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Abstract 21 

A large amount of organic carbon is stored in high latitude soils. A substantial proportion of this 22 

carbon stock is vulnerable and may decompose rapidly due to temperature increases that are 23 



2 

 

already greater than the global average. It is therefore crucial to quantify and understand carbon 1 

exchange between the atmosphere and subarctic/arctic ecosystems. In this paper, we combine an 2 

Arctic-enabled version of the process-based dynamic ecosystem model, LPJ-GUESS (version 3 

LPJG-WHyMe-TFM) with comprehensive observations of terrestrial and aquatic carbon fluxes 4 

to simulate long-term carbon exchange in a subarctic catchment at 50 m resolution. Integrating 5 

the observed carbon fluxes from aquatic systems with the modelled terrestrial carbon fluxes 6 

across the whole catchment, we estimate that the area is a carbon sink at present, and will 7 

become an even stronger carbon sink by 2080, which is mainly a result of a projected 8 

densification of birch forest and its encroachment into tundra heath. However, the magnitudes of 9 

the modelled sinks are very dependent on future atmospheric CO2 concentrations. Furthermore, 10 

comparisons of global warming potentials between two simulations with and without CO2 11 

increase since 1960 reveal that the increased methane emission from the peatland could double 12 

the warming effects of the whole catchment by 2080 in the absence of CO2 fertilization of the 13 

vegetation. This is the first process-based model study of the temporal evolution of a catchment-14 

level carbon budget at high spatial resolution, including both terrestrial and aquatic carbon. 15 

Though this study also highlights some limitations in modelling subarctic ecosystem responses to 16 

climate change, such as,  aquatic system flux dynamics, nutrient limitation, herbivory and other 17 

disturbances and peatland expansion, our study provides one process-based approach to 18 

resolving the complexity of carbon cycling in subarctic ecosystems while simultaneously 19 

pointing out the key model developments for capturing complex subarctic processes. 20 

 21 

1 Introduction 22 

The high latitudes are experiencing greater temperature increases than the global average 23 

(AMAP, 2012; IPCC, 2013). Low decomposition rates due to the cold environment have led to 24 

an accumulation of large carbon (C) pools in litter, soils and peatlands, much of which is 25 

currently held in permafrost (Tarnocai et al., 2009; Koven et al., 2011; Hartley et al., 2012). 26 

However, these C stores may be mineralized rapidly to the atmosphere due to the warming 27 

effects on soil microbial activity and thereby increase atmospheric concentrations of both carbon 28 

dioxide (CO2) and methane (CH4). Meanwhile, temperature-induced vegetation changes may 29 
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mitigate those effects by photosynthetic enhancement, which is, however, greatly influenced by 1 

disturbances such as plant-herbivore interactions as well as soil water and nutrient contents 2 

(Jonasson and Michelsen, 1996; Van Bogaert et al., 2009; Keuper et al., 2012). It is becoming 3 

crucial to understand those aspects of vulnerable high latitude ecosystems and their responses to 4 

climate warming (Callaghan et al., 2013). Ecosystems fix atmospheric C through photosynthesis 5 

and return this C back through diverse paths and in different forms. In recent years, many field 6 

measurements have been carried out in subarctic and arctic environments to quantify C 7 

exchanges between the atmosphere and the biosphere. Those measurements enable us to better 8 

understand possible feedbacks from terrestrial biota and responses to the changing climate 9 

(Bäckstrand et al., 2010; Christensen et al., 2012). However, some concerns about field 10 

measurements in the subarctic/arctic environment have been raised and the following research 11 

needs have been identified: 12 

1) Complete year-around observations are generally missing and many studies focus 13 

only on growing season measurements (Grogan and Jonasson, 2006; Roulet et al., 2007; 14 

Christensen et al., 2012; McGuire et al., 2012). Year-around observations are needed because 15 

there is clear evidence that C fluxes in the cold seasons are very important (Larsen et al., 2007b; 16 

Mastepanov et al., 2008). 17 

2) Observations of interactions between terrestrial and aquatic systems are lacking 18 

(Lundin et al., 2013; Olefeldt et al., 2013). Quantifications of terrestrial lateral loss of C are 19 

needed not only because they represent a significant fraction of net ecosystem exchange (NEE) 20 

but also because they are intrinsically linked to downstream aquatic C cycling (Lundin et al., 21 

2013). Integrating terrestrial and aquatic C cycling is of high importance for our understanding 22 

of the C balance at the catchment scale, particularly at high latitudes. Northern peatlands are 23 

large sources of dissolved organic carbon (DOC), while receiving lakes generally are net sources 24 

of both CO2 and CH4 (Tranvik et al., 2009). 25 

Many environmental characteristics of the Stordalen catchment, located in the subarctic 26 

discontinuous permafrost region of northern Sweden, have been measured since the 1950s 27 

(Bäckstrand, 2008) and many studies covering a variety of disciplines are still on-going 28 

(Callaghan et al., 2010; Callaghan et al., 2013). Observations related to the dynamics of almost 29 
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all the relevant C components have been made in different landcover types (Christensen et al., 1 

2012; Callaghan et al., 2013). However, the various observations over different landcover types 2 

have not yet been integrated into a comprehensive, year-round catchment-level C budget. A 3 

significant aspect of this area is that it contains permafrost that is rapidly thawing (Åkerman and 4 

Johansson, 2008). This makes more C hydrologically available (Olefeldt and Roulet, 2012) and 5 

the large stock of C in these tundra soils becomes available to microbial processes (Sjögersten 6 

and Wookey, 2002; Fox et al., 2008; Hartley et al., 2012). A rapid changing environment 7 

together with comprehensive observations have established the unique importance of this area as 8 

a model system for furthering our process-based understanding of the role of climate changes in 9 

northern regions. Furthermore, this understanding, gained in an accessible and highly 10 

instrumented area, can be applied to vast areas where large C stocks exist but long term 11 

measurements are lacking. 12 

The Stordalen catchment contains several distinct landcover types, including tundra heath, birch 13 

forest with heath understory, peatlands and lakes/rivers. Hereafter, the peatland is divided into 14 

three groups named “palsa”, “Sphagnum site” and “Eriophorum site”, based on surface 15 

hydrology, permafrost condition as well as characteristic plant communities. An earlier 16 

compilation of the C balance of the larger Torneträsk catchment, which encompasses the 17 

Stordalen catchment, indicated that there was a significant sink capacity in the birch forest as 18 

well as across the peatland (Christensen et al., 2007). This assessment, however, lacked year-19 

around measurement of CO2 and CH4 emissions and did not include direct measurements of 20 

aquatic C fluxes (Christensen et al., 2007). Subsequent observations in the Stordalen catchment 21 

have focused on filling the missing components. Consequently, recently updated year-around 22 

CO2 and CH4 measurements in the peatland identified the wetter non-permafrost Eriophorum 23 

sites to be strong C sinks (-46 gC/m2/yr) with high CH4 emissions (18-22 gC/m2/yr) (Jackowicz-24 

Korczyński et al., 2010; Christensen et al., 2012), while measurements conducted on the drier 25 

palsa (where permafrost is present) showed a relatively weaker uptake (-39.44 gC/m2/yr) 26 

(Olefeldt et al., 2012). Total waterborne C exports (DOC plus particulate organic C (POC) and 27 

dissolved inorganic C (DIC)) from the terrestrial ecosystems (both peatland and forest) were also 28 

monitored (Olefeldt et al., 2013) and found to represent a significant component of the net 29 

ecosystem C balance, ranging from 2.77 to 7.31 gC/m2/yr. In contrast, four years of continuous 30 
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Eddy-Covariance (EC)-tower based CO2 measurements in the birch forest revealed very variable 1 

