equations of
114	Montoya et al. (1996).
115	To examine the possibility of underestimation of nitrogen fixation as determined by the
116	bubble method (Mohr et al., 2010; Großkopf et al., 2012), we compared the nitrogen fixation
117	rates determined using the ${}^{15}N_2$ gas dissolution method (hereafter, the dissolution method;
118	Mohr et al., 2010) with those determined using the bubble method (see above) during the
119	KK-13-6_Sep and KS-14-2_Mar cruises. For the dissolution method, ${}^{15}N_2$ -enriched
120	seawater was prepared according to Mohr et al. (2010) and Großkopf et al. (2012). Briefly,
121	filtered seawater was degassed using a Sterapore membrane unit (20M1500A: Mitsubishi
122	Rayon Co., Ltd., Tokyo, Japan) at a flow rate of ~500 mL min ⁻¹ (recirculation period, 10 min).
123	Degassed seawater was stored in 1-L Tedlar bags without headspaces and $\frac{10 \text{ mL}^{15}\text{N}_2}{10 \text{ mL}^{15}}$ gas was
124	added at a ratio of 10 ml ${}^{15}N_2$ per 1L seawater. After complete dissolution, the
125	$^{15}\mathrm{N}_2\text{-enriched}$ seawater was added to seawater samples contained in 2-L PC bottles, which
126	were incubated and used for isotopic analyses as described above. The ${}^{15}N_2$ -enriched

127	seawater was prepared at each station, and was added to the incubation bottles within 1 h
128	after preparation. The nitrogen fixation rate was calculated according to Mohr et al. (2010).
129	For this comparison, triplicate samples were used for both the dissolution and bubble
130	methods.
131	To examine if sugar addition affected nitrogen fixation rates (Bonnet et al., 2013; Rahav et al.,
132	2013; Moisander et al., 2011), we determined nitrogen fixation rates (the ${}^{15}N_2$ gas bubble
133	method, see above) for surface seawater samples (stations ON4 and OT6 during the
134	KS-14-2_Mar cruise) with and without addition of mannitol (final conc. 0.8 μ M) (n=3).
135	2.3. Statistical analysis
136	Pearson's correlation coefficient was used to examine the relationships between nitrogen
137	fixation activities and environmental variables including temperature, nitrate, ammonium,
138	phosphate, and the ratio of nitrate+nitrite+ammonium to phosphate (N/P ratio) in the entire
139	water column (the data used for the calculation were shown in Table S1). When the nutrient
140	concentration was below the detection limit, the value of the detection limit was used for the
141	analysis. When nitrogen fixation was not detected, the value was assumed to be zero.
142	2.3.2.4. DNA analysis
143	<u>2.3.1.2.4.1.</u> DNA extraction, sequencing, and phylogenetic analysis

144 Samples (0.38–1 L) for DNA analysis were filtered through 0.2-µm-pore-sized Nuclepore

145	filters and stored in a deep freezer (-80° C) until onshore analysis. Total DNA was extracted
146	using a ChargeSwitch Forensic DNA Purification Kit (Invitrogen, Carlsbad, CA, USA) with
147	slight modification of the manufacturer's protocol (Shiozaki et al., 2014a). Partial nifH
148	fragments were amplified using a nested PCR strategy (Zehr and Turner, 2001) from samples
149	collected from surface water at Stns. OT4, ON1, ON5, and ON7 during the KT-12-20_Aug
150	and KT-12-27_Oct cruises, at Stns. OT4, ON1, and ON5 during the KT-13-2_Jan and
151	KS-14-2_Mar cruises, at Stns. OT4, ON1, ON5, and ON8 during the KK-13-1_Jun cruise,
152	and at Stns OT4, ON5, ON7 during the KK-13-6_Sep cruise (Table 1). PCR reagents were
153	applied as described by Shiozaki et al. (2014a). The first and second PCRs were run using
154	the same cycling conditions: 95° C for 30 s followed by 30 cycles of 98° C for 10 s, 52° C for
155	30 s, and 72° C for 30 s; followed by a final extension at 72° C for 7 min. Sterile distilled
156	water was used as the negative control. After PCR analysis, we confirmed there was no
157	band in agarose gel of electrophoresis from the negative control. The PCR products were
158	cloned and sequenced according to Shiozaki et al. (2014a). The present study obtained 197
159	<i>nifH</i> sequences in total. The <i>nifH</i> sequences were translated into amino acid sequences and
160	searched against the protein database of the National Center for Biotechnology Information
161	using the BLASTp algorithm. Clones with 100% amino acid sequence similarity were
162	defined as the same operational taxonomic unit (OTU) using the CD-HIT suite (Huang et al.,

The amino acid sequences were aligned using multiple sequence comparisons by the 1632010). log-expectation (MUSCLE) module in the MEGA5 package (Tamura et al., 2011). A 164165phylogenetic tree was constructed using the maximum likelihood method employing the Dayhoff matrix-based mode, and 1,000 bootstrap replicates were run. The obtained 166 sequences were assigned to bacterial groups based on known sequences included in a cluster 167within the phylogenetic tree (Zehr et al., 2003a). The sequences from this study were 168deposited in the DNA Data Bank of Japan (DDBJ) as accession numbers LC013480 to 169LC013676. 170

171 2.3.2.2.4.2. Quantitative PCR (qPCR) analysis

The clone library analysis showed that UCYN-A, *Trichodesmium*, and γ -proteobacterial 172phylotype γ -24774A11 (hereafter γ -24774A11) were likely important diazotrophs from early 173174summer to fall when nitrogen fixation occurred (see below). Therefore, the present study quantified these *nifH* phylotypes by qPCR analysis to examine their relative importance 175duing these seasons. In addition, UCYN-B which is considered to be a major diazotroph in 176the tropical and subtropical oligotrophic ocean (Moisander et al., 2010), was quantified. 177TaqMan primer and probe sets previously designed for these four *nifH* phylotypes were used 178for quantification (Shiozaki et al., 2014a,c). The 20 μ L qPCR reactions contained 10 μ L 2 \times 179Premix Ex Tag (Probe qPCR; Takara), 5.6 µL of nuclease-free water, 1 µL each of the 180

181	forward and reverse primers, 0.4 μL of TaqMan probe, and 2 μL of template DNA. The
182	qPCR assays were performed using LightCycler 480 System (Roche Applied Science,
183	Germany). The qPCR assays were run in triplicate reactions. Linear regression r^2 values
184	for the standard curves were >0.99 for all reactions. The efficiency of the qPCR assays
185	ranged from 90.9 to 98.4%, with an average of 95.1%. As the negative control, sterile
186	distilled water was used, from which no amplification signals were detected. The detection
187	limit was 75 copies L^{-1} .

3. RESULTS

3.1. Comparison of the bubble method and the dissolution method

191	Nitrogen fixation rates determined by the bubble and dissolution methods were compared
192	during the KK-13-6_Sep and KS-14-2_Mar cruises (Fig. 2). Both methods failed to detect
193	nitrogen fixation in samples collected during the KS-14-2 cruise. During the KK-13-6_Sep
194	cruise, the nitrogen fixation rates determined by the dissolution method were significantly
195	higher (1.5–2.2 fold) than those determined by the bubble method at Stns. OT6 and ON5 (p
196	<0.05). At Stns. OT4 and ON7, the nitrogen fixation rates determined by the two methods
197	did not differ significantly. The following nitrogen fixation results were obtained by the
198	bubble method; we sought to standardize values among all cruises and to compare them with

199 previous results. Hence, the levels could be underestimates.

