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Abstract. Terrestrial ecosystems of northern Eurasia are demonstrating an increasing Gross Pri-

mary Productivity (GPP), yet few studies have provided definitive attribution for the changes. While

prior studies point to increasing temperatures as the principle environmental control, influences

from moisture and other factors are less clear. We assess how changes in temperature, precipita-

tion, cloudiness and forest fires individually contribute to changes in GPP derived from satellite data5

across northern Eurasia using a light use efficiency based model, for the period 1982–2010. We find

that annual satellite derived GPP is most sensitive to the temperature, precipitation and cloudiness of

summer which is the peak of the growing season and also the period of the year when the GPP trend

is maximum. Considering regional median, summer temperature explains as much as 37.7% of the

variation in annual GPP, while precipitation and cloudiness explain 20.7 and 19.3,%. Warming over10

the period analyzed, even without a sustained increase in precipitation, led to a significant positive

impact on GPP for 61.7% of the region. However, a significant negative impact on GPP was also

found, for 2.4% of the region, primarily the dryer grasslands in the south-west of the study area.

For this region, precipitation positively correlates with GPP, as does cloudiness. This shows that

the south-western part of northern Eurasia is relatively more vulnerable to drought than other areas.15

While our results further advance the notion that air temperature is the dominant environmental con-

trol for recent GPP increases across northern Eurasia, the role of precipitation and cloudiness can

not be ignored.
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1 Introduction

Several analyses of Normalized Difference Vegetation Indices (NDVI) data derived from satellite re-20

mote sensing have pointed to a positive trend in Gross Primary Productivity (GPP) and Leaf Area In-

dex (LAI) of the northern high latitudes in the recent decades (Myneni et al., 1997; Carlson and Ripley,

1997; Zhou et al., 2001; Guay et al., 2014). Warming has also occurred over this time. Global mean

surface air temperatures increased by 0.2 to 0.3 ◦C over the past 40 years with warming greatest

across northern land areas around 40–70◦ N (Nicholls et al., 1996; Overpeck et al., 1997). Precipi-25

tation increases have also been observed over both North America and Eurasia over the past cen-

tury (Nicholls et al., 1996; Groisman et al., 1991). Urban et al. (2014) describe the co-occurrence

of these climatic and ecosystem changes. Here we investigate increasing GPP of terrestrial ecosys-

tems of northern Eurasia and determine the relative attribution arising through changes in several

geophysical quantities, hereinafter referred to as “environmental variables”, as they potentially drive30

observed temporal changes in vegetation productivity.

Gross Primary Productivity (GPP) is a physical measure of the rate of photosynthesis, or the

rate at which atmospheric CO2 is fixed by autotrophic (generally green) plants to form carbohy-

drate molecules. Photosynthesis, being a biological process, is regulated by several environmental35

factors. Productivity is highest at the optimum temperature, though this optimum can be modified

by cold or warm acclimation (Larcher, 1969, 2003). Water availability also affects plant hydraulics

and chemistry by controlling the nutrient uptake through shoot transportation (Sharp et al., 2004;

Stevens et al., 2004). Increasing atmospheric CO2 concentration increases GPP by biochemical fer-

tilization for C3 plants and increasing water use efficiency for both C3 and C4 plants (Bowes, 1996;40

Rötter and Geijn, 1999).

There is both direct and indirect evidence of increasing productivity across the northern high

latitudes. Flask and aircraft-based measurements show that the seasonal amplitude of atmospheric

CO2 concentration across the Northern Hemisphere has increased since the 1950s, with the greatest45

increases occurring across the higher latitudes (Graven et al., 2013). This trend suggests a consid-

erable role of northern boreal forests, consistent with the notion that warmer temperatures have

promoted enhanced plant productivity during summer and respiration during winter (Graven et al.,

2013; Kim et al., 2014; Myneni et al., 1997). Observed at eddy covariance sites, Net Ecosystem Ex-

change (NEE), the inverse of Net Ecosystem Productivity (NEP), is a strong function of mean annual50

temperature at mid and high latitudes, up to the optimum temperature of approximately 16 ◦C, above

which moisture availability overrides the temperature influence (Yi et al., 2010). Highlighting the

importance of precipitation, other studies have found vulnerabilities in ecosystems of North Amer-

ica as well as Eurasia from warming-related changes in hydrological patterns (Parida and Buermann,

2014; Buermann et al., 2014). With warming, low temperature constraints to productivity have re-55
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laxed (Nemani et al., 2003; Zhang et al., 2008; Yi et al., 2013). Tree-ring data suggest that black

spruce forests have experienced drought stress during extreme warmth (Walker et al., 2015). Over

northern Eurasia, precipitation trends have complicated the relationship between temperature and

productivity, as the increasing moisture constraints have made northern Eurasia more drought sensi-

tive (Zhang et al., 2008; Yi et al., 2013). Increasing atmospheric CO2 concentration is another fac-60

tor, as CO2 fertilization has been demonstrated through observations, models, and FACE (Free-

Air CO2 Enrichment) experiments (Ainsworth and Long, 2005; Hickler et al., 2008; Graven et al.,

2013). Cloudiness or shade can strongly influence vegetation productivity (Roderick et al., 2001),

particularly over northern Eurasia (Nemani et al., 2003). Disturbances through forest fires also affect

vegetation productivity by destroying existing vegetation and allowing for regeneration (Goetz et al.,65

2005; Amiro et al., 2000; Reich et al., 2001).

The role of temperature and precipitation in the positive trend of GPP of northern high latitudes,

especially northern Eurasia has not been firmly established. Few studies have examined the effect of

CO2 concentration, cloudiness and forest fires. Of these environmental variables,CO2 concentration70

is unlike the others, given it’s long atmospheric lifetime (∼ 100–300 years) (Blasing, 2009). Thus,

CO2 concentration is assumed to be more spatially uniform. As a result, any statistical analysis using

this variable will not be comparable with the other variables. We consequently do not analyze the

influence of CO2 concentration. While some studies have focused on terrestrial ecosystems of the

pan-Arctic (Urban et al., 2014; Myneni et al., 1997; Guay et al., 2014; Kim et al., 2014) or the high75

latitudes of North America (Goetz et al., 2005; Buermann et al., 2013; Thompson et al., 2006), few

studies have investigated the relative role of different environmental variables on increasing GPP of

northern Eurasia. Therefore, we assess in this study how vegetation productivity trends in northern

Eurasia are influenced by the environmental variables air temperature, precipitation, cloudiness and

forest fire. Objectives are to (1) calculate the long term trend of both GPP and the environmental80

variables; (2) assess the magnitude of the effect of the environmental variables on GPP; (3) iden-

tify the seasonality of the variables; (4) identify the regions of northern Eurasia where the variables

boost or reduce GPP. Exploiting the availability of long term time series observation based data we

perform a spatially explicit grid point statistical analysis to achieve the above objectives.

