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Abstract1

Earth observation based long-term global vegetation index products are used by scientists2

from a wide range of disciplines concerned with global change.  Inter-comparison studies are3

commonly performed to keep the user community informed on the consistency and accuracy of4

such records as they evolve.  In this study, we compared two new records: 1) Global Inventory5

Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index Version 36

(NDVI3g) and 2) Vegetation Index & Phenology Lab (VIP) Version 3 NDVI (NDVI3v) and7

Enhanced Vegetation Index 2 (EVI3v). We evaluated the two records via three experiments that8

addressed the primary use of such records in global change research: 1) prediction of the Leaf9

Area Index (LAI) used in light-use efficiency modeling; 2) estimation of vegetation climatology10

in Soil-Vegetation-Atmosphere Transfer models; and 3) trend analysis of the magnitude and11

phenology timing of vegetation productivity. Experiment one, unlikeUnlike previous inter-12

comparison global studies, was performed with a unique Landsat 30 m spatial resolution and in13

situ LAI database for major crop types on five continents was used to evaluate the performance14

of not only NDVI3g and NDVI3v, but EVI3v as well. The performance of NDVI3v and EVI3v15

was worse than NDVI3g using the in situ data, which was attributed to the fusion of GIMMS and16

MODIS data in the VIP record.  EVI3v has potential to contribute biophysical information17

beyond NDVI3g and NDVI3v to global change studies, but we caution its use due to the poor18

performance of EVI3v in this study. Overall, the two records showed a high level of agreement19
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both in direction and magnitude on a monthly basis, though VIP values were higher and more20

variable and showed lower correlations and higher error with in situ LAI.  The the records were21

most consistent at northern latitudes during the primary growing season and southern latitudes22

and the tropics throughout much of the year, while the records were less consistent at northern23

latitudes during green-up and senescence and in the great deserts of the world throughout much24

of the year. These patterns led to general agreement (disagreement) between trends in the25

magnitude (timing) of NDVI over the study period. Bias in inter-calibration of the VIP record at26

northernmost latitudes was suspected to contribute most to these discrepancies. The two records27

were also highly consistent in terms of trend direction/magnitude, showing a 30+ year increase28

(decrease) in NDVI over much of the globe (tropical rainforests).  The two records were less29

consistent in terms of timing due to the poor correlation of the records during start and end of30

growing season.31

32
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1.0 Introduction35

The Normalized Difference Vegetation Index (NDVI) (Rouse, 1974) is defined as (ρNIR –36

ρRED)/(ρNIR + ρRED), where ρNIR and ρRED are surface reflectance in the Near Infrared (NIR:37

0.725–1.10 μm) and visible red (0.58–0.68 μm), respectively. As plants become more38

photoactive, they absorb more visible red light due to the chlorophyll content of leaves and39

stems, and scatter more in the Near Infrared  due to the alignment of cell walls (Tucker et al.,40

1994). This relationship, detected by remote sensing instruments at the canopy scale, has the41

effect of making the index increase (decrease) as the density of the canopy increases (decreases)42

(Tucker, 1979). As such, NDVI has been used widely in global change research with Earth43

observation remote sensing for three general purposes: 1) the estimation of canopy properties44

related to light-use efficiency, such as the Leaf Area Index (LAI) and Fraction of45

Photosynthetically Active Radiation intercepted by the canopy (FPAR) (e.g. Zhu et al. (2013)); 2)46

representation of vegetation climatology in Soil-Vegetation-Atmosphere Transfer models (e.g.47

O’ishi and Abe-Ouchi (2009)); and 3) detection of trends in vegetation (e.g. de Jong et al.48

(2011)) and phenology (e.g. de Jong et al. (2012)). Several agro-ecosystem modeling49

applications fall into these categories, including: agro-climate forecasting (Funk and Brown,50

2006); drought monitoring (Karnieli et al., 2006); and crop yield estimation (Xin et al., 2013).51

Although NDVI is widely used, it is sensitive to atmospheric effects, soil background, and52

saturates at high LAI. The Enhanced Vegetation Index (EVI) was introduced to overcome these53

limitations, as it includes a visible blue band to reduce atmospheric effects, calibration terms to54

reduce the effects of soil background, and does not saturate as severely as NDVI at high LAI55

(Huete et al., 2002).  EVI has also been used in a wide array of global change studies, but post56

2000, when the Moderate-Resolution Imaging Spectroradiometric (MODIS) satellite sensor57
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began retrieving visible blue reflectance (see Huete et al. (2010) for a review).58

The Advanced Very High Resolution Radiometer (AVHRR) is the most commonly used59

sensor for long-term (i.e. pre-MODIS) global change studies, because it began retrieving visible60

red and NIR reflectance needed to estimate NDVI from in 1981 and thus facilitates 30+ year61

time series analyses of NDVI (Brown et al., 2006). The AVHRR sensor has been on board eight62

National Oceanic and Atmospheric Administration (NOAA) satellites: 7 (1981-1985), 9 (1985-63

1988 and 1994-1995 descending), 11 (1988-1994), 14 (1995-2000), 16 (2000-2003), 17 (2003-64

2009), 18 (2005-present), and 19 (2009-present). Reflectance data collected from the earlier65

AVHRR sensors (7, 9, 11, and 14) were difficult to process and synthesize, because they lacked66

onboard calibration; the NIR channel was sensitive to water, sun glint, glaciers at high latitudes,67

and clouds; and of orbital drift (Rao and Chen, 1995, 1996).  These issues were rectified with the68

launch of the AVHRR sensors onboard NOAA 16, 17, 18, and 19, but have resulted in69

radiometric and spectral inconsistencies across sensors that can significantly bias global change70

analyses (van Leeuwen et al., 2006).  Various methods have been developed to make these data71

continuous and consistent through time, but take different approaches and are frequently72

updated, necessitating new accuracy assessments to inform the user community as they evolve.73

The Global Inventory Modeling and Mapping Studies (GIMMS: Tucker et al. (1994) and74

Vegetation Index & Phenology Lab (VIP: Didan (2014)) AVHRR products are actively used and75

frequently updated, but represent fundamentally different approaches to synthesis.  The NOAA76

Global Vegetation Index (Jiang et al., 2010) is a category onto itself, but since it is stationary and77

therefore not appropriate for change detection. Both GIMMS and VIP are aggregated to a 15-78

day time step from daily data and are calibrated with higher spatial resolution sensors in the79

period that overlaps NOAA 7, 9, 11, and 14 and NOAA 16, 17, 18, and 19.  However before80
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aggregation, the former undergoes minor radiometric and spectral correction, while the later81

undergoes rigorous atmospheric correction.  Perhaps most importantly, GIMMS is developed82

solely from AVHRR, while VIP is a blend of the AVHRR 1981-1999 Long-Term Data Record83

