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Abstract  14 

Forestry activities in the Canadian Boreal region have increased in the last decades, raising 15 

concerns about their potential impact on aquatic ecosystems. Water quality and fluorescence 16 

characteristics of dissolved organic matter (DOM) were measured over a three-year period in 17 

eight Eastern Boreal Shield lakes: four lakes were studied before, one and two years after 18 

forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes 19 

(unperturbed lakes) sampled at the same time. ANOVAs showed a significant increase in total 20 

phosphorus (TP) in perturbed lakes when the three sampling dates were considered and in 21 

DOC concentrations when considering one year before and one year after the perturbation 22 

only. At one year post-clear cutting DOC concentrations were about 15% greater in the 23 

perturbed lakes at ~15 mgC L
-1

 compared to 12.5 mgC L
-1 

in the unperturbed lakes. In 24 

contrast, absorbance and fluorescence measurements showed that all metrics remained within 25 
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narrow ranges compared to the range observed in natural waters, indicating that forest 26 

harvesting did not affect the nature of DOM characterised with spectroscopic techniques. 27 

These results confirm an impact of forestry activities one year after the perturbation. However, 28 

this effect seems to be mitigated two years after, indicating that the system shows high 29 

resilience and may be able to return to its original condition in terms of water quality 30 

parameters assessed in this study.  31 

 32 

1. Introduction 33 

Boreal forests, which contain large areas of wetlands and over 1.5 million of lakes, are an 34 

ecological, economic and cultural source of wealth in Canada (NRCan 2005; Kreutzweiser et 35 

al., 2008). These lakes receive allochthonous inputs of dissolved and particulate matter from 36 

natural sources and anthropic activities (Schindler et al., 1992). Forestry activities in the 37 

Canadian Boreal region have increased in the last decades, raising concerns about their 38 

potential impact on natural biogeochemical processes in soils and the export pathways that 39 

deliver dissolved nutrients and organic matter to aquatic ecosystems. After logging, the export 40 

of dissolved nutrients to aquatic ecosystems increases, which is primarily related to a higher 41 

microbial activity in upper soil layers and the forest floor (Bormann and Likens, 1994; 42 

Kreutzweiser et al., 2008). This microbial activity converts nutrients from non-mobile to 43 

mobile forms, which are exported to receiving waters (Buttle et al., 2005), affecting loads of 44 

nutrients and organic compounds in lakes and rivers. Because forestry is the most extensive 45 

industry in much of the boreal region, the potential influence of logging on carbon reservoirs 46 

and water quality could be substantial. Therefore, there is a need to understand the long-term 47 

effects of forest harvesting on water quality, as well as its short transient repercussions.  48 

 49 
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Studies on the effects of logging activities on aquatic ecosystems in the boreal region have 50 

mostly been oriented to lotic systems (e.g. Smith et al., 2003; Laudon et al., 2009; Löfgren et 51 

al., 2009). In contrast, responses of lentic systems to logging activities in the boreal region 52 

have not been as extensively studied. Logging activities such as clear-cutting may produce 53 

significant disturbances to forest watersheds altering biogeochemical processes in soils by 54 

modifying forest vegetation cover and plant community, soils conditions, moisture and 55 

temperature regimes (Schelker et al., 2013b), soil microbial activity, water mobility and losses 56 

of leaching matter to receiving waters (Kreutzweiser et al., 2008). Increases in the watershed 57 

export of suspended solids, nutrients and dissolved organic carbon (DOC) were observed after 58 

one to three years following trees harvesting (Rask et al., 1998; Carignan et al., 2000; Winkler 59 

et al., 2009). DOC is one of the most central biogeochemical features of boreal surface waters 60 

because it affects the food web structure of surface waters in lakes (Findlay and Sinsabaugh, 61 

2003) and it acts as a microbial substrate (Berggren et al., 2007). DOC has been intensively 62 

investigated in environmental research because of its significant role in various 63 

biogeochemical and ecological processes (Findlay and Sinsabaugh, 2003; Birdwell and Engel 64 

2010). However, most of the short-term impact studies of catchment harvesting on lakes, with 65 

the exception of Winkler et al. (2009), did not measure the system before and after the 66 

perturbation in lakes that were not logged (i.e. unperturbed lakes), thereby changes due to 67 

logging cannot be separated from natural variability.  68 

 69 

Quantitative and qualitative information about the source, composition and reactivity of the 70 

DOC present in an ecosystem at natural abundance concentration can be obtained by 71 

spectroscopic techniques (Coble, 1996; 2007; Deflandre and Gagné, 2001; Weishaar et al., 72 

2003; Hudson et al., 2007; Fellman et al., 2010). UV-VIS spectroscopy allows 73 

characterization of chromophoric dissolved organic matter (CDOM) while the fluorescence 74 
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spectra of natural waters show characteristic maxima of few fluorophores that may vary 75 

between environments (Coble, 1996; 2007; Stedmon et al., 2003). Variations in the maximum 76 

excitation or emission wavelength can also provide information relating to structure, 77 

conformation and heterogeneity of DOM as observed by Mobeb et al. (1996) for humic 78 

substances, an important class of molecules found in natural water (Tremblay and Gagné, 79 

2009). Moreover, fluorophores intensities can be used to calculate ratios to track 80 

biogeochemical processes. For instance, differences in the chemical make-up of the DOM 81 

pool can be linked to changes in DOM reactivity and may be used to infer DOM sources 82 

(Jaffé et al., 2008; McKnight et al., 2001). Thus, fluorescence spectra provide data that can be 83 

used to infer the relative contributions of autochthonous and allochthonous organic matter in 84 

natural waters (Parlanti et al., 2000; McKnight et al., 2001; Huguet et al., 2009; Fellman et al., 85 