200 **3.2.** Seasonal variations in nitrogen fixation rates

201According to the temperature-salinity (TS) diagram proposed by Hanawa and Mitsudera (1987), both the offshore and bay waters collected during this investigation primarily 202belonged to either the surface layer water system (SW) or the Tsugaru Warm Current water 203system (TW) (Fig. 3), with the exception of waters collected from the 1% light depth (119 m) 204at Stn. ON5 during the KT-13-2_Jan cruise and those collected at the surface of OT5 during 205the KS-14-2_Mar cruise, which were classified as belonging to the Oyashio water system 206(OW) and the Coastal Oyashio water system (CO), respectively. These water classifications 207based on the TS diagram were generally consistent with the geostrophic current field of the 208209 investigated region (Fig.S1). Based on these results, it was considered that surface waters 210collected during the same cruise in a particular season generally belonged to the same water system that was prevalent in the investigated region at the time of our sampling. 211Sea surface temperatures (SST) (range, 1.5 to 24.3° C) (Figs. 4a and S1) and surface nitrate 212and phosphate concentrations determined during each cruise were averaged to emphasize the 213214seasonal variability of these parameters (Fig. 4b). In general, surface nitrate and phosphate concentrations were low ($\leq 0.07 \ \mu M$ and $\leq 0.20 \ \mu M$, respectively) in the warmer seawaters 215

(14.2–24.3° C) sampled in early summer (KK-13-1 Jun), summer (KT-12-20 Aug), and fall

216

217	(KT-12-27_Oct), whereas they were relatively high ($\geq 0.75 \ \mu M$ and $\geq 0.28 \ \mu M$, respectively)
218	in the colder seawaters (1.5-9.8° C) sampled during winter (KT-13-2_Jan), and spring
219	(KS-14-2_Mar). During the KK-13-6_Sep cruise (late summer), the nitrate concentrations
220	were relatively high and variable (mean \pm SD; 2.92 \pm 7.90 $\mu M).$ This was because the
221	highest nitrate concentration (22.6 μ M) was determined at the near-shore Stn. OT1 (Fig. S2).
222	Similar to nitrate, surface phosphate concentrations tended to be high during winter
223	(KT-13-2_Jan) and spring (KS-14-2_Mar), while they were low during the warmer seasons.
224	The seasonal variation pattern of the average ammonium concentration at the surface differed
225	from those of nitrate and phosphate concentrations (Fig. 4b), characterized by low
226	concentrations ($\leq \sim 1 \ \mu M$) throughout the year. The high variation in surface ammonium
227	concentration during the KK-13-6_Sep cruises were due to relatively high ammonium
228	concentrations at Stn. OT1 (1.41 µM) (Fig. S2).

Nitrogen fixation was detected in the surface waters of most samples collected during the four cruises conducted in early summer (KK-13-1_Jun), summer (KT-12-20_Aug), late summer (KK-13-6_Sep), and fall (KT-12-27_Oct), and varied in the range of 0.33–13.6 nmol N L⁻¹ d⁻¹ (Figs. 4c and S2). Relatively high nitrogen fixation rates were determined for samples collected during the KT-12-20_Aug cruise, although the highest value was obtained at Stn. ON7 during the KK-13-6_Sep cruise. Nitrogen fixation was not detected in seawater

235	samples collected during the winter and spring cruises, even after addition of mannitol
236	(KS-14-2_Mar). Furthermore, nitrogen fixation was not detected in DIN-replete water at
237	Stn. OT1 in late summer (KK-13-6_Sep).
238	The rates of nitrogen fixation in samples collected at different depths (0-119 m) were
239	examined at Stns. OT4 and ON5 (Fig. 5). Nitrogen fixation was detectable only during the
240	four cruises conducted in early summer (KK-13-1_Jun), summer (KT-12-20_Aug), late
241	summer (KK-13-6_Sep), and fall (KT-12-27_Oct), the same seasons during which surface
242	nitrogen fixation was observed (Fig. 4). Nitrogen fixation rates tended to be higher at the
243	surface than in the deeper layers during summer (KT-12-20_Aug) and late summer
244	(KK-13-6_Sep (at Stn. OT4)), whereas this vertical trend was less evident during fall
245	(KT-12-27_Oct) and early summer (KK-13-1_Jun). At Stn. OT4, nitrogen fixation was
246	detectable even in deeper layers below the nitracline, where nitrate concentrations were
247	relatively high (KT-12-27_Oct, depth = 62 m; KK-13-1_Jun, depth = 42 m). In this layer,
248	the ammonium concentrations were 0.05 μM (KT-12-27_Oct) and 0.62 μM (KK-13-1_Jun).
249	The nitrogen fixation rate below the nitracline (1.56 nmol N $L^{-1} d^{-1}$) was higher than that at
250	the surface (0.87 nmol N L^{-1} d ⁻¹) during the KK-13-1_Jun cruise. The maximum
251	depth-integrated nitrogen fixation (294 μ mol N m ⁻² d ⁻¹) was observed at Stn. OT4 during
252	summer (KT-12-20_Aug).

253 3.3. Relationship between nitrogen fixation rates and environmental 254 variables

Nitrogen fixation rates tended to increase with temperature (p < 0.01) (Fig. 6a and Table 2).

255

Nitrogen fixation was detected only when seawater temperatures exceeded 11.7° C, with higher rates (>6 nmol N $L^{-1} d^{-1}$) noted in waters warmer than 19.5° C. However, there were exceptions to this general relationship between the nitrogen fixation rate and temperature. For example, from the data collected during the KK-13-1_Jun cruise the nitrogen fixation rate was highest at 15.4° C, while it was low (undetectable) at higher temperatures.

Nitrogen fixation rates were negatively correlated with nitrate and phosphate concentrations 261(p < 0.01) (Table 2). There was no significant correlation between nitrogen fixation rates 262and ammonium concentration (p > 0.05). We also found no significant correlation between 263264nitrogen fixation rates and the ratio of total inorganic nitrogen (nitrate + nitrite + ammonium) to phosphate (Table 2). A plot of the nitrogen fixation against nitrate concentrations 265indicated that nitrogen fixation was generally detectable only when nitrate was depleted (Fig. 2666b), except that relatively high nitrogen fixation rates were determined in the subsurface layer 267of Stn. OT4 (KT-12-27_Oct and KK-13-1_Jun). Active nitrogen fixation tended to occur at 268low ammonium concentration $\leq -0.1 \mu$ M. However, seasonal variation in ammonium 269concentration was small and no statistically significant relationship with nitrogen fixation 270

was observed (Fig. 6c).

272

273 **3.4.** Seasonal variation in the diazotroph community

274 3.4.1. Diazotroph community

PCR reagents have been suggested to be a potential source of *nifH* genes during analysis of 275the diazotroph community (Zehr et al., 2003b). Although we confirmed the absence of any 276bands from the negative control in agarose gel electrophoresis, sequences with similarity 277(>97%) at the amino acid level to contaminants in PCR reagents were recovered from 278samples obtained during the KK-13-6_Sep and KS-14-2_Mar cruises (10 clones in total). 279We did not include these sequences in our data analysis. 280The *nifH* gene was recovered from all samples that we collected during this study across 281282different stations and seasons (Table 1). Sixty-one OTUs were grouped from 187 nifH clones, based on 100% amino acid sequence similarity. The OTUs were assigned to 283

cyanobacteria, α-, β-, γ-, and δ-proteobacteria, and Cluster III diazotrophs (Zehr et al., 2003a) (Figs. S3, and S4, and S5).

286 The detected cyanobacterial sequences belonged to *Trichodesmium*, UCYN-A, and 287 *Leptolyngbya*. The *nifH* sequences of UCYN-B, UCYN-C, and *Richelia intracellularis* 288 were not recovered. The *nifH* sequence of *Trichodesmium* was recovered only during the

289	KT-12-27_Oct cruise (Table 1). UCYN-A was generally observed from early summer to
290	fall, while nifH of Leptolyngbya was detected during winter. During the KS-14-2_Mar
291	cruise, all recovered sequences were derived from heterotrophic bacteria, and were
292	dominated by Cluster III diazotrophs at Stns. OT4 and ON5. The Cluster III diazotroph
293	<i>nifH</i> sequences were recovered on all cruises except the KK-13-1_Jun cruise. Note that 58
294	out of 187 sequences displayed >97% similarity, at the amino acid level, to terrestrial
295	diazotroph sequences derived from soil, mudflats, and lakes (Fig. S3, and S4, and S5).
296	These sequences were mainly affiliated with α - and δ -proteobacterial diazotrophs, with 29 of
297	39 α -proteobacterial sequences and 22 of 24 δ -proteobacterial sequences being similar to
298	terrestrial diazotroph sequences.