85
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2 Data and Methods

2.1 Data

2.1.1 Land cover

The study domain is the Northern Eurasia Earth Science Partnership Initiative (NEESPI) region

(Groisman and Bartalev, 2007), defined as the area between 15◦ E longitude in the west, the Pacific90

coast in the east, 45◦ N latitude in the south and the Arctic Ocean coast in the north. Total area of this

region is 22.4 million km2. Land cover distribution for the region is drawn from the Moderate Res-

olution Imaging Spectroradiometer (MODIS) MCD12Q1 Land Cover Product Type 5 Land Cover

Product for the year 2007, available online at https://lpdaac.usgs.gov/data_access/data_pool from

Land Processes Distributed Active Archive Center (LP DAAC), Sioux Falls, South Dakota, USA.95

The product provides global land cover at 1 km spatial resolution, produced from several classifica-

tion systems, principally that of the International Geosphere-Biosphere Program (IGBP). Friedl et al.

(2002) describe the supervised classification methodology which leveraged a global database of

training sites interpreted from high-resolution imagery. The GPP products used in this study (de-

scribed below) use a static land cover (LC) classification to define biome response characteristics100

over the study record. So the effect of each environmental variable accounts only for changes in

NDVI and does not track potential changes in land cover type. While the GPP products use the stan-

dard IGBP MODIS global land cover classification, for our statistical analysis we simplify the LC

distribution into two fundamental types. One is “herbaceous”, without woody stems, found in the

tundra to the north and grasslands to the south, one of the driest biomes of northern Eurasia. The105

second is “woody vegetation”, plants with woody stems, located within the area of boreal forests

extending from west to east across much of the center of the domain (Fig. 1).

2.1.2 Vegetation productivity – long term data

Gross Primary Production (GPP) represents the total amount of carbon fixed per unit area by plants110

in an ecosystem utilizing the physiological process of photosynthesis (Watson et al., 2000). GPP

is one of the key metrics useful in assessments of changes in vegetation productivity. It is also

a standard output of process-based vegetation models. The GPP fields used in this study represent

model estimates driven by satellite data. The GPP model used is based on a light-use-efficiency

(LUE) model that prescribes theoretical maximum photosynthetic conversion efficiency for different115

land cover classes. LUE is reduced from potential (LUEmax) rates for suboptimal environmental

conditions determined as the product of daily environmental control factors defined for the different

land cover types using daily surface meteorological inputs from ERA–Interim reanalysis data. Daily

surface meteorology inputs to the model include incident solar radiation (SWrad), minimum and
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average daily air temperatures (Tmin and Tavg), and atmospheric vapor pressure deficit (VPD). GPP120

is derived on a daily basis as (Running et al., 2004; Zhang et al., 2008):

GPP = ε×FPAR×PAR (1)

ε= εmax×Tf ×V PDf (2)

where ε is a light use efficiency parameter (g C MJ−1) for the conversion of photosynthetically

active radiation (PAR, MJ m−2) to GPP. FPAR is estimated from NDVI using biome-specific empir-125

ical relationships emphasizing northern ecosystems (Yi et al., 2013). Several studies demonstrated

the linear relationship between NDVI and FPAR through field measurements and theoretical anal-

ysis (Fensholt et al., 2004; Myneni and Williams, 1994; Ruimy et al., 1994; Sellers, 1985).Two sets

of NDVI records are obtained for this study and used to derive alternative FPAR and GPP sim-

ulations: (i) the third generation Global Inventory Modeling and Mapping Studies (GIMMS3g)130

(Zhu et al., 2013; Pinzon and Tucker, 2010), downloaded from https://nex.nasa.gov/nex/ (referred

to as GIMMS-GPP) and (ii) the Vegetation Index and Phenology (VIP) database (Didan, 2010;

Barreto-Munoz, 2013), downloaded from http://phenology.arizona.edu/ (University of Arizona’s Veg-

etation Index and Phenology Lab) (referred to as VIP-GPP). The 16-day NDVI records are first in-

terpolated to a daily time step using temporal linear interpolation to estimate daily FPAR following135

previously established methods (Yi et al., 2013). The use of daily NDVI and FPAR inputs rather than

coarser (8-day or 16-day) temporal composites reduces potentially abrupt step changes in the model

calculations due to temporal shifts in the coarser time series canopy inputs. Moreover, the daily in-

terpolation was found to improve simulations of GPP seasonality especially during spring and fall

transitional periods over northern land areas (Yi et al., 2013). PAR is estimated as a constant propor-140

tion (0.45) of incident shortwave solar radiation (SWrad). εmax is the potential maximum ε under

optimal environmental conditions. Tf and VPDf are scalars that define sub-optimal temperature

and moisture conditions represented by respective daily Tmin and VPD inputs. Tf and VPDf are

defined using a linear ramp function (Yi et al., 2013; Heinsch et al., 2006), and minimum and maxi-

mum environmental constraints defined for different biome types (Tmn_min and Tmn_max, VPDmin145

and VPDmax). Table 1 summarizes the Biome Property Look-Up Table (BPLUT) used to define

the environmental response characteristics in the model. These GPP datasets are currently available

through a public FTP directory (ftp://ftp.ntsg.umt.edu/pub/data/HNL_monthly_GPP_NPP/).

The GPP data are derived at a daily time step and have been aggregated to a monthly time step150

for this study. Spatial resolution is 25 km, with a temporal range from 1982 to 2010, restricted to the

northern high latitudes (> 45◦ N). In many of the statistical analyses to follow we use the ensemble

mean of the two satellite derived GPP datasets, henceforth denoted as ‘GPPsat’. Winter is character-

ized by extremely low productivity and technical constraints of optical-IR remote sensing due to low
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solar illumination and persistent cloud cover make for a particular challenge in estimating vegetation155

indices and consequently computing GPP across the high latitudes (Pettorelli et al., 2005). Given the

limited confidence in GPP data over winter (driven mainly by the uncertainty in winter NDVI) we

focus on the remainder of the year in our analysis.