2010). As forestry activities can increase the export of nutrients, suspended solids and DOC 86 

into lakes (Rask et al., 1998; Carignan et al., 2000; Kreutweiser et al., 2008), and therefore, of 87 

allochthonous material, fluorescence measurements may be an appropriate tool to assess 88 

logging impact on water quality in watersheds. In a recent study, Kelton et al. (2007) used 89 

fluorescence measurements to compare characteristics of DOM from boreal, agricultural and 90 

urban sites. They observed that DOM from different landscapes could be distinguished by 91 

fluorescence spectroscopy.  92 

 93 

While the temporal variability and long-term lake response is of interest, our study was 94 

designed to analyse the short term impact of forestry activities on water quality, and on UV-95 

VIS and fluorescence characteristics of DOC in eastern Canadian Boreal Shield lakes one 96 

year before and up to two years after the perturbation. Water quality and spectroscopic 97 

characteristics of four lakes were studied on one occasion before, and on two occasions after 98 

forestry operations (perturbed lakes, P) and compared with four undisturbed references lakes 99 
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(unperturbed lakes, UP). More specifically, we tested the hypotheses that 1) nutrients and 100 

DOC would be greater in perturbed lakes than unperturbed lakes one and two years after the 101 

perturbation; 2) the UV-VIS and fluorescence signatures of DOM in perturbed lakes would 102 

indicate an increase in terrestrially-derived (allochthonous) DOM after logging. 103 

 104 

2. Materials and methods 105 

2.1. Study area 106 

This study was conducted in the province of Québec on the forested Mistassibi River drainage 107 

basin (50° 07'30' N, 71° 35'59' W) located on the Boreal Shield (Fig. 1). The study area is 108 

characterized by old growth forest mainly dominated by mature black spruces (Picea mariana) 109 

exploited by the forest industry. The soil layer over the rock is thin.   110 

 111 

2.2. Sampling 112 

Eight lakes, which are oligotrophic in this region (Winkler et al., 2009), with similar 113 

geomorphologic characteristics were selected for this study (Table 1). To evaluate the most 114 

direct impact of harvesting, headwater lakes were selected, except for UP1, UP3 and P3. 115 

Upstream lakes of UP1 and UP3 were unperturbed and for P3, the upstream lake was also 116 

unperturbed and very small in comparison of the nominal lake. These eight lakes have been 117 

unperturbed in 2008 at the beginning of this survey. In 2009 and 2010, four of these lakes 118 

were kept undisturbed (unperturbed lakes) and four other lakes (perturbed lakes) where 119 

harvested about 70% of lake catchment during autumn 2008 (Fig. 1, Table 1). All lakes were 120 

sampled once in July in 2008, 2009 and 2010. The experimental unit in this study was the 121 

lake. The forest was cut using the careful logging around advanced growth (CLAAG) strategy. 122 

Under this treatment, all trees equal to or greater than 10 cm diameter at breast height (d.b.h.) 123 

are harvested and smaller individuals are protected as future crop trees (Groot et al., 2005). A 124 
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20 m strip of standing forest was intentionally kept along lakes after harvesting activities. All 125 

lakes have a drainage ratio higher than 4, and perturbed lakes had a catchment area cut by 69-126 

77% (Table 1).  127 

 128 

Mean annual lake residence time was calculated for each lake using the following equation: 129 

                                 MD   lake   catchment            (1) 130 

 131 

where ZMD is the mean depth , Alake is the lake area , Acatchment is the catchment area , P is the 132 

mean annual precipitation in this region (rainfall and snow) and runoff is the runoff 133 

coefficient. This coefficient assumes that the percentage of precipitation that becomes runoff 134 

is 0.5 for undisturbed lakes and 0.8 for harvested lakes in boreal forests (Bosch and Hewlett, 135 

1982; Schelker et al., 2013a). Equation 1 is an approximation to calculate the mean annual 136 

lake residence time for each lake because for lakes, in absence of data, we assumed only 137 

precipitation and no infiltration or water uptake by tree roots, no loss of water by evaporation 138 

and evapotranspiration to the atmosphere or by groundwater recharge.  139 

 140 

At each lake, five littoral stations were selected randomly and sampled from a vessel. 141 

Dissolved O
2, pH, conductivity, and water temperature were measured in situ at each 142 

sampling station using an YSI 556 MPS probe. Water transparency was estimated at the 143 

deepest zone of the lake using a Secchi disc. Water samples were collected with a bottle at 0.5 144 

m below the surface at each sampling station and filtered through 300 μm to remove large 145 

zooplankton prior to the determination of physicochemical and biological variables. Samples 146 

for total phosphorus (TP), dissolved inorganic phosphorus and nitrogen (DIP and DIN, 147 

respectively) and suspended matter filtered for chlorophyll a (chl a) measurements were kept 148 

frozen at -20°C until analysis. Freezing TP samples can change the concentration observed in 149 
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some cases (Fellman et al., 2008).  However, in this study it is assumed that freezing has no 150 

effect because SUVA measured for samples are low (see later). Samples for DOC, CDOM 151 

absorption and DOC fluorescence measurements were maintained at 4°C until analysis after 152 

appropriate filtration treatments for each parameter. 153 

 154 

2.3. Water quality measurements 155 

TP was measured using the molybdenum blue method (Staiton et al. 1977) after autoclaving 156 

50 ml samples with 0.5 g of potassium persulfate for 1 h at 120°C. TP was afterwards 157 

assessed by using an AutoAnalyzer (AA3, Bran+Luebbe, German). DIP and DIN were 158 

determined using an AutoAnalyzer (AA3, Bran+Luebbe, German) after filtering water 159 

samples through a membrane filter (0.2m Sartorius). For the determination of chl a, water 160 

samples were filtered (200 ml or more) onto Whatman GF/F filters. Samples were extracted 161 

for 24 h in 90% acetone at 5°C in the dark without grinding. Chl a was determined using the 162 

method of Welschmeyer et al. (1994). For DOC measurements, water samples were filtered 163 

through precombusted (500°C, 5 h) Whatman GF/F filters. For the determination of DOC 164 

concentrations, the filtrates were collected in clean amber glass vials with Teflon-lined caps, 165 

and samples were acidified with ten µL of 25% v/v H
3
PO

4
. The determination of DOC levels 166 

were made in NPOC mode with a TOC-5000A or a TOC-VCPN analyzer (Shimadzu, Kyoto, 167 