299 3.4.2. Diazotrophs abundances

The *nifH* sequence of *Trichodesmium* was detected by qPCR assay during the KT-12-27_Oct and KK-13-6_Sep cruises (Fig. 7 and 8). During these two cruises, the abundance of *Trichodesmium* ranged from below the detection limit to 8.7×10^4 copies L⁻¹ at all depths. *Trichodesmium* abundance at the surface was higher than those of UCYN-A, UCYN-B, and γ -24774A11 at most stations during the KT-12-27_Oct cruise (Fig. 7 and \$556). UCYN-A was detected on all cruises except for the KS-14-2_Mar cruise (Fig. 7 and 8). The maximum abundance of UCYN-A generally occurred at the surface except at Stn. OT4

307	during the KK-13-6_Sep cruise where the peak $(1.2 \times 10^3 \text{ copies L}^{-1})$ was observed at 72 m
308	(Fig. 8). The abundance of UCYN-A varied from below the detection limit to 2.6×10^5
309	copies L^{-1} at all depths. At the surface, UCYN-A was the most abundant among the four
310	groups at most of the stations investigated during the KT-12-20_Aug, KT-13-2_Jan,
311	KK-13-1_Jun, and KK-13-6_Sep cruises (Fig. 7 and <u>\$556</u>). UCYN-B was detected only at
312	Stn. ON7 during the KK-13-6_Sep cruise (Fig. 7, 8, and $\frac{55S6}{5}$). γ -24774A11 was detected
313	during all cruises except for the KS-14-2_Mar cruise (Fig. 7 and 8). The abundance of
314	γ -24774A11 ranged from below the detection limit to 1.8×10^4 copies L ⁻¹ , with a tendency of
315	a subsurface peak at both stations (Fig. 8).

4. DISCUSSION

318	4.1. Differences in nitrogen fixation rates between the bubble method and
319	the dissolution method
320	The present study revealed that a significant difference between the bubble and the
321	dissolution methods was not always present. Großkopf et al. (2012) indicated that the
322	difference was smaller when Trichodesmium dominated in the diazotroph community than
323	when unicellular cyanobacteria and γ -proteobacteria dominated presumably because
324	<i>Trichodesmium</i> can float to the top of the bottle and directly use the added $^{15}N_2$ in the bubble

325	method. Interestingly, Trichodesmium abundance was higher than or similar to those of
326	UCYN-A, UCYN-B, and γ -24774A11 at Stns. OT4 and ON7, at which there was no
327	significant difference detected between the two methods. On the other hand,
328	Trichodesmium was not detected and UCYN-A was the most abundant among the four groups
329	at Stns. OT6 and ON5, at which nitrogen fixation determined by the dissolution method was
330	significantly higher than that by the bubble method. These results were consistent with the
331	report by Großkopf et al. (2012). The larger variations in nitrogen fixation at Stns. OT4 and
332	ON7 than at Stns. OT6 and ON5 were probably due to the heterogeneity of Trichodesmium
333	abundance (Carpenter et al., 2004). Although nitrogen fixation rates determined by the
334	bubble method in the present study were underestimated on all cruises, the level of
335	underestimation was relatively small during the KT-12-27_Oct cruise when Trichodesmium
336	was dominant at most of the stations.
337	4.2.4.1. Seasonal variations in nitrogen fixation rates in the temperate coastal
338	ocean
339	Nitrogen fixation rates were measurable mainly from early summer to fall when nitrate was
340	generally depleted in sample seawaters, although there were some exceptions. Our

341 estimates of the nitrogen fixation rates (0.33–13.6 nmol N $\frac{1}{L}^{-1}$ d⁻¹) were significantly (*p*

342 <0.05) higher than the corresponding values previously reported in the temperate region of

343	the eastern North Pacific (0.15–0.31 nmol N H_{-1}^{-1} d ⁻¹ ; Needoba et al., 2007) and the
344	oligotrophic region of the western and central North Pacific (0.17–3.62 nmol N $\frac{1}{4L}^{-1}$ d ⁻¹ ;
345	Shiozaki et al., 2010), whereas they were comparable to those determined in the Kuroshio
346	(0.54–28 nmol N $\frac{1}{L}^{-1}$ d ⁻¹ ; Shiozaki et al., 2010) and the western Atlantic coastal regions
347	(1.3–49.8 nmol N HL^{-1} d ⁻¹ ; Mulholland et al., 2012). Higher nitrogen fixation rates have
348	been determined in other temperate oceans, including the western English Channel
349	(18.9±0.01 and 20.0 nmol N $\frac{1}{2}$ d ⁻¹ ; Rees et al., 2009) and the Baltic Sea estuaries (47–83)
350	nmol N $\frac{\mathbf{L}^{-1}}{\mathbf{L}} d^{-1}$; Bentzon-Tilia et al., 2015).

In our study, spatiotemporal variability in nitrogen fixation rates appeared to be partly related 351to the Tsugaru Warm Current path. This current, which flows from the north (after passage 352through the Tsugaru Strait) to the study region (Fig. S1), may carry active diazotrophs and 353354therefore enhance nitrogen fixation in our study region. This is supported by the fact that nitrogen fixation rates during individual cruises tended to be higher at Stn. OT4 than at Stn. 355ON5. These stations were located up- and down-stream of the Tsugaru Warm Current, 356respectively. In addition, variations in nitrogen fixation rates among stations and seasons 357 might also be related to the extent of vertical mixing in the Tsugaru Warm Current. It has 358been suggested that vertical mixing may introduce iron-rich subsurface water to the surface 359of the Tsugaru Strait (Saitoh et al., 2008). Such input of iron may enhance nitrogen fixation 360

rates. Consistent with this notion, our results showed that the nitrogen fixation rate was
 relatively high at Stn. OT4, where the nitracline was relatively deep.

363Blais et al. (2012) proposed that nitrogen fixation can proceed even in nutrient-replete waters, if large amounts of iron and organic materials are available for consumption by bacterial 364 diazotrophs. In the present study, this possibility was examined by conducting mannitol 365addition experiments using surface seawaters collected during spring. 366 These waters, belonging to the Oyashio Current system (Nishioka et al., 2007, 2011; Shiozaki et al., 2014b), 367 were considered to be rich in iron during spring, as indicated by a previous study (iron conc., 368 0.79-8.46 nM; Nishioka et al. 2007). Despite potentially high iron concentrations, our 369 results showed that nitrogen fixation was undetectable even after the mannitol addition, 370 suggesting that, contrary to the Blais et al. proposition, diazotrophs remained inactive under 371372our experimental settings.

Our data showed that nitrogen fixation rates were below the detection limit during winter, spring, and late summer (KK-13-6_Sep), when nitrate concentrations were high. These results were consistent with the results of previous studies in the Pacific Ocean, which indicated that nitrogen fixation rates were low or undetectable in DIN-replete waters (Shiozaki et al., 2010). In contrast, Mulholland et al. (2012) reported that, in temperate regions of the Atlantic Ocean, nitrogen fixation rates were high even in DIN-replete (>1 μ M)

379	and cold (<10°C) surface seawaters. Their study was conducted downstream of the Gulf
380	Stream, where diazotrophs could be delivered from subtropical oceans where DIN is depleted.
381	Previous studies have suggested that cyanobacterial diazotrophs can travel over long
382	distances (>1,000 km) in currents, without losing their capacity for N_2 fixation (Shiozaki et
383	al., 2013), and that activity is not lost immediately even after mixing with DIN-replete
384	seawaters (Holl and Montoya, 2005; Dekaezemacker and Bonnet, 2011). In our region,
385	because the Tsugaru Warm Current flows from north to south, diazotrophs entrained by the
386	current have little chance of meeting high-DIN water at the surface. DIN-replete water
387	during summer was observed at the inside bay station OT1 (Fig. S2). Concomitantly,
388	low-salinity surface waters spread offshore along the OT transect line (Fig. <u>\$6\$7</u>), suggesting
389	that anomalously high DIN concentrations were likely attributable to terrestrial surface
390	discharge enhanced by Typhoon Man-yi, which passed over the region immediately before
391	the cruise. Subramaniam et al. (2008) reported that nitrogen fixation rates near the Amazon
392	River estuary, with low salinity and high nitrate levels, were fairly low. Their results are
393	consistent with ours. Ammonium inhibits nitrogen fixation, especially when ammonium
394	concentrations exceed 1 μ M, as demonstrated by <i>Trichodesmium</i> (Mulholland et al. 2001).
395	In our study, no negative relationship between nitrogen fixation and ammonium
396	concentration was found. This can likely be explained by relatively low ammonium

397	concentrations ($\leq \sim 1 \ \mu M$) throughout the year and across the investigated region. <u>Nitrogen</u>
398	fixation was also negatively correlated with phosphate as with nitrate, and positively
399	correlated with temperature (Table 2). Since correlation between nitrate, phosphate, and
400	temperature was significant, all these factors would not necessarily influence nitrogen
401	fixation directly. Rather, one or more the factors that varied with nitrate could
402	synergistically influence nitrogen fixation.