Accuracy of the GIMMS-NDVI dataset has been examined in several recent studies. Analyz-160

ing trends in growing season start over the Tibetan plateau, Zhang et al. (2013) found that GIMMS

NDVI differed substantially over the period 2001–2006 from SPOT-VGT and MODIS-NDVIs, in-

dicating significant uncertainty among NDVI retrievals from different satellite sensors and data

records. The GIMMS3g dataset is based on the NOAA-AVHRR long term time series record, which

is comprised of AVHRR2 and AVHRR3 sensors onboard NOAA-7 through NOAA-19 satellites165

spanning multiple overlapping time periods; this leads to potential artifacts from cross-sensor dif-

ferences and inter-calibration effects influencing long-term trends in the AVHRR NDVI time series

(Pinzon and Tucker, 2014). The Vegetation Index and Phenology (VIP) NDVI dataset applies a dif-

ferent data processing scheme from that of GIMMS3g (Fensholt et al., 2015), and involves an in-

tegration and calibration of overlapping AVHRR, SPOT and MODIS sensor records for generating170

consistent NDVI (Didan, 2010). The ensemble mean and variance of alternate GPP calculations de-

rived using the GIMMS3g and VIP NDVI records was used as a metric of uncertainty in the regional

productivity trends and underlying satellite observation records.

2.1.3 Flux tower data175

To varify the satellite based GPP estimates we use gap-filled daily tower GPP data at ten flux tower

sites distributed across northern Eurasia, available for different periods of time. Details of the indi-

vidual towers are provided in Table 4. The data, generated using the eddy covariance measurements

acquired by the FLUXNET community, has been collected from http://www.fluxdata.org/ for the

“Free Fair-Use” data subset. The spatial distribution of the flux towers used in this study is shown in180

Fig. 1. Unless otherwise noted we use seasonal totals of the daily gap-filled tower GPP data. Monthly

and seasonal values were aggregated from the daily data.

We also use monthly GPP data computed using FLUXNET observations of carbon dioxide, wa-

ter and energy fluxes upscaled to the global scale for additional verification of the satellite derived185

GPP record for the entire study area, on a per grid cell basis. Upscaling of the FLUXNET ob-

servations was performed using a machine learning technique and model tree ensembles (MTE)

approach from the Max Planck Institute of Biogeochemistry, Jena, Germany and available online at

https://www.bgc-jena.mpg.de/geodb/projects/Data.php. Description and benchmarking of this dataset

can be found in Jung et al. (2009) and Jung et al. (2011). Of the two versions available, we use the190
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one which incorporates flux partitioning based on Reichstein et al. (2005).

2.1.4 Temperature, precipitation & cloudiness

Monthly values of 2m air temperature (in ◦C), precipitation (in mm) and cloudiness (in %) are taken

from monthly observations from meteorological stations, extending over the global land surface and195

interpolated onto a 0.5◦ grid (Mitchell and Jones, 2005). The dataset, CRU TS 3.21, is produced by

the Climatic Research Unit of the University of East Anglia in conjunction with the Hadley Centre (at

the UK Met Office) and is available at http://iridl.ldeo.columbia.edu/SOURCES/.UEA/.CRU/.TS3p21/.monthly/

(Jones and Harris, 2013).

200

Although the LUE based GPP model does not use precipitation as an input, we assume that precip-

itation is a useful metric of water supply to vegetation and thus analyze it as one of the environmental

variables affecting GPP. Here we use monthly values of temperature, precipitation and cloudiness for

the period of 1982 to 2010, since this is the common period for which both GPPsat and the environ-

mental variable data are available. Seasonal means for spring (March, April, May), summer (June,205

July, August), and autumn (September, October, November) are derived from the monthly values.

As explained in SubSect. 2.1.2, lower reliability and availability of satellite NDVI observations and

associated GPP data for the winter months leads us to focus on spring, summer, and autumn seasons.

2.1.5 Fire210

Fire is represented by proportional burned area (% of each grid cell) estimates from the Global Fire

Emissions Database (GFED) Monthly Burned Area Data Set Version 3.1 released in April 2010.

This product was developed on a global scale at a 0.5◦ spatial resolution and covers the period

from 1997 to 2011. The GFED is an ensemble product of burn areas derived from multiple satel-

lite sensors, though primarily emphasizing MODIS surface reflectance imagery (Giglio et al., 2010).215

2.2 Methods

2.2.1 Spatial interpolation

Data not on a 0.5 degree grid were interpolated to that resolution using spherical version of Shep-

ard’s traditional algorithm (Shepard, 1968; Willmott et al., 1985). This method takes into account (i)220

distances of the data points to the grid location (ii) the directional distribution of stations in order

to avoid overweighting of clustered stations and (iii) spatial gradients within the data field in the

grid-point environment.
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2.2.2 Verification

The GIMMS-GPP and VIP-GPP simulations are evaluated against co-located tower-based GPP ob-225

servations for model grid cells corresponding to each of the ten regional flux tower locations (Ta-

ble 4). The evaluation is carried out using five different approaches: (1) Pearson’s product moment

correlation, which is a measure of the linear dependence between simulated (GIMMS-GPP and VIP-

GPP) and observed (tower-based GPP) values and it’s value ranges from −1 to +1 where 0 is no

correlation and −1/+1 is total negative or positive correlation respectively; (2) percent bias, which230

measures the average tendency of the simulated values to be larger or smaller than the corresponding

observations. The optimal value is 0.0 with low-magnitude values indicating accurate model simu-

lations. Positive values indicate overestimations and vice versa (Yapo et al., 1996; Sorooshian et al.,

1993); (3) Nash–Sutcliffe efficiency (NSE) coefficient, which is a normalized statistic that deter-

mines the relative magnitude of the residual variance compared to the measured data variance235

(Nash and Sutcliffe, 1970). The statistic indicates how well the plot of observed vs. simulated data

fits the 1 : 1 line. Nash–Sutcliffe efficiencies range from −∞ to 1. An efficiency of 1 corresponds

to a perfect match of model simulated GPP to the observed data. An efficiency of 0 indicates that

the model predictions are as accurate as the mean of the observed data, whereas an efficiency less

than zero occurs when the observed mean is a better predictor than the model or, in other words,240

when the residual variance (between modeled and observed values), is larger than the data variance

(between observed values and the observed mean). Essentially, the closer the model efficiency is to

1, the more accurate the model is; (4) Scatter plot, which demonstrates using Cartesian coordinates

the correlation between satellite derived GPP and tower derived GPP at the respective sites for the

respective time periods. This along with the line of best fit helps determine how well the two datasets245

agree with each other; (5) Spatially explicit, pixel-by-pixel validation using the upscaled GPP data

from FLUXNET observations (described in SubSect. 2.1.3) using correlation and difference maps

for the entire period.