Japan), following a protocol similar to Whitehead et al. (2000). A calibration curve was used, 168 

with five concentrations of potassium hydrogen phthalate between 0 and 10 mgC/L to 169 

determine the DOC content of samples. DOC reference standards available from the Hansell’s 170 

Consensus Reference Materials (CRM) program were used to test the instruments. For boreal 171 

lakes with high DOC content, lowering the pH below 2, as done in the method, could change 172 

the solubility of DOM by driving precipitation or sorption of organic matter to the wall and 173 

cap of glass vials. However, the spectroscopic results obtained (see later) support the presence 174 
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of fulvic instead of humic acids in lake waters. Since fulvic acids are soluble at any pH, the 175 

acidification of the samples does not change the concentration of fulvic acids. We expect then 176 

that the acidification of the method did not change significantly the concentration of DOC in 177 

our samples. Samples for DOM fluorescence and CDOM absorption measurements were 178 

filtered through 0.2 µm filters to remove bacteria and prevent decomposition of the DOC 179 

during storage. Samples were stored in dark to prevent photodegradation and photosynthesis. 180 

 181 

2.4. Absorption and fluorescence measurements 182 

CDOM absorption was determined for three stations in each lake with a Perkin Elmer 183 

Lambda 12 UV/VIS spectrophotometer, using a 5 cm pathlength quartz cuvette. Absorption 184 

measurements were done over the range 200-600 nm with a spectral resolution of 1 nm. 185 

Nanopure water was used as the blank to subtract the absorption due to pure water. 186 

Absorbance values were converted to absorption coefficient aCDOM (λ) (m
-1

) using the 187 

following equation (Kirk, 1994): 188 

 cDOM                                    (2) 189 

where A(λ) is the absorbance at wavelength λ and L is the pathlength of the cell used in the 190 

absorbance measurement in meters. In this study, acDOM at λ=355 nm (acDOM (355)) is used for 191 

data analysis.  192 

 193 

Specific UV absorbance (SUVA) was calculated at 254 nm. SUVA254 is defined as the UV 194 

absorbance of a water sample at 254 nm divided by the DOC concentration measured in mg C 195 

per liter (Weishaar et al., 2003). SUVA is a measure of the absorbance by mg of carbon 196 

present in the sample. SUVA also allows an estimation of the aromaticity of the organic 197 

carbon present in the samples.  198 
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Finally, the spectral slope (S) was calculated fitting an exponential equation between 305 and 199 

265 nm (Galgani et al., 2011). Spectral slope is used to provide information on change in the 200 

composition/quality of CDOM, including the ratio of humic to fulvic acids (Galgani et al., 201 

2011; Fichot and Benner, 2012). 202 

                 203 

Fluorescence measurements were made for the same three stations in each lake using a 204 

Fluoromax-4 HORIBA Jobin Yvon fluorometer with a 1 cm quartz cuvette, at 0.1 sec 205 

integration time and with the standard R928P photomultiplier tube operating at 950 Volts. 206 

Prior to fluorescence analysis, the absorbance of each sample was measured with a UV-VIS 207 

spectrophotometer (PerkinElmer Lambda 35). If the absorbance of the sample was higher 208 

than 0.05 AUFS, the sample was diluted to obtain absorbance in the range 0.02-0.03 AUFS. 209 

At this absorbance, the first and secondary inner filter effects are negligible (Lakowicz, 2006) 210 

and no correction has been done for the inner filter effects. Under these conditions, the 211 

fluorometer was never saturated. To obtain the three-dimensional excitation-emission 212 

fluorescence matrix (EEM), the instrument was operated in ratio mode to correct lamp 213 

fluctuation. Emission and excitation spectra were corrected for instrument bias as suggested 214 

by the manufacturer. The fluorescence EEM spectroscopy involved scanning and recording 215 

samples at sequential 5 nm increments of excitation wavelengths between 250 and 500 nm. 216 

Emission wavelength increment was 2 nm between 250 and 600 nm. The spectra were 217 

obtained by subtracting nanopure water blank spectra to eliminate water Raman scatter peaks. 218 

Each sample scan was then used to generate three-dimensional contour plots of fluorescence 219 

intensity as a function of excitation and emission wavelengths.  220 

 221 

Our samples were characterized by two important fluorescent peaks. The first peak had an 222 

excitation maximum near 250-260 nm with an emission maximum near 380-480 nm. The 223 
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second peak had an excitation maximum near 330-350 nm and an emission maximum near 224 

420-480 nm. These fluorescence signals, called peaks A and C, where assigned to humic-like 225 

substances by Coble (1996). No other salient peaks where observed in the fluorescence signal. 226 

From the intensity of peaks and other fluorescence signals, we calculated indices to quantify 227 

fluorescence properties of DOM. The ratio of fluorescence intensity of the two humic-like 228 

peaks (A/C) (Coble 1996) was calculated for each sample. A change in the ratio of the 229 

intensity of these fluorophores reflects a change in the proportions of these fluorophores. A 230 

constant ratio A/C suggests a constant composition, a stable input or a stable environment. 231 

Fluorescence index (FI) was also calculated for each sample as the emission intensity at 470 232 

nm divided by the emission intensity at 520 nm when the excitation energy was set at 370 nm 233 

(McKnight et al., 2001; Cory and McKnight, 2005). Two other indexes called the 234 

biological/autochthonous index (BIX) (Vacher, 2004; Huguet et al., 2009) and the 235 

humification index (HIX) (Zsolnay et al., 1999; Huguet et al., 2009) were calculated to assess 236 

the relative contribution of autochthonous DOM in samples. BIX was calculated from the 237 

ratio of emission intensities at 380 nm and 430 nm wavelengths when the excitation energy 238 

was set at 310 nm. HIX was measured using the excitation wavelength 254 nm and calculated 239 

as the ratio of the area under emission spectra at 435-480 nm divided by the area under the 240 