(Nagol et al., 2009; Pedelty et al., 2007) and MODIS 2000-present. Finally, the VIP product84

includes EVI2 (Jiang et al., 2008), which is a red-NIR version of EVI that has not been widely85

evaluated and can potentially provide additional biophysical information and improve the86

accuracy of long-term global change analyses (Rocha and Shaver, 2009). Given these87

differences, studies have been performed at the global (Beck et al., 2011) and regional (Scheftic88

et al., 2014) scale to assess the performance of older product versions, while o. Only one recent89

study compared the latest product versions analyzed in this study globally, but only for the90

consistency of trends (Tian et al., 2015). There remainsis no general consensus on which91

product is superior; however, GIMMS NDVI tends to perform more consistently temporally than92

VIP NDVI, making it be more appropriate than VIP NDVIappropriate for trend analysis, because93

the combination of poor orbital drift correction and blending between LTDR and MODIS94

potentially contributes to large interseasonal variations in VIP NDVI, while. VIP NDVI,on the95

other hand, may be more appropriate for estimating phenology (start of season, length of season,96

and timing of peak NDVI) and other applications that require absolute NDVI values. In each97

case, the performance of EVI2 was not evaluated nor was in situ data used for intercomparison.98

The aim of this study was to perform a global assessment of the latest version of GIMMS99

and VIP over a 30-year period (January 1982 to December 2011) in order to aid the user (global100

change) community in interpreting results that involve these data. In doing so, we helped resolve101

the superiority of one product over another. The assessment was performed with three102

experiments that address the three major themes of global change research that involve Earth103
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observation remote sensing previously introduced.  Unlike other intercomparison studies, we104

evaluated EVI2 and used an agro-ecosystem database comprised of relatively high spatial105

resolution Landsat and in situ LAI sample pairs to assess the performance of each product for106

agro-ecosystems in absolute terms. In addition, unlike other studies, the trend analysis was107

performed not only on the magnitude of change across the globe on an annual basis, but the108

change in the timing of NDVI according to the unique phenology in each hemisphere.109

2.0 Data, processing, and analytical methods110

2.1 Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference111

Vegetation Index Version 3 (NDVI3g)112

The GIMMS vegetation index record evaluated is version three, which is labelled as113

NDVI3g for the remainder of the paper.  Full details on the product version can be found in114

Pinzon and Tucker (2014). The new product includes a series of updates since the original115

GIMMS NDVI and second generation NDVIg (Tucker et al., 2005) products.  Like NDVIg, it is116

a non-stationary NDVI series at 15-day intervals and 1/12° (~8km at the equator) resolution;117

corrected for orbital drift, Rayleigh scattering, and radiometric and spectral inconsistencies over118

deserts; and takes an empirical (Bayesian) approach to normalize overlapping AVHRR periods119

with another higher resolution sensor that overlaps the two periods. In addition, daily NDVI data120

are scaled to 15-day composites using a Maximum Value Compositing (MVC) algorithm121

(Holben, 1986), which reduces further inconsistencies in the daily data. The most unique122

development in NDVI3g is the use of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) for123

intercalibration instead of the System Pour I'Observation de la Terre (SPOT) sensors.  This is124

intended to reduce significant bias in NDVI at extreme northern latitudes that has been observed125

in SPOT imagery (Guay et al., 2014).126
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2.2 Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation Index127

(NDVI3v) and Enhanced Vegetation Index 2 (EVI3v)128

The VIP vegetation index record evaluated is also in its third version, which is labelled as129

NDVI3v and EVI3v for NDVI and EVI2 data, respectively, for the remainder of the paper.130

Further information on the product version can be found in Didan (2014). Like previous131

versions, it is a non-stationary series at 15-day intervals and 1/20° (~5km at the equator)132

resolution; corrected using radiometric, drift, and cloud screening procedures recommended in El133

Saleous et al. (2000), and an atmospheric algorithm that reduces the effects of Rayleigh134

scattering, ozone, aerosols, and water vapor (Vermote et al., 1997); and takes an empirical (linear135

regression by land cover type) approach for intercalibration. Unlike GIMMS, SPOT is used for136

intercalibration and daily data are aggregated to 15-day composites using the Constrained View137

angle - Maximum Value Composite (CV-MVC) approach (Cihlar et al., 1997).  Unlike MVC,138

CV-MVC does not give preference to off-nadir values that may be higher than “true” (at-nadir)139

values. Version three includes one notable improvement over version two, namely the correction140

of NDVI and EVI2 for sparsely vegetated areas pre-MODIS era (Scheftic et al., 2014). EVI2 is141

derived from the following equation and responds similarly to EVI (Jiang et al., 2008):142

= . −+ . + (1)

The VIP product contained persistent data gaps due to cloud cover and other noise data143

and was at a higher spatial resolution than the GIMMS product, so additional steps were taken to144

process it before the assessment. A MODIS filtering algorithm described in Xiao et al. (2003),145

Fensholt et al. (2006), and adapted for the tropics in Opiyo et al. (2013) was used to fill some146

data flagged as less than ideal gaps. Data gaps due to cloud cover and poor data quality were not147

gap-filled. The algorithm was considered a compromise between preserving the actual data as148
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much as possible and filling missing data so that a reasonable comparison could be made.149

Statistical smoothing could have been used to fill the remaining data gaps, but was not used,150

because it would have risked comparing GIMMS data to a smoother and not actual VIP data.151

Figure 1 shows the percentage of missing data filled by the filtering algorithm. On a monthly152

basis, less than 20% of the data was filled for the majority of pixels.  Notable exceptions were153

primarily in the mid and extreme latitudes during wintertime.  The most severe case was in south154