2.2.3 Trend analysis250

Temporal changes for each environmental variable are determined using linear regression. Both an-

nual and seasonal time integrations are examined. Trends are deemed statistically significant at the

95% level. For each variable, we compute the trend per decade (10yr−1) from the monthly val-

ues (mon−1). Other studies have implemented a similar methodology to identify trends (Piao et al.,

2011; de Jong et al., 2011; Forkel et al., 2013; Goetz et al., 2005). In order to determine whether the255

temporal rate of change differs for different periods of the study period we plot the percentage dif-

ference of the annual means (of the regional average) from that of the first 5 year mean.
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For the entire period of study, a few of the variables assessed show strong trends. Moreover, we

assume the variables to be linearly associated. This introduces the issue of collinearity, as a conse-260

quence of which the study of influence of one variable on another becomes less precise. Therefore,

in order to make accurate assessments of correlation between two variables, correlation analysis has

only been carried out after long term trends (for period 1982–2010) have been removed and conse-

quently preserving only the inter-annual variability.

265

2.2.4 Correlation

We use the Karl Pearson’s product–moment correlation coefficient (represented as R), one of the

more popular measures of dependence between two variables and which is sensitive only to a lin-

ear relationship between two variables. This metric is is defined from +1 (perfect increasing linear

relationship) to −1 (perfect decreasing linear relationship or “inverse correlation”) and as the value270

approaches zero, the relationship becomes uncorrelated (Dowdy and Wearden, 1983). When a sin-

gle variable is affected by more than one independent factor, simple correlation is inappropriate. We

perform partial correlation to better assess the relationship between two variables after eliminating

the influence of other variables.

275

2.2.5 Attribution

The primary objective of this study is to determine the magnitude and spatio-temporal variations

in trends for environmental conditions (variables) which have contributed to the change increase in

GPP of northern Eurasia indicated from the satellite records. Ideally one would study the direct in-

fluence of one condition on another in experiments in which all other possible causes of variation are280

eliminated. However, since this study involves only large scale observational data and not process

based models or laboratory based experiments, there is no control over the causes of variation. Inves-

tigations into the structure and function of terrestrial ecosystems, like those for many elements of the

biological sciences, involve quantities which are often correlated. In some cases, the derived relation-

ship may be spurious. The coefficient of determination (represented as R2) is a common measure to285

estimate the degree to which one variable can be explained by another (percentage) (Wright, 1921)

while correlation analysis (R) can explain this dependence of one variable on another keeping the

sign of the relationship (+/−) intact (Aldrich, 1995).

9



3 Results & Discussion290

3.1 Verification of satellite derived GPP

The GIMMS-GPP and VIP-GPP, as well as their ensemble mean (GPPsat) are individually verified

against the flux tower-based GPP data using Pearson’s correlation coefficient, percent bias as well

as the Nash–Sutcliffe normalized statistic. Scatter plots (Figure 2) show that GPP derived from the

satellite NDVI records are generally higher than the tower-based GPP at the flux tower sites having295

comparatively lower productivity (and vice versa). Moreover, the agreement is stronger at lower pro-

ductivity sites than at higher productivity sites. Though Table 3 lists all of the verification statistics,

we focus primarily on the annual GPPsat results for the rest of the study. The correlation coefficients

are all positive and high (0.7 for annual GPPsat), percent bias is predominantly negative (18.3%)

and since all the values of the Nash–Sutcliffe Efficiencies are above zero (0.33), we conclude that300

the satellite NDVI derived values are a more accurate estimate of GPP than the observed mean for

the respective flux tower sites. Spatially explicit verification of GPPsat reveals that the correlation is

high and statistically significant for almost the entire study area (Fig. 3 (a.)). GPPsat shows a general

underestimation in the boreal forests of the western parts of northern Eurasia and overestimation in

the Eurasian steppes to the south of the study area (Fig. 3 (b.)).305

Satellite derived vegetation indices have been evaluated using a variety of techniques. Using tree

ring width measurements as a proxy for productivity, Berner et al. (2011) examined its relationship

with NDVI from advanced very high resolution radiometers (AVHRR) and found the correlation

to be highly variable across the sites, though consistently positive. Remarkably strong correlations310

were observed in comparisons of GIMMS3g NDVI to aboveground phytomass at the peak of sum-

mer at two representative zonal sites along two trans-Arctic transects in North America and Eurasia

(Raynolds et al., 2012). Comparing production efficiency model derived NPP, Zhang et al. (2008) to

the stand level observations of boreal aspen growth for the 72 CIPHA (Climate Impacts on Produc-

tivity and Health of Aspen) sites, correlation was found to be positive. LUE algorithms similar to315

the one used in this study for the generation of GPP datasets from satellite NDVI, produce favorable

GPP results relative to daily tower observations, with a strong positive correlation (Yi et al., 2013;

Yuan et al., 2007; Schubert et al., 2010). Evaluating the uncertainties in the estimated carbon fluxes

computed using a similar LUE based GPP model, Yi et al. (2013) concluded that the uncertainty in

light use efficiency (ε) characterization is the main source of simulated GPP uncertainty. GPP simu-320

lation errors under dry conditions are increased by an insufficient model vapor pressure deficit (VPD)

representation of soil water deficit constraints on canopy stomatal conductance and ε (Leuning et al.,

2005; Schaefer et al., 2012). It was also found that the GPP model does not consider the response

of ε to diffuse light due to canopy clumping (Chen et al., 2012) and due to shaded leaves (Gu et al.,
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2002).325

3.2 Temporal changes in GPP

Across the study domain, regionally averaged GPPsat exhibits a trend of 2.2 (±1.4)g Cm−2 month−1 decade−1.

Figure 4(a.) displays the annual GPP trend map. Increases are noted across most of the region except

for a small area in the north-central part of the region, just east of the Yenisey River. The largest330

increases are located in the western and south-eastern part of the region. Over half (69.1%) of the

study area exhibits a statistically significant positive trend (95% significance level) while 0.01%

of the area has a statistically significant negative trend. Uncertainty in the ensemble mean GPP is

illustrated by the coefficient of variation map (Fig. 4(b.)). The highest uncertainty is noted in the

north-central and the south-western part of the region. The yearly increase in annual GPP for both335

GIMMS-GPP (red) and VIP-GPP (blue) (Fig. 4(c.)) reveal the difference between the two datasets,

which is highest at the beginning of the study period. The nature of increase in GPP is also different

for the two datasets with the rise in one being more linear than the other. A possible explanation for

the differences in the two datasets is discussed in Section 2.1.2. Examining the seasonality of GPP

trends (of GPPsat) (Fig. 5), we find that the summer trend is greatest maong all other seasons. This340

implies that the response of GPP to environmental changes is greatest at the peak of the growing

season. While the productivity of the region is predominantly increasing, there are clearly certain

areas each season with decreasing productivity.

The GPP increase described here is consistent with the results of Sitch et al. (2007), who also345

noted considerable interannual and spatial variability, with many areas demonstrating decreased

greenness and lower productivity. Using a process based model (LPJ-DGVM) to perform a retro-

spective analysis for the period of 1982–1998, Lucht et al. (2002) found, after accounting for the

carbon loss due to autotrophic respiration, that boreal zone NPP increased by 34.6 g Cm−2 yr−1,

which is comparable to our estimate. The higher GPP trend in summer (Fig. 5), especially over the350

northern Eurasia portion of the domain suggests that the vegetation of this region is predominantly

cold constrained, a finding described in other recent studies (Yi et al., 2013; Kim et al., 2014).

