10

11

12

13

14

15

16

17

18

19

Global Assessment of Vegetation Index & Phenology Lab (VIP) and Global Inventory
M odeling and M apping Studies (GIMMS) Version 3 Products

Michael Marshall®f, Erick Okuto?, Yanghui Kang®, Erick Opiyo? Muhammed Ahmed?

a Climate Research Unit, World Agroforestry Centre, United Nations Ave, Gigiri, P.O. Box
30677, Nairobi, 00100, Kenya

b: Center for Sustainability and the Globa Environment, University of Wisconsin-Madison,
1710 University Ave, Madison, W1, 53726, USA

t: corresponding author (Tel: +254207224244, Fax: +254207224001, Email:
m.marshall @cgiar.org)

Abstract

Earth observation based |ong-term global vegetation index products are used by scientists
from awide range of disciplines concerned with global change. Inter-comparison studies are
commonly performed to keep the user community informed on the consistency and accuracy of
such records asthey evolve. In this study, we compared two new records. 1) Global Inventory
Modeling and Mapping Studies (GIMMS) Normalized Difference V egetation Index Version 3
(NDVI3g) and 2) Vegetation Index & Phenology Lab (VIP) Version 3NDVI (NDVI3v) and
Enhanced Vegetation Index 2 (EV13v). We eva uated the two records via three experiments that
addressed the primary use of such recordsin global change research: 1) prediction-of-the L eaf
Arealndex (LAI)-used-intight-use efficiency-modeling; 2) estimation-of-vegetation climatology
-SoH-\egetation-Atmesphere Transfer-medels; and 3) trend analysis of the magnitude and
phenelogy-timing of vegetation productivity. Experiment-one-untikeUnlike previous iater-
comparison-global studies, wasperformed-with-a unique Landsat 30 m spatial resolution and in

situ LAI database for major crop types on five continents was used to eval uate the performance

of not only NDVI3g and NDVI13v, but EVI3v aswell. The performance of NDVI3v and EVI3v

MODISdatain the VIP record. EV13v has potential to contribute biophysical information

beyond NDV13g and NDVI3v to global change studies, but we caution its use due to the poor

performance of EVI13v in this study. Overall, thetwo-records showed-a-high-tevel-of-agreement
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most consistent at northern latitudes during the primary growing season and southern latitudes

and the tropics throughout much of the year, while the records were less consistent at northern
latitudes during green-up and senescence and in the great deserts of the world throughout much

of the year._These patterns led to general agreement (disagreement) between trendsin the

magnitude (timing) of NDVI over the study period. Biasin inter-calibration of the VIP record at

northernmost |atitudes was suspected to contribute most to these discrepancies.- Thetwo-records

Key words: Normalized Difference Vegetation Index (NDV1); Leaf Arealndex; Enhanced

Vegetation Index (EVI); remote sensing; agro-ecosystems
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1.0 Introduction

The Normalized Difference Vegetation Index (NDVI) (Rouse, 1974) is defined as (pnir —
prep)/(Pnir + Prep), Where pnir and prep are surface reflectance in the Near Infrared (NIR:
0.725-1.10 pm) and visible red (0.58-0.68 um), respectively. As plants become more
photoactive, they absorb more visible red light due to the chlorophyll content of leaves and
stems, and scatter more in the Near Infrared due to the alignment of cell walls (Tucker et al.,
1994). Thisrelationship, detected by remote sensing instruments at the canopy scale, hasthe
effect of making the index increase (decrease) as the density of the canopy increases (decreases)
(Tucker, 1979). Assuch, NDVI has been used widely in global change research with Earth
observation remote sensing for three general purposes. 1) the estimation of canopy properties
related to light-use efficiency, such asthe Leaf Arealndex (LAI) and Fraction of
Photosynthetically Active Radiation intercepted by the canopy (Frar) (€.9. Zhu et al. (2013)); 2)
representation of vegetation climatology in Soil-V egetation-Atmosphere Transfer models (e.g.
O’ishi and Abe-Ouchi (2009)); and 3) detection of trends in vegetation (e.g. de Jong et al.
(2011)) and phenology (e.g. de Jong et a. (2012)). Severa agro-ecosystem modeling
applications fall into these categories, including: agro-climate forecasting (Funk and Brown,
2006); drought monitoring (Karnieli et a., 2006); and crop yield estimation (Xin et a., 2013).
Although NDVI iswidely used, it is sensitive to atmospheric effects, soil background, and
saturates at high LAI. The Enhanced Vegetation Index (EVI) was introduced to overcome these
limitations, asit includes a visible blue band to reduce atmospheric effects, calibration termsto
reduce the effects of soil background, and does not saturate as severely as NDV |1 at high LAI
(Huete et ., 2002). EVI has aso been used in awide array of global change studies, but post

2000, when the M oderate-Resol ution Imaging Spectroradiometric (MODIS) satellite sensor
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began retrieving visible blue reflectance (see Huete et a. (2010) for areview).
The Advanced Very High Resolution Radiometer (AVHRR) is the most commonly used

sensor for long-term (i.e. pre-MODIS) global change studies, because it began retrieving visible

red and NIR reflectance needed to estimate NDV1 from in 1981 and-thusfacHitates 30+ year
thme series-analyses of NBVAH-(Brown et al., 2006). The AVHRR sensor has been on board eight
National Oceanic and Atmospheric Administration (NOAA) satellites: 7 (1981-1985), 9 (1985-
1988 and 1994-1995 descending), 11 (1988-1994), 14 (1995-2000), 16 (2000-2003), 17 (2003-
2009), 18 (2005-present), and 19 (2009-present). Reflectance data collected from the earlier
AVHRR sensors (7, 9, 11, and 14) were difficult to process and synthesize, because they lacked
onboard calibration; the NIR channel was senditive to water, sun glint, glaciers at high latitudes,
and clouds; and of orbital drift (Rao and Chen, 1995, 1996). These issues were rectified with the
launch of the AVHRR sensors onboard NOAA 16, 17, 18, and 19, but have resulted in
radiometric and spectral inconsi stencies across sensors that can significantly bias global change
analyses (van Leeuwen et a., 2006). Various methods have been developed to make these data
continuous and consistent through time, but take different approaches and are frequently
updated, necessitating new accuracy assessments to inform the user community asthey evolve.
The Global Inventory Modeling and Mapping Studies (GIMMS: Tucker et al. (1994) and
Vegetation Index & Phenology Lab (VIP: Didan (2014)) AVHRR products are actively used and
frequently updated, but represent fundamentally different approaches to synthesis. The NOAA
Globa Vegetation Index (Jiang et a., 2010) is a category onto itself, but-since it is stationary and
therefore not appropriate for change detection. Both GIMMS and VIP are aggregated to a 15-
day time step from daily data and are calibrated with higher spatial resolution sensorsin the