Asia during the monsoon (June – September) where more than 50% of the pixels were filled by155

the filtering algorithm. After the filter was applied, NDVI3g was resampled to NDVI3v/EVI3v156

resolution using the gdalwarp utility (http://www.gdal.org/gdalwarp.html) with default157

parameters.  Missing values were then made consistent across the datasetsGIMMS and VIP, so158

that the summary statistics (experiment two below) and trends (experiment three below) were159

captured only for the 15-day values that the two products shared. The datasets were then160

resampled back to the native NDVI3g spatial resolution for the evaluation. These steps were161

taken to produce more reliable statistics and trends.162

2.3 First experiment: evaluation of NDVI3g, NDVI3v, and EVI3v with biophysical data163

NDVI and EVI are most commonly used in global change studies to capture FPAR, which164

drives canopy and light interactions in SVATs and other process-based models that estimate165

plant productivity and evapotranspiration (Glenn et al., 2008). Monsi and Saeki (1953) found166

that light attenuation in the canopy followed Beer’s Law (Beer, 1852).  This means that for a167

random canopy with a spherical leaf angle distribution, LAI, the second most commonly derived168

biophysical parameter from NDVI and EVI, can be approximated from FPAR using the following169

equation (Norman et al., 1995):170
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= − ( − ) (2)

Where k is an extinction coefficient and LAI is the Leaf Area Index (m2 m-2).  Given the171

importance of NDVI and EVI in estimating FPAR and LAI, standard regression techniques were172

used to measure the relative ability of NDVI3g, NDVI3v, and EVI3v to capture in situ LAI173

variability.  It is difficult to compare these records to in situ LAI directly, because the NDVI/174

EVI - LAI relationship is typically scale dependent or non-linear (Friedl et al., 1995; Gao et al.,175

2000; Hall et al., 1992; Huete et al., 2005). Therefore FPAR derived from Landsat Thematic176

Mapper/The Enhanced Thematic Mapper Plus (TM/ETM+) 30 m resolution surface reflectance177

data was used intermediately to downscale NDVI3g, NDVI3v, and EVI3v to 30 m resolution to178

facilitate the comparison.179

2.3.1 Landsat Thematic Mapper/The Enhanced Thematic Mapper Plus (TM/ETM+) and in180

situ Leaf Area Index (LAI)181

The Landsat TM/ETM+ surface reflectance and in situ LAI data was extracted from a182

database that was developed to determine the ability of Landsat-based NDVI, EVI2, and other183

vegetation indices to predict LAI for field crops around the world.  Results of the analysis, along184

with a full description of the database can be found in Kang et al. (2015). Figure 2 shows the185

distribution of the Landsat-LAI sample pairs in the database.  It includes nine major global field186

crops (barley, cotton, maize, pasture, potato, rice, soybean, sugar beet, and wheat) and several187

less common fields crops classified as "other" for purposes of this analysis. The iIn situ LAI was188

determined using ground-based optical (LAI 2000, AccuPar, and hemispherical) and destructive189

techniques and compiled from a number of sources. These include: AmeriFlux190

(http://ameriflux.ornl.gov/) and AsiaFlux (http://asiaflux.net/) regional flux networks;191

experimental and validation projects (e.g. Marshall and Thenkabail (2015)); the VALidation of192
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European Remote sensing Instruments project (Baret et al., 2014); the Australian Airborne193

Cal/val Experiments for SMOS project (Peischl et al., 2012); as well as data retrieved from peer-194

reviewed journals.  For each LAI record in the database, Landsat TM/ETM+ radiance was195

extracted from the United States Geological Survey archive within a ±15-day window196

encompassing the date of in situ measurement and converted to surface reflectance with the197

Landsat Ecosystem Disturbance Adaptive Processing System (Masek et al., 2006).  NDVI and198

EVI2 were computed using the equations above. In rare cases where more than one LAI199

observation fell in a single Landsat pixel, the LAI values were averaged, so that each in situ200

entry corresponded to a unique Landsat NDVI/EVI2 value.  After averaging, the dataset201

consisted of 2086 LAI-Landsat pairs, which was subsequently reduced to 1459 measurements202

after further quality control measures described in Kang et al. (2015) were taken to remove203

inconsistent samples.204

2.3.2 Downscaling long-term records with the Fraction Photosynthetically Active Radiation205

intercepted by the canopy (FPAR) and evaluation with in situ Leaf Area Index (LAI) data206

Downscaling was performed by converting AVHRR and Landsat vegetation indices to207

FPAR. Unlike the NDVI/ EVI - LAI relationship, the NDVI/EVI - FPAR relationship is quasi scale208

invariant (Asrar et al., 1992; Friedl et al., 1995; Gutman and Ignatov, 1998; Myneni et al., 2002;209

Sellers, 1985), meaning a coarse resolution FPAR pixel is approximately equal to the average of210

overlapping higher resolution FPAR pixels. Hwang et al. (2011), for example, used the quality of211

scale invariance between NDVI and FPAR to downscale MODIS (1 km and 250 m spatial212

resolution) NDVI to Landsat spatial resolution NDVI.  Since they had access to multiple MODIS213

and Landsat pixels through time and the linear relationship is land cover dependent, MODIS was214

downscaled by multiplying each pixel by a ratio of Landsat to MODIS FPAR. In this study, on a215
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per pixel basis, most of the in situ LAI was retrieved only once, so using a ratio-based approach216

was not feasible. Therefore, the AVHRR vegetation indices were downscaled to 30 m spatial217

resolution by regressing (linearly) Landsat FPAR and NDVI3g, NDIV3v, and EVI3v FPAR.  In218

order to reduce the impact of land cover dependence, the models were developed for each crop.219

The Fraction of Photosynthetically Active Radiation intercepted by the canopy was220

computed using the ratio method first proposed in Gutman and Ignatov (1998):221

= −− (4)

Where VImin is the vegetation index (NDVI or EVI2) for bare soil (LAI → 0), and VImax is the222

vegetation index (NDVI or EVI2) for dense vegetation (LAI → ∞).  VImin and VImax for NDVI223

and EVI2 were set to 0.05 and 0.95 (Fisher et al., 2008; Mu et al., 2007).  These limits are224

sometimes considered dependent on the spatial and temporal resolution and land cover type225

(Zeng et al., 2000).  The limits proved arbitrary for downscaling purposes however, and using226

the range 0.05 to 0.95 guaranteed that fractions ranged from zero to one.227

Once NDVI3g, NDIV3v, and EVI3v FPAR were downscaled to corresponding Landsat228

data, their performance was evaluated by regressing them (linearly) with the in situ LAI data.229

Since the relationship between FPAR and LAI is logarithmic, as shown in Equation 2,230

standardized residual plots (not shown) were made and linear transformations were performed to231

verify that the assumptions of normality were met. In most cases, transformations were not232

required. The performance of the final model selected in each case was characterized by the233

coefficient of determination (R2), significance tests, and root-mean-square error (RMSE).234

Of the original 1459 Landsat – LAI data pairs, only 242 were used for the final analysis.235