3.3 Temporal changes in the environmental variables

The regionally averaged air temperature increase is nearly monotonic and the distributions displayed355

in Fig. 6(a.) show that the region has a predominantly positive trend for all parts of the growing sea-

son. Warming is highest in autumn. A statistically significant increase in temperature is noted for

approximately half of the region. The greatest increases are found in the north-eastern and south-

western parts of the region (maps not shown). Unlike temperature, precipitation does not exhibit a
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sustained increase over the study period. While the regional median trend for precipitation is highest360

for spring (Fig. 6(b.)), the range of trends for this region, from minimum to maximum, in highest

for summer. The fraction of the region experiencing significant increases in annual precipitation is

about three times the area experiencing significant decreases. The significant positive trends are lo-

cated in the north-eastern and western parts (mainly boreal forests) of the domain while significant

negative trends are located in the west-central (boreal forests) and south-eastern (steppes) parts of365

the region (maps not shown). Along with the regional averages of other environmental variables, Ta-

ble 4 reveals the regional average of cloudiness, which shows a negative trend. However, similar to

precipitation, the spatial standard deviation is very high, implying a high spatial variability in cloudi-

ness trends across the region. Unlike precipitation, a greater fraction of the region is experiencing

significant decreasing cloudiness or a significant clear sky trend (Fig. 6(c.)). Compared to the rest370

of the region, annual cloudiness shows higher negative trends in the southern parts of the study area

(maps not shown). Burnt area exhibits significant trends, both positive and negative, over only 1%

of the region with the total yearly burnt area for the study area increasing from 15.9 to 17.1 million

hectares from 1997 to 2010. The negative trend of the regional mean (Table 4; Fig. 6(d.)), is not

significant.375

Recent studies have reported similar changes in these environmental variables. For the period of

1979 to 2005, Trenberth et al. (2007) found temperature trends over the region range from 0.3–0.7

◦Cdecade−1 and for most regions of the higher latitudes, especially from 30 to 85◦N, significant

positive precipitation trends have occurred. Contrary to the cloud cover trend we find here, stud-380

ies reported in AR4 suggest an increase in total cloud cover since the middle of the last century

over many continental regions, including the former USSR and Western Europe (Sun et al., 2001;

Sun and Groisman, 2000). The large spatial variability in the gridded cloud cover trends (Table 4)

may explain the disagreement. Burnt area data, representing fire disturnbance, is dissimilar from the

other environmental variables in that it spans only 14 years of the 29 year study record, and is spa-385

tially non-uniform, involving only a fraction of the total study area. This limitation makes it difficult

to assess impacts on vegetation productivity (Balshi et al., 2007). While the model used to generate

the satellite NDVI derived GPP data does not account for CO2 fertilization directly, the fertilization

effect may be partially represented through associated changes in NDVI. As stated in Sect. 1, we do

not analyze atmospheric CO2 concentration due to its spatial homogeneity.390

3.4 Attributing GPP changes to environmental variables and assessing seasonality

Annual GPP is affected by more than one environmental variable. To study the impact of an in-

dividual environmental variable, we eliminate the impact of other variables by performing partial

correlations. The temporal range of the fire data (GFED) being a fraction of that of the other envi-395

12

pawlok
Highlight

pawlok
Note
added

pawlok
Highlight

pawlok
Note
modified

pawlok
Highlight

pawlok
Note
modified

pawlok
Highlight

pawlok
Note
modified



ronmental variables, it is not possible to compute the partial correlation. Consequently we are unable

to assess the effects of only fire by eliminating the effects of the other variables. Moreover, fires have

been found to be significantly correlated to annual GPP (GPPsat) for only a small fraction (1.7% to

3.4% depending on season) of the entire study area. The impact of fires on annual GPP for the region

is therefore ignored in this study.400

The regional median partial coefficient of determination (R2) for significant values (Table 5) sug-

gests that the summer values of the environmental variables have the highest influence on annual

GPPsat. The contrast between summer and the other seasons is strongest for temperature, high-

lighting the importance of summer temperatures to annual productivity. Fig. 7 reveals that the re-405

lationships between annual GPP and the environmental variables are not completely explained by

simple correlation (R2), as the distributions of partial correlations provide more information about

the interaction. Considering only significant correlations (Fig. 7), we find that increasing tempera-

tures predominantly increase GPP. The relationship between precipitation or cloudiness and GPP,

on the other hand, leads to a predominantly bi-modal distribution, with both positive and negative410

effects. Other than spring, areas demonstrating significant negative partial correlations appear to be

larger than the areas of significant positive partial correlations. Among the environmental variables

assessed, temperature has the highest partial coefficient of determination (Table 5). Moreover, un-

like precipitation and cloudiness, temperature has a predominantly positive relationship with annual

GPP. These relationships imply that, over recent decades, low temperatures have been the major415

constraint for GPP in northern Eurasia.

Similar results were reported by Yi et al. (2014), who concluded that satellite derived vegetation

indices show an overall benefit for summer photosynthetic activity from regional warming and only

a limited impact from spring precipitation. The dominant constraint of temperature was described by420

Zhang et al. (2008), who found the same constraint to be decreasing. However, our results contrast

with those of Piao et al. (2011), who concluded that at the continental scale of Eurasia, vegetation

indices in summer are more strongly regulated by precipitation, while temperature is a relatively

stronger regulator in spring and autumn. Regarding the dominance of temperature as a regulator,

Yi et al. (2013) concluded that over the last decade, Eurasia has been more drought sensitive than425

other high latitude areas.

Since GPP trends are highest in summer (Fig. 5), the peak of the growing season, we are interested

more in the impact of the environmental variables during summer on annual GPP since the terrestrial

vegetation is likely to be more responsive to variations in summer environmental conditions relative430

to other seasons. Spatial analysis helps to elaborate on the results shown in Table 5 and Fig. 7.