C sink/source functionality, which in two out of four years has been found to be a C source to the 2 

atmosphere (Heliasz, 2012). Tundra heath, another important landcover type in this region, has 3 

lower C uptake (Christensen et al., 2007; Fox et al., 2008) and both birch forest and tundra heath 4 

were found to have high spatial heterogeneity (Fox et al., 2008; Heliasz, 2012). Altogether, 5 

different landcover types show diverse contributions to this subarctic ecosystem’s C balance. 6 

With pronounced future warming expected in this region, the structure and function of the 7 

different vegetation types are expected to vary dramatically as has been observed during 8 

warming in the recent past (Callaghan et al., 2013). In addition, changes to soil conditions due to 9 

warming and permafrost thaw will likely stimulate C fluxes to the atmosphere and affect the 10 

long-term accumulated C (Wolf et al., 2008a; McGuire et al., 2012), but this likely C release 11 

needs to be weighed against the possibility of increased uptake by increased primary productivity 12 

resulting from longer growing seasons and/or potential CO2 fertilization. 13 

The field measurements described above provide an insight into the ongoing processes and 14 

current ecosystem status, but until now, no modeling exercises have been implemented in this 15 

region in combination with the comprehensive measured data. Moreover, high spatial resolution 16 

predictions of future potential dynamics of both vegetation and soil processes and their responses 17 

to the projected climate are lacking in this region. In this study, therefore, we aim to assess the 18 

Stordalen catchment C budget in a retrospective as well as in a prognostic way by implementing 19 

a process-based dynamic ecosystem model (Smith et al., 2001; Miller and Smith, 2012) 20 

integrated with a distributed hydrology model (Tang et al., 2014a; Tang et al., 2014b) at high 21 

spatial resolution (50 m by 50 m, (Yang et al., 2012)). We quantify the overall C budget of the 22 

study catchment by synthesizing diverse C fluxes and specifically address the following 23 

questions: (1) Will this subarctic catchment become a C source or a larger C sink in the near 24 

future? (2) How differently will the catchment’s vegetation micro-types respond to the climate 25 

drivers? And (3) what are the major limitations in the model’s prognostic ability?  26 

To answer these questions, we implemented an Arctic-enabled version of the dynamic ecosystem 27 

model, LPJ-GUESS WHyMe (Wania et al., 2009a, 2009b, 2010). This model has been widely 28 

and successfully implemented for estimating and predicting ecosystem function in high-latitude 29 

regions (McGuire et al., 2012; Miller and Smith, 2012; Zhang et al., 2013). LPJ-GUESS 30 
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WHyMe includes comprehensive process descriptions to capture the interactions between 1 

atmosphere-vegetation-soil domains and it explicitly describes permafrost and peatland 2 

processes, which are important components of our study catchment. Importantly, previous 3 

studies (Tang et al., 2014a; Tang et al., 2014b) dedicated to integrate a distributed hydrology 4 

scheme to LPJ-GUESS WHyMe have demonstrated the necessity of considering lateral water 5 

movements to accurately capture water and C cycling in this region. The model with distributed 6 

hydrology is called LPJG-WHyMe-TFM where TFM stands for “Triangle Form-based Multiple 7 

flow algorithm” (Pilesjö and Hasan, 2014). The study presented here is the first modeling 8 

exercise to combine all the available year-around measured data in the Stordalen catchment and 9 

at high spatial resolution.  10 

 11 

2 Model descriptions  12 

The process-based dynamic ecosystem model, LPJG-WHyMe-TFM, was chosen as the platform 13 

for studying the subarctic catchment C balance. The processes in the model include vegetation 14 

growth, establishment and mortality, disturbance, competition between plant individuals for light 15 

and soil water (Smith et al., 2001; Smith et al., 2014) and soil biogeochemical processes (Sitch et 16 

al., 2003). These processes are operated in a number of independent and replicate patches. 17 

Vegetation in the model is defined and grouped by plant function types (PFTs), which are based 18 

on plant phenological and physiognomical features combined with bioclimatic limits (Hickler et 19 

al., 2004; Wramneby et al., 2008). Bioclimatic conditions determine which PFTs can potentially 20 

grow in study regions, and vertical stand structure together with soil water availability further 21 

influence PFT establishment based on PFTs’ shade and drought tolerance characteristics. A list 22 

of the simulated PFTs in this catchment can be found in the Supplement, Table S1. The 23 

parameterization and choice of non-peatland PFTs in this study cover all the main vegetation 24 

types found in the study region (boreal forest, shrubs, open-ground grasses, peatland mosses and 25 

flood-tolerant C3 graminoids) and are based on previous studies for the arctic region using LPJ-26 

GUESS (Wolf et al., 2008a; Hickler et al., 2012; Miller and Smith, 2012; Zhang et al., 2013). 27 

For peatland grid cells, two new peatland PFTs, flood-tolerant graminoids and Sphagnum moss, 28 

are introduced by Wania et al. (2009b).  29 
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The model is driven by monthly/annual climate data and includes both non-peatland and 1 

peatland hydrological processes (Fig. 1). The vertical water movement between atmosphere, 2 

vegetation and soil is based on Gerten et al. (2004) while the lateral water movement between 3 

grid cells was implemented by Tang et al. (2014b) based on topographical variations. More 4 

recently, an advanced multiple flow algorithm TFM (Pilesjö and Hasan, 2014) was chosen to 5 

distribute water among grid cells, due to its better treatment of flow continuity and flow 6 

estimation over flat surfaces (Tang et al., 2014a). Within the catchment boundary, surface and 7 

subsurface runoff can move from one upslope cell to multiple downslope cells, which greatly 8 

improves hydrological flux estimations (Tang et al., 2014a) and results in a better estimate of C 9 

fluxes in peatland region. The soil temperature estimation is driven by surface air temperature, 10 

and the Crank-Nicolson heat diffusion algorithm (Crank and Nicolson, 1996) is implemented to 11 

calculate the soil temperature profile on a daily time-step (Wania et al., 2009a). The C cycling 12 

descriptions in LPJG-WHyMe-TFM for peatland cells are based on Wania’s developments 13 

(Wania et al., 2009a, 2009b, 2010), while the non-peatland grid cell C cycling is kept the same as 14 

in LPJ-GUESS (Smith et al., 2001; Sitch et al., 2003). The full hydrological processes and 15 

peatland C cycling descriptions in LPJG-WHyMe-TFM can be found in the Supplement, Text S1. 16 

A brief summary of relevant C cycling processes in the model will be presented below.  17 

A modified Farquhar photosynthesis scheme (Haxeltine and Prentice, 1996; Haxeltine et al., 18 

1996; Sitch et al., 2003) is used to estimate gross primary production (GPP), which is related to 19 

air temperature (T), atmospheric CO2 concentration, absorbed photosynthetically active radiation 20 

(PAR) and stomatal conductance. Part of the GPP is respired to the atmosphere by maintenance 21 

and growth respiration (Ra), and the remaining part is net primary production (NPP) for each 22 

PFT. The reproduction costs are subtracted from NPP, and thereafter the remaining NPP is 23 

allocated to different living tissues in accordance with a set of PFT-specific allometric 24 

relationships (Smith et al., 2001). Leaves, fine root biomass and root exudates are transferred to 25 

the litter pool with a given turnover rate, and above-ground plant materials can also provide 26 

inputs to the litter pool due to stochastic natural disturbance events and mortality (Smith et al., 27 