period that overlaps NOAA 7, 9, 11, and 14 and NOAA 16, 17, 18, and 19. However before
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aggregation, the former undergoes minor radiometric and spectral correction, while the later
undergoes rigorous atmospheric correction. Perhaps most importantly, GIMMS is devel oped
solely from AVHRR, while VIPisablend of the AVHRR 1981-1999 L ong-Term Data Record
(Nagol et al., 2009; Pedelty et al., 2007) and MODI S 2000-present. Finally, the VIP product

includes EVI12 (Jiang et al., 2008), which isared-NIR version of EVI that_has not been widely

evaluated and can potentially provide additional biophysical information and improve the
accuracy of long-term global change analyses (Rocha and Shaver, 2009). Given these
differences, studies have been performed at the global (Beck et al., 2011) and regional (Scheftic
et a., 2014) scale to assess the performance of older product versions-whie-o. Only one recent

study compared the tatest product versions analyzed in this study globally, but only for the

consistency of trends (Tian et al., 2015). There remainsis no general consensus on which

product is superior; however, GIMMS NDV| tends to perferm-mere-consistenthy-temperalhy-than

VAR-NBV H-making-i-be more appropriate than VIP NDV | apprepriate for trend analysi s, because

the combination of poor orbital drift correction and blending between LTDR and MODIS

potentially contributesto large interseasonal variationsin VIP NDV I;-while. VIP NDVI,0n the

other hand, may be more appropriate for estimating phenology (start of season, length of season,

and timing of peak NDV 1) and other applications that require absolute NDVI values. Ineach

case, the performance of EVI12 was not evaluated nor was in situ data used for intercomparison.
The aim of this study was to perform a global assessment of the latest version of GIMMS

and VIP over a 30-year period (January 1982 to December 2011) in order to aid the user (global

change) community in interpreting results that involve these data. |n doing so, we helped resolve

the superiority of one product over another. The assessment was performed with three

experiments that address the three major themes of global change research that involve Earth
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observation remote sensing-previeushy-Htroduced. Unlike other intercomparison studies, we
evaluated EV12 and used an agro-ecosystem database comprised of relatively high spatia

resolution Landsat and in situ LAI sample pairsto assess the performance of each product for

agro-ecosystems in absolute terms._In addition, unlike other studies, the trend analysis was

performed not only on the magnitude of change across the globe on an annual basis, but the

change in the timing of NDV| according to the unigue phenology in each hemisphere.

2.0 Data, processing, and analytical methods
2.1 Global Inventory Modeling and M apping Studies (GIMM S) Nor malized Difference
Vegetation Index Version 3 (NDVI3g)

The GIMMS vegetation index record evaluated is version three, which islabelled as
NDV13g for the remainder of the paper. Full details on the product version can be found in

Pinzon and Tucker (2014). The new product includes a series of updates since the original

GIMMS NDVI and second generation NDVIg (Tucker et a., 2005) products. Like NDVlg, itis

anon-stationary NDV| series at 15-day intervals and 1/12° (~8km at the equator) resolution;
corrected for orbital drift, Rayleigh scattering, and radiometric and spectral inconsistencies over

deserts; and takes an empirical (Bayesian) approach to normalize overlapping AVHRR periods

with another higher resolution sensor that overlaps the two periods. In addition, daily NDVI data

are scaled to 15-day composites using a Maximum Va ue Compositing (MVC) algorithm
(Holben, 1986), which reduces further inconsistenciesin the daily data. The most unique
development in NDVI3g isthe use of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) for

intercalibration instead of the System Pour I'Observation de la Terre (SPOT) sensors. Thisis

intended to reduce significant biasin NDVI at extreme northern latitudes that has been observed

in SPOT imagery (Guay et a., 2014).
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2.2 Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation I ndex
(NDVI3v) and Enhanced Vegetation Index 2 (EV13v)

The VIP vegetation index record evaluated is also initsthird version, which islabelled as
NDVI13v and EVI3v for NDVI and EV12 data, respectively, for the remainder of the paper.
Further information on the product version can be found in Didan (2014). Like previous
versions, it isa non-stationary series at 15-day intervals and 1/20° (~5km at the equator)
resolution; corrected using radiometric, drift, and cloud screening procedures recommended in El
Saleous et al. (2000), and an atmospheric algorithm that reduces the effects of Rayleigh
scattering, ozone, aerosols, and water vapor (Vermote et a., 1997); and takes an empirical (linear
regression by land cover type) approach for intercalibration. Unlike GIMMS, SPOT is used for
intercalibration and daily data are aggregated to 15-day composites using the Constrained View
angle - Maximum Value Composite (CV-MVC) approach (Cihlar et a., 1997). Unlike MVC,
CV-MV C does not give preference to off-nadir values that may be higher than “true” (at-nadir)
values. Version three includes one notable improvement over version two, namely the correction
of NDVI and EV12 for sparsely vegetated areas pre-MODI S era (Scheftic et al., 2014). EVI2is
derived from the following equation and responds similarly to EVI (Jiang et a., 2008):

Py~ Pm (1)
py +&4pp +1

E =25

The VIP product contained persistent data gaps due to cloud cover and other noise data

and was at a higher spatial resolution than the GIMMS product, so additional steps were taken to
process it before the assessment. A MODI Sfiltering algorithm described in Xiao et al. (2003),
Fensholt et al. (2006), and adapted for the tropicsin Opiyo et al. (2013) was used to fill-some

data flagged as less than ideal gaps._Data gaps due to cloud cover and poor data quality were not

gap-filled. The algorithm was considered a compromise between preserving the actual data as
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much as possible and filling missing data so that a reasonable comparison could be made.