The majority of the data loss was due to considerable overlap of LAI data in space and time,236

because they were collected without remote sensing applications in mind: 1) LAI values that237
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were captured by the same coarse resolution pixels were averaged along with Landsat238

NDVI/EVI2 and 2) due to the presence of missing values in the long-term records, LAI and239

Landsat NDVI/EVI2 were averaged on a 15-day basis.  These reductions led to small sample240

sizes for each crop.  The sample sizes for cotton and rice were so small that they were omitted to241

avoid over-fitting. In order to increase the sample size on a per-crop basis, two aggregations242

based on the presumed similarity of crop spectral/canopy characteristics were made: 1) barley243

and wheat (winter and spring varieties) were classified as wheat and 2) garlic, onion, potato, and244

sugar beet were classified as tuber.245

2.4 Second experiment: comparison of NDVI3g and NDVI3v climatology used to246

parametrize SVAT models247

SVAT models traditionally were stand-alone and used to simulate the interaction of248

incoming solar radiation with the canopy driven by FPAR and other biological and chemical249

canopies biogeochemical processes for a single location, but are becoming increasingly coupled250

to regional and global scale climate models and run over regularized grids, given the importance251

of vegetation feedbacks on the atmosphere (Quillet et al., 2010). With the exception of newer252

SVATs that include a dynamic vegetation component (see Scheiter et al. (2013) for a review),253

the vast majority of SVATs assume vegetation varies throughout the year without interannual254

variations. A common dataset used to parameterize the FPARvegetation component of SVATs is255

the 0.15° resolution monthly climatology of FPAR derived from AVHRR NDVI (Gutman and256

Ignatov, 1998). Given the importance of the FPAR climatologyNDVI in representing vegetation257

in SVATs, long-term summary statistics for NDVI3g and NDVI3v were computed as part of the258

assessment. EVI3v was not included in this phase of the analysisexperiment, because it does not259

have a GIMMS counterpart to compare it to, has different and well-documented statistical260
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properties than NDVI, and it is derived from the same visible red and NIR channels and261

underwent the same corrections as NDVI3v making its comparison redundant. The summary262

statistics were computed from the 15-day data, but the results are presented here on a monthly263

basis to reflect the NDVI climatology used in SVATs.  The summary statistics included: mean,264

standard deviation, coefficient of determination (R2) from linear regression, and slope from265

linear regression.  The mean and standard deviation statistics are most critical for understanding266

the differences in NDVI climatology, while R2and slope indicate the strength, magnitude, and267

direction of the correlation between the two datasets.  All summary statistics are presented with268

significance (p) ≤ 0.05. Non-linear correlation statistics were also computed, but were not269

included, because they showed similar spatial patterns as the linear statistics.270

2.5 Third experiment: comparison of NDVI3g and NDVI3v trends in magnitude and timing271

(phenology)272

Changes in the magnitude and timing (phenology) of plant productivity are important for273

understanding how ecosystems respond to climate change (Nemani et al., 2003).  In North274

America, for example, trend analysis of these changes has revealed that global warming is275

driving an increase in plant productivity and a lengthening of the growing season (i.e. earlier276

green-up in the spring and later senesce in autumn) (Barichivich et al., 2013). The277

characterization of the magnitude and phenology of productivity over a year is typically278

estimated with empirical methods that include NDVI and other bioclimatic predictors such as279

temperature and relative humidity (e.g. Brown et al. (2012)).  In order to avoid confounding the280

assessment of GIMMS and VIP with other variables, harmonic regression (Eastman et al., 2009;281

Jakubauskas et al., 2001) was performed on the vegetation index records to measure the282

magnitude and timing of NDVI on an annual basis.  As with experiment two, EVI3v was not283
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evaluated in this experiment.  A trend analysis was then performed on the regression parameters284

to compare NDVI3g and NDVI3v as surrogates for the change in magnitude and timing of plant285

productivity over time.286

The primary parameters of harmonic regression are the amplitude (in this case the287

difference between peak and mean NDVI) and phase (in this case timing of NDVI peaks and288

troughs).  Amplitude and phase are computed by fitting a series of sinusoidal functions to the289

time series (Eq. 3).  The harmonic regression was performed on a monthly basis for each year.290

Monthly values were determined by taking the maximum NDVI of the two 15-day composites291

per month.292

= + + (3)

Where NDVIt is the predicted Normalized Difference Vegetation Index at month (t), NDVI0 is293

the annual monthly mean, i is the number of harmonics up to the jth harmonic, N is the number294

of samples (months) in the year, and A and B are coefficients used to compute the amplitude and295

phase. The regression was performed for the first harmonic, which represents the primary296

growing season, because multimodal systems (harmonics > 1) are uncommon and capturing297

them risks over-fitting.298

The change in amplitude and phase over time was quantified using the Theil-Sen299

technique (Gilbert, 1987).  The Theil-Sen technique takes the median non-parametric slope over300

all possible pairwise slopes through time.  Unlike linear regression, it does not require normality301

or homoscedasticity, making it appropriate for trend analyses involving NDVI data (de Beurs302

and Henebry, 2005).  The significance of the amplitude and phase trends (p ≤ 0.05) was303

identified using the non-parametric Mann-Kendall test.  Since the primary growing season in the304
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southern hemisphere occurs over two given calendar years, the trend analysis was repeated for305

the southern hemisphere by advancing the regression six months ahead each year.  This resulted306

in one less year or a 29-year trend analysis for the southern hemisphere.307

3.0 Results308

3.1 First Experiment: performance of long-term records using Landsat FPAR and in situ309

LAI310

Of the original 1459 Landsat – LAI data pairs, only 242 were used for the final analysis.311

A small portion of the data loss was due to the fact that they were collected after the long-term312

records ended. Most of the data loss was due to considerable overlap of LAI data in space and313

time, because they were collected without remote sensing applications in mind: 1) LAI values314

that were captured by the same coarse resolution pixels were averaged along with Landsat315

NDVI/EVI2 and 2) due to the presence of missing values in the long-term records, LAI and316

Landsat NDVI/EVI2 were averaged on a 15-day basis.  These reductions led to small sample317

sizes for each crop.  The sample sizes for cotton and rice were so small that they were omitted to318

avoid over-fitting. In order to increase the sample size on a per-crop basis, two aggregations319

based on the presumed similarity of crop spectral/canopy characteristics were made: 1) barley320

and wheat (winter and spring varieties) were classified as wheat and 2) garlic, onion, potato, and321

sugar beet were classified as tuber.322

The accuracy of each long-term record when compared to in situ LAI was mixed, but323