2001; Thonicke et al., 2001). The majority (70%) of the litter is respired as CO2 directly to 28 

atmosphere, with a fixed fraction entering into fast- and slow-turnover soil organic pools (fSOM 29 

and sSOM) (Sitch et al., 2003). The overall decomposition rate in the model is strongly 30 
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influenced by soil temperature and moisture (Sitch et al., 2003). Additionally, the model also 1 

estimates emissions of biogenic volatile organic compounds (BVOC) per PFT (Arneth et al., 2 

2007; Schurgers et al., 2009). However, the modelled BVOC values are not compared in the 3 

current study, because they only represent a very small fraction of the modelled NEE and, 4 

additionally, there are insufficient growing season measurement data in the study domain to 5 

evaluate model performance. The major C cycling pathways can be found in the solid line-box 6 

area of Fig. 1. For peatland cells, an extra potential C pool for methanogens (CCH4) has been 7 

added (see dashed line-box area in Fig. 1) and mainly includes root exudates and easily-8 

decomposed materials (Wania et al., 2010). The majority of CCH4 is located in the acrotelm layer 9 

(Supplement, Text S1) and the oxidation and production of CH4 together determine the net 10 

emission of CH4. In the model, the oxidation of CH4 through methanotrophic bacteria is turned 11 

into CO2, whereas the un-oxidized CH4 can be released to the atmosphere by plant-transport, 12 

diffusion and ebullition (see the lines with a solid arrow in Fig. 1). The oxidation level is mainly 13 

determined by the location of water table position (WTP) in the model (Wania et al., 2010). 14 

The biomass production in the current version of LPJ-GUESS WHyMe has no representation of 15 

nitrogen (N) limitation and neither N fluxes nor C-N interactions are included (Sitch et al., 2007). 16 

The latest version of LPJ-GUESS does include N cycling and N limitation on plant production 17 

(Smith et al., 2014), but this capability has not yet been integrated with the customized arctic 18 

version of the model adopted in the present paper. Moreover, processes determining 19 

concentrations of DOC and DIC in soil water have not yet been explicitly described in the model 20 

(Fig. 1). To cover the majority of dissolved C losses and gains in our assessment of the 21 

catchment C budget, DOC is estimated by combining modelled runoff with observed DOC 22 

concentrations. Measured DIC export data is used directly, based on observations by Olefeldt et 23 

al. (2013).  24 

 25 
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3 Study site and materials  1 

3.1 Stordalen Catchment  2 

The Stordalen catchment, located in the discontinuous permafrost region, is situated around 9.5 3 

km east of the Abisko Naturvetenskapliga Station (ANS, Abisko Research Station, 68o20’N, 4 

19o03’E). The catchment, covering around 16 km2, has a steep topography on the southern part 5 

and turns into the lower flat peatland region to the north (Fig. 2b). The mean air temperature 6 

obtained from ANS records was –0.7oC for the period 1913-2002 (Christensen et al., 2004) and 7 

0.49oC for the period 2002-2011 (Callaghan et al., 2013). Climate details of the two warming 8 

periods in 20th century are given in Callaghan et al. (2010). The Stordalen catchment is 9 

composed of birch forest, tundra heath, peatland, lakes and rivers. Permafrost is only found in 10 

the palsa and recent permafrost loss and conversion of palsa into non-permafrost Eriophorum 11 

sites have been related to the observed warming trends in the region (Åkerman and Johansson, 12 

2008). The Sphagnum sites have a variable active layer depth and are dominated by Sphagnum 13 

spp. (PFT: pmoss), while the Eriophorum sites are dominated by flood-tolerant Eriophorum spp. 14 

(PFT: WetGRS). Birch forest (PFT: IBS, Betula pubescens ssp. czerepanovii), which forms the 15 

tree line in this region, is mainly distributed around and to the south of the peatlands and extends 16 

upwards to mountain slope areas (Fig. 2). Above the birch tree line, there are extensive areas of 17 

sub-arctic ericaceous dwarf-shrub heath dominated by the evergreen species Vaccinium vitis-18 

idaea and the deciduous species V. uliginosum and V. myrtillus. Willow shrubs (Salix spp.) and 19 

dwarf birch shrubs (Betula nana) occur at the fringes of the forest and in wetter areas above tree 20 

line. The heath shrub species also occur as a ground layer in the forest (see Callaghan et al. (2013) 21 

for details of vegetation distribution and changes). Around 5% of the catchment is covered by 22 

lakes or small rivers (Lundin et al., 2013). A detailed description of catchment hydrological 23 

conditions can be found in Olefeldt et al. (2013). The map in Fig. 2a is based on an object-based 24 

vegetation analysis in this area (Lundin et al., submitted). The classification is based on an aerial 25 

imagery dataset collected in August 2008, with a spatial resolution of 0.08 by 0.08 meters. 26 
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3.2 Model inputs and modelling protocol 1 

3.2.1 Model inputs 2 

Monthly climate data at 50 m resolution, including temperature, precipitation, and cloudiness, 3 

together with annual CO2 concentration were used to drive the model from 1913 to 2080 for the 4 

Stordalen catchment. The detailed descriptions of data sources for the period of 1913-2010 can 5 

be found in Tang et al. (2014b). The high spatial resolution of monthly temperature for the 6 

period 1913-2000 was developed by Yang et al. (2011) covering the whole catchment, while 7 

precipitation and cloudiness were extracted and interpolated from the Climatic Research Unit 1.2 8 

dataset (Mitchell et al., 2004). For the period 2001-2012, we obtained 12 years of observed 9 

temperature and precipitation data from ANS and interpolated these data to the whole region 10 

(Olefeldt et al., 2013). The annual CO2 concentrations from 1913-2010 were obtained based on 11 

McGuire et al. (2001) and TRENDS (http://cdiac.esd.ornl.gov/trends/co2/contents.htm). The 12 

model was spun up in order to achieve vegetation and C pools in equilibrium with the climate at 13 

the beginning of the study period by using the first 30 years of climate forcing data to repeatedly 14 

drive the model for 300 years. To run the model into the future, the monthly anomalies of 15 

simulation outputs from the Rossby Centre Atmosphere Ocean (RCAO) regional climate model 16 

(Koenigk et al., 2011) for the grid cell nearest Stordalen were estimated and applied to the 17 

historical datasets at 50 m, assuming the same anomaly for all cells in the study region. RCAO 18 

climate data was downscaled for an arctic domain using boundary forcing from a general 19 

circulation model forced by emissions from the SRES A1B scenario for the period 2013-2080 20 

(Zhang et al., 2013).  21 

A soil map provided by the Geological Survey of Sweden was used to identify the peatland 22 

fraction of each cell. Notably, the detailed rock area shown in Fig. 2a is not represented by the 23 

soil map used. Imagery Digital Elevation Model (DEM) from the National Land Survey of 24 

Sweden was used and the TFM algorithm (written in a Matlab script, (R2012)) was used to 25 

calculate topographic indices (Pilesjö and Hasan, 2014) used in the model LPJG-WHyMe-TFM. 26 
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3.2.2 Additional model parameterization and sensitivity testing 1 

An artificially-adjusted snow density (100 kg/m3, following the measurements ranges provided 2 

in Judson and Doesken (2000)) was implemented for birch forests to mimic deeper trapped snow 3 

in the forest. The observed thick top organic soil in the birch forest (Heliasz, 2012) is also 4 

represented in the model by increasing the organic fraction of the top 0.1 m soil layer (Olefeldt 5 

and Roulet, 2014) in the model. Additionally, the model simulation uses a single replicate patch 6 

in each 50 m grid cell. Finally, an additional simulation was performed in which we kept the CO2 7 

concentration constant after 1960 and allow the remaining inputs to vary as normal to diagnose 8 

the extent to which the CO2 concentration influences on ecosystem dynamics and C fluxes.  9 