300-445 nm region. 241 

 242 

2.5. Data analyses 243 

Water characteristic variables (TP, DIP, DIN, chl a, DOC) and DOM spectroscopic 244 

parameters (acDOM (355), fluorescence ratio A/C, FI, BIX, HIX, SUVA254 and S) were compared 245 

using three-way partly nested analyses of variance (ANOVAs). Factors in the model were: 246 

treatment (fixed with two levels, unperturbed and perturbed), lake nested in treatment 247 

(random with four lakes per treatment), year (fixed with three years of sampling) and their 248 
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interactions. Data were transformed when necessary to achieve normality and homogeneity of 249 

variance. The impact of forest harvesting was measured as an interaction between the 250 

treatment (perturbed/unperturbed) and the year (Green, 1979). When this factor was 251 

significant, a posteriori comparisons were made using Tukey’s test. A BACI design 252 

(Underwood, 1991; 1992) was not used in this study since we had a limited number of 253 

sampling dates before the perturbation occurred. However, we studied the temporal variation 254 

of the system using the time as factor (Archambault et al., 2001) and we did sample one year 255 

before the perturbation.  256 

 257 

3. Results 258 

Monthly, seasonally and annual climatic variables were similar throughout the three sampling 259 

years of this study (Table 2). TP concentrations ranged from 4.80 (perturbed, 2008) to 5.75 µg 260 

l
-1

 (perturbed, 2009) (Fig. 2). A statistically significant interaction between treatment and year 261 

was observed for TP concentrations (Table 3). A posteriori Tukey’s test confirmed that 262 

unperturbed and perturbed lakes were not significantly different in 2008 (before forest 263 

harvesting) nor in 2010 but they were significantly different in 2009 (first year after forest 264 

harvesting). TP concentrations increased in the perturbed lakes in 2009 while it slightly 265 

decreased in unperturbed lakes. In 2010 TP concentrations were practically the same in 266 

unperturbed and perturbed lakes, as a result of increased TP in reference lakes (Fig. 2). 267 

 268 

 DIP values ranged from 1.39 (unperturbed, 2010) to 1.96 µg l
-1

 (perturbed, 2009) (Fig. 2) and 269 

DIN values ranged from 0.42 (unperturbed, 2008) to 3.02 µg l
-1

 (perturbed, 2009) (Fig. 2). 270 

Neither DIP nor DIN values showed significant differences for the interaction between 271 

treatment and year (Table 3), although DIN values were higher in perturbed than unperturbed 272 

lakes in 2009 and 2010.  273 
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 274 

Chl a values ranged from 0.41 (unperturbed, 2008) to 1.00 µg l
-1

 (perturbed, 2009) (Fig. 2). 275 

Chl a values did not show significant differences between treatment and year (Table 3). 276 

Although there was an increase in chl a concentration in 2009, this increase occurred for both 277 

unperturbed and perturbed lakes (Fig. 2).  278 

 279 

DOC concentrations ranged from 11.34 (perturbed, 2008) to 15.27 mg C l
-1

 (perturbed, 2009) 280 

(Fig. 2). No significant difference was detected between treatment and year for DOC values 281 

(Table 3). However, DOC was substantially higher in 2009 in perturbed lakes than in 282 

unperturbed lakes, then decreased in 2010 in perturbed lakes (Fig. 2). In 2009, DOC 283 

concentrations ranged from 9.57 to 14.96 mg C l
-1

 in unperturbed lakes and from 13.60 to 284 

17.48 mg C l
-1

 in perturbed lakes. Moreover, we performed a three-way ANOVA with the 285 

same factors as above but comparing only 2008 and 2009. In this case, the interactions 286 

between treatment and year for all the variables were significant for DOC concentrations 287 

(df=2/12, MS=32.3253, F=6.2160, p=0.0466) and TP (df=2/12, MS=0.2561, F=20.9793, 288 

p=0.0036). 289 

 290 

Two maxima humic-like peaks were observed in all EEM in all samples: peak A and peak C. 291 

These peaks are commonly reported in the literature (Coble, 1996; Parlanti et al., 2000) as 292 

indicators of the presence of humic substances. The spectroscopic metrics acDOM (355), 293 

fluorescence ratio A/C, FI, BIX, HIX, SUVA254 and S values showed similar patterns in 294 

unperturbed and perturbed lakes over time (Fig. 3). acDOM (355) values ranged from 30.44 295 

(unperturbed, 2010) to 40.68 m
-1

 (perturbed, 2009) and showed the same pattern for 296 

unperturbed and perturbed lakes, increasing in 2009 and decreasing in 2010 (Fig. 3). 297 

Fluorescence ratio A/C values ranged from 1.46 (unperturbed, 2009) to 1.50 (perturbed, 2010) 298 
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(Fig. 3) and FI values ranged from 1.64 (unperturbed, 2010) to 1.71 (unperturbed, 2009). FI 299 

values decreased in 2010 both for unperturbed and perturbed lakes (Fig. 3). BIX values 300 

ranged from 0.36 (unperturbed, 2009) to 0.40 (perturbed, 2010). HIX values ranged from 301 

20.31 (perturbed, 2010) to 25.37 (unpertubed, 2009). SUVA254 values ranged from 1.91 302 

(perturbed, 2009) to 2.09 L mg m
-1

 (unperturbed, 2009) and S values ranged from 0.010 303 

(unperturbed, 2008) to 0.012 nm
-1

 (perturbed, 2010) (Fig. 3). No significant differences for 304 

the interaction between treatment and year were found for any of these variables (Table 4). 305 

Chl a significantly correlated with DOC (r
2
 = 0.1202, F = 14.0689, p = 0.001) and TP (r

2
 = 306 

0.0693, F = 7.5166, p = 0.007) and DOC significantly correlated with TP (r
2
 = 0.2780, F = 307 

8.2109, p = 0.005). The absorption coefficient (a(355)) significantly correlated with DOC 308 

concentration in unperturbed and perturbed lakes (r
2
=0.7674, F=428.8325, p<0.001). 309 