Figure 1 shows the percentage of missing datafilled by the filtering algorithm. On a monthly
basis, less than 20% of the data was filled for the majority of pixels. Notable exceptions were
primarily in the mid and extreme latitudes during wintertime. The most severe case wasin south
Asia during the monsoon (June — September) where more than 50% of the pixels werefilled by
the filtering algorithm. After the filter was applied, NDV13g was resampled to NDVI3v/EVI3v
resolution using the gdalwarp utility (http://www.gdal .org/gdalwarp.html) with default

parameters. Missing values were then made consistent across the-datasetsGIMMS and VIP, so

that the summary statistics (experiment two below) and trends (experiment three below) were

captured only for the 15-day values that the two products shared. The datasets were then

resampled back to the native NDV13g spatial resolution for the evaluation. Fhese stepswere
2.3 First experiment: evaluation of NDVI13g, NDVI3v, and EVI3v with biophysical data
NDVI and EVI are most commonly used in global change studiesto capture Fpagr, which
drives canopy and light interactionsin SVATs and other process-based models that estimate
plant productivity and evapotranspiration (Glenn et al., 2008). Mons and Saeki (1953) found
that light attenuation in the canopy followed Beer’s Law (Beer, 1852). This meansthat for a
random canopy with a spherical leaf angle distribution, LAI, the second most commonly derived
biophysical parameter from NDV1 and EV 1, can be approximated from Fpar using the following

equation (Norman et al., 1995):
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Wherek is an extinction coefficient and LAl isthe Leaf Arealndex (m? m?). Given the
importance of NDVI and EVI in estimating Fpar and LAI, standard regression techniques were
used to measure the relative ability of NDVI13g, NDV13v, and EVI3v to capturein situ LAI
variability. Itisdifficult to compare these recordsto in situ LAI directly, because the NDVI/
EVI - LAI relationship is typically scale dependent or non-linear (Friedl et al., 1995; Gao et dl.,
2000; Hall et al., 1992; Huete et al., 2005). Therefore Fpar derived from Landsat Thematic
Mapper/The Enhanced Thematic Mapper Plus (TM/ETM+) 30 m resol ution surface reflectance
data was used intermediately to downscale NDV13g, NDV13v, and EVI3v to 30 mresolution to
facilitate the comparison.

2.3.1 Landsat Thematic M apper/The Enhanced Thematic Mapper Plus(TM/ETM+) and in
situ Leaf AreaIndex (LAI)

The Landsat TM/ETM+ surface reflectance and in situ LAI data was extracted from a
database that was devel oped to determine the ability of Landsat-based NDVI, EVI12, and other
vegetation indices to predict LAI for field crops around the world. Results of the analysis, along
with afull description of the database can be found in Kang et a. (2015). Figure 2 showsthe
distribution of the Landsat-L Al sample pairsin the database. It includes nine major globa field
crops (barley, cotton, maize, pasture, potato, rice, soybean, sugar beet, and wheat) and severa
less common fields crops classified as "other" for purposes of thisanalysis. Theitn situ LAI was
determined using ground-based optical (LAl 2000, AccuPar, and hemispherical) and destructive
techniques and compiled from a number of sources. These include: AmeriFlux
(http://ameriflux.ornl.gov/) and AsiaFlux (http://asiaflux.net/) regiona flux networks;

experimental and validation projects (e.g. Marshall and Thenkabail (2015)); the VALidation of
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European Remote sensing Instruments project (Baret et a., 2014); the Australian Airborne
Cal/val Experiments for SMOS project (Peischl et al., 2012); as well as data retrieved from peer-
reviewed journals. For each LAI record in the database, Landsat TM/ETM+ radiance was
extracted from the United States Geological Survey archive within a +15-day window
encompassing the date of in situ measurement and converted to surface reflectance with the
Landsat Ecosystem Disturbance Adaptive Processing System (Masek et a., 2006). NDVI and
EV12 were computed using the equations above. In rare cases where more than one LAI
observation fell in asingle Landsat pixel, the LAl values were averaged, so that each in situ
entry corresponded to a unique Landsat NDVI/EV12 value. After averaging, the dataset
consisted of 2086 LAI-Landsat pairs, which was subsequently reduced to 1459 measurements

after further quality control measures described in Kang et al. (2015) were taken to remove

inconsistent samples.

2.3.2 Downscaling long-term recordswith the Fraction Photosynthetically Active Radiation

inter cepted by the canopy (Fpar) and evaluation with in situ Leaf Area Index (LAI) data
Downscaling was performed by converting AVHRR and Landsat vegetation indices to

Fpar- Unlikethe NDVI/ EVI - LAI relationship, the NDVI/EVI - Fpagr relationship is quasi scale

invariant (Asrar et al., 1992; Friedl et a., 1995; Gutman and I gnatov, 1998; Myneni et al., 2002;

Sellers, 1985), meaning a coarse resolution Fpar pixel is approximately equal to the average of

overlapping higher resolution Fpar pixels. Hwang-et-al-(2011), for-example-used-the guality-of

10
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per pixel basis, most of thein situ LAl wasretrieved only once, so using aratio-based approach
was not feasible. Therefore, the AVHRR vegetation indices were downscaled to 30 m spatial
resolution by regressing (linearly) Landsat Fpar and NDV13g, NDIV 3v, and EVI3v Fpag. In
order to reduce the impact of land cover dependence, the models were developed for each crop.