3.3 Model evaluation data 10 

The observations used to evaluate the model include: (1) EC-tower measured CO2 NEE covering 11 

the palsa and Sphagnum sites during 2008 and 2009 (Olefeldt et al., 2012). (2) EC-tower 12 

measured CO2 NEE at the Eriophorum site from 2006-2008 (Christensen et al., 2012); (3) Two 13 

years (2006-2007) of EC-tower measured CH4 fluxes at the Eriophorum site (Jackowicz-14 

Korczyński et al., 2010); (4) Analyzed DOC concentrations at the palsa/Sphagnum site and 15 

Eriophorum site from 2008 (Olefeldt and Roulet, 2012); (5) Measured DIC export and DOC 16 

concentration at six sampling points from 2007-2009 (Olefeldt et al., 2013); (6) EC-tower 17 

measured birch forest CO2 NEE for four continuous years, 2007–2010 (Heliasz, 2012); (7) 18 

Catchment-level annual CO2 and CH4 emission from lakes and streams from 2008-2011 (Lundin 19 

et al., 2013). 20 

3.4 Calculation of the catchment carbon budget 21 

The catchment level C budget was calculated using estimated C fluxes (CFi) (after first 22 

accounting for observed DOC or DIC fluxes, where available) weighted by landcover fractions 23 

(fi in Eq. (1)). The symbol i in Eq. (1) represents different landcover types, in our case, birch 24 

forest, peatland (Sphagnum and Eriophorum sites), tundra heath and lake/river. To identify the 25 

temporal variations of C fluxes, the identification different landcover (except peatland region) is 26 

based on the dominant PFTs for each grid cell during the reference period of 2001-2012. 27 
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Additionally, the aerial photo-based classification of different peatland types is also used when 1 

estimating peatland fluxes as a whole (Olefeldt et al., 2012).  2 

∑
=

=

=

5

1

*
i

i

iiall fCFC      (1) 3 

 4 

4 Results 5 

The modelled C fluxes for birch forest, peatland and tundra heath are first compared with the 6 

measured data for the period of observation. The seasonality and magnitudes of the fluxes are 7 

evaluated and then used to estimate the catchment-level C budget. The modelled long-term C 8 

dynamics during the period 1913-2080 are then presented for different landcover types and the 9 

catchment-level C budget considering all the available C components is also assessed.  10 

4.1 Evaluation of the carbon balance in the historical period 11 

4.1.1 Peatland 12 

Both the plant communities and hydrological conditions in the peatland differ among the palsa, 13 

Sphagnum and Eriophorum sites. Notably, the measured NEE (see grey bars in Fig. 3a,b) covers 14 

both dry hummock (palsa) and semi-wet (Sphagnum site) vegetation (Olefeldt et al., 2012), 15 

whereas our model cannot represent the dry conditions of the palsa. Therefore, the observed 16 

fluxes over both palsa and Sphagnum sites were compared with the modelled fluxes at the 17 

Sphagnum site. The C fluxes magnitudes (including both wintertime emission and summertime 18 

uptake) are larger at the Eriophorum site, when compared with the palsa/Sphagnum site for both 19 

measured and modelled data. The modelled NEE at both sites generally captures the seasonality 20 

and magnitude of measured NEE, from being a strong sink (negative NEE) of CO2 during the 21 

summer (mainly June-August) to being a wintertime CO2 source. However, the model is unable 22 

to fully capture the C source/sink functionality in September at both sites. Furthermore, the 23 

modelled winter respiration at the Eriophorum site is very close to the observations, though the 24 

model overestimates the wintertime emissions at the palsa/Sphagnum site. The mean annual 25 

cumulative NEE reveals that the model estimations of C fluxes for both parts of the peatland are 26 
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within the observed ranges, though with around 20% of underestimation in the three-year 1 

averaged annual uptake (-39.76 gC/m2/yr and -50.18 gC/m2/yr for the modelled and observed 2 

fluxes at the palsa/Sphagnum site; -71.54 gC/m2/yr and -90.34 gC/m2/yr for the modelled and 3 

observed fluxes at the Eriophorum site). For the Eriophorum site, the three-year mean growing 4 

season uptake of C is underestimated by the model (Fig. 3d), which indicates that the modelled 5 

photosynthetic rates may be too low, or summer respiration rates may be too high, or both. 6 

Two full years (2006 and 2007) of EC-tower measured CH4 emissions were used to evaluate 7 

modelled estimations, and three different pathways of modelled CH4 are also presented (Fig. 8 

3e,f). The seasonal variability is well-described by the model and the modelled cumulative CH4 9 

over the year shows accurate representation of CH4 emissions when compared with the 10 

observations (20.23 and 22.57 gC/m2/yr for the measured and modelled, respectively). 11 

Specifically, the wintertime emissions are slightly underestimated but this underestimation is 12 

compensated by the overestimated summer emissions. Plant-mediated transport of CH4 13 

dominates during the growing season, while the ebullition and diffusion transport reach a 14 

maximum in August. Additionally, the plant-mediated CH4 emission is the main pathway active 15 

during the late spring and early autumn. 16 

4.1.2 Birch forest  17 

The modelled average LAI for the birch forest and understory vegetation is around 1.4 and 0.3, 18 

respectively, which are consistent with observations made in this area (Heliasz, 2012). Modelled 19 

and measured monthly and cumulative NEE are compared for the years 2007-2010 in Fig. 4. 20 

From the monthly NEE comparisons (Fig. 4a), we see that the model underestimates ecosystem 21 

respired C both before and after the growing season. The maximum photosynthesis-fixed C in 22 

July is lower than that measured for the year 2007-2009, but not for the year 2010. The 23 

comparisons in Fig. 4b clearly show the cumulative discrepancies between the modelled NEE 24 

and the observations. The years 2009 and 2010 become C sources over the year (with the 25 

average annual NEE value of 26.77 gC/m2/yr), even though the measured air temperature for the 26 

winter and spring is relatively lower than for the years 2007 and 2008 (mean air temperature for 27 

all months apart from Jun-Sep is -3.11oC, -3.56 oC, -4.26 oC, -5.75 oC for the years 2007, 2008, 28 

2009 and 2010, respectively). The abrupt emergence of strong respiration in 2009 and 2010 is 29 
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not captured by the model. Furthermore, a comparison of the measured and modelled cumulative 1 

NEE reveals that the main discrepancy occurs for the winter fluxes. As seen in Fig. 4b, the 2 

observed birch forest cumulative CO2 emissions from Jan to May reaches 50 gC/m2, a value 3 

which exceeds the range of the model’s predictions. Furthermore, the observed CO2 fluxes in 4 

September indicate a C source but the modelled fluxes are close to zero. 5 

The red-shaded areas in Fig. 4a reveal high spatial variations during the growing season and the 6 

accumulated variations over the year (the average monthly standard deviations of the four years, 7 

see Fig. 4b) demonstrate a remarkable spatial variability of the model-estimated annual NEE. 8 

Interestingly, the observed mean annual NEE in both 2007-2008 and 2009-2010 fall within the 9 

wide spatial variations indicated by the model.  10 

4.1.3 Tundra heath 11 

Around 29.8% of the catchment with alpine terrain was covered by heaths and dwarf shrubs 12 

during the reference period 2001-2012. The model predicts that low-growing evergreen shrubs 13 