NDVI3g performed moderately better than NDVI3v and EVI3v.  The scatterplots of predicted324

(downscaled) NDVI3g, NDVI3v, and EVI3v FPAR versus Landsat FPAR for wheat and pasture are325

shown in Figure 3, while the summary statistics of the linear models used to downscale the326

records for all crops with sufficient samples sizes and reasonable correlations are shown in Table327



16

1. The models used to downscale NDVI3g yielded higher correlations and lower error than the328

models used to downscale NDVI3v for maize and wheat, while NDVI3v yielded higher329

correlations and lower error for soybean and pasture, and EVI3v was the most difficult to330

downscale of the three. Specifically, ∆R2 for NDVI3g over NDVI3v was 0.04 for maize and331

0.18 for wheat, while ∆R2 for NDVI3v over NDVI3g was 0.06 and 0.04 for pasture and soybean.332

It is important to note however that the strength of the relationships were low across all records333

with the exception of pasture, which could be due to the homogeneity (consistent clumping) of334

pasture over large areas. The relationship for tuber was so poor that it was not included in the335

LAI evaluation.  The relationship between the downscaled NDVI3g, NDVI3v, and EVI3v FPAR336

and in situ LAI are shown for wheat and pasture is in Figure 4, while the model statistics and337

transformation for a linear comparison, are presented in Table 2. The NDVI3g-LAI models338

captured in situ variability better than NDVI3v and EVI3v for maize (∆R2 = 0.06), pasture (∆R2339

= 0.11), and wheat (∆R2 = 0.10), with comparable results between NDVI3g and NDVI3v for340

soybean.  EVI3v tended to perform better than NDVI3v for two of the crops: pasture (∆R2 =341

0.05) and wheat (∆R2 = 0.04).  As can be seen in Figure 4, however, the predictive power of342

EVI3v could be inflated by leveraging at high LAI, i.e. EVI3v tends to be more variable than343

NDVI3v at higher LAI.344

3.2 Second experiment: similarity of NDVI3g and NDVI3v climatology345

On a monthly basis, NDVI3g and NDVI3v showed a high level of consistency in terms of346

relative magnitude expressed as R2 (Figure 5) and direction expressed as slope (Figure 6).  Both347

metrics were computed with the slopes forced through the origin (0, 0).  In the northern348

hemisphere, R2 approached one after green-up (May) and progressively got stronger over the349

boreal summer months (June, July, and August).  The poorest correlations (R2 < 0.7) were seen350
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primarily at the northern-most latitudes during the transition between boreal winter and spring.351

Correlations were more consistent in the Southern Hemisphere where snow and cloud cover was352

notably less than in the north.  A glaring exception however was the Strut Stony Desert of South353

Central Australia, which showed poor correlations during the transition between Austral summer354

(December, January, and February) and fall.  The tropics showed high and significant355

correlations throughout most of the year as well.  The slopes followed a similar pattern as the356

correlations, with values approaching a one-to-one relationship (slope=1.0) after the transition357

from winter to spring in the northern hemisphere and consistently over much of the year in the358

tropics and southern hemisphere. The great deserts of the world and sparsely vegetated areas had359

slopes approaching zero throughout the year.  Since the slopes were expressed with NDVI3v as360

the dependent variable and the slopes were always less than one, NDVI3g was always less than361

NDVI3v. The difference in NDVI3g and NDVI3v magnitudes is more clearly shown in Figure362

7, which illustrates the monthly latitudinal mean and standard deviation for both. Mean NDVI3v363

was always higher and more variable than NDVI3g. In addition, large divergence in means364

between the two records occurred during senescence in the northern hemisphere. Other patterns365

were more consistent: NDVI3g and NDVI3v were high in the tropics throughout the year and366

peak and decline following the seasons in the northern and southern hemispheres; and the367

standard deviations for both were higher in the northern hemisphere than the southern368

hemisphere due to continentally.369

3.2 3 Third experiment: similarity of NDVI3g and NDVI3v trends in magnitude and370

phenology371

The two NDVI records exhibited a high level of correspondence in maximum primary372

season NDVI (1st harmonic amplitude), both in direction and location (Figure 8).  In terms of373
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magnitude trends, however, NDVI3v was higher than NDVI3g.  The figure was masked for374

pixels that had complete NDVI records to guarantee accuratefacilitate curve-fitting in a given375

year and then again for trends that were statistically significant over the 30-year period. This376

resulted in no trends over much of the northern latitudes.  In addition, NDVI amplitudes ≥ 0.03377

per year (or 1.0 over the 30-year period) and NDVI amplitudes ≤ -0.03 (or -1.0 over the 30-year378

period) were flagged as missing, since NDVI ranges from -1 to 1.  In most cases, however, the379

increase in absolute amplitude per year was less than 0.01 or 0.3 over the 30-year period.380

Overall, the positive NDVI3g trends appeared to be more consistent spatially in several381

important cropping and grazing regions, including: the Great Plains of the United States; the382

Region del Norte Grande of Argentina; the Iberian Peninsula (particularly Portugal); Lesotho,383

South Africa (east), and Swaziland; Ganges (India) and Indus (Pakistan) Plains; the Sahel of384

West Africa; and Cape York Peninsula (Australia). Negative trends (also more consistent in385

NDVI3g) appeared to be primarily in the great deserts of the northern hemisphere. In the386

southern hemisphere, however, some negative trends were seen in the tropical forests of the387

Amazon and Congo River basins.388

The two records in terms of primary season timing (1st harmonic phase) showed a lower389

level of correspondence than for amplitude (Figure 9). As above, trends were not seen over390

much of the northern hemisphere.  In addition, the NDVI phases ≥ 0.07 per year (or ~2 months391

over the 30-year period) and NDVI phases ≤ -0.07 (or ~-2 months over the 30-year period) were392

flagged as missing, because changes of more than two months were deemed aberrant. In most393

cases however, the absolute change in timing was less than two months. As with trends in394

amplitude, the trends in phase were more consistent spatially over both hemispheres from395

NDVI3g. Earlier green-up (negative trend) represented the majority of trends in the two396
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datasets, though considerably less than the increase in amplitude shown in Figure 8. Negative397

trends were seen over many important cropping and grazing areas: California and the398

Southwestern United States; the Iberian Peninsula; the Sahel of sub-Saharan Africa; Iran (east);399

South Africa (west); Turkmenistan (north); and over much of the areas bordering the deserts of400