The Fraction of Photosynthetically Active Radiation intercepted by the canopy was
computed using the ratio method first proposed in Gutman and Ignatov (1998):

_ V- Vm 4
1|IFT:'| _vill

Fp
Where Vlmin isthe vegetation index (NDVI or EVI2) for bare soil (LAl - 0), and V. isthe
vegetation index (NDVI or EVI2) for dense vegetation (LAl — ). Vlyinand Vi for NDVI
and EV12 were set to 0.05 and 0.95 (Fisher et al., 2008; Mu et d., 2007). Theselimitsare
sometimes considered dependent on the spatial and temporal resolution and land cover type
(Zeng et al., 2000). Thelimits proved arbitrary for downscaling purposes however, and using
the range 0.05 to 0.95 guaranteed that fractions ranged from zero to one.

Once NDV13g, NDIV3v, and EVI3v Fpar Were downscaled to corresponding Landsat
data, their performance was evaluated by regressing them (linearly) with the in situ LAI data.
Since the relationship between Fpar and LAI islogarithmic, as shown in Equation 2,
standardized residual plots (not shown) were made and linear transformations were performed to
verify that the assumptions of normality were met. In most cases, transformations were not
required. The performance of the fina model selected in each case was characterized by the
coefficient of determination (R?), significance tests, and root-mean-square error (RMSE).

Of the original 1459 Landsat — LA data pairs, only 242 were used for the final analysis.

The majority of the dataloss was due to considerable overlap of LAl datain space and time,

because they were collected without remote sensing applicationsin mind: 1) LAI valuesthat

11



238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

were captured by the same coarse resol ution pixels were averaged along with Landsat

NDVI/EVI2 and 2) due to the presence of missing valuesin the long-term records, LAl and

Landsat NDVI/EV12 were averaged on a 15-day basis. These reductions led to small sample

sizes for each crop. The sample sizes for cotton and rice were so small that they were omitted to

avoid over-fitting. In order to increase the sample size on a per-crop bas's, two aggregations

based on the presumed similarity of crop spectral/canopy characteristics were made: 1) barley

and wheat (winter and spring varieties) were classified as wheat and 2) garlic, onion, potato, and

sugar beet were classified as tuber.,

2.4 Second experiment: comparison of NDVI13g and NDVI3v climatology used to
parametrize SVAT models
SVAT modelstraditionally were stand-alone and used to simul ate the interaction of

incoming solar radiation with the canopy driven by Fpar and ether-biological-and-chemical

canopiesbiogeochemical processes for asingle location, but are becoming increasingly coupled

to regional and global scale climate models and run over regularized grids, given the importance

of vegetation feedbacks on the atmosphere (Quillet et al., 2010). With-the-exception-of-newer

vartations—A common dataset used to parameterize the Fparvegetation component of SVATSIs
the 0.15° resolution monthly climatology of Fpar-derivedfrem-AVHRR NDVI (Gutman and
Ignatov, 1998). Given the importance of the Fpar climatologyNBV4 inrepresenting-vegetation
in SVATS, long-term summary statistics for NDV13g and NDV13v were computed as part of the
assessment. EVI3v was not included in this phase-ef-the-analysisexperiment, because it does not

have a GIMMS counterpart to compare it to, has different and well-documented statistical
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‘ propertiesthan NDV|1, and it is derived from the same visible red and NIR channels and

‘ underwent the same corrections as NDV13v_making its comparison redundant. The summary
statistics were computed from the 15-day data, but the results are presented here on a monthly
basisto reflect the NDVI climatology used in SVATs. The summary statistics included: mean,
standard deviation, coefficient of determination (R%) from linear regression, and slope from
linear regression. The mean and standard deviation statistics are most critical for understanding
the differencesin NDVI climatology, while R%and slope indicate the strength, magnitude, and
direction of the correlation between the two datasets. All summary statistics are presented with
significance (p) < 0.05. Non-linear correlation statistics were also computed, but were not
included, because they showed similar spatial patterns asthe linear statistics.

2.5 Third experiment: comparison of NDVI3g and NDVI3v trendsin magnitude and timing
(phenology)

Changes in the magnitude and timing (phenology) of plant productivity are important for
understanding how ecosystems respond to climate change (Nemani et a., 2003). In North
America, for example, trend analysis of these changes has revealed that globa warming is
driving an increase in plant productivity and alengthening of the growing season (i.e. earlier
green-up in the spring and later senesce in autumn) (Barichivich et a., 2013). The
characterization of the magnitude and phenology of productivity over ayear istypically
estimated with empirical methods that include NDV I and other bioclimatic predictors such as
temperature and relative humidity (e.g. Brown et a. (2012)). In order to avoid confounding the
assessment of GIMMS and VIP with other variables, harmonic regression (Eastman et a ., 2009;
Jakubauskas et al., 2001) was performed on the vegetation index records to measure the

magnitude and timing of NDVI on an annual basis. Aswith experiment two, EV13v was not

13
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evaluated in this experiment. A trend analysis was then performed on the regression parameters
to compare NDV13g and NDV3v as surrogates for the change in magnitude and timing of plant
productivity over time.

The primary parameters of harmonic regression are the amplitude (in this case the
difference between peak and mean NDVI) and phase (in this case timing of NDVI peaks and
troughs). Amplitude and phase are computed by fitting a series of sinusoidal functionsto the
time series (Eq. 3). The harmonic regression was performed on a monthly basis for each year.
Monthly values were determined by taking the maximum NDVI of the two 15-day composites

per month.

N =N U+znic {sz+Bis {sz x
Where NDV I isthe predicted Normalized Difference Vegetation Index at month (t), NDVlpis
the annual monthly mean, i isthe number of harmonics up to the jth harmonic, N isthe number
of samples (months) in the year, and A and B are coefficients used to compute the amplitude and
phase. Theregression was performed for the first harmonic, which represents the primary
growing season, because multimodal systems (harmonics > 1) are uncommon and capturing
them risks over-fitting.

The change in amplitude and phase over time was quantified using the Theil-Sen
technique (Gilbert, 1987). The Theil-Sen technique takes the median non-parametric slope over
all possible pairwise dopes through time. Unlike linear regression, it does not require normality
or homoscedasticity, making it appropriate for trend analyses involving NDV| data (de Beurs

and Henebry, 2005). The significance of the amplitude and phase trends (p < 0.05) was

identified using the non-parametric Mann-Kendall test. Since the primary growing season in the
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southern hemisphere occurs over two given calendar years, the trend analysis was repeated for
the southern hemisphere by advancing the regression six months ahead each year. Thisresulted
inone less year or a 29-year trend analysis for the southern hemisphere.