(PFT: LSE, e.g. Vaccinium vitis-idaea) currently dominate in this area, with tall summer-green 14 

shrub (PFT: HSS, e.g. Salix spp.) dominant in the future predictions (2051-2080) (Fig. 5). Since 15 

there is no available year-around observations of the C balance in this part of the Stordalen 16 

catchment, a synthesis of published data from similar environments is used to evaluate the model 17 

estimations (Table 1). 18 

Four periods with averaged C uptake values from our model are presented (see the last four 19 

columns in Table 1) and a clear increase of summer uptake can be found with increased 20 

temperature and CO2 concentration. The modelled, whole-year uptake also follows the 21 

increasing trend, except for the period of 2051-2080. The model-estimated summer C uptake is 22 

much stronger than the observations made at the high arctic heath of NE Greenland, which is 23 

reasonable when considering the longer growing season in our catchment. The study conducted 24 

in an alpine area in Abisko by Fox et al. (2008) shows a wide range of estimated NEE over 40 25 

days during the summer time of 2004. The wide range of NEE values are because three levels of 26 

vegetation coverage were studied and the lowest uptake is from sparse vegetation dominated by 27 

bare rock and gravels, which is similar to the situation in our tundra heath sites (Fig. 2a). The 28 

modelled summer NEE between the years of 2001-2012 integrates the whole summer season 29 
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(longer than 40 days), and falls within the observed ranges presented by Fox et al. (2008), with 1 

values slightly higher than the lowest observed values. 2 

4.1.4 Aquatic systems 3 

• Lateral waterborne C fluxes 4 

The modelled DOC exports based on runoff estimations are compared with the measured DOC 5 

fluxes. The model generally underestimated annual runoff (the measured and modelled mean 6 

annual runoff for six points are 279.65 mm and 207.75 mm, respectively), but the modelled 7 

accuracy varies from point to point as well as for different years (Tang et al., 2014a). The 8 

average DOC export of the birch forest over three years across sampling sites from 2007 to 2009 9 

are 3.65, 2.77, and 2.33 gC/m2/yr from the observations and 3.09, 2.03, and 1.69 gC/m2/yr from 10 

the model estimations, respectively. The downward trend over the three years is captured and is 11 

related to lower precipitation during the latter years. The observed DOC export rates at the 12 

palsa/Sphagnum and Eriophorum sites in 2008 are directly used to represent different types of 13 

peatland export level and the values are 3.35 and 7.55 gC/m2/yr for the palsa/Sphagnum and 14 

Eriophorum sites, respectively (Olefeldt and Roulet, 2012). DIC export is currently beyond the 15 

scope of our model but nonetheless contributes to the whole C budget. We used an averaged DIC 16 

export value of 1.22 gC/m2/yr based on the published data in Olefeldt et al. (2013) and DIC 17 

export is included in the estimation of the catchment C budget below (see Table 2). 18 

• Carbon fluxes from Lakes and streams 19 

Investigations of aquatic system C emission in the Stordalen catchment were conducted by 20 

Lundin et al. (2013) during the years 2008-2011. Around 5% of the total catchment area (0.75 21 

km2) is classified as aquatic systems, with lakes accounting for 96% of the aquatic area. Both 22 

lakes and streams contribute to the emissions of CH4 and CO2, but the streams dominate CO2 23 

emission while the lakes dominate CH4 emissions. Averaging across the catchment area, the 24 

measured annual CO2 and CH4 emissions from streams are 10.1 and 0.06 gC/m2/yr, respectively, 25 

while the lake emitted 0.5 gC/m2/yr as CO2 and 0.1 gC/m2/yr as CH4 (Lundin et al., submitted). 26 
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Since river and lake processes are at present beyond the scope of the model, the contribution of 1 

aquatic systems to the catchment C fluxes is purely based on the observed data (see Table 2).  2 

4.2 Modelled whole-catchment carbon balance 3 

One of the benefits of using a dynamic vegetation model is that it allows us to investigate the 4 

vegetation and C budget responses to climate change. In this section, annual variations of both 5 

climate variables (temperature and precipitation) and different ecosystem C fluxes are presented 6 

for the whole simulated period. In addition, the normalized catchment C budget is also estimated. 7 

Our simulation results suggest that the temperature increase (around 2oC, see Fig. 6, 1a-1c) 8 

together with a CO2 increase to 639 ppm by 2080 could greatly increase the productivity of the 9 

birch forest (Fig. 6, 2a-2c and Fig. 5) as well as peatland CH4 emissions (see Fig. 6, 6a-6c). The 10 

DOC export from birch sites also increases slightly over the study period (Fig. 6, 3a-3c). Besides 11 

leading to an increase in ecosystem biomass in grid cells currently occupied by birch forest (Fig. 12 

5c,d), warming will also result in the current tundra heath close to the birch treeline being 13 

replaced by an upward expansion of the birch forest (Fig. 5a,b). This is indicated by the changes 14 

to birch treeline’s uppermost elevation in Fig. 6, 8a-8c. The dramatic increase of C uptake in the 15 

tundra heath region (Fig. 6, 5a-5c) is largely a result of this vegetation succession. Meanwhile, 16 

the successive degradation of permafrost and slightly higher annual precipitation may result in 17 

more anaerobic conditions for the modelled peatland. Combined with warmer soil conditions, 18 

these result in both higher decomposition rates of soil organic matter and greatly increased CH4 19 

production. Moreover, a stronger response of respiration than NPP to the temperature increase 20 

reduces the net C uptake in the peatland (see Fig. 6, 4a-4c). The catchment, as a whole, shows an 21 

increased C uptake (see the trend line in Fig. 6, 7a) over the 1913-2080 period. The averaged C 22 

budgets for the two selected periods (1961-1990 and 2051-2080) are -1.47 and -11.23 gC/m2/yr, 23 

respectively, with the increase being dominated by the large increase seen in the uptake rates at 24 

the birch forest and tundra heath sites. 25 

During the 2051-2080 period, both boreal needle-leaf shade-tolerant spruce (PFT: BNE, e.g. 26 

Picea abies) and boreal needle-leaf (but less shade-tolerant) pine (PFT: BINE, e.g. Pinus 27 

sylvestris) start to appear in the birch-dominated regions (Fig. 5). In the current tundra regions, 28 
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the coverage of HSS greatly increases at the expense of LSE. For the northern parts of the 1 

catchment, birch forest densification is observed with future warming, while the greatest relative 2 

changes in biomass occur near the treeline. The increased temperature together with increased 3 

CO2 concentration by 2080 are very likely to increase CO2 uptake in both tundra heath and 4 

forested areas, though the nutrient limitations are not included in this version of the model (but 5 

see (Smith et al., 2014)). A summary of the modelled catchment C components and C fluxes 6 

from different sources is given in Table 2. Additionally, the modelled estimations during the 7 

warm period of 2000-2005 are also presented in Table 2 and the positive mean value of 8 

catchment C-budget is seen to be an exception with reference to the main reference period. 9 

Furthermore, the annual variations of the modelled C fluxes in different periods are also 10 

presented in Table 2. We find that different landcover types could shift rapidly from being a C 11 

sink to a C source in the future (see the mean plus one s.d. value).  12 

To illustrate the impact of CO2 increases alone on the modelled C budget, the differences 13 

between simulations (∆C fluxes) with and without a CO2 increase since 1960 are shown in Fig. 7. 14 

The original outputs of those two simulations are plotted separated in the Supplement, Fig. S1, 15 

together with the statistical significance values (p).  Interestingly, the simulation with constant 16 

CO2 forcing after 1960 significantly reduces the birch and tundra uptake (positive values in Fig. 17 