404 **4.3.<u>4.2.</u>** Seasonal variation in the diazotroph community in the temperate 405 coastal ocean

The qPCR analysis demonstrated that the target groups were quantifiable even at stations at 406 which their sequences were not recovered by the clone library analysis, suggesting that the 407 number of clones was not sufficient to capture the diazotroph community structure on each 408cruise. Despite this limitation, the sequences more frequently recovered in the clone library 409 generally corresponded to the most abundant group revealed by the qPCR analysis. For 410example, UCYN-A was frequently recovered in the library during the KT-12-20_Aug, 411412KK-13-1_Jun, and KK-13-6_Sep cruises; for these samples, the qPCR results showed that UCYN-A was the most abundant group among the four examined. Similarly, qPCR data 413 414 indicated that *Trichodesmium* was the most abundant group during fall, when this group was

415	frequently recovered in the library (during the KT-12-27_Oct cruise). Therefore, the
416	diazotrophs targeted by the qPCR analysis were likely important for nitrogen fixation in this
417	study region. This consistency in the general results obtained by the clone library and qPCR
418	suggests that both of these approaches captured a similar seasonal trend in community
419	composition changes for at least the major diazotroph groups. In the discussion below, we
420	mainly discuss possible factors responsible for seasonal variation in the diazotrophs targeted
421	by the qPCR analysis community by focusing on the major diazotroph groups
422	UCYN-A was detected by qPCR in all seasons except spring (KS-14-2_Mar), suggesting that
423	this group of diazotrophs could be important agents of nitrogen fixation in this region.
424	Especially from early to late summer, the abundance of UCYN-A was generally higher than
425	that of <i>Trichodesmium</i> , UCYN-B, and γ -24774A11. UCYN-A has been widely detected in
426	temperate regions, and is considered to be one of the major diazotrophs of these locations
427	(Needoba et al., 2007; Rees et al., 2009; Mulholland et al., 2012; Bentzon-Tilia et al., 2015).
428	UCYN-A is known to be most abundant in relatively warm waters around ~20° C (Needoba
429	et al., 2007; Moisander et al., 2010). UCYN-A was detected by qPCR even during winter at
430	some stations, yet, was not observed during spring. This could be because UCYN-A
431	abundance decreased from fall to winter with decreasing temperatures, eventually
432	disappearing-disappeared_during-in spring.

433	Trichodesmium was detected from late summer to fall by qPCR analysis, when water
434	temperatures ranged from 19.1 to 23.4° C at the surface. Given that the optimal growth
435	temperature for Trichodesmium has been reported to be high (24-30° C) (Breitbarth et al.,
436	2007), Trichodesmium detected in the investigated region likely existed under suboptimum
437	conditions. The relatively high abundance of Trichodesmium observed during fall, despite
438	the suboptimal temperature conditions, might indicate that Trichodesmium was transported
439	from the adjacent subtropical region where seawater temperatures were high (>24° C). In
440	the western North Pacific subtropical region, Trichodesmium is abundant from July to
441	September (Marumo and Nagasawa, 1976; Chen et al., 2008). Trichodesmium that
442	flourished in the subtropical region during summer could be transported by the Tsugaru
443	Warm Current, displaying peak abundance during fall in the investigated region. This could
444	support the above discussion that waters containing active nitrogen fixation were delivered to
445	this region by the Tsugaru Warm Current.
446	We observed γ -24774A11 by qPCR analysis during all cruises except for the KS-14-2_Mar
447	cruise. This phylotype has not been reported previously in other temperate oceans
448	(Needoba et al., 2007; Rees et al., 2009; Mulholland et al., 2012). The nifH sequence of
449	γ -24774A11 was similar to that of <i>Pseudomonas stutzeri</i> (94% similarity at the amino acid
450	level), which was observed in waters including temperate regions (Bentzon-Tilia et al., 2015).

451	Bentzon-Tilia et al. (2015) reported that P. stutzeri-like nifH genes (99% similarity at the
452	nucleotide level) were the most abundant sequences among their samples collected from the
453	temperate Baltic Sea estuary. In the present study, we recovered P. stutzeri-like nifH genes
454	(>97% similarity at the amino acid level) from Stn. OT4 during the KT-13-2_Jan cruise by
455	the clone library analysis. However, γ -24774A11 was not detected on that occasion by
456	qPCR analysis, suggesting that γ -24774A11 was not quantified as <i>P. stutzeri</i> and that <i>P.</i>
457	stutzeri was could not be a major diazotroph in this study region. The ecology of
458	γ -24774A11 is still fairly unknown. It remains to be seen, in future studies whether this
459	phylotype contributes to the nitrogen fixation in this region.
460	UCYN-B was not detected by qPCR except at one station. This result is consistent with
461	previous knowledge. UCYN-B becomes abundant with increasing temperature, similar to
462	Trichodesmium (Moisander et al., 2010), and is rarely observed in the temperate region
463	(Needoba et al., 2007; Rees et al., 2009; Mulholland et al., 2012; Bentzon-Tilia et al., 2015).
464	Furthermore, UCYN-B abundance is low in shallow nitracline regions (Shiozaki et al.,
465	2014a,c). The nitracline depth in this region (≤ 60 m) was shallower than that of >100-m
466	depths of regions where UCYN-B is abundant (Shiozaki et al., 2014a). Therefore, although
467	UCYN-B might also have been delivered from subtropical region, it could not survive in the
468	shallower nitracline region.

469	In nitrate-rich water during winter and spring, Cluster III diazotrophs were dominant-detected
470	at most of the stations. Furthermore, from early summer to fall, <i>nifH</i> sequences of Cluster
471	III diazotrophs were recovered by the clone library analysis in samples from all cruises
472	(except KK-13-1_Jan). <u>Therefore, Cluster III diazotrophs likely presented throughout a year.</u>
473	Because UCYN-A, Trichodesmium, and γ -24774A11 were scarce during winter and spring,
474	Cluster III diazotrophs were likely to be major diazotrophs at these times.
475	Cluster III diazotrophs are putative anaerobes (Hamersley et al., 2011; Farnelid et al., 2013;
476	Bentzon-Tilia et al., 2014), and hence, they are usually dominant in the diazotrophic
477	community of oxygen-depleted waters (Hamersley et al., 2011; Farnelid et al., 2013) or
478	marine sediments (Bertics et al., 2013). In this study, dissolved oxygen was not depleted
479	$(>3.16 \text{ ml } \text{L}^{-1})$ in the upper winter maximum mixed layer depth in this region (~200 m;
480	Shiozaki et al., 2014b) (Fig. S7S8). Therefore, it is possible that the Cluster III diazotrophs
481	that we detected in the surface layer were derived from resuspensions of coastal marine
482	sediments in which anoxic conditions may prevail because of organic matter decomposition.
483	<u>T</u> the Cluster III activity was likely strongly suppressed in the water column because of the
484	high oxygen concentration.

485 Many *nifH* sequences recovered by the clone library analysis were similar to terrestrially 486 derived sequences. These results agree with previous data collected in coastal regions,

487	where terrestrially derived <i>nifH</i> sequences were also found (Rees et al., 2009; Mulholland et
488	al., 2012; Blais et al., 2012). We obtained a Leptolyngbya-like nifH gene during the
489	KT-13-2_Jan cruise. The organism has been found on beaches or coastal land areas (Brito
490	et al. 2012), but not in the open ocean. Because nitrogen fixation was not detected during
491	the KT-13-2_Jan cruise, the organism was considered not to perform nitrogen fixationmust
492	have been inactivated after being flushed out from the coastal region.