Australia. Later green-up (positive trend) was primarily concentrated in the great deserts (e.g.401

the Great Sandy and Gibson deserts of northwestern Australia).402

4.0 Discussion403

This study assessed the latest versions of two non-stationary and long-term vegetation404

index records used in global change studies. The assessment was performed with three405

experiments that addressed the primaryimportant global change applications, namely: the406

estimation of FPAR and LAI; estimation of SVAT vegetation climatology; and trend analysis of407

vegetation productivity magnitude and phenologytiming. The results of the analysis highlight408

important similarities and differences between the two records that the global change community409

should be aware of before using them for these applications: 1) NDVI3v was consistently higher410

and more variable than NDVI3g, which in Tian et al. (2015) has been attributed to artificial411

jumps in the record between AVHRR and MODIS periods and may contribute to relatively lower412

correlations and higher errors with in situ LAI; 2) the performance of EVI3v with in situ LAI413

compared to NDVI3g was unexpectedly poor; 3) correlations between GIMMS and VIP were414

highest during the primary growing season, so trends in peak NDVI were fairly consistent415

between the two, both showing increases over much of the globe and decreases in tropical416

rainforests; and 4) correlations between GIMMS and VIP were lower during green-up and417

senescence, which were most pronounced at high latitudes where the NDVI3g product is418

expected to have much lower bias due SeaWifs inter-calibration. so trends in NDVI timing were419
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less consistent between the two, however, both showed earlier green-up over much of the globe,420

particularly in the driest regions of the world.Overall, we recommend using NDVI3g over421

NDVI3v and EVI3v for vegetation climatology and trend analysis, because it is spatially and422

temporally more consistent.  Unlike previous studies, however, the in situ LAI experiment423

revealed that NDVI3g is better suited for absolute measurements as well.424

4.1 First Experiment: performance of long-term records using Landsat FPAR and in situ LAI425

Unlike previous inter-comparison studies, a unique moderate resolution remote sensing426

and in situ LAI database for agro-ecosystems was used for accuracy assessment. Although there427

was a spatial mismatch between in situ and AVHRR data, and the in situ data had a small sample428

size with a limited geographic extent, In most cases, NDVI3g appeared to bewas more accurate429

than NDVI3v or EVI3v. EVI3v performed considerably worse than NDVI3g, which is430

surprising, because EVI tends to be better correlated than NDVI from other sensors with canopy431

structural properties (Huete et al., 2002). Earlier studies have suggested that the LTDR NDVI432

from which MODIS data is merged in the VIP product is more appropriate for modeling433

applications requiring absolute values (Beck et al., 2011), meaning NDVI3v should reproduce434

more accurate estimates of FPAR and LAI than NDVI3g, but this was not the case in this study.435

Tian et al. (2015) assessed the blended and smoothed LTDR and MODIS productNDVI3v.  They436

attributed jumps in the NDVI3v record the relatively high and variable NDVI3v mainly to poor437

orbital drift correction and the break in the LTDR and MODIS records in 2000. The reason for438

the poor performance of EVI2 is less clear, but clearly needs to be addressed in future work,439

given its potential importance to advancing global change research. However, since the LTDR440

data appears to reproduce more accurate absolute values than GIMMS and a smoother was not441

used and there was a high level of correlation between NDVI3g and NDVI3v in this study,442
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orbital drift correction is likely not the culprit.  Therefore, the blending of MODIS and LTDR is443

most likely the most important factor impacting the accuracy of biophysical estimates in444

NDVI3v and EVI3v and should be addressed in later product versions.445

At the time of writing this manuscript, a VIP Version 4 is forthcoming.  It will be446

interesting to see if this new version will produce more accurate results using the LAI-Landsat447

database. In the meantime, however, Iif users require the higher spatial resolution offered by448

VIP and the added biophysical information afforded by EVI3v for application purposes, several449

options exist for improving their accuracy.  Perhaps the most important would be to fill the450

remaining data gaps in the filtered VIP datasets generated here with a smoothed datar (see451

Kandasamy et al. (2012) for examples), which will address some of the noise in the data452

observed in Tian et al. 2015 and this study. NDVI3g has undergone extensive statistically453

smoothing. Another option widely used in the climate modeling community, that could be454

combined with this option would beis to generate an ensemble mean of NDVI3v and NDVI3g to455

account for some of the bias and uncertainties in each product. Finally, instead of using EVI3v,456

the red and NIR channels included in the VIP database could be used to calculate the Soil457

Adjusted Vegetation Index (SAVI) (Huete, 1988) instead. The evaluation of EVI2 has so far458

been limited, whereas Unlike EVI2, SAVI has undergone extensive evaluation.459

The LAI-Landsat database should be combined with other databases in the future, such as460

the LAI for woody plant database (Iio et al., 2014), so that a large amount of data over multiple461

biomes are used to develop robust evaluations (Weiss et al., 2014). New databases should aim to462

extend the temporal ranges of biophysical data on a per-pixel basis, so that the ratio-based463

approach to downscaling as suggested in Hwang et al. (2011) can be performed, instead of the464

linear regression by crop type approach taken here. The downscaling procedure can also be465
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improved.  In the Hwang et al. (2011) study, FPAR was used to downscale MODIS data to466

Landsat resolution, representing a ratio of approximately 8 : 1 (250 m : 30 m), whereas in this467

study, Landsat FPAR was used to downscale AVHRR data, representing a ratio of approximately468

266 : 1 (8000 m : 30 m).  The large discrepancy in resolution in this study could be resolved in469

the future by first downscaling AVHRR with MODIS FAPAR and then downscaling again using470

Landsat FAPAR.471

4.2 Second experiment: similarity of NDVI3g and NDVI3v climatology472

NDVI3g and NDVI3v showed a high level of agreement with one another at mid-473

latitudes during the primary growing season and in the densely vegetated tropics throughout474

most of the year, and a low level of agreement at high latitudes during winter months and in the475

sparsely vegetated sub-tropics throughout most of the year.  The high level of agreement is476

expected, because data gaps, cloud contamination, and atmospheric water vapor, is less at mid-477

latitudes during summer months (Beck et al., 2011; Moulin et al., 1997).  The high level of478

agreement in the tropics was more surprising, because data gaps and cloud contamination are479

persistent there throughout much of the year, typically leading to large discrepancies among480

records (Brown et al., 2006).  However, as previously stated, the standard smoothed VIP data481

was not used this study, so many of the potentially smoothed and many contaminated pixels were482

omitted from the analysis. The large discrepancy at high latitudes could have been due to factors483

other than cloud contamination and other noise data gaps, including the 1) presence of snow484

cover; 2) high frequency of off-nadir pixels, which would impact the results of the compositing485

algorithm (MVC versus CV-MVC); and perhaps most importantly, 3) use of SeaWiFS over486