 310 

4. Discussion 311 

Concentrations of TP measured in unperturbed and perturbed lakes were typical values 312 

reported for Boreal Shield lakes (Carignan et al., 2000; Winkler et al., 2009). However, 313 

logging disturbance increased the TP content of lakes one year after harvesting as also 314 

reported by other authors (Lamontagne et al., 2000; Winkler et al., 2009). Ground disturbance 315 

may increase weathering and leaching of phosphorus from exposed mineral soils (Evans et al., 316 

2000). Adsorption of phosphorus to particles and their subsequent transportation by 317 

hydrological events can increase the loading of rivers and lakes (Whitson et al., 2005). 318 

Phosphorus losses from soils can be promoted by co-leaching with organic solutes such as 319 

DOC (Qualls et al., 1991). The presence of DOC can enhance the solubility, mobility and 320 

export of phosphorus by limiting the complexation of its dissolved form with cations that 321 

would otherwise react to precipitate phosphorus and retain it in soils. This would explain the 322 

significant correlation between DOC and TP found in this study. The parallel increase in TP 323 
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and DOC in lakes, one year after harvesting, can suggest a rise in allochthonous import of 324 

DOC from watershed to lakes. DOC concentrations measured were typical of conifer boreal 325 

forest systems with a mean annual temperature of 2.5
o
C (Sobek et al., 2007). DOC 326 

concentrations significantly increased after harvesting in perturbed lakes, similar to Winkler 327 

et al. (2009), suggesting that the system responded immediately after the perturbation.  328 

 329 

In lentic systems, DOC concentrations in surface waters are regulated by processes internal to 330 

lakes and external processes occurring in the watersheds where DOC are exported to lakes. In 331 

lakes, metabolic compounds released by healthy autotroph and heterotroph organisms, 332 

exudation from altered cells resulting from zooplankton grazing and microbial decay of soft 333 

tissues of dead organisms may produce or deliver DOC in lakes. DOC can also be removed 334 

from water by bacterial degradation, photolytic alteration, heterotrophic respiration (i.e. CO2 335 

evasion) and sorption or aggregation between organic matter and clays that cause 336 

sedimentation of particles. As mentioned earlier, the increase in DOC could result from the 337 

extracellular release of DOC from phytoplankton (Baines and Pace, 1991). However, the 338 

increase observed in DOC one year after harvesting is not parallel with a rise in chl a content, 339 

suggesting a minor role of phytoplankton exudates on the regulation of DOC level. This is 340 

also supported by the absence of characteristic protein-like peaks associated to planktonic 341 

production (excitation maxima at 275 and 305-340 nm (Coble, 2007) in our EEM 342 

fluorescence spectra (data not shown). Furthermore, the lakes are shallow and hot in summer 343 

(15-18 
o
C in July). Under these conditions, bacterial mineralization of labile organic matter 344 

can be efficient and net production of DOC in lakes should be low. If processes occurring in 345 

lakes act as an important sink (destruction or sedimentation) for organic matter, it is the 346 

production and transport of DOC from the catchment areas to lakes that control the quantity 347 

and quality of organic matter in lakes. The mean annual lake residence times of water in the 348 
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lakes studied are short, less than 0.16 years (Table 1). Then, a rapid turnover of water and a 349 

quick replacement of DOC occur in these lakes. Under these conditions, variations in quantity 350 

and quality of DOC suggest that processes occurring in the drainage basins are of paramount 351 

importance to explain changes in the amounts and the chemical composition of DOC in lakes. 352 

 353 

The transport of DOM from terrestrial ecosystems to lakes is complex. Thus, several potential 354 

processes could give rise to an increase in DOC content in lakes. Many studies suggested that 355 

the most important processes to explain increases in DOC after forest harvesting was the rise 356 

in organic matter leaching from logging slash; the increase decomposition of organic logging 357 

residues and organic matter in the surface soils due to increased forest floor temperature and 358 

moisture; and a reduction in evapotranspiration causing an increase in runoff quantity leading 359 

to a higher water table favorable to the exportation of DOM from the surface and riparian 360 

soils  (Qualls et al., 2000; Bishop et al., 2004; Kreutzweiser et al., 2008; Schelker et al., 361 

2013b). However, the largest C-efflux from a forest floor is soil respiration, which has been 362 

shown to change as a result of forest disturbance (Grant et al., 2007). Leaching from logging 363 

slash or foliage and woody debris mixed to surface soils after forest harvesting could enrich 364 

water soil surface in organic components (Qualls et al., 2000). However, studies show that 365 

amounts of DOC leached vary with temperature, the nature of woody debris and the lability of 366 

organic matter. Coarse residues (stumps, coarse roots, branches) decompose slowly while fine 367 

residues (leaves, needles, fine roots, twigs) as well as boreal forest moss and feather mosses 368 

can be very quickly metabolized to CO2 (Wickland et al., 2007; Hanson et al., 2010). During 369 

the degradation processes, nitrogen, and low molecular weight organic acids are first removed 370 

while lignin and humic substances could persist. Qualls et al. (2000) suggested that higher 371 

concentrations of dissolved organic nutrients in solution draining from the forest floor of the 372 

cut plots can largely be accounted for by the slash above the leaf litter of the forest floor.  373 
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 374 

The input of DOM to lakes from surrounding landscape could produce changes in the amount 375 

and the chemical composition or quality of organic matter. However, although total DOC 376 

concentrations increased one year after logging, the composition of DOC did not measurably 377 

change. This result has also been reported in streams (Burrows et al. 2014). Three-378 

dimensional excitation-emission fluorescence spectra of lake samples studied over three years 379 

shown only two major fluorophores associated with allochthonous humic-like components. 380 

This constancy in composition suggests that DOC composition was similar for the three years 381 

in unperturbed and perturbed lakes, since there was no significant difference between year 382 

and treatment for the ratio of fluorescence intensity of the two humic-like peaks (A/C) and 383 

since no differences were observed on the UV-VIS spectra between the three years (data not 384 

shown). Moreover, FI, BIX and HIX indices showed no significant differences either, 385 

indicating there was no change in fluorescence spectra due to logging. FI is an index of the 386 

origin of fulvic acids. In this study, FI values were around 1.65 in all lakes and years. Cory et 387 

al. (2010) suggested values near 1.2 for DOM of terrestrial origin in a large river of USA and 388 