494 **5. CONCLUSION**

This study demonstrated that nitrogen fixation can and does proceed at high rates, depending 495on the season, in the temperate region of the northwestern North Pacific, although we failed 496 to detect nitrogen fixation in DIN-replete cold waters. *nifH* sequences were omnipresent 497 498and recovered throughout the year, displaying a marked seasonality in their composition. UCYN-A was a major diazotroph during summer, whereas Trichodesmium was abundant 499 during fall, despite low temperatures. It has been suggested that Trichodesmium was 500laterally transported from the adjacent subtropical region, which displays high temperatures. 501502Although tThe Cluster III diazotrophs were recovered almost throughout a year, they were 503considered to be inactivated in oxic water columns.

504 abundant in surface waters during winter, which was ascribed to their delivery from the

anoxic sediments via bottom resuspension. The failure to detect nitrogen fixation when
Cluster III was abundant implied that the activity of this diazotroph group was strongly
suppressed in oxic water columns.

508

509 Author Contributions

T.S., T.N., and K.F. designed the experiment and T.S. collected the samples at sea. T.S.
determined nitrogen fixation and nutrient concentrations and analyzed satellite datasets. T.S.
and M.I. conducted the genetic analyses. T.S. prepared the manuscript with contributions
from all co-authors.

514

515 Acknowledgements

516 We acknowledge K. Kogure, K. Hamasaki, A. Tsuda, Y. Tada, R. Fujimura, R. Kaneko, H.

517 Takasu, T. Yokokawa, K. Seike, and T. Kitahashi for their assistance in the sample collection

518 and analysis. We thank the captains, crewmembers, and participants on board the R/V

519 Tansei-maru, No.3 Kaiyo-maru, Shinsei-maru for their cooperation at sea. We also thank H.

- 520 Fukuda for providing nutrient data on the KS-14-2 cruise. We acknowledge the National
- 521 Aeronautics and Space Administration (NASA) and the Archiving, Validation, and
- 522 Interpretation of Satellite Data in Oceanography data center at the Centre National d'Etudes

523	Spatiales (CNES AVISO) for providing satellite data sets. This study was financially
524	supported by Tohoku Ecosystem-Associated Marine Sciences (TEAMS) sponsored by
525	Ministry of Education, Culture, Sports, Science and Technology (MEXT), by a Grant-in-Aid
526	for Scientific Research on Innovative Areas (24121001), by the Japan Science and
527	Technology Agency (JST CREST), and by Grant-in-Aid for Japan Society for the Promotion
528	of Science (JSPS) Fellows (25-7341) from MEXT

530 **References**

- 531 Bentzon-Tilia, M., Farnelid, H., Jürgens, K. and Riemann, L.: Cultivation and isolation of
- N₂-fixing bacteria from suboxic waters in the Baltic Sea, FEMS Microbiol. Ecol., 88,
 358-371, 2014.
- 534 Bentzon-Tilia, M., Traving, S.J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S.,
- 535 Markager, S., and Riemann, L.: Significant N₂ fixation by heterotrophs, photoheterotrophs
- and heterocystous cyanobacteria in two temperate estuaries, ISME J., 9, 273-285, 2015.
- 537 Bertics ,V. J., Löscher, C. R., Salonen, I., Dale, A. W., Gier, J., Schmitz, R. A., and Treude,
- 538 T.: Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the
- seasonally hypoxic Eckernförde Bay, Baltic Sea, Biogeosciences, 10, 1243-1258, 2013.
- 540 Blais, M., Tremblay, J.-E., Jungblut, A. D., Gagnon, J., Martin, J., Thaler, M., and Lovejoy,
- 541 C.: Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic, Glob.
- 542 Biogeochem. Cycles 26, GB3022, doi:10.1029/2011GB004096, 2012.
- 543 Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R. M., Grosso, O.,
- 544 Zehr, J. P., and Capone, D. G.: Aphotic N₂ fixation in the Eastern Tropical South Pacific
- 545 Ocean, PLoS one 8(12), e81265, doi:10.1371/journal.pone.0081265, 2013.
- 546 Brandes, J. A., and Devol, A. H.: A global marine-fixed nitrogen isotopic budget:
- 547 Implications for Holocene nitrogen cycling, Glob. Biogeochem. Cycles. 16, 4, 1120,

- 548 doi:10.1029/2001GB001856, 2002.
- 549 Breitbarth, E., Oschlies, A., and LaRoche, J: Physiological constraints on the global
- 550 distribution of Trichodesmium -effect of temperature on diazotrophy, Biogeosciences, 4,
- 551 53-61, 2007.
- 552 Brito, A., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A.,
- 553 Mota, R., Frazão, B., Martins, R., Vasconcelos, V., and Tamagnini, P.: Culture-dependent
- 554 characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A
- polyphasic study, Syst. Appl. Microbiol. 35, 110-119, 2012.
- 556 Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.: Trichodesmium, a
- 557 globally significant marine cyanobacterium, Science, 276, 1221-1229, 1997.
- 558 Carpenter, E. J., Subramaniam, A., Capone, D. G.: Biomass and primary productivity of the
- 559 cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean, Deep-Sea Res., 51,
- 560 173-203, 2004.
- 561 Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and Karl, D. M.: Physical
- 562 forcing of nitrogen fixation and diazotroph community structure in the North Pacific
- 563 subtropical gyre, Glob. Biogeochem. Cycles., 23, GB2020, doi:10.1029/2008GB003418,
- 564 2009.
- 565 Chen, Y.-L. L., Chen, H.-Y., Tuo, S.-H., and Ohki, K.: Seasonal dynamics of new production

- 566 from Trichodesmium N₂ fixation and nitrate uptake in the upstream Kuroshio and South
- 567 China Sea basin, Limnol. Oceanogr., 53(5), 1705-1721, 2008.
- 568 Codispoti, L. A.: An oceanic fixed nitrogen sink exceeding 400 TgN a⁻¹ vs the concept of
- 569 homeostasis in the fixed-nitrogen inventory, Biogeosciences, 4, 233-253, 2007.
- 570 Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A., Moisander, P. H.,
- and Granger, J.: The contamination of commercial ${}^{15}N_2$ gas stocks with ${}^{15}N$ -labeled nitrate
- and ammonium and consequences for nitrogen fixation measurements, PLoS ONE, 9(10),
- 573 e110335, doi:10.1371/journal.pone.0110335, 2014.
- 574 Dekaezemacker, J., and Bonnet, S.: Sensitivity of N₂ fixation to combined nitrogen forms
- 575 $(NO_3^- \text{ and } NH_4^+)$ in two strains of the marine diazotroph *Crocosphaera watsonii*
- 576 (Cyanobacteria), Mar. Ecol. Progr. Ser., 438, 33-46, 2011.
- 577 Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N., and Haug, G. H.: Isotopic
- 578 constraints on glacial/interglacial changes in the oceanic nitrogen budget, Glob. Biogeochem.
- 579 Cycles., 18, GB4012, doi:10.1029/2003GB002189, 2004.
- 580 Falkowski, P.G.: Enzymology of nitrogen assimilation, in: Carpenter, J., Capone, D. G. (eds)
- 581 Nitrogen in the marine environment, Academic Press, New York, 839-868, 1983.
- 582 Farnelid, H., Bentzon-Tilia, M., Andersson, A. F., Bertilsson, S., Jost, G., Labrenz, M.,
- 583 Jürgens, K., and Riemann, L.: Active nitrogen-fixing heterotrophic bacteria at and below the

- chemocline of the central Baltic Sea, ISME J., 7, 1413-1423, 2013.
- 585 Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M. M., Lavik, G.,
- 586 Schmitz, R. A., Wallace, D. W. R., and LaRoche, J.: Doubling of marine dinitrogen-fixation
- rates based on direct measurements, Nature, 488, 361-364, 2012.
- 588 Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J., D'Hondt, S., and
- 589 Kuypers, M.M.M.: Heterotrophic organisms dominate nitrogen fixation in the South Pacific
- 590 Gyre, ISME J., 6, 1238-1249, 2012.
- 591 Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P., Gunderson, T., and
- 592 Capone, D. G.: Nitrogen fixation within the water column associated with two hypoxic basins
- in the Southern California Bight, Aquat. Microbial. Ecol., 63, 193-205, 2011.
- Hanawa, K., and Mitsudera, H.: Variation of water system distribution in the Sanriku coastal
- 595 area, J. Oceanogr. Soc. Jap., 42, 435-446, 1987.
- 596 Holl, C. M., and Montoya, J. P.: Interactions between nitrate uptake and nitrogen fixation in
- 597 continuous cultures of the marine diazotroph *Trichodesmium* (Cyanobacteria), J. Phycol., 41,
- 598 1178-1183, 2005.
- Huang, Y., Niu, B. F., Gao, Y., Fu, L. M., and Li, W.Z.: CD-HIT Suite: a web server for
- 600 clustering and comparing biological sequences, Bioinformatics, 26, 680-682, 2010.
- 601 Marumo, R., and Nagasawa S.: Seasonal variation of the standing crop of a pelagic