SPOT for GIMMS inter-calibration (Hall et al., 2006). The large discrepancy in deserts and487

sparsely vegetated areas on the other hand was most likely due to the dominance of soil in the488
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signal and sensitivity of NDVI to soil wetness (Jiang et al., 2006). With the high level of489

correlation during the primary growing season and higher and more variable NDVI3v, users490

should expect NDVI3v climatology during the primary growing season to be higher at mid-491

latitudes and in the tropics throughout most of the year, but consistent with changes in NDVI3g.492

During winter months, especially at high latitudes and in semi-arid to arid subtropical regions,493

where SeasWiFS inter-calibration is less biased, NDVI3v will be higher, more variable, and less494

consistent withaccurate than NDVI3g.495

4.3 Third experiment: similarity of NDVI3g and NDVI3v trends in magnitude and timing496

NDVI3g and NDVI3v both showed greening (positive NDVI amplitude) globally, with497

localized browning (negative NDVI amplitude) over a 30+ year time frame, but the magnitude of498

the trends in the latter was higher. Therefore, trend analyses of peak NDVI or annual means will499

be higher in NDVI3v than NDVI3g, but the direction will be the same. The direction of change500

in general corroborated previous global studies.  The gain or loss of plant productivity is501

generally attributed to biophysical drivers (temperature and precipitation), human-related502

change, and discontinuities in the long-term record (de Jong et al., 2012).  At mid-latitudes,503

warming (cooling) at the beginning of the growing season can lead to greening (browning) in504

areas where water supplies are ample.  In North America east of the Great Plains, for example,505

greening was observed in NDVI3g and NDVI3v, which has been attributed to temperature-506

driven increases in plant productivity in previous studies (Wang et al., 2011).  Increased rainfall507

(droughts) proceeding or during the growing season can lead to greening (browning) particularly508

in water-limited regions such as the Sahel.  As shown here, the Sahel has experienced greening509

over the past 30+ years.  This greening, typically referred to as the “re-greening of the Sahel” is510

defined in other studies as the increase in woody biomass (Brandt et al., 2015) that followed the511
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recovery of rains in the 1990’s after two decades of severe droughts driven by below normal sea512

surface temperatures in the subtropical North Atlantic (Giannini et al., 2013).  Deforestation is513

perhaps the most recognized appreciated human driver of plant productivity.  Browning in the514

Amazon and Congo River basins, as was shown in this study, has been attributed to widespread515

deforestation in previous studies (Hansen et al., 2010; Mayaux et al., 2013), though other drivers,516

such as shift in Walker circulation potentially contribute to the loss as well (Zhou et al., 2014).517

Greening was observed in the areas tropical rainforests as well, but this has been attributed in518

previous studies to rapid regrowth after deforestation, the way VIs are composited, and the519

methods by which trends are detected (Beck et al., 2011). Some of the trends disagree with520

previous research and should be addressed in future studies. Most prominent were that no trend521

was detected at extreme northern latitudes, though previous studies have shown summer522

drought-driven declines in boreal forest productivity (Goetz et al., 2005), and positive trends523

were detected for the Region del Norte Grande of Argentina, though previous studies have524

shown negative trends attributed to the rapid encroachment of agriculture into subtropical forests525

of the region (Paruelo et al., 2004).526

NDVI3g and NDVIv both showed earlier green-up (negative NDVI phase) more than527

later green-up (positive NDVI phase), but they were less consistent with one another compared528

to trends in peak NDVI.  NDVI3g and NDVI3v showed low correlations during green-up and529

diverging climatology during senescence, which could lead to discrepancies in the timing of start530

of season (SOS) and end of season (EOS). Global studies seldom analyze trends in vegetation531

timing. On a regional basis, however, tThe findings appear to be less consistent with previous532

studies with the timing trends in other studies. Over the majority of northern regions, for533

example, the start of season (SOS) has been retreating as shown, however unlike this study,534
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previous studies have shown that the end of the season (EOS) has been advancing.  The535

combination of the two processes has led to a longer growing season attributed primarily to536

asymmetric and rising global temperatures.  One of the limitations of the harmonic approach537

taken in this study is that it is rigid, i.e. it assumes that the time series oscillates at a regular538

interval over each year. In the future, a harmonic or other phenological model that accounts for539

SOS and EOS asymmetry may be more appropriate for accurate trend analysis.540

5.0 Conclusion541

This paper revealed important similarities and differences of two new long-term542

vegetation databases: Global Inventory Modeling and Mapping Studies Normalized Difference543

Vegetation Index Version 3 (NDVI3g) and 2) Vegetation Index & Phenology Lab Version 3544

NDVI (NDVI3v) and Enhanced Vegetation Index 2 (EVI3v).  Overall, NDVI3g performed better545

and more consistently than NDVI3v and EVI3v in three experiments designed to evaluate the546

two products in absolute terms and changes in magnitude and timing. when downscaled with547

Landsat 30 m resolution fraction of photosynthetically active radiation intercepted by the canopy548

and compared to in situ Leaf Area Index (LAI).  VIP processing and the approach taken to549

synthesize data streams contributed to higher and more variable values that adversely affected550

the predictive ability of the database. VIP tended to be higher in magnitude, more variable, and551

less consistent in terms of trends, due primarily to the blending of two sensors with different552

attributes (AVHRR with MODIS). GIMMS, on the other hand only uses AVHRR. However,553

theThe two databases showed a high level of consistency during the primary growing season,554

which contributed to similar changes in the relative magnitude and direction of plant productivity555

climatology and dynamics, which are critical to global change research.  The two products were556

less consistent in timing, especially at the start and end of the primary growing seasons at high557
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latitudes. It is suspected that these poor correlations are attributed to the higher resolution558

sensors each product uses for intercalibration. due in part to their poorer correlation at the start559

and end of growing season. New opportunities exist for improving the two products that can560

account for the discrepancies highlighted here.  In the meantimeIn conclusion, it is suggested561

users requiring a long-term product to measure biophysical parameters, vegetation climatology,562

and trends in plant productivity magnitude and timing to use NDVI3g and to avoid using EVI3v.563
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Figure 1. Percentage increase in pixels added  (i.e. gaps filled) after applying the temporal filter

to Vegetation Index & Phenology Lab Version 3 records.
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Figure 2. Sites where in situ (destructive or optical) measurements and Landsat Thematic