Assessing the partial significant correlation of annual GPP and summer temperature (Fig. 8(a.); Ta-
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ble 6), we find that areas with a positive correlation (62% of the area) are concentrated to the north

and east of the region, which include both tundra and boreal forest areas. Negative correlations oc-

cur across 2% of the region, largely in the south within the Eurasian steppes. For other parts of the435

year (maps not shown for spring and fall correlations but distributions represented in Fig. 7) signifi-

cant negative correlations become more spatially disperse, while significant positive correlations are

limited to the center and west of the region for spring, becoming more disperse in autumn. Deter-

mining the partial relationship between annual GPP and summer precipitation, Fig. 8(b.) reveals that

the areas of significant positive correlations (4% of area) are scattered over the southern part of the440

study area (steppes vegetation) while the significant negative correlations (16% of area) are scattered

across the north (tundra and boreal). Correlations for spring precipitation with annual GPP (maps not

shown) are predominantly positive while that for fall precipitation is predominantly negative. The

spatial correlations for summer cloudiness and summer precipitation are similar, (Fig. 8(c.)) though

the area under significant correlation is comparatively less. Negative correlation areas are about nine445

times more extensive than positive correlation areas (Table 6). Compared to summer, area under sig-

nificant positive correlation is higher for spring while area under negative correlation is higher for

fall (maps not shown).

The negative correlations for temperature and positive correlations for precipitation and cloudiness450

in the southern grasslands (Eurasian steppes) are not surprising, as these grasslands are relatively dry

compared to other biomes in the broader region. In this part of the study area increasing temperatures

in summer may lead to greater water stress (Gates, 1964; Wiegand and Namken, 1966; Jackson et al.,

1981). Decreasing precipitation would increase water stress. Moreover, increasing cloud cover would

tend to lead to a higher probability of rain (Richards and Arkin, 1981), thus relieving water stress455

induced by warming in this relatively dry area. The cause of the negative correlations in the north

is unclear. The relationship may be attributable to the predominantly positive relationship between

cloud cover (equivalent to inverse of sunshine duration) and precipitation (Sect. 3.5). In the light lim-

ited and relatively colder north, an increase in cloud cover could, on one hand, cause a decrease in

direct radiation and increase in diffuse radiation, which may increase GPP through higher light use460

efficiency (LUE) (Alton et al., 2007; Gu et al., 2002; Williams et al., 2014; Roderick et al., 2001).

However, an increase in cloud cover could decrease total solar radiation and, in turn, productivity

(Nemani et al., 2003; Shim et al., 2014).

Recent studies have shown similar relationships to those found here. Zhang et al. (2008) showed465

that across the pan-Arctic basin, while productivity increased with warming, increasing drought

stress can offset some of the potential benefits. On the contrary, Yi et al. (2013) concluded that

while GPP was significantly higher during warm years for the pan-Arctic, the same was not true

for the Eurasian boreal forests, which showed greater drought sensitivity. Positive impacts of warm-
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ing on GPP have been suggested in warming experiments (Natali et al., 2013). However, decreasing470

growing-season forest productivity, represented as a decline in “greenness” across northern Eurasia,

may be a reflection of continued summer warming in the absence of sustained increases in precipi-

tation (Buermann et al., 2014; Zhou et al., 2001).

3.5 Relationships among individual environmental variables475

Environmental variables are not independent of one another. We examine correlations among the

de-trended individual variables to better understand their interactions. Figure 9 shows distributions

of the correlations. The temperature–precipitation correlation is predominantly negative, indicating

that increases in precipitation did not accompany recent warming. Significant negative trends are

located in the southern parts of the study area (steppes) as well as the boreal forests at the western480

and eastern ends of the region. These changes may be leading to increasing water stress, evidence

of which is noted in a subset of the region. Indeed, approximately 2.4% of the area in the south-

ern parts of the study area (Fig. 8(a.) shows significant negative partial correlation between annual

GPP (GPPsat) and summer temperature. The relationship between temperature and cloud cover is

similarly predominantly negative. Spatially however, the significant negative correlations are located485

in the central and western parts of the region. Grid cell-wise correlations between precipitation and

cloud cover are predominately positive, with the significant correlations spread out across the region.

As described in Section 3.4, the correlations between precipitation and cloud cover helps to explain

why spatial distributions of the correlation coefficients of precipitation and cloud cover with GPP are

similar. Wang et al. (2014) documented a positive relationship between sunshine duration (equiva-490

lent to the inverse of cloud cover) and vegetation greenness. While increasing cloud cover leads to

an increased probability of precipitation, and thus reduces water stress, it also reduces the sunshine

duration and hence GPP. According to Table 4, regional mean precipitation has a positive trend while

cloudiness has a negative trend. But Figure 9 reveals the predominantly positive correlation between

these two variables. This apparent contradiction is because the long term trends are calculated for495

the actual values while the correlation analysis is performed after de-trending (removing long term

trends) the variables.

Consistent with our results, Thompson et al. (2006) found that in the boreal and tundra regions of

Alaska, NPP decreased when it was warmer and dryer and increased when it was warmer and wetter.500

They also described how colder and wetter conditions also increased NPP. Yi et al. (2013) concluded

that while globally, annual GPP for boreal forests is significantly higher in warmer years, the rela-

tionship does not hold true for Eurasian boreal forests, which they identify to be more drought

sensitive. For this reason, regional GPP variations are more consistent with regional wetting and

drying anomalies, as we note for the southwestern part of the study region. In this study we as-505
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sessed only GPP. Other carbon cycle processes such as autotrophic and heterotrophic respiration

and disturbances may not be responding in a similar manner. Additional studies are required before

extrapolating these results to other carbon cycle components.

4 Conclusions510

The ensemble mean of the GPP datasets derived from GIMMS3g and VIP NDVI data indicates that

vegetation productivity generally increased across northern Eurasia over the period 1982 to 2010,

with a significant increase for as much as 69.1% of the region. A significant decrease in GPP oc-

curred across only 0.01% of the region. We note some disagreement in the nature and magnitude

of the increasing GPP among the two datasets. The regional mean trend for the ensemble mean515

GPP is 2.2 (±1.4) g Cm−2 month−1 decade−1. The regional analysis is consistent with results of

prior studies which have suggested that air temperature is the dominant environmental variable in-

fluencing productivity increases across the northern high latitudes. Examining partial coefficients

of determination (R2), we find that the summer values of temperature, precipitation and cloudiness

have the highest influence on annual GPP. Considering the regional median of partial significant R2
520

values, summer air temperature explains as much as 37.7% of the variation in annual GPP. In con-

trast, precipitation and cloudiness explain 20.7 and 19.3% respectively. A significant positive partial

correlation between summer air temperature and annual GPP is noted for 61.7% of the region. For

2.4% of the area, specifically the dryer grasslands in the southwest, temperature and GPP are in-

versely correlated. Precipitation and cloudiness during summer also impart a significant influence,525

showing areas with both positive and negative significant partial correlation with annual GPP. Fire

has a very small effect, with only up to 3.4% of the region showing significant correlation, and con-

sequently the impact of fire on GPP was ignored for the subsequent analysis. The spatial analysis

reveals that the statistical relationships are not spatially homogeneous. While warming likely con-

tributed to increasing productivity across much of the north of the region, the relationship reverses530

in the southern grasslands which are relatively dry. That region exhibits increasing GPP, but with

warming accompanying increased moisture deficits potentially restricting continued productivity in-

crease. This result demonstrates that vegetation has been resilient to drought stress which may be

increasing over time.