- 602 blue-green alga, *Trichodesmium* in the Kuroshio water, Bull. Plankton Soc. Japan, 23(1),
- 603 19-25, 1976 (in Japanese with English abstract).
- Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A.,
- Montoya, J. P., and Zehr, J. P.: Unicellular cyanobacterial distributions broaden the oceanic
- 606 N₂ fixation domain, Science, 327, 1512-1514, 2010.
- 607 Moisander, P.H., Zhang, R., Boyle, E.A., Hewson, I., Montoya, J.P., Zehr, J.P.: Analogous
- 608 nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific
- 609 Ocean, ISME J., 6, 733-744, 2011.
- 610 Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J.P.:
- 611 Gammaproteobacterial diazotrophs and *nifH* gene expression in surface waters of the South
- 612 Pacific Ocean, ISME J., 8, 1962-1973, 2014.
- 613 Mohr, W., Großkopf, T., Wallace, D. W. R., and LaRoche, J.: Methodological
- 614 underestimation of oceanic nitrogen fixation rates, PLoS ONE, 5(9), e12583,
- 615 doi:10.1371/journal.pone.0012583, 2010.
- 616 Montoya, J. P., Voss, M., Kähler, P., and Capone, D. G.: A simple, high-precision,
- high-sensitivity tracer assay for N₂ fixation, Appl. Environ. Microbiol., 62(3), 986-993, 1996.
- Mulholland, M. R., Ohki, K., and Capone, D. G.: Nutrient controls on nitrogen uptake and
- 619 metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria), J.

- 620 Phycol., 37, 1001-1009, 2001.
- 621 Mulholland, M. R., Bernhardt, P. W., Blanco-Garcia, J. L., Mannino, A., Hyde, K.,
- 622 Mondragon, E., Turk, K., Moisander, P. H., and Zehr, J. P.: Rates of dinitrogen fixation and
- the abundance of diazotrophs in North American coastal waters between Cape Hatteras and
- 624 Georges Bank, Limnol. Oceanogr., 57(4), 1067-1083, 2012.
- 625 Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P, and Johnson, K. S.: Nitrogen fixation
- 626 by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean,
- 627 Limnol. Oceanogr., 52(4), 1317-1327, 2007.
- 628 Nishioka, J., Ono, T., Saito, H., Nakatsuka, T., Takeda, S., Yoshimura, T., Suzuki, K., Kuma,
- 629 K., Nakabayashi, S., Tsumune, D., Mitsudera, H., Johnson, W. K., and Tsuda, A.: Iron supply
- 630 to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk, J.
- 631 Geophys. Res., 112, C10012, doi:10.1029/2006JC004055, 2007.
- 632 Nishioka, J., Ono, T., Saito, H., Sakaoka, K., and Yoshimura, T.: Oceanic iron supply
- 633 mechanisms which support the spring diatom bloom in the Oyashio region, western subarctic
- 634 Pacific, J. Geophys. Res., 116, C02021, doi:10.1029/2010JC006321, 2011.
- 635 Rahav. E., Bar-Zeev, E., Ohayon, S., Elifantz, H., Belkin, N., Herut, B., Mulholland, M. R.,
- and Berman-Frank, I.: Dinitrogen fixation in aphotic oxygenated marine environment, Front.
- 637 Microbiol., 4, 277, doi:10.3389/fmicb.2013.00227, 2013.

- Riemann, L., Farnelid, H., and Steward, G. F.: Nitrogenase genes in non-cyanobacterial
 plankton: prevalence, diversity and regulation in marine waters, Aquat. Microbial Ecol. 61,
 235-247, 2010.
- 641 Rees, A. P., Gilbert, J. A., and Kelly-Gerreyn, B. A.: Nitrogen fixation in the western English
- 642 Channel (NE Atlantic Ocean), Mar. Ecol. Progr. Ser., 374, 7-12, 2009.
- 643 Saitoh, Y., Kuma, K., Isoda, Y., Kuroda, H., Matsuura, H., Wagawa, T., Takana, H.,
- 644 Kobayashi, N., Nagao, S., and Nakatsuka, T.: Processes influencing iron distribution in the
- 645 coastal waters of the Tsugaru Strait, Japan, J. Oceanogr., 64, 815-830, 2008.
- 646 Shiozaki, T., Furuya, K., Kodama, T., and Takeda, S.: Contribution of N₂ fixation to new
- production in the western North Pacific Ocean along 155°E, Mar. Ecol. Progr. Ser. 377,
 19-32, 2009.
- - 649 Shiozaki, T., Furuya, K., Kodama, T., Kitajima, S., Takeda, S., Takemura, T., and Kanda, J.:
 - 650 New estimation of N₂ fixation in the western and central Pacific Ocean and its marginal seas,
 - 651 Global. Biogeochem. Cycles., 24, GB1015, doi:10.1029/2009GB003620, 2010.
 - 652 Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K.: Advective transport of
 - 653 diazotrophs and importance of their nitrogen fixation on new and primary production in the
 - western Pacific warm pool, Limnol. Oceanogr., 58(1), 49-60, 2013.
 - 655 Shiozaki. T., Ijichi, M., Kodama, T., Takeda, S., and Furuya, K.: Heterotrophic bacteria are

- major nitrogen fixers in the euphotic zone of the Indian Ocean, Glob. Biogeochem. Cycles,
 28, doi:10.1002/2014GB004886, 2014a.
- 658 Shiozaki, T., Ito S.-I., Takahashi, K., Saito, H., Nagata, T., and Furuya, K.: Regional
- variability of factors controlling the onset timing and magnitude of spring algal blooms in the
- 660 northwestern North Pacific, J. Geophys. Res., 119, 1-13, doi:10.1002/2013JC009187, 2014b.
- 661 Shiozaki, T., Chen, Y.-L. L., Lin, Y.-H., Taniuchi, Y., Sheu, D.-S., Furuya, K., and Chen,
- 662 H.-Y.: Seasonal variations of unicellular diazotroph groups A and B, and Trichodesmium in
- the northern South China Sea and neighboring upstream Kuroshio Current, Cont. Shelf Res.,
 80, 20-31, 2014c.
- 665 Subramaniam, A., Yager, P. L., Carpenter, E. J., Mahaffey, C., Björkman, K., Cooley, S.,
- 666 Kustka, A. B., Montoya, J. P., Sañudo-Wilhelmy, S. A., Shipe, R., and Capone, D. G.:
- 667 Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic
- 668 Ocean, Proc. Natl. Acad. Aci. U.S.A., 108, 2184-2189, 2008.
- 669 Tamura, K., Peterson, N., Peterson, G., Stecher, M., Nei, M., and Kumar, S.: MEGA5:
- 670 Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance,
- and maximum parsimony methods, Mol. Biol. Evol., 28, 2731-2739, 2011.
- 2672 Zehr, J. P., and Turner, P. J.: Nitrogen fixation: nitrogenase genes and gene expression, Meth.
- 673 Microbiol., 30, 271-285, 2001.

674	Zehr, J. P., Jenkins, B. D., Short, S. M., and Steward, G. F.: Nitrogenase gene diversity and
675	microbial community structure: a cross-system comparison, Environ. Micorbiol., 5(7),
676	539-554, 2003a.

- 677 Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O., Jenkins, B. D.: Nitrogenase
- 678 genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes,
- 679 BioTechniques, 35, 996-1005, 2003b.
- ⁶⁸⁰ Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trends Microbiol. 19, 162-173, 2011.