Mapper/The Enhanced Thematic Mapper Plus ground reflectance data were compiled, resulting

in more than 1,400 data pairs.  The sites are overlaid with 1 km grid cells that contain 5% or

more crop area (Ramankutty et al., 2008).
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Figure 3. Scatterplots of the Fraction Absorbed of Photosynthetically Active Radiation (FAPAR)

Landsat versus FAPAR for wheat (a-c) and  pasture (d-f) estimated by the Global Inventory

Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3; Vegetation

Index & Phenology Lab Version 3 Normalized Difference Vegetation Index; and Vegetation

Index & Phenology Lab Version 3 Enhanced Vegetation Index 2, respectively.  The solid lines

represent the linear model used to downscale the vegetation record for evaluation with in situ

leaf area index.
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Figure 4. Scatterplots of in situ leaf area index for wheat (a-c) and  pasture (d-f) versus

corresponding Landsat resolution pixels downscaled from the Global Inventory Modeling and

Mapping Studies Normalized Difference Vegetation Index Version 3; Vegetation Index &

Phenology Lab Version 3 Normalized Difference Vegetation Index; and Vegetation Index &

Phenology Lab Version 3 Enhanced Vegetation Index 2 datasets, respectively. The solid lines

represent the best model fit.
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Figure 5. The coefficient of determination (R2) on a per-pixel basis for the Vegetation Index &

Phenology Lab Version 3 Normalized Difference Vegetation Index versus the Global Inventory

Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3. R2 was

determined using a 30-year time series of 15-day composites for each month. The images have

been masked for significance ≤ 0.05 and latitudes ranging from 60°N - 60°S.
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Figure 6. The slope (intercept = 0) determined from linear regresion on a per-pixel basis for the

Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation Index versus

the Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index

Version 3.  Slope was determined using a 30-year time series of 15-day composites for each

month. The images have been masked for significance ≤ 0.05 and latitudes ranging from 60°N -

60°S.
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Figure 7. The latitudinal mean (solid line) and standard deviation (ribbon) of the Global

Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3

(blue) and Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation

Index (black) over 30 years.  Values are shown from 60°N - 60°S.
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Figure 8. The change in maximum Normalized Difference Vegetation Index (NDVI) per year

(yr) from the a) Global Inventory Modeling and Mapping Studies (GIMMS) and b) Vegetation

Index & Phenology Lab (VIP) records. The upper panals represent the northern hemisphere (30

year change) and the lower panels represent the southern hemisphere (29 year change). The

trends have been masked for significance ≤ 0.05.
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Figure 9. The change in timing of the Normalized Difference Vegetation Index (NDVI) per year

(yr) from the a) Global Inventory Modeling and Mapping Studies (GIMMS) and b) Vegetation

Index & Phenology Lab (VIP) records.  The upper panals represent the northern hemisphere (30

year change) and the lower panels represent the southern hemisphere (29 year change).  Negative

values indicate earlier green-up/scenence, while positive values indicate later green-up/scenence.

The trends have been masked for significance ≤ 0.05.
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Table 1. Summary statistics (R2 = coefficient of determination, m = slope, b = intercept, p =

significance, and RMSE = root-mean-square error) of the linear relationships between the

Fraction of Photosynthetically Active Radiation intercepted by the canopy (FPAR) estimated by

Landsat Thematic Mapper or Enhanced Thematic Mapper Plus and FPAR estimated by the long-

term vegetation records (NDVI3g = Global Inventory Modeling and Mapping Studies

Normalized Difference Vegetation Index Version 3, NDVI3v = Vegetation Index & Phenology

Lab Version 3 Normalized Difference Vegetation Index, and EVI3v = Vegetation Index &

Phenology Lab Enhanced Vegetation Index 2).

Crop Product R2 m b p RMSE

Maize NDVI3g 0.33 0.61 0.416 <0.001 0.178
N = 98 NDVI3v 0.29 0.73 0.201 <0.001 0.183

EVI3v 0.26 0.65 0.178 <0.001 0.163
Pasture NDVI3g 0.62 0.72 0.106 <0.001 0.110
N = 22 NDVI3v 0.68 0.85 -0.100 <0.001 0.101

EVI3v 0.71 0.81 -0.038 <0.001 0.071
Soybean NDVI3g 0.40 0.82 0.146 <0.001 0.168
N = 39 NDVI3v 0.47 1.09 -0.212 <0.001 0.158

EVI3v 0.40 0.86 0.086 <0.001 0.125
Wheat NDVI3g 0.59 0.86 0.222 <0.001 0.148
N = 28 NDVI3v 0.40 0.84 0.058 <0.001 0.177

EVI3v 0.27 0.74 0.096 0.004 0.140
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Table 2. Summary statistics (R2 = coefficient of determination, m = slope, b = intercept, p =

significance, and RMSE = root-mean-square error) of the relationships between in situ Leaf

Area Index (LAI) and Fraction of Photosynthetically Active Radiation intercepted by the canopy

(FPAR) estimated by the downscaled long-term vegetation records (NDVI3g = Global Inventory

Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3, NDVI3v =

Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation Index, and

EVI3v = Vegetation Index & Phenology Lab Enhanced Vegetation Index 2). A logarithmic

transformation was performed for soybean to meet the assumptions of normality, while the in

situ LAI from the other crops were not transformed.

Crop Product R2 m b p RMSE Transformation

Maize NDVI3g 0.28 7.02 -1.942 <0.001 1.405 Linear
N = 98 NDVI3v 0.22 6.67 -1.695 <0.001 1.461 Linear

EVI3v 0.21 7.87 -0.739 <0.001 1.474 Linear
Pasture NDVI3g 0.49 4.65 -0.532 <0.001 0.665 Linear
N = 22 NDVI3v 0.38 3.90 -0.244 0.002 0.733 Linear

EVI3v 0.43 5.46 0.097 <0.001 0.704 Linear
Soybean NDVI3g 0.50 5.56 -3.264 <0.001 0.756 Logarithmic
N = 39 NDVI3v 0.51 5.12 -2.991 <0.001 0.753 Logarithmic

EVI3v 0.39 6.89 -2.713 <0.001 0.838 Logarithmic
Wheat NDVI3g 0.35 4.29 -0.482 <0.001 1.029 Linear
N = 28 NDVI3v 0.25 4.34 -0.504 0.007 1.107 Linear

EVI3v 0.29 7.92 -0.806 0.003 1.077 Linear