3.0 Resaults

3.1 First Experiment: performance of long-term records using Landsat Fpar and in situ

LAI

The accuracy of each long-term record when compared to in situ LAI was mixed, but

NDV3g performed moderately better than NDVI3v and EVI3v. The scatterplots of predicted
(downscaled) NDV13g, NDVI3v, and EVI3v Fpar versus Landsat Fpar for wheat and pasture are
shown in Figure 3, while the summary statistics of the linear models used to downscale the

records for all crops with sufficient samples sizes and reasonable correlations are shown in Table
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1. The models used to downscale NDV3g yielded higher correlations and lower error than the
model s used to downscale NDV13v for maize and wheat, while NDV13v yielded higher
correlations and lower error for soybean and pasture, and EV13v was the most difficult to
downscale of the three. Specifically, AR? for NDVI3g over NDVI3v was 0.04 for maize and
0.18 for wheat, while AR? for NDVI3v over NDV13g was 0.06 and 0.04 for pasture and soybean.
It isimportant to note however that the strength of the relationships were low across all records
with the exception of pasture, which could be due to the homogeneity (consistent clumping) of
pasture over large areas. The relationship for tuber was so poor that it was not included in the
LAl evaluation. The relationship between the downscaled NDV13g, NDV13v, and EVI3v Fpar
and in situ LAI are shown for wheat and pasture isin Figure 4, while the model statistics and
transformation for alinear comparison, are presented in Table 2. The NDVI3g-LAIl models
captured in situ variability better than NDV13v and EVI3v for maize (AR? = 0.06), pasture (AR?
=0.11), and wheat (AR? = 0.10), with comparable results between NDV13g and NDVI3v for
soybean. EVI3v tended to perform better than NDVI3v for two of the crops: pasture (AR? =
0.05) and wheat (AR? = 0.04). As can be seen in Figure 4, however, the predictive power of
EVI13v could beinflated by leveraging at high LAI, i.e. EVI3v tends to be more variable than
NDVI13v at higher LAI.
3.2 Second experiment: similarity of NDVI13g and NDV 1 3v climatology

On amonthly basis, NDV13g and NDVI3v showed a high level of consistency in terms of
rel ative magnitude expressed as R? (Figure 5) and direction expressed as slope (Figure 6). Both
metrics were computed with the dopes forced through the origin (0, 0). In the northern
hemisphere, R? approached one after green-up (May) and progressively got stronger over the

boreal summer months (June, July, and August). The poorest correlations (R? < 0.7) were seen

16



351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

primarily at the northern-most | atitudes during the transition between boreal winter and spring.
Correlations were more consistent in the Southern Hemi sphere where snow and cloud cover was
notably less than in the north. A glaring exception however was the Strut Stony Desert of South
Central Australia, which showed poor correlations during the transition between Austral summer
(December, January, and February) and fall. The tropics showed high and significant
correlations throughout most of the year aswell. The dopesfollowed asimilar pattern asthe
correlations, with values approaching a one-to-one relationship (sope=1.0) after the transition
from winter to spring in the northern hemisphere and consistently over much of the year in the
tropics and southern hemisphere. The great deserts of the world and sparsely vegetated areas had
slopes approaching zero throughout the year. Since the slopes were expressed with NDVI3v as
the dependent variable and the dopes were always less than one, NDV13g was always |ess than
NDVI13v. Thedifferencein NDV13g and NDVI13v magnitudesis more clearly shown in Figure
7, which illustrates the monthly latitudinal mean and standard deviation for both. Mean NDVI3v
was always higher and more variable than NDV13g. In addition, large divergence in means
between the two records occurred during senescence in the northern hemisphere. Other patterns
were more consistent: NDV13g and NDV13v were high in the tropics throughout the year and
peak and decline following the seasonsin the northern and southern hemispheres; and the
standard deviations for both were higher in the northern hemisphere than the southern
hemisphere due to continentally.
3.23 Third experiment: similarity of NDV13g and NDVI13v trendsin magnitude and
phenology

Thetwo NDVI records exhibited a high level of correspondence in maximum primary

season NDV| (1% harmonic amplitude), both in direction and location (Figure 8). In terms of

17



374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

magnitude trends, however, NDVI3v was higher than NDV13g. The figure was masked for
pixelsthat had complete NDVI records to guarantee-aceuratefacilitate curve-fitting in a given
year and then again for trends that were statistically significant over the 30-year period. This
resulted in no trends over much of the northern latitudes. In addition, NDVI amplitudes= 0.03
per year (or 1.0 over the 30-year period) and NDVI amplitudes < -0.03 (or -1.0 over the 30-year
period) were flagged as missing, since NDV I rangesfrom -1to 1. In most cases, however, the
increase in absolute amplitude per year was less than 0.01 or 0.3 over the 30-year period.
Overdl, the positive NDV3g trends appeared to be more consistent spatially in several
important cropping and grazing regions, including: the Great Plains of the United States; the
Region del Norte Grande of Argentina; the Iberian Peninsula (particularly Portugal); Lesotho,
South Africa (east), and Swaziland; Ganges (India) and Indus (Pakistan) Plains; the Sahel of
West Africa; and Cape Y ork Peninsula (Australia). Negative trends (also more consistent in
NDV13g) appeared to be primarily in the great deserts of the northern hemisphere. Inthe
southern hemisphere, however, some negative trends were seen in the tropical forests of the
Amazon and Congo River basins.