1.55 for microbially derived DOM. However, Korak et al. (2014) have recently shown that FI 389 

values can vary by 0.2 units if concentration changes, the highest FI value measured at low 390 

DOC concentration. In this study, our measurements were obtained at natural pH, about 5.5 in 391 

the lakes studied. Measurements of FI at samples pH other than 6-7.5 as suggested by 392 

McKnight et al. (2001) or Cory et al. (2010) could change the range of values used to 393 

distinguish sources of DOM because protonation, molecular conformation and fluorescence 394 

signal of DOM change with pH. Thus, the relative contribution of autochthonous and 395 

allochthonous material cannot be discerned from FI values. BIX values were, however, 396 

between 0.35 and 0.42. These results are below 0.7, suggesting that DOM contains very little 397 

autochthonous organic matter, and it may be mainly composed of allochthonous matter 398 
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(Vacher, 2004; Birdwell and Engel, 2010). Finally, HIX values were between 20.31 and 25.37, 399 

in the range of values reported for soil derived humics (Birdwell and Engel, 2010). This is in 400 

agreement with Vacher (2004), who suggested that HIX values larger than 16 indicate a 401 

strong humic character and an important terrigeneous contribution.  402 

 403 

SUVA254 values (1.91 to 2.09) were slightly lower than values reported in other studies in 404 

boreal forests (Wickland et al., 2007; Balcarczyk et al., 2009), indicating a relatively low 405 

aromaticity for DOC. Wickland et al. (2007) reported low SUVA values (between 1.9 and 2.3) 406 

for well or moderately well-drained soils. They associate the low value of SUVA to the 407 

presence of hydrophilic organic matter (HPIOM). Guggenberger et al. (1994) found that 408 

HPIOM appeared to be partly microbially synthesized and partly plant-derived with a high 409 

degree of oxidative biodegradation suggesting that HPIOM are relatively small molecule with 410 

many oxidized side-chains. S values were similar to values found in other studies in boreal 411 

forest systems (Galgani et al., 2011). Our results showed no significant difference of SUVA254 412 

or S values (taking into account the interaction between the treatment and the year of 413 

sampling). This suggests that forest harvesting resulted in an increase in the quantity of DOC 414 

available (as DOC concentrations were significantly higher in 2009) without changes in terms 415 

of quality. DOC quality varies to a large extent depending on its terrestrial origin in terms of 416 

bioavailability (Berggren et al., 2007; Ågren et al., 2008). As the fluorescence can help to 417 

differentiate between plant and microbially-synthesized DOC (McKnight et al., 2001), 418 

increased runoff after harvesting would have resulted in DOC increases but DOC had a very 419 

close composition before and after harvesting. Similar findings were reported in twenty-three 420 

forested lakes in central Quebec, where DOC concentrations increased in logged lakes, but no 421 

changes in aromaticity of DOC were observed (O’Driscoll et al., 2006).  422 

 423 
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In this study, we measured DOC and optical properties of organic matter to provide 424 

information on the amount, quality, and origin of organic matter. DOC increases one year 425 

after harvesting, but this rise is not accompanied by variations in spectroscopic parameters 426 

acDOM (355), fluorescence ratio A/C, FI, BIX, HIX, SUVA254 and S. What concludes from these 427 

results? At least two points can contribute to our observations. An increase in DOC without 428 

change in spectroscopic metrics means that the DOC introduced in the system does not absorb 429 

or fluoresce following UV-VIS irradiation. If compounds have double bonds or aromatic 430 

moieties, these compounds will absorb light and give alteration in spectroscopic metrics, not 431 

observed in this study. However, if dissolved organic matter contains mostly sigma chemical 432 

bonds, these bonds could be hidden to the metrics used because sigma bonds absorb near 200 433 

nm far from the wavelengths (>254 nm) used in the proxies measured. This suggests that low 434 

molecular weight organic acids, hydrocarbons, lipids, or carbohydrates can contribute to the 435 

rise in DOC without change in spectroscopic properties in the UV-VIS wavelength.  Low 436 

molecular weight organic acids are used rapidly by bacteria (Romero-Kutzner et al., 2015). 437 

Their occurrence in DOC is unlikely. However, hydrocarbons, lipids and carbohydrates exist 438 

in plants (Kögel-Knabner, 2002) and simple sugars and nonhumic-bound polysaccharides 439 

could contribute to the increment in DOC at least for deciduous forest ecosystem (Qualls and 440 

Haines, 1991). In a study on the release of DOC from plant tissues, Moore and Dalva (2001) 441 

observed that DOC leaching is more efficient from fresh material than from old material. This 442 

could contribute to the higher level of DOC one year after logging. The composition of the 443 

new DOC could be lipid-like or carbohydrate-like compounds.   444 

 445 

Our fluorescence results suggest that humic substances are the ubiquitous compounds 446 

exported to lakes. The decrease in evapotranspiration following the clearing forest vegetation 447 

(causing a change in the hydrologic regime) and the leaching of logging slash could 448 
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contribute to a selective washing of humic substances. Boyer et al. (1996) suggested that 449 

DOC in upper soil might accumulate during periods of low flow and be exported during 450 

periods of high flows. However, DOC in deep soils horizons could be immobilized through 451 

sorption onto mineral phases or by precipitation with polyvalent cations (Qualls et al., 2000; 452 

Hansson et al., 2010; Kaiser and Kalbitz, 2012). The sorption could be more effective to 453 

retain humic than fulvic acids (Weng et al., 2006). Moreover, washing of logging slash can 454 

decrease the pH by 0.9 units for leachate of fresh needle litter (Hansson et al., 2010). Such 455 

reduction in pH could decrease the solubility of humic substances by more than 50% (Tipping 456 

and Woof, 1990) and cause a stronger sorption of humic acids compared to fulvic acids 457 