Table 1. Summary of recovered *nifH* sequences belonging to *Trichodesmium* (Tri), UCYN-A

683 (UA), Leptolyngbya (Lep), α-proteobacteria (α-Pro), β-proteobacteria (β-Pro),

684 γ-proteobacteria (γ-Pro), δ-proteobacteria (δ-Pro), and Cluster III (CIII)

Cruise	Station	No. of clones Cyanobacteria			α-Pro	β-Pro	γ-Pro	δ-Pro	CIII	
			Tri	UA	Lep					
KT-12-20 <u>Aug</u>	OT4	12		9		3				
summer	ON1	5		2						3
	ON5	8		8						
	ON7	7		1		6				
Total		32	0	20	0	9	0	0	0	3
KT-12-27 <u>Oct</u>	OT4	7	1							6
<u>fall</u>	ON1	9							4(2)	5(5)
	ON5	6						1		5
	ON7	13	6	1		5(5)		1(1)		
Total		35	7	1	0	5(5)	0	2(1)	4(2)	16(5)
KT-13-2 <u>Jan</u>	OT4	11			10			1		
winter	ON1	1								1
	ON5	14				5(5)			2(2)	7
Total		26	0	0	10	5(5)	0	1	2(2)	8
KK-13-1 <u>Jun</u>	OT4	10		2		8(8)				
early summer	ON1	15		3				2	10(10)	
	ON5	11		4		7(7)				
	ON8	1					1			
Total		37	0	9	0	15(15)	1	2	10(10)	0
KK-13-6 <u>Sep</u>	OT4	7							4(4)	1
late summer	ON5	11		11						
	ON7	10		2		1		7		
Total		28	0	13	0	1	0	7	4(4)	1
KS-14-2 <u>Mar</u>	OT4	10							1(1)	9
<u>spring</u>	ON1	13				3(3)	3	1(1)	3(3)	
	ON5	15				2(2)				9
Total		38	0	0	0	5(5)	3	1(1)	4(4)	18

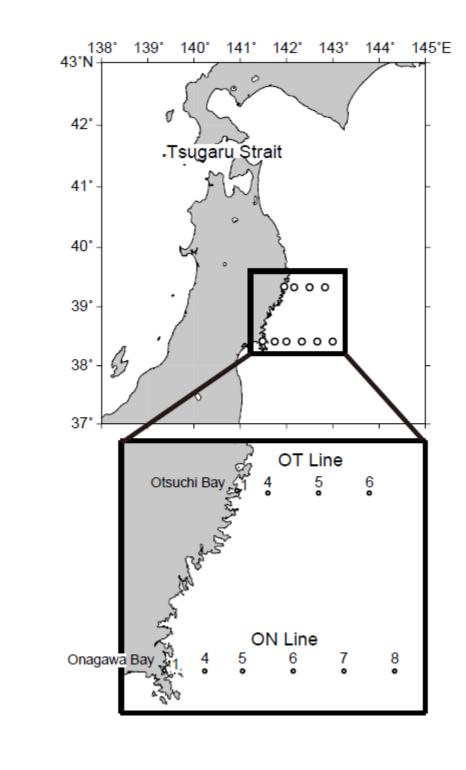
685 Numbers in parentheses indicate the number of sequences with >97% similarity at the amino

686 acid level to terrestrial diazotroph sequences.

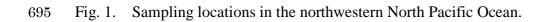
Table 2 Pearson's correlation matrix of N_2 fixation rates and water properties in the entire

688 <u>water column (n=73).at the</u>

	Temperature	Nitrate	Ammonium	Phosphate	N/P ratio	N ₂ fixation
Temperature	1					
Nitrate	-0.722**	1				
Ammonium	-0.036	0.439**	1			
Phosphate	-0.8 <u>80</u> 63**	0. 86<u>881</u>7**	0. 135<u>119</u>	1		
N/P ratio	-0. 125<u>266*</u>	0. 216 722**	0. 171<u>751**</u>	0. 009<u>349**</u>	1	
N ₂ fixation	0.435**	-0.325**	-0.122	-0. 335<u>351</u>**	-0. 130 219	1


689

687


 $\frac{\text{surface (n=73).}}{\text{surface (n=73).}}$

690 *
$$p < 0.05$$
, ** $p < 0.01$

691 N/P ratio denotes the ratio of (nitrate + nitrite + ammonium) to phosphate

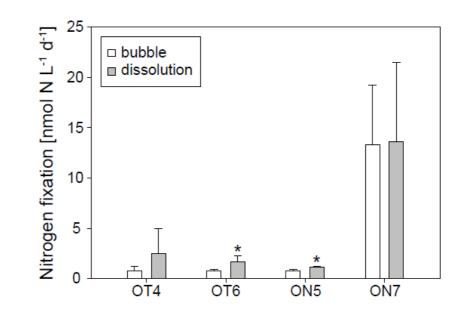


Fig.2. Nitrogen fixation rates estimated simultaneously by the ${}^{15}N_2$ gas bubble and dissolution methods during the KK-13-6_Sep cruise. An asterisk indicates a significant difference between the two methods (p < 0.05).

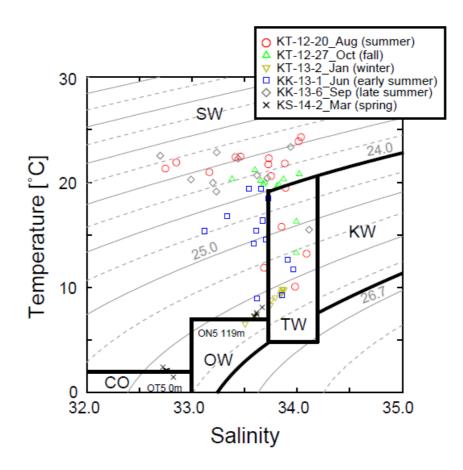
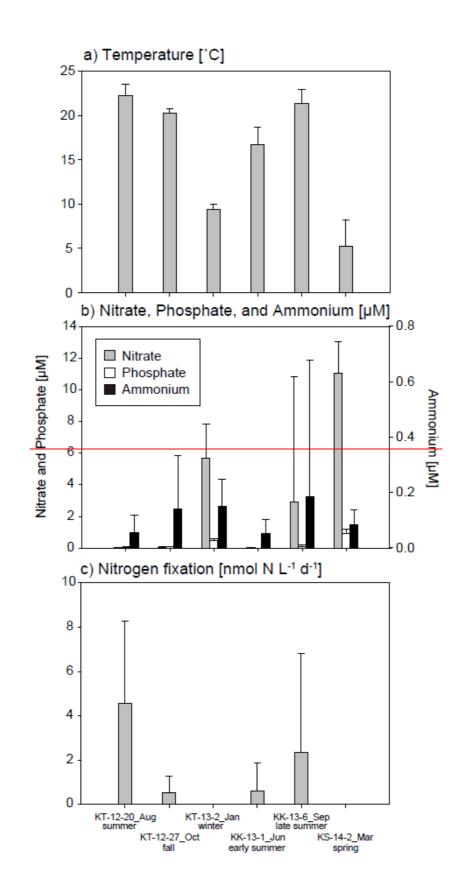
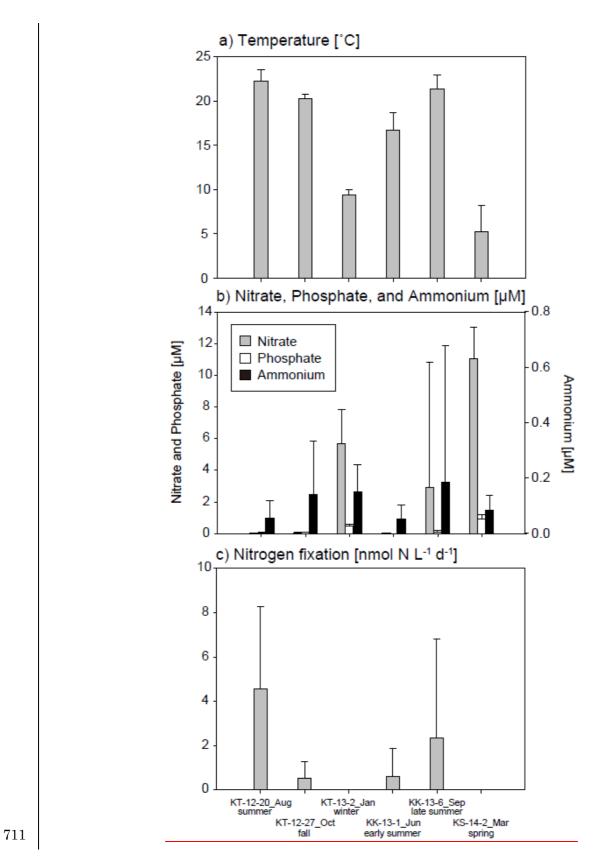
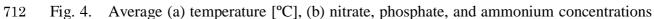





Fig. 3. Temperature-salinity diagram at each sampling point. The water classification was
defined by Hanawa and Mitsudera (1986). SW, KW, TW, OW, and CO denote the surface
layer water system, Kuroshio water system, Tsugaru Warm Current water system, Oyashio
water system, and Coastal Oyashio water system, respectively.