The two recordsin terms of primary season timing (1% harmonic phase) showed a lower
level of correspondence than for amplitude (Figure 9). Asabove, trends were not seen over
much of the northern hemisphere. 1n addition, the NDV I phases = 0.07 per year (or ~2 months
over the 30-year period) and NDVI phases < -0.07 (or ~-2 months over the 30-year period) were
flagged as missing, because changes of more than two months were deemed aberrant. In most
cases however, the absolute change in timing was less than two months. Aswith trendsin
amplitude, the trends in phase were more consistent spatially over both hemispheres from

NDV13g. Earlier green-up (negative trend) represented the majority of trendsin the two
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datasets, though considerably less than the increase in amplitude shown in Figure 8. Negative
trends were seen over many important cropping and grazing areas. Californiaand the
Southwestern United States; the Iberian Peninsula; the Sahel of sub-Saharan Africa; Iran (east);
South Africa (west); Turkmenistan (north); and over much of the areas bordering the deserts of
Australia. Later green-up (positive trend) was primarily concentrated in the great deserts (e.g.
the Great Sandy and Gibson deserts of northwestern Australia).
4.0 Discussion

This study assessed the latest versions of two non-stationary and long-term vegetation
index records used in global change studies. The assessment was performed with three
experiments that addressed the-primaryimportant global change applications, namely: the
estimation-of-Fpar and LAI; estimation-ef S\VAT-vegetation climatology; and trend analysis of
vegetation produectivity-magnitude and phenelogytiming. The results of the analysis highlight
important similarities and differences between the two records that the global change community
should be aware of before using them for these applications: 1) NDV13v was consistently higher

and more variable than NDV13g, which in Tian et al. (2015) has been attributed to artificial

jumps in the record between AVHRR and MODI S periods and may contribute to relatively lower

correlations and higher errors with in situ LAI; 2) the performance of EVI3v with in situ LAI
compared to NDVI3g was unexpectedly poor; 3) correlations between GIMMS and VIP were
highest during the primary growing season, so trends in peak NDV | were fairly consistent
between the two, both showing increases over much of the globe and decreases in tropical
rainforests; and 4) correlations between GIMMS and V1P were lower during green-up and

senescence, which were most pronounced at high latitudes where the NDV 139 product is

expected to have much lower bias due SeaWifs inter-calibration. se-trends-NBVA-tmihg-were
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particdtarhy-inthe-driest-regions-of-the- world:Overall, we recommend using NDV13g over

NDVI3v and EVI13v for vegetation climatology and trend analysis, becauseiit is spatially and

temporally more consistent. Unlike previous studies, however, the in situ LAI experiment

revealed that NDVI3q is better suited for absol ute measurements as well.

4.1 First Experiment: performance of long-term records using Landsat FPAR and in situ LA

Unlike previousinter-comparison studies, a unique moderate resol ution remote sensing

and in situ LAI database for agro-ecosystems was used for accuracy assessment. Altheughthere

size-with-airited-geographie-extent-1n most cases, NDV3g appeared-te-bewas more accurate

than NDVI3v or EVI3v. EVI3v performed considerably worse than NDV13g, which is

surprising, because EVI tends to be better correlated than NDVI from other sensors with canopy

structural properties (Huete et a., 2002). Earlier studies have suggested that the LTDR NDVI
from which MODI S datais merged in the VIP product is more appropriate for modeling

applications requiring absolute values (Beck et al., 2011), meaning NDV13v should reproduce
more accurate estimates of Fpar and LAI than NDV13g, but this was not the case in this study.
Tian et a. (2015) assessed

attributed- jJumpsin the NDVI3v record therelatively-high-and-variable NDVA3v-mainly-to poo

orbital drift correction and the break in the LTDR and MODIS records in 2000._The reason for

the poor performance of EVI2 isless clear, but clearly needs to be addressed in future work,

given its potential importance to advancing global change research. However,-sincethe LTDR

r
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database—athe-meantime-however-1H usersrequire the higher spatial resolution offered by

VIP and the added biophysical information afforded by EVI3v for application purposes, several

options exist for improving their accuracy. Perhaps the most important would beto fill the
remaining data gaps in the filtered VIP datasets generated here with a smoothed datar (see

Kandasamy et al. (2012) for examples), which will address some of the noise in the data

observed in Tian et al. 2015 and this study. NBVA-3g-hasundergene-extensive statistically
smoething. Another option widely used in the climate modeling community, that-eould-be

combined-with-this-eption-weuld beis to generate an ensemble mean of NDVI3v and NDV13g to

account for some of the bias and uncertainties in each product. Finaly, instead of using EV13v,

the red and NIR channelsincluded in the VIP database could be used to calculate the Soil

Adjusted Vegetation Index (SAVI) (Huete, 1988) instead. Fheevaluationof EM2-hassofar

been-Hmited-whereasUnlike EV12, SAVI has undergone extensive evaluation.
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4.2 Second experiment: similarity of NDV13g and NDV13v climatology

NDVI13g and NDV13v showed a high level of agreement with one another at mid-

latitudes during the primary growing season and in the densely vegetated tropics throughout

most of the year, and alow level of agreement at high latitudes during winter months and in the

sparsely vegetated sub-tropics throughout most of the year. The high level of agreement is
expected, because data gaps, cloud contamination, and atmospheric water vapor, isless at mid-
latitudes during summer months (Beck et a., 2011; Moulin et a., 1997). The high level of
agreement in the tropics was more surprising, because data gaps and cloud contamination are
persistent there throughout much of the year, typicaly leading to large discrepancies among

records (Brown et al., 2006). However, as previoudy stated,-the standard-smeethed VHP-data

omitted from the analysis. The large discrepancy at high latitudes could have been due to factors

other than cloud contamination and other noise data-gaps, including the 1) presence of snow

cover; 2) high frequency of off-nadir pixels, which would impact the results of the compositing

algorithm (MV C versus CV-MVC); and perhaps most importantly, 3) use of SeaWiFS over
SPOT for GIMMS inter-calibration (Hall et a., 2006). The large discrepancy in deserts and

sparsely vegetated areas on the other hand was most likely due to the dominance of soil in the
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signal and sensitivity of NDVI to soil wetness (Jiang et a., 2006). With the high level of
correlation during the primary growing season and higher and more variable NDV13v, users
should expect NDVI3v climatology during the primary growing season to be higher at mid-
latitudes and in the tropics throughout most of the year, but consistent with changesin NDV13g.
During winter months, especially at high latitudes and in semi-arid to arid subtropical regions,

where SeasWiFS inter-calibration isless biased, NDVI3v will be higher, more variable, and less

consistent-withaccurate than NDV13g.