7), whereas the peatland NEE and CH4 are not strongly influenced by the CO2 increase. The 18 

catchment C budget dynamics are consistent with the changes seen in the birch and tundra heath 19 

regions. Furthermore, the magnitudes of ∆C fluxes for the birch and tundra NEE show an 20 

increasing trend after 1971, which is also seen in the ∆C fluxes for the annual GPP and 21 

respiration (see birch forest site in Fig. 7(a). Since tundra heath shows the similar trend as birch 22 

forest, it is not presented in the figure). However, the relative differences of ∆C fluxes for the 23 

annual GPP and ecosystem respiration widen over time, which indicates a stronger response of 24 

GPP to the increased CO2 concentration than ecosystem respiration.  25 

To account for the fact that CH4 is a more potent greenhouse gas than CO2, an estimation of the 26 

global warming potential (GWP) of the two simulations can be made. Assuming the relative 27 

climate impact of CH4 is 28 times greater than CO2 over a 100 year period (IPCC, 2013), the 28 

calculated GWP for the simulation with atmospheric CO2 increase is three times larger in the 29 

period 1961-1990 (27.3 g CO2-eq) than the period 2051-2080 (8.8 g CO2-eq). However, in the 30 
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simulation without CO2 increase, the GWP in 1961-1990 (40.7 g CO2-eq) is approximately half 1 

of the GWP value for the 2051-2080 period (93.3 g CO2-eq). This shows that the change in 2 

global warming potential found in the model simulations is strongly influenced by the CO2 3 

concentration used to force the model, as the CO2 trajectory can alter the balance between the 4 

GWP changes resulting from C uptake in the birch forest and tundra, and the peatland CH4 5 

emissions.  6 

 7 

5 Discussion 8 

To our knowledge, our model simulation is the first attempt to create a C budget of a subarctic 9 

catchment based on a dynamic global vegetation model applied at the local scale and to predict 10 

its evolution in response to a changing climate. The C budget estimations in this paper include 11 

major flux components (CO2, CH4 and hydrological C fluxes) based on a process-based approach. 12 

The magnitude and seasonality of modelled C fluxes compare well with the measurements (Figs 13 

3, 4 and Table 1 and 2), which gives us confidence in the ability of our model to represent the 14 

main processes influencing the C balance in this region. Our hope is that, by using a process-15 

based modelling approach at high spatial resolution, our methodology will be more robust in 16 

estimating the C budget in a changing future climate than other budget estimation methods 17 

(Christensen et al., 2007; Worrall et al., 2007). In response to a climate warming scenario, our 18 

model shows a general increase in the C sink in both birch forest and tundra heath ecosystems, 19 

along with greater CH4 emissions in the catchment (Fig. 6). Integrated over the catchment, our 20 

modelled C budget indicates that the region will be a greater sink of C by 2080, though these 21 

estimates are sensitive to the atmospheric CO2 concentration. Nevertheless, the current model 22 

set-up and simulations still contain limitations in both the historical estimations and predictions. 23 

Below we discuss the model’s current performance as well as a few existing limitations, and 24 

further propose some potential model developments. Most of the studies referred to below have 25 

been conducted specifically in the area near the Stordalen catchment or in other regions with 26 

similar environments.  27 
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5.1 Modelling carbon fluxes for the historical period 1 

5.1.1 Peatland CO2 and CH4 emission 2 

The model estimations in the peatland demonstrated skill in representing the relative differences 3 

of CO2 fluxes between the palsa/Sphagnum site and Eriophorum site. The current model version 4 

cannot represent the very dry conditions of the palsa due to the acrotelm-catotelm soil structure 5 

(Wania et al., 2009a); therefore, the overestimated emissions rates of CO2 (Fig. 3a,b) are 6 

expected when using the modelled fluxes from the Sphagnum site to compare with the measured 7 

data covering both the palsa and Sphagnum sites (Larsen et al., 2007a; Bäckstrand et al., 2010). 8 

The cold-season respiration at the Sphagnum site can account for at least 22% of the annual CO2 9 

emissions (Larsen et al., 2007a), which is a further reason for the model overestimations. 10 

Moreover, at the Eriophorum site, the model slightly underestimated summertime uptake, which 11 

was found to be related to modelled summer respiration being higher than dark chamber-12 

measured respiration, though with high spatial variations (Tang et al., 2014a).  13 

The accurate representations of annual CH4 emissions at the Eriophorum sites reflect the model’s 14 

improved estimations of both hydrological conditions and dynamic C inputs to the CCH4 pools 15 

(Fig. 1). With the inclusion of the distributed hydrology at 50 m resolution (Tang et al., 2014a; 16 

Tang et al., 2014b), the lower-lying peatland can receive surface runoff from the upslope regions 17 

and the fact that water can rise to a depth of 10 cm above the surface both creates anaerobic 18 

conditions in the model and favours the establishment of flood-tolerant graminoid PFTs such as 19 

Carex spp., which can transport CH4 to the atmosphere. Under such anaerobic conditions, 20 

decomposition rates are restricted and part of the decomposed C becomes CH4 (Wania et al., 21 

2010). However, the overestimation of CH4 emissions during summer time is at least partly 22 

likely to be linked to the complexity of modelling the ebullition process (Wania et al., 2010). 23 

Based on sensitivity testing shown in Wania et al. (2010), the parameter that controls CH4/CO2 24 

production ratio under anaerobic conditions can strongly impact the ebullition process, so it is 25 

important to determine this parameter more accurately in future studies.  Nevertheless, it remains 26 

the case that excluding the palsa type could result in a general overestimation of CH4 emission 27 

over the whole peatland.  28 
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5.1.2 Wintertime carbon fluxes, thickness of organic layer and disturbance 1 

in the birch forest 2 

The high wintertime CO2 fluxes to the atmosphere observed in the birch forest and the 3 

underestimations by our model (Fig. 4) highlight the importance of the representation of winter 4 

season C fluxes for the birch forest, particularly as winter temperatures are increasing more than 5 

summer temperatures  (Callaghan et al., 2010). In the model, the respiration rate is linked to soil 6 

temperatures  and moisture and the underestimated respiration could be attributed to the lower 7 

temperatures  estimations in the wintertime (covering all months except Jun-Sep) when 8 

compared with the observed soil temperature at 5 and 10 cm depth in 2009 and 2010 (the 9 

modelled wintertime soil temperatures is around 1.9°C lower than that observed at both depths). 10 

Also, the investigations of snow depth insulation influence on soil temperatures  and respiratory 11 

activity by Grogan & Jonasson (2003) have shown that soil temperatures contributes to the 12 

greatest variations in respiratory activity at our birch sites. The birch forest is located on the 13 

relatively lower parts of the catchment (Fig. 2) and traps the wind-shifted lighter snow from the 14 

upland tundra heath, creating a much thicker snow pack and therefore significantly increasing the 15 

soil temperatures (Groendahl et al., 2007; Larsen et al., 2007b; Luus et al., 2013). Snow depth 16 

measurements  in the Abisko birch and tundra heath sites from March 24th to April 7th, 2009 17 

(http://www.nabohome.org/cgi-bin/explore.pl?seq=131) revealed the snowpack in the birch 18 

forest was 26.62 cm deeper on average than the snowpack in the tundra heath. The snow density 19 

for the birch forest was artificially decreased to 100 kg/m3 in the model in order to increase the 20 

snow depth in the absence of a wind-redistribution mechanism in our model, but it is still hard to 21 

capture the high soil temperatures  as well as high emission rates in winter.  22 