(Weng et al., 2006). However, because fulvic acids are soluble at any pH, by definition, it is 458 

the apparent solubility of humic acids that decrease during leaching of logging slash and 459 

through transport of DOC from watershed to lakes. The resulting effect will be a possible 460 

enrichment of water soil surface in fulvic acids exported to lakes. The spectroscopic 461 

parameters measured are in agreement with our hypothesis that DOC is mainly composed of 462 

fulvic acids. 463 

 464 

Although there appears to be a recovery of water chemistry (TP and DOC) by year 2, there 465 

are confounding factors that can obscure real recovery or delayed effects. For example, 466 

Schelker et al. (2012) have seen a long lasting forestry effect on both hydrology and DOC on 467 

aquatic systems in the boreal region. Biogeochemical processes in watersheds do not all 468 

respond immediately to logging effects, i.e., tree removal and ground disturbance. Some 469 

processes may take a few years, such as changes in organic matter composition and 470 

processing on the forest floor, changes in vegetation composition from which the DOC is 471 

derived, before those changes affect export of nutrients and subsequent changes to lake water 472 

chemistry. Also, hydrological conditions (especially runoff) greatly affect solute movement to 473 
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surface waters (Fawcett et al., 1994), and it is possible that year 2 was different hydrologically 474 

than the preceding and may have masked delayed effects. Inter-annual variability could also 475 

have affected the export of nutrients and DOC to the lakes. However, since monthly, 476 

seasonally and annual climatic variables were similar throughout the three years of sampling 477 

(Table 2), we can then assume that in this study, forest harvesting is a major factor 478 

influencing the system comparing to a natural factor such as annual precipitation. Lastly, 479 

carbon and nutrients can be transformed (i.e. immobilized, mineralized, evaded as CO2) 480 

before being input into lakes (Ledesma et al. 2015). There is thus the potential for substantial 481 

changes in many of the lake water parameters measured before they enter each lake. 482 

 483 

In conclusion, this study indicated that logging activities appeared to increase significantly TP 484 

and DOC export to oligotrophic lakes of the Eastern Canadian Boreal Shield one year after 485 

the perturbation. This impact on water chemistry due to logging activity appeared to have 486 

been short-term with recovery to pre-logging conditions two years after harvest. Nevertheless, 487 

it has to be kept in mind that the number of perturbed and unperturbed lakes in this study was 488 

only four, respectively and that they were sampled one month each year due to logistic 489 

constraints. Sampling multiple times per year at each lake would have permitted to estimate 490 

the influence that seasonal and natural events (i.e. snow melt and storms) have upon the 491 

response parameters. Furthermore, the study did not address the potential for delayed or 492 

longer-term changes in water chemistry that could result from biogeochemical processes in 493 

the lake catchments adjust to forest recovery after harvest. However, this three-year period 494 

study shows interesting results. It suggests changes in DOC and TP keeping the quality of the 495 

CDOM almost unaffected. Moreover, the spectroscopic data converge to suggest that fulvic 496 

acids are the mobile form of CDOM carried to lakes and that fulvic acids respond rapidly to 497 
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forest harvesting contrary to humic acids. Fulvic and humic acids are the most important 498 

components of DOC and CDOM.  499 
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Table 1. Characteristics of the eight studied Canadian Boreal Shield lakes (UP: unperturbed lakes; P: perturbed lakes). Dissolved oxygen (DO), 798 

pH, conductivity, temperature, secchi depth, total phosphorus (TP), dissolved inorganic phosphorous (DIP), dissolved inorganic nitrogen (DIN), 799 

chlorophyll a (chl a) and dissolved organic carbon (DOC) are reported as means (SD) over the sampling stations on the photic zone before the 800 

perturbation (2008). Lake UP3 was not deep enough to sample secchi depth. 801 

 802 

 UP1 UP2 UP3 UP4 P1 P2 P3 P4 

Latitude N 50° 25' 44'' 50° 29' 22" 50° 23' 13" 50° 28' 34" 50° 30' 9" 50° 31' 25" 50° 30' 40" 50° 28' 11" 

Longitude W 71° 57' 28'' 71° 57' 32" 72° 1' 24" 71° 57' 15" 71° 47' 1" 71° 56' 26" 71° 56' 5" 71° 46' 51" 

Lake area (km
2
) 0.17 0.17 0.06 0.03 0.29 0.09 0.28 0.04 

Catchment area (km
2
) 0.92 2.80 0.59 0.20 2.89 1.76 2.42 0.34 

Drainage area (km
2
) 0.75 2.63 0.52 0.17 2.61 1.67 2.14 0.29 

Drainage ratio 4.39 15.56 8.30 5.52 9.02 18.57 7.71 6.88 

Harvested area (% of 

catchment area) 

- - - - 72.9 69.1 71.6 77.0 

Mean annual lake 

residence time (year) 

0.10 0.01 0.005 0.03 0.16 0.04 0.15 0.05 

Maximum depth (m) 5.0 2.0 0.5 2 9 4.5 7.5 2 

Secchi depth (m) 1.25 1.50 n/a 1.75 1.50 1.65 1.40 1.40 

DO (mg l
-1

)   8.61 (0.13) 9.52 (0.68) 7.51 (0.38) 7.22 (0.15) 8.47 (0.20) 8.24 (0.08) 8.21 (0.23) 8.46 (0.57) 

pH 5.92 (0.10) 5.75 (0.02) 5.94 (0.05) 5.87 (0.07) 5.92 (0.06) 5.02 (0.05) 5.62 (0.15) 5.38 (0.28) 

Conductivity (µS cm
-1

) 11.93 (0.64) 12.50 (0.05) 19.00 (0.54) 9.40 (0.15) 13.40 (0.00) 11.92 (0.12) 12.65 (0.14) 14.67 (0.45) 

Temperature (°C) 17.86 (0.80) 17.09 (0.65) 16.71 (0.74) 16.99 (0.24) 17.13 (0.36) 16.71 (0.06) 17.45 (0.24) 15.65 (0.50) 

DOC (mg l
-1

)  10.78 (0.57) 12.06 (0.58) 12.56 (1.01) 12.33 (0.48) 11.91 (0.73) 9.82 (0.40) 8.98 (0.43) 13.73 (1.04) 