4.3 Third experiment: similarity of NDV13g and NDVI3v trends in magnitude and timing

NDV13g and NDVI3v both showed greening (positive NDVI amplitude) globally, with
localized browning (negative NDV I amplitude) over a 30+ year time frame, but the magnitude of
thetrendsin the latter was higher. Therefore, trend analyses of peak NDV1 or annual means will
be higher in NDV13v than NDV13g, but the direction will be the same. The direction of change
in general corroborated previous global studies. The gain or loss of plant productivity is
generaly attributed to biophysical drivers (temperature and precipitation), human-related
change, and discontinuities in the long-term record (de Jong et a., 2012). At mid-latitudes,
warming (cooling) at the beginning of the growing season can lead to greening (browning) in
areas where water supplies are ample. In North America east of the Great Plains, for example,
greening was observed in NDV13g and NDV 13v, which has been attributed to temperature-
driven increasesin plant productivity in previous studies (Wang et a., 2011). Increased rainfall
(droughts) proceeding or during the growing season can lead to greening (browning) particularly
in water-limited regions such asthe Sahel. As shown here, the Sahel has experienced greening
over the past 30+ years. This greening, typically referred to as the “re-greening of the Sahel” is

defined in other studies as the increase in woody biomass (Brandt et al., 2015) that followed the
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recovery of rains in the 1990’s after two decades of severe droughts driven by below normal sea
surface temperatures in the subtropical North Atlantic (Giannini et a., 2013). Deforestationis
perhaps the most-recognized appreciated human driver of plant productivity. Browning in the
Amazon and Congo River basins, as was shown in this study, has been attributed to widespread
deforestation in previous studies (Hansen et al., 2010; Mayaux et a., 2013), though other drivers,
such as shift in Walker circulation potentially contribute to the loss as well (Zhou et al., 2014).
Greening was observed in the areas tropical rainforests as well, but this has been attributed in
previous studies to rapid regrowth after deforestation, the way Vs are composited, and the
methods by which trends are detected (Beck et a., 2011). Some of the trends disagree with
previous research and should be addressed in future studies. Most prominent were that no trend
was detected at extreme northern latitudes, though previous studies have shown summer
drought-driven declinesin boreal forest productivity (Goetz et a., 2005), and positive trends
were detected for the Region del Norte Grande of Argentina, though previous studies have
shown negative trends attributed to the rapid encroachment of agriculture into subtropical forests
of the region (Paruelo et al., 2004).

NDV13g and NDVIv both showed earlier green-up (negative NDV I phase) more than
later green-up (positive NDVI phase), but they were less consistent with one another compared
to trendsin peak NDVI. NDVI13g and NDV13v showed low correlations during green-up and
diverging climatology during senescence, which could lead to discrepanciesin the timing of start

of season (SOS) and end of season (EOS). Global studies seldom analyze trendsin vegetation

timing. On aregional basis, however, tFhe findings appear to be less consistent with previous

studieswith-the timingtrendsn-other-studies. Over the majority of northern regions, for
example, the start-of season{SOS) has been retreating as shown, however unlike this study,
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previous studies have shown that the-end-of-the-season-{EOS) has been advancing. The
combination of the two processes has led to alonger growing season attributed primarily to
asymmetric and rising global temperatures. One of the limitations of the harmonic approach
taken inthis study isthat itisrigid, i.e. it assumes that the time series oscillates at a regular
interval over each year. Inthe future, a harmonic or other phenological model that accounts for
SOS and EOS asymmetry may be more appropriate for accurate trend analysis.
5.0 Conclusion

This paper revealed important similarities and differences of two new long-term
vegetation databases: Global Inventory Modeling and Mapping Studies Normalized Difference
Vegetation Index Version 3 (NDVI13g) and 2) Vegetation Index & Phenology Lab Version 3
NDVI (NDVI3v) and Enhanced Vegetation Index 2 (EVI3v). Overall, NDVI3g performed better

and more consistently than NDVI3v and EVI3v in three experiments designed to evaluate the

two products in absolute terms and changes in magnitude and ti ming. when-dewnscaled-with

thepredictive-ability-of the database—V I P tended to be higher in magnitude, more variable, and

less consistent in terms of trends, due primarily to the blending of two sensors with different

attributes (AVHRR with MODIS). GIMMS, on the other hand only uses AVHRR. However;

theThe two databases showed a high level of consistency during the primary growing season,
which contributed to similar changes in the relative magnitude and direction of plant productivity
climatology and dynamics, which are critical to global change research. The two products were

less consistent in timing, especially at the start and end of the primary growing seasons at high
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latitudes. It is suspected that these poor correlations are attributed to the higher resolution

sensors each product uses for intercalibration. duer-partte-thelpoerercorrelation-at- the start

I n conclusion, it is suggested
users requiring along-term product to measure biophysical parameters, vegetation climatology,

and trendsin plant productivity magnitude and timing to use NDV13g and to avoid using EVI3v.
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Figure 1. Percentageincreasein pixelsadded (i.e. gapsfilled) after applying the temporal filter

to Vegetation Index & Phenology Lab Version 3 records.
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Figure 2. Siteswherein situ (destructive or optical) measurements and Landsat Thematic
Mapper/The Enhanced Thematic Mapper Plus ground reflectance data were compiled, resulting
in more than 1,400 datapairs. The sitesare overlaid with 1 km grid cells that contain 5% or

more crop area (Ramankutty et al., 2008).
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Figure 3. Scatterplots of the Fraction Absorbed of Photosynthetically Active Radiation (Fapar)
Landsat versus Fapar for wheat (a-c) and pasture (d-f) estimated by the Global Inventory
Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3; Vegetation
Index & Phenology Lab Version 3 Normalized Difference Vegetation Index; and Vegetation
Index & Phenology Lab Version 3 Enhanced V egetation Index 2, respectively. The solid lines
represent the linear model used to downscal e the vegetation record for evaluation with in situ