The thickness of organic soil layer is another crucial component controlling birch site respiration 23 

in our catchment (Sjögersten and Wookey, 2002; Heliasz, 2012). The thickness of organic soil is 24 

most likely connected to the past transformation of the sites from heath to forest and is expected 25 

to decrease if birch biomass continues to increase (Hartley et al., 2012; Hartley et al., 2013). 26 

Furthermore, Hartley et al. (2012) showed evidence of the decomposition of older soil organic 27 

matter during the middle of the growing season and concluded that with more productive forests 28 

in the future, the soil stocks of C will become more labile. From a model perspective, faster 29 
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turnover rates of soil C pools (Sitch et al., 2007) could be used in climate warming model 1 

experiments to reflect the accelerated C mobilization in the soil. This could, to some degree, 2 

offset the stronger C uptake in the birch forest site in the simulation results shown here. In 3 

addition, the current parameterization of the organic fraction in the birch forest may not fully 4 

represent the organic horizons in reality soil.  5 

The birch forest is cyclically influenced by the outbreak of moths (E. autumnata) and an 6 

outbreak in 2004 greatly affected the birch forest, resulting in a much lower C uptake than the 7 

average (Heliasz et al., 2011). Even though it is assumed that the fluxes during 2007-2010 had 8 

returned to the pre-defoliation levels (M. Heliasz, personal communication), it is still difficult to 9 

completely exclude the influence of insect disturbance in this forest. For the current model 10 

simulation, stochastic mortality and patch-destroying disturbance events have been included to 11 

account for the impacts of these random processes on ecosystem C cyclings. However, to give a 12 

more accurate and reliable representation of the C fluxes in the birch forest, an explicit 13 

representation of insect impacts, outbreaks and their periodicity should be included (Wolf et al., 14 

2008b) as well as other disturbances (Callaghan et al., 2013; Bjerke et al., 2014). For example, a 15 

warm event in winter 2007 caused a 26% reduction in biomass over an area of over 1424 km2 in 16 

summer 2008 (Bokhorst et al., 2009). 17 

5.1.3 Benefits of high spatial resolution and limitations from monthly 18 

temporal resolution 19 

Subarctic ecosystems are characterized by small-scale variations in vegetation composition, 20 

hydrological conditions, nutrient characteristics and C fluxes (Lukeno and Billings, 1985; 21 

McGuire et al., 2002; Callaghan et al., 2013). The spatial resolution of 50 m in this model 22 

application allowed us to capture the diverse vegetation micro-types and their altitudinal gradient 23 

in the catchment, as well as their differential responses to climate changes (Figs. 5 and 6). This is 24 

unlikely to be well represented by a simple-averaging approach across the landscape, e.g. RCMs 25 

or GCMs. Furthermore, it is worth noting that the carbon cycling in the peatland, especially CH4 26 

fluxes, is sensitive to the WTP estimations (Tang et al., 2014a). Without spatially-distinguished 27 

climate and topographical data, it becomes impossible to implement our distributed hydrological 28 

scheme and thereby capture the peatland WTP dynamics. To our knowledge, the use of 50 m 29 
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climate data as forcing of LPJG-WHyMe-TFM (Yang et al., 2011) is among the most detailed 1 

and comprehensive modelling exercises related to C cycling. Although this study focuses on C 2 

cycling, the innovative projects changes of vegetation micro-types at high spatial resolution are 3 

relevant to local stakeholders such as conservation managers and reindeer herders. 4 

Nevertheless, the high spatial resolution data are currently produced with coarser monthly 5 

temporal resolution, which could restrict the model’s ability to accurately estimate C fluxes at 6 

the start and end of the growing season (Figs. 3 and 4). Due to the dramatic variations of day 7 

length at high latitudes, a few days of misrepresenting the starting date of the growing season 8 

could significantly alter the estimated plant C uptake (Heliasz, 2012). The daily variations are 9 

difficult to capture from the interpolated quasi-daily values used in the model. Indeed, such 10 

variations strongly highlight the need for climate forcing at a higher temporal resolution for this 11 

region, due to the long daylight duration in summer and short growing seasons.  12 

5.2 Projection uncertainties  13 

A temperature increase of 2°C (Fig. 6) and elevated CO2 concentrations could greatly increase 14 

vegetation growth and thus the C sink of the whole catchment. However, the densification and 15 

expansion of birch forest as well as the increased presence of boreal spruce and pine PFTs in our 16 

projected period (Fig. 5) could be strongly influenced by reindeer grazing and herbivore 17 

outbreaks (Hedenås et al., 2011; Callaghan et al., 2013), even though those detected changes are 18 

consistent with other models simulations (Wolf et al., 2008a; Miller and Smith, 2012) and 19 

general historical trends (Barnekow, 1999). Furthermore, climate warming may favor the spread 20 

of insect herbivores, so an assessment of ecosystem responses to future climate change cannot 21 

ignore these disturbances (Wolf et al., 2008b) and also other factors such as winter warming 22 

events (Bjerke et al., 2014) 23 

Temperature increase results in a larger extent of permafrost degradation in the future. 24 

Meanwhile, the increased amount of available water from precipitation and lateral inflow may 25 

increase the degree of anoxia and further favors the flood-tolerant WetGRS PFT growth as well 26 

as CH4 production. However, the exact extent of wetting or drying of peatland in the future is 27 

still highly uncertain, and the model prediction depends strongly on the climate scenario, 28 
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permafrost thawing and the resulting balance between increased water availability and increased 1 

evapotranspiration. If the peatland drying is large enough, the reduced degree of anoxia could 2 

reduce CH4 emissions in the future (Wrona et al., 2006; Riley et al., 2011). In our case, the 3 

peatland, located at the lower part of the catchment, receives water from the southern mountain 4 

region, and is more likely to become wetter in the near future in response to the increases in 5 

water availability (Wrona et al., 2006). Additionally, the determination of grid cell peat fractions 6 

in our simulation is dependent on the current (historical) soil map; therefore, the projections of 7 

peatland expansion to non-peatland cells cannot be reflected in the current model predictions. 8 

This could bring some additional uncertainties into the catchment C-budget estimations (Malmer 9 

et al., 2005; Marushchak et al., 2013).  10 

To cover all the major C components in this catchment, the current estimations of the C budget 11 

used available, observed aquatic emissions and DOC concentration and DIC export values, all of 12 

which were assumed constant for the whole simulation period, 1913-2080. However, the 13 

direction and magnitude of changes to aquatic C fluxes are hard to quantify without modelling 14 

additional processes in these systems. Previous studies have found that the substantial thawing of 15 

permafrost as well as increased precipitation in recent decades have significantly increased total 16 

organic carbon (TOC) concentrations in lakes (Kokfelt et al., 2009; Karlsson et al., 2010). The 17 

increased loadings of nutrients and sediments in lakes are very likely to increase productivity of 18 

aquatic vegetation, but the effects may be offset by the increased inputs from terrestrial organic 19 

C and increases in respiration (Wrona et al., 2006; Karlsson et al., 2010). Emissions of CH4 from 20 

aquatic systems are more likely to increase due to the longer ice-free season (Callaghan et al., 21 

2010), increased methanogenesis in sediments and also increased CH4 transport by vascular 22 

plants (Wrona et al., 2006). Furthermore, a recent study by Wik et al. (2014) found that CH4 23 

ebullition from lakes is strongly related to heat fluxes into the lakes. Therefore, future changes to 24 

energy fluxes together with lateral transports of dissolved C from terrestrial ecosystems to the 25 

aquatic ecosystems are especially important for predicting C emissions from aquatic systems.  26 