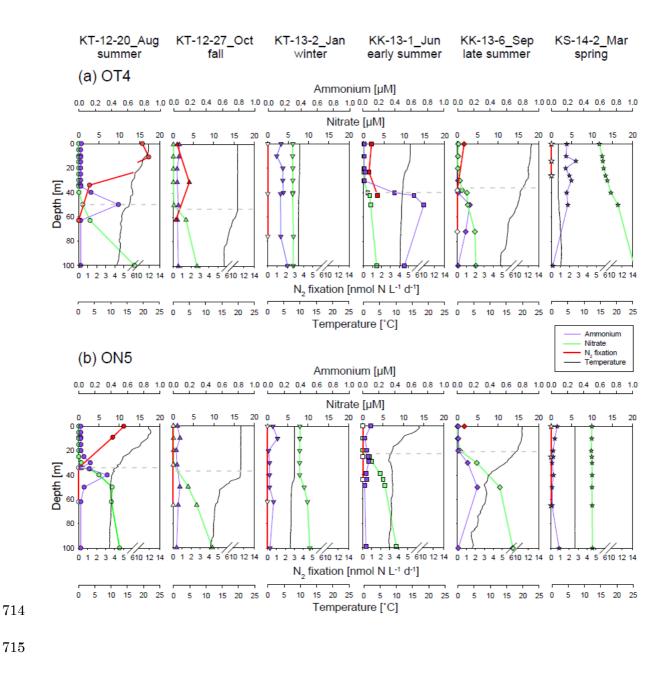


Fig. 5. Time-series variations in the vertical profiles of temperature [°C] (black), ammonium (purple) and nitrate (green) concentration [μ M], and nitrogen fixation (red) [nmol N L⁻¹ d⁻¹] at Stns (a) OT4 and (b) ON5. Open symbols indicate that nitrogen fixation was not detected. The horizontal dashed line indicates the nitracline depth. The strait lines of temperature and nitrate were ascribable to strong mixing.

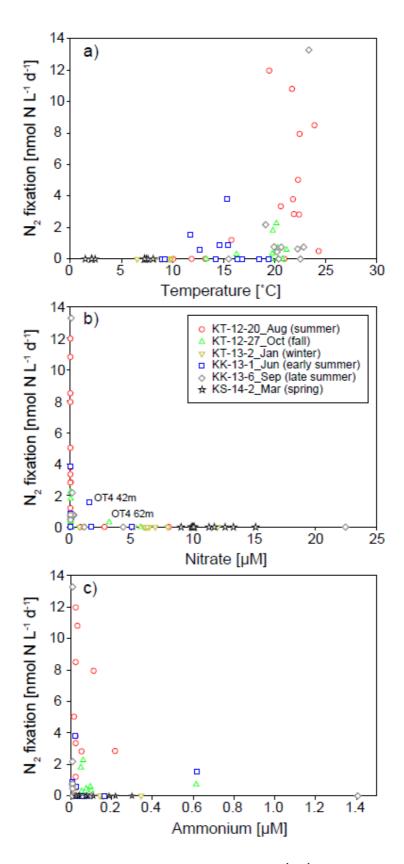
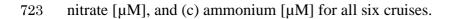
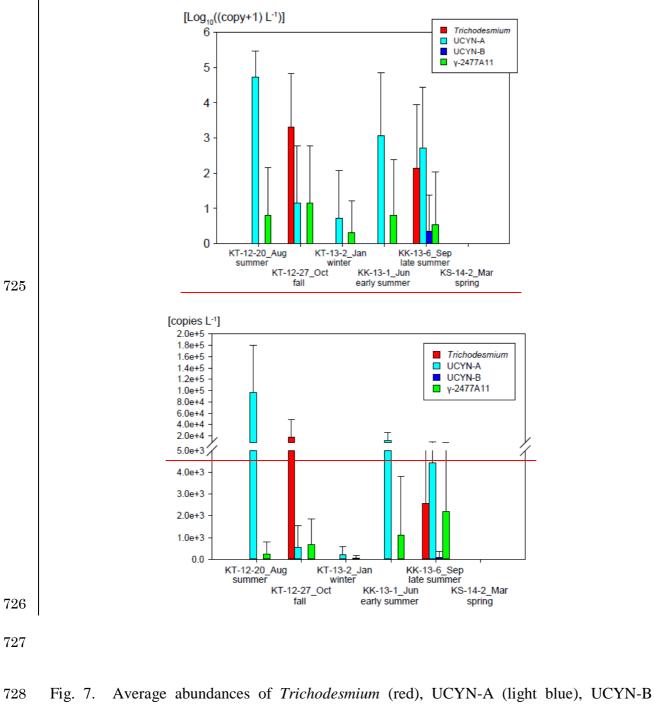
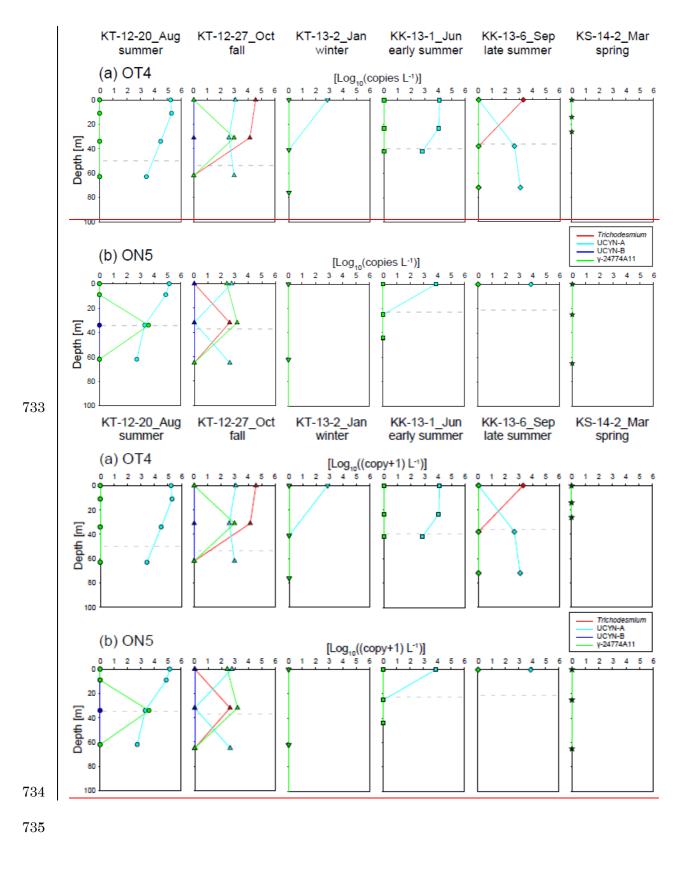





Fig. 6. Relationship between nitrogen fixation [nmol N $L^{-1} d^{-1}$] and (a) temperature [°C], (b)

729 (blue), and γ-24774A11 (green) [Log₁₀((copies_copy+1)_L⁻¹)] at the surface during each
730 cruise. When the target *nifH* gene was not detected, the copy number was assumed to be
731 Zero.

Time-series variations in the vertical profiles of Trichodesmium (red), UCYN-A 736 Fig. 8. (light blue), UCYN-B (blue), and γ -24774A11 (green) [Log₁₀((copy+1)ies L⁻¹)] at Stns. (a)

738 OT4 and (b) ON5. The horizontal dashed line indicates the nitracline depth.