DIP (µg l
-1

) 1.81 (0.31) 2.10 (0.58) 1.29 (0.56) 1.49 (0.41) 1.88 (0.74) 1.54 (0.41) 1.20 (0.14) 2.04 (0.91) 

DIN (µg l
-1

) 0.24 (0.12) 0.75 (0.51) 0.31 (0.18) n/a 0.60 (0.12) n/a 0.73 (0.10) 0.32 (0.27) 

Chl a (µg l
-1

) 0.43 (0.06) 0.39 (0.06) 0.62 (0.20) 0.36 (0.05) 0.98 (0.21) 0.55 (0.06) 0.68 (0.16) 0.49 (0.07) 

TP (µg l
-1

) 5.05 (0.26) 4.95 (0.52) 5.77 (0.50) 5.13 (1.01) 5.09 (0.70) 4.69 (0.47) 5.26 (0.70) 4.65 (0.55) 
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Table 2. Monthly (July), seasonally (May, June, July) and annual average of climatic 803 

variables during the three years of the study (2008, 2009 and 2010). 804 

805 

Variable (Average) 2008 2009 2010 

Monthly temperature (°C) 16.1 15.6 17.3 

Seasonally temperature (°C) 12.5 11.7 13.2 

Annual temperature (°C) -5.0 -5.1 -2.8 

Monthly precipitation (mm) 5.1 2.8 4.1 

Seasonally precipitation (mm) 46.1 44.2 44.8 

Annual snow depth (mm) 390 320 350 
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Table 3. Results of the three-way ANOVA testing the effect of treatment (tr : perturbed, 806 

unperturbed), lake, year and their interactions on TP, DIP, DIN, chl a and DOC. Variables 807 

were transformed to achieve normality and homogeneity of variance. The principal source of 808 

variation of interest is the interaction between the treatment and the year of sampling. 809 

Significant p values (p<0.05) are in bold. 810 

  811 

Variable  Tr lake 

(tr) 

year tr x year lake (tr) x 

year  

Residual 

 df 1 6 2 2 12 96 

Log TP SS 0.07 0.01 0.18 0.15 0.02 0.02 

 F 5.30 0.63 8.46 6.75 1.07  

 p 0.06 0.71 <0.05  <0.05  0.39  

Log DIP SS 0.28 0.96 2.59 1.33 1.54 0.27 

 F 0.29 0.62 1.68 0.86 5.74  

 p 0.61 0.71 0.23 0.44 <0.001   

Log DIN SS 10.51 0.39 20.88 0.50 1.34 0.31 

 F 27.19 0.30 15.86 0.38 4.28  

 p <0.05  0.92 <0.001  0.69 <0.001   

Log chl a SS 3.07 0.69 3.29 0.29 0.23 0.13 

 F 4.41 2.30 14.18 1.25 1.25  

 p 0.08 0.05 <0.001 0.32 0.07  

Log DOC SS 0.01 0.13 0.38 0.13 0.07 0.01 

 F 0.06 1.92 5.34 1.79 14.01  

 p 0.81 0.16 <0.05  0.21 <0.001   
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Table 4. Results of the three-way ANOVA testing the effect of treatment (tr: perturbed, 812 

unperturbed), lake, year and their interactions on absorbance coefficients of CDOM (acDOM) at 813 

355 nm, A:C peak ratios, fluorescence index (FI), biological/autochthonous index (BIX), 814 

humification index (HIX), specific UV absorbance at 254 nm (SUVA254) and spectral slope 815 

(S). The principal source of variation of interest is the interaction between the treatment and 816 

the year of sampling. Significant p values (p<0.05) are in bold. 817 

818 

Variable  tr lake (tr) year tr x year lake (tr) x 

year  

Residual 

 df 1 6 2 2 12 48  

acDOM (λ=355) SS 6.81 316.26 137.19 133.38 110.28 14.95 

 F 0.02 3.22 1.35 1.31 7.37  

 p 0.88 <0.05  0.29 0.30 <0.001   

A:C SS 0.02 0.01 0.01 0.01 0.01 0.01 

 F 0.85 4.51 1.13 0.83 2.16  

 p 0.39 <0.05  0.29 0.39 <0.05   

FI SS 0.01 0.01 0.02 0.01 0.01 <0.001 

 F 1.02 1.89 21.92 0.88 2.62  

 p 0.35 0.16 <0.001  0.35 <0.05  

BIX SS 0.01 0.01 0.01 0.01 0.01 <0.001 

 F 4.65 1.42 3.98 0.24 4.12  

 p 0.08 0.28 0.05 0.62 <0.001   

HIX SS 35.97 287.71 140.16 9.47 222.06 <0.001 

 F 2.55 9.56 4.97 0.33 3.69  

 p 0.11 <0.05 <0.05 0.71 <0.001  

SUVA254 SS 0.09 0.22 0.72 0.35 0.36 <0.001 

 F 4.14 0.63 2.07 1.01 5.56  

S SS 1.65 10
-6

 8.6 10
-6

 3.32 10
-5

 7.43 10
-6

 5.59 10
-6

 1.39 10
-6

 

 F 0.20 1.59 6.25 1.40 4.24  

 p 0.67 0.23 <0.05  0.28 <0.001   
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 819 

 820 

Figure 1. Location of the eight study lakes sampled in 2008, 2009 and 2010. UP, unperturbed 821 

lakes; P, perturbed lakes (harvested in 2009). 822 

 823 

  824 
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 825 

Figure 2. Comparison between treatments (unperturbed, perturbed) and years (2008, 2009, 826 

2010) of TP, DIP, DIN, chl a and DOC. Vertical bars represent standard errors. * p<0.05. 827 

 828 

  829 
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 830 

Figure 3. Comparison between treatments (unperturbed, perturbed) and years (2008, 2009, 2010) of acDOM (λ=355), A/C, FI, BIX, HIX, SUVA254 831 

and spectral slope. Vertical bars represent standard errors. 832 