leaf areaindex.
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Figured4. Scatterplots of in situ leaf areaindex for wheat (a-c) and pasture (d-f) versus
corresponding Landsat resolution pixels downscaled from the Global Inventory Modeling and
Mapping Studies Normalized Difference V egetation Index Version 3; Vegetation Index &
Phenology Lab Version 3 Normalized Difference Vegetation Index; and V egetation Index &
Phenology Lab Version 3 Enhanced V egetation Index 2 datasets, respectively. The solid lines

represent the best model fit.
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Figure5. The coefficient of determination (R?) on a per-pixel basis for the Vegetation Index &
Phenology Lab Version 3 Normalized Difference Vegetation Index versus the Global Inventory
Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3. R? was

determined using a 30-year time series of 15-day composites for each month. The images have

been masked for significance < 0.05 and latitudes ranging from 60°N - 60°S.
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Figure 6. The dope (intercept = 0) determined from linear regresion on a per-pixel basis for the
Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation Index versus
the Global Inventory Modeling and Mapping Studies Normalized Difference V egetation Index
Version 3. Slope was determined using a 30-year time series of 15-day composites for each
month. The images have been masked for significance < 0.05 and latitudes ranging from 60°N -
60°S.
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Figure 7. Thelatitudina mean (solid line) and standard deviation (ribbon) of the Global
Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3
(blue) and Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation

Index (black) over 30 years. Vaues are shown from 60°N - 60°S.

45



A s _ NDVI/ yr
B FaiC f___"'"" = - ; -:- Qi
-2 s L (00 - Ok
- R A P E 0 - R0
yr I - o0
A
| - =
. !
B — \.%'C-"_- — -h:;f = —- e
T, 3{ = =TT -
- e AR ¥
- \‘\‘ e x -5
) i :
A 1 ﬁ'__ o
5 ' ¥
+ . | s
£ i
-

Figure 8. The change in maximum Normalized Difference Vegetation Index (NDVI) per year
(yr) from the @) Global Inventory Modeing and Mapping Studies (GIMMS) and b) Vegetation
Index & Phenology Lab (VIP) records. The upper panals represent the northern hemisphere (30
year change) and the lower panels represent the southern hemisphere (29 year change). The

trends have been masked for significance < 0.05.
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Figure 9. The changein timing of the Normalized Difference Vegetation Index (NDV1) per year

(yr) from the @) Global Inventory Modeling and Mapping Studies (GIMMS) and b) Vegetation

Index & Phenology Lab (VIP) records. The upper panals represent the northern hemisphere (30

year change) and the lower panels represent the southern hemisphere (29 year change). Negative

valuesindicate earlier green-up/scenence, while positive values indicate later green-up/scenence.

The trends have been masked for significance < 0.05.
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Table1l. Summary statistics (R? = coefficient of determination, m = slope, b = intercept, p =
significance, and RM SE = root-mean-square error) of the linear relationships between the
Fraction of Photosynthetically Active Radiation intercepted by the canopy (Fpar) estimated by
Landsat Thematic Mapper or Enhanced Thematic Mapper Plus and Fpar estimated by the long-
term vegetation records (NDV13g = Global Inventory Modeling and Mapping Studies
Normalized Difference Vegetation Index Version 3, NDVI3v = Vegetation Index & Phenology
Lab Version 3 Normalized Difference Vegetation Index, and EV13v = Vegetation Index &

Phenology Lab Enhanced Vegetation Index 2).

Crop Product R? m b p RMSE

Maize  NDVI3g 033 0.61 0416 <0.001 0.178

N=98 NDVI3v 029 073 0201 <0.001 0.183

EVIBv. 026 0.65 0178 <0.001 0.163

Pasture  NDVI3g 0.62 072 0106 <0.001 0.110
N=22 NDVI3v 0.68 0.85 -0.100 <0.001 0.101

EVI3v. 071 081 -0.038 <0.001 0.071

Soybean  NDVI3g 040 082 0146 <0.001  0.168
N=39 NDVI3v 047 109 -0212 <0.001 0.158
EVI3v. 040 086 0.08 <0.001 0.125

Wheat  NDVI3g 059 086 0222 <0.001  0.148

N=28 NDVI3v 040 0.84 0058 <0.001 0.177
EVI3v. 027 074 0.09% 0.004 0.140
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Table2. Summary statistics (R? = coefficient of determination, m = slope, b = intercept, p =
significance, and RM SE = root-mean-square error) of the relationships between in situ L eaf
Arealndex (LAI) and Fraction of Photosynthetically Active Radiation intercepted by the canopy
(Fpar) estimated by the downscaled long-term vegetation records (NDV13g = Global Inventory
Modeling and Mapping Studies Normalized Difference Vegetation Index Version 3, NDVI3v =
Vegetation Index & Phenology Lab Version 3 Normalized Difference Vegetation Index, and
EVI3v = Vegetation Index & Phenology Lab Enhanced Vegetation Index 2). A logarithmic
transformation was performed for soybean to meet the assumptions of normality, while thein

situ LAI from the other crops were not transformed.

Crop Product R? m b p RMSE Transformation
Maize  NDVI3g 028 7.02 -1.942 <0.001 1.405 Linear
N=98 NDVI3v 022 6.67 -1.695 <0.001 1461 Linear
EVI3v. 021 787 -0.739 <0.001 1474 Linear
Pasture  NDVI3g 049 4.65 -0.532 <0.001  0.665 Linear
N=22 NDVI3v 038 390 -0.244 0.002 0.733 Linear
EVI3v. 043 546 0.097 <0.001 0.704 Linear

Soybean NDVI3g 050 556 -3.264 <0.001 0.756 Logarithmic
N=39 NDVI3v 051 512 -2991 <0.001 0.753 Logarithmic
EVI3v 039 6.89 -2713 <0.001 0.838 Logarithmic

Wheat  NDVI3g 035 429 -0482 <0.001 1.029 Linear
N=28 NDVI3v 025 434 -0504 0.007 1.107 Linear
EVI3v 029 792 -0.806 0.003 1.077 Linear
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