535

We recommended that this study be followed up with experiments conducted using process-based

models in which a single forcing variable independent of the others is manipulated. If feasible,

multiple models should be used in order to quantify the uncertainty due to differences in model

parameterization. Depending on emissions, population and other forcing scenarios, rates of change

in the environmental drivers such as air temperature and precipitation may be different than those540
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found in this study. Thus it is critical to examine future scenarios of change across the region to

better understand terrestrial vegetation dynamics under the respective model simulations. Environ-

mental drivers influence other elements of the carbon cycle beyond the individual plant. In order to

determine how terrestrial carbon stocks and fluxes have changed in the recent past, or may change

in the near future, all aspects of the carbon cycle should be investigated in the context of changes in545

overarching climate influences.
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Table 1: Biome Property Look-Up Table (BPLUT) for GPP algorithm with ERA-Interim and NDVI

as inputs. The full names for the University of Maryland land cover classes (UMD_VEG_LC) in

the MOD12Q1 dataset are Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF),

Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF),

Closed Shrublands (CS), Open Shrublands (OS), Woody Savannas (WS), Savannas (SVN), Grass-

land (GRS), and Croplands (Crop).

UMD_VEG_LC ENF EBF DNF DBF MF CS OS WS SVN GRS Crop

FPAR_scale 0.8326 0.8565 0.8326 0.8565 0.84455 0.7873 0.834 0.8437 0.8596 0.8444 0.8944

FPAR_offset 0.0837 -0.0104 0.0837 -0.0104 0.03665 -0.0323 -0.0107 -0.0183 -0.0044 -0.0297 -0.0517

LUEmax 0.001055 0.00125 0.001055 0.00125 0.001138 0.00111 0.00111 0.001175 0.001175 0.0012 0.0012

(kgC/m2/d/MJ)

Tmn_min (◦C) -8 -8 -8 -6 -7 -8 -8 -8 -8 -8 -8

Tmn_max (◦C) 8.31 9.09 10.44 9.94 9.5 8.61 8.8 11.39 11.39 12.02 12.02

VPDmin (Pa) 500 1800 500 500 500 500 500 434 300 752 500

VPDmax (Pa) 4000 4000 4160 4160 2732 6000 4455 5000 3913 5500 5071

Fluxnet

Site Code

Site Name Period Lat / Lon IGBP Land

Cover

Dominant

PFT

Principal

Investigator

RU-Cok Chokurdakh /

Kytalyk

2003 – 2005 70.83 / 147.49 Open Shrublands Shrub Han Dolman,

Free Univ.

Amsterdam

RU-Fyo Fedorovskoje 1998 – 2006 56.46 / 32.92 Mixed Forests Evergreen

Needleleaf

Trees

Andrej Varla-

gin, Russian

Academy of

Sciences

RU-Ha1 Ubs Nur-

Hakasija

2002 – 2004 54.73 / 90.00 Grasslands Grass Dario Papale,

University of

Tuscia

RU-Zot Zotino 2002 – 2004 60.80 / 89.35 Woody Savannas Evergreen

Needleleaf

Trees

Corinna

Rebmann,

Max-Planck-

Institute for

Biogeochem-

istry
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FI-Hyy Hyytiala 1996 – 2006 61.85 / 24.29 Evergreen

Needleleaf

Forest

Evergreen

Needleleaf

Trees

Timo Vesala,

University of

Helsinki

FI-Kaa Kaamanen

wetland

2000 – 2006 69.14 / 27.30 Woody Savannas Grass Tuomas Lau-

rila, Finnish

Meteorologi-

cal Institute

FI-Sod Sodankyla 2000 – 2006 67.36 / 26.64 Evergreen

Needleleaf

Forest

Evergreen

Needleleaf

Trees

Tuomas Lau-

rila, Finnish

Meteorologi-

cal Institute

CZ-BK1 Bily Kriz-

Beskidy

Mountains

2000 – 2006 49.50 / 18.54 Evergreen

Needleleaf

Forest

Evergreen

Needleleaf

Trees

Marian

Pavelka

HU-Bug Bugacpuszta 2002 – 2006 46.69 / 19.60 Croplands Cereal crop Zoltan Nagy,

Szent István

University

HU-Mat Matra 2004 – 2006 47.84 / 19.73 Croplands Cereal crop Zoltan Nagy,

Szent István

University

Table 2: Details of the flux towers whose GPP data have been used to validate the satellite NDVI

based GPP data. The spatial distribution of these flux towers are shown in Figure 1.
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Table 3: Validation of GIMMS3g and VIP GPP datasets along with their ensemble mean using flux

tower GPP from ten flux tower sites across northern Eurasia. The spatial distribution of the flux tower

sites is shown in Fig. 1. Validation was carried out using: (1) Pearson’s product moment correlation.

It is a measure of the linear dependence between the simulated and observed GPP and it’s value

ranges from −1 to +1 where 0 is no correlation and −1/+1 is total negative or positive correla-

tion; (2) percent bias, which measures the average tendency of the simulated values to be larger or

smaller than their observed ones. The optimal value is 0.0 with low-magnitude values indicating ac-

curate model simulations. Positive values indicate overestimations and vice versa (Yapo et al., 1996;

Sorooshian et al., 1993); (3) Nash–Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 1970).

Its values range from −∞ to 1. An efficiency of 1 corresponds to a perfect match of model simulated

GPP to the observed data. An efficiency of 0 indicates that the model predictions are as accurate as

the mean of the observed data, whereas an efficiency less than zero occurs when the observed mean

is a better predictor than the model or, in other words, when the residual variance (between modeled

and observed values), is larger than the data variance (between observed values and the observed

mean). Essentially, the closer the model efficiency is to 1, the more accurate the model is.

Correlation (R) GIMMS GPP VIP GPP GPPsat (ensemble mean)

Annual 0.71 0.68 0.70

Spring 0.82 0.81 0.81

Summer 0.72 0.64 0.69

Fall 0.64 0.67 0.66

Percent bias GIMMS GPP VIP GPP GPPsat (ensemble mean)

Annual −16.9% −19.7% −18.3%

Spring −9.1% −17.3% −13.2%

Summer 1.9% −2.1% −0.1%

Fall −35.1% −28.3% −31.7%

Nash–Sutcliffe Efficiency GIMMS GPP VIP GPP GPPsat (ensemble mean)

Annual 0.36 0.29 0.33

Spring 0.64 0.57 0.61

Summer 0.46 0.40 0.44

Fall 0.13 0.27 0.21
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Table 4: Trend statistics for annual monthly averages of environmental variables. The 1st and 2nd

columns list the fraction of the region with significant (95% significance level) positive trends and

negative trends respectively. The 3rd column is the regional mean trend of the variables per decade.

The 4th column is the coefficient of variation, estimated as the distribution mean divided by the

standard deviation.

Environmental Positive trend Negative trend Trend 10 yr−1 Coefficient

Driver (% of area) (% of area) (regional mean) of Variation

Temperature 50.9% 0% 0.39 ◦C 0.53

Precipitation 15.2% 4.5% 0.61mmmonth−1 3.0

Cloudiness 7.9% 16.9% −0.18% of grid cell 4.2

Burnt Area 0.7% 0.3% −0.88 hectares 20.6

Table 5: Medians of the distributions of the relative partial significant contribution (R2 – 95% sig-

nificance) of each de-trended environmental variable (except fire) of each season to the inter-annual

variability in de-trended annual GPP (GPPsat). In each case the total contribution may not add up to

100%. In these cases the factors behind the unexplained attribution are not identified.

Environmental variable Annual Spring Summer Autumn

Temperature 26.1% 26.5% 37.7% 19.9%

Precipitation 22.9% 20.7% 20.7% 17.9%

Cloudiness 18.9% 18.3% 19.3% 18.8%

Table 6: Connection between annual GPP of northern Eurasia (GPPsat) and summer values of envi-

ronmental variables shown as percentage of the study area with statistically significant (95% signif-

icance level) positive and negative partial correlation coefficients.

Environmental GPP (ensemble mean)

Variable Positive Negative

Temperature 61.7% 2.4%

Precipitation 3.9% 15.9%

Cloudiness 1.3% 9.5%
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Woody vegetation

Herbaceous veg

Barren land

Flux tower sites

Figure 1: Simplified land cover for northern Eurasia for year 2007 overlaid with the spatial distribu-

tion of the ten flux tower sites whose GPP (Gross Primary Productivity) data was used to validate the

GPP data derived from satellite NDVI (Normalized Difference Vegetation Index). For our statistical

analysis, we show the distribution of two fundamental types of vegetation types: (i) herbaceous, i.e.

without woody stems, which includes tundra in the north and grasslands (Eurasian Steppe) to the

south; (ii) wooded, i.e. plants with wood as it’s structural tissue, which includes the boreal forests

appearing in the middle and extend from the western to the eastern boundary. This land cover map

has been derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Type 5 Land

Cover Product (Friedl et al., 2002). The details of the flux tower sites are listed in Table 4.
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Figure 2: Relationship between the annual GPP recorded at the flux tower sites and the correspond-

ing values of the satellite derived GPP. The black solid line is the line of best fit and helps better

understand the relationship between the two. The dashed-line is the 1:1 line and demonstrates how

much the relationship between the two sets of values deviate from the 1:1 perfect relationship.
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a.)

Difference

b.)

Figure 3: Spatially explicit validation of GPPsat using upscaled FLUXNET observations. (a.) is

the correlation map and displays the statistically significant (95% level) correlations between the

two sets of values of annual GPP for the period of 1982–2010. (b.) is the difference between the

29-year mean of GPPsat and upscaled FLUXNET database with negative values demonstrating an

underestimation of GPPsat and vice-versa.
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Figure 4: Change in annual GPP for GPPsat over the period 1982–2010. (a) is the trend map for

GPPsat, i.e. the ensemble mean (of two GPP datasets). Shades of green represent a positive trend

and shades of red represent a negative trend. The trends have been derived from a linear least squares

fit to the GPP time series for GIMMS3g and VIP datasets. Trend values represent the rate of change

of productivity per decade (g C(Carbon)m−2 month−1 10 yr−1).(b) is the uncertainty map (uncer-

tainty due to the use of two GPP datasets) represented by computing the coefficient of variation (CV).

Darker values represent higher uncertainty and vice-versa. (c) shows yearly change in the regional

average GPP for the datasets derived from the GIMMS3g (red) and VIP (blue) NDVI datasets. The

inter-annual variation is smoothed using a smoothing spline using a smoothing parameter of 0.8.
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Figure 5: Box plot showing grid distributions of seasonal GPP trends for GPPsat. The GPP trends are

expressed in g Cm−2 month−1 10 yr−1. The black band and middle notch represent the 2nd quar-

tile or median, box extents mark the 25th (1st quartile) and 75th (3rd quartile) percentiles. Whiskers

extend from the smallest non-outlier value to the largest non-outlier value. The colors, green, red,

orange and gray represent spring, summer, autumn and annual seasonal trends respectively. As de-

scribed in Sect. 2.1.2, GPP trends for winter have not been assessed in this study.
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Figure 6: Change in the environmental variables over the period of study represented by seasonal

trends. (a–c) show distribution of 2m air temperature, precipitation and cloud cover respectively

for the period 1982–2010, (d) illustrates seasonal trends of total burnt area for the period 1997–

2011. The temperature, precipitation and cloud cover data are taken from the Climatic Research

Unit (CRU TS 3.21) dataset (Harris et al., 2014). Burnt area data from the Global Fire Emissions

Database (GFED) (Giglio et al., 2010).
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Figure 7: Bean plots of the multi-modal distribution for significant (95% significance) partial cor-

relation between annual de-trended GPP (GPPsat) and the values of each de-trended environmental

variable after eliminating the influence of the other variables. A bean plot is an alternative to the box

plot and is fundamentally and one dimensional scatter plot. Here it is preferred over a box plot as it

helps to visualize a multi-modal distribution. The thickness of a ’bean’ is a function of the frequency

of the specific value, that is the thicker a ’bean’ is for a value, the relatively higher is the number of

grid-points having that value. The values shown are the Pearson’s correlation coefficients which are

based on the linear least squares trend fit. Correlation values range from −1 to +1. Values closer to

−1 or +1 indicates strong correlation while those closer to 0 indicates weak correlation. The color of

the box indicates the season of the environmental variable being investigated (Annual = grey; Spring

= green, Summer = red; Autumn = amber). The short horizontal black lines for each ’bean’ is the

median of that distribution.
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a.) b.)

c.)

Figure 8: Spatial distribution of statistically significant (95% significance level) partial correlation

between de-trended annual GPP (GPPsat) and de-trended summer values of environmental variables

(a) temperature, (b) precipitation and (c) cloud cover. Negative correlations shown with shades of

red and positive shown in shades of blue.
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Figure 9: Box plots of the distribution for correlation between de-trended values of each environ-

mental variable. The location of the box and in particular the median on the y axis, on either side of

the zero line reveals the predominant sign of the correlation.
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