As we have discussed, the dynamics of birch forest and to a lesser extent tundra heath C 27 

assimilation largely determines the catchment’s C budget (Figs. 5 and 6), whereas the dramatic 28 

increase of CH4 can slightly offset the net climate impact of the projected C uptake. Furthermore, 29 

both modelled C budget and GWP values are very sensitive to the atmospheric CO2 levels. 30 
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However, to date, there is no clear evidence showing significant long-term CO2 fertilization 1 

effects in the arctic region (Oechel et al., 1994; Gwynn-Jones et al., 1997; Olsrud et al., 2010). 2 

Two possible reasons for this lack of CO2 fertilization response might be that CO2 levels close to 3 

the moss surface in birch forest can reach as high as 1140 ppm already and are normally within 4 

the range of 400-450 ppm (Sonesson et al., 1992) while tall vegetation such as shrubs and birch 5 

trees as well as peatland species have not been manipulated by CO2 fertilization. Over the long-6 

term, vegetation growth is likely a result of complex interactions between nutrient supplies 7 

(McNown and Sullivan, 2013), UV-B exposure (Schipperges and Gehrke, 1996; Johnson et al., 8 

2002), temperature and growing season length (Heath et al., 2005) and forest longevity 9 

(Bugmann and Bigler, 2011). Therefore, more field experiments are urgently needed in order to 10 

quantify and understand the CO2 fertilization effects on the various vegetation micro-types of the 11 

subarctic environment, and particularly tall vegetation types.  12 

Overall, the current model application has been valuable in pointing to these gaps in process 13 

understanding and meanwhile shows the importance of including vegetation dynamics in studies 14 

of C balance. Furthermore, a current inability to include the potential impacts of peatland 15 

expansion, potential increases of emissions from aquatic systems as well as the potential nutrient 16 

limitations on plants (but see Smith et al. (2014)) and disturbances (Bjerke et al., 2014), make it 17 

likely that our projections of the catchment C-budget and CO2-GWP will vary from those that 18 

may be observed in the future. However, our high spatial resolution, process-based modelling in 19 

the subarctic catchment provides an insight into the complexity of responses to climate change of 20 

a subarctic ecosystem while simultaneously revealing some key uncertainties that ought to be 21 

dealt with in future model development. These developments would be aided by certain new 22 

observations and environmental manipulations, particularly of CO2 with FACE experiments of 23 

shrubs and trees, in order to improve our understanding and quantification of complex subarctic 24 

processes. 25 
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Table 1. Tundra heath summer and whole year NEE comparisons between the modelled and published data. 1 

Tundra type Arctic heath Arctic heath Arctic heath Subarctic heath LSE & HSS LSE & HSS LSE & HSS LSE & HSS 

Period 1997, 2000-2005, 

summer 

2007, summer 2007, summer 2004, 13th Jul-21st 

Aug, 40 days 

1961-1990, 

summer§/whole year 

1991-2000, 

summer§/whole year 

2001-2012,  

summer§/whole year 

2051-2080, 

summer§/whole year 

Location NE Greenland NE Greenland NE Greenland Northern Sweden Northern Sweden Northern Sweden Northern Sweden Northern Sweden 

Methods* EC CH CH EC & CH LPJG LPJG LPJG LPJG 

Cumulated 

NEE 

 −1.4 ~ −23.3a -22.5b -18b -38.2~-68.7c, ** -26.89/-4.31d -41.83/-12.82 d -58.23/-31.38 d -67.93/-26.88 d 

* EC stands for Eddy-Covariance method, CH stands for Chamber method and LPJG stands for model estimations with LPJG-WHyMe-TFM; ** values vary from 2 
sparsely vegetated areas (less than 10% cover) to fully-covered low-growing Empetrum areas. §: the modelled values in summer include data for June, July, August and 3 
September. LSE: low-growing (<50 cm) evergreen shrubs. HSS: tall (< 2m) deciduous shrubs. a:(Groendahl et al., 2007); b: (Tagesson et al., 2010); c: (Fox et al., 2008); d: This 4 
study. 5 
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Table 2. Summary of catchment C-budget for different time periods. Both mean and annual variations (one standard deviation value in 1 

the parentheses) of each period are presented. Negative values indicate ecosystem carbon uptake, while positive values indicate that 2 

mean ecosystem carbon is lost through respiration. The mean temperature (T, oC) of each period is listed. 3 

Periods Birch 

CO2
§ 

Eriop. 

CO2
§ 

Palsa 

/Sphag. 

CO2
§ 

Peatland 

CH4 
Tundra 

heath 
Streams 

CO2* 
Lakes 

CO2* 
Streams 

CH4* 
Lakes 

CH4* 
Birch 

DIC 
Peatlan

d DIC 
Birch 

DOC 
Eriop. 

DOC 
Palsa 

/Sphag. 

DOC 

C budget 

1961-1990 

(T = -1.26) 

-17.52 
(22.46) 

-36.83 
(30.80) 

-18.04 
(31.39) 

14.08 
(1.57) 

-4.31 
(15.81) 

      2.52 
(0.73) 

  -1.47 
(18.25) 

2000-2005 

(T = 0.13) 

-3.48 
(34.10) 

-32.85 
(28.91) 

-10.49 
(27.36) 

17.65 
(2.21) 

-1.63 
(21.77) 

      3.25 
(0.56) 

  7.96 
(27.00) 

 

2006-2011 

(T = -0.19) 

-56.68 
(44.26) 

-60.10 
(25.98) 

-37.26 
(24.58) 

18.60 
(1.27) 

-50.27 
(27.28) 

      2.31 
(0.67) 

  -38.71 
(34.55) 

2051-2080 

(T = 0.90) 

-24.56 
(39.05) 

-28.84 
(32.25) 

-8.43 
(27.67) 

22.94 
(3.71) 

-26.88 
(32.22) 

      2.86 
(0.40) 

  -11.23 
(33.11) 

Measured 

(Years) 

0.88a -90.34b -50.18c 20.23b, £ -3**, d 10.1±4.4e 0.5±0.2e 0.06e 0.1±0.1e 1.22f 1.22f 3.17f 7.55g 3.35g   

(2007-
2010) 

(2006-
2008) 

(2008-
2009) 

(2006-
2007) 

 (2009-
2011) 

(2008-
2011) 

(2009-
2011) 

(2010) (2007
-
2009) 

(2007-
2009) 

(2008-
2009) 

(2008) (2008)  

§: fluxes taken away DOC and DIC export. £: observed CH4 fluxes for the Eriophorum site. *: variables are normalized to the catchment area. **: is a reference-4 
estimated value. a (Heliasz, 2012); b (Jackowicz-Korczyński et al., 2010); c (Olefeldt et al., 2012); d (Christensen et al., 2007); e (Lundin et al., submitted); f(Olefeldt et al., 5 
2013); g (Olefeldt and Roulet, 2012); Eriop.: Eriophorum and Sphag.: Sphagnum.  6 
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 1 

Figure 1. Schematic of carbon components and cycling in LPJG-WHyMe-TFM. The solid line-2 

box includes carbon cycling for non-peatland cell, whereas the items inside the dashed line-box 3 

represent processes particular to the peatland cells. Only DOC&DIC in red text is not explicitly 4 

presented in the current model. T: air temperature, P: precipitation, R: radiation, CO2: 5 

atmospheric CO2 concentration, Decom_CCH4: decomposed materials allocated to CCH4, Decom: 6 

decomposition.  7 
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 1 

Figure 2. Object-based vegetation classification map of the Stordalen catchment (a) and 2 

schematic of landcover types and features of the approximate transect A-B in (b).  3 
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 1 

Figure 3. Monthly (left) and mean annual cumulative (right) CO2 NEE and CH4 fluxes for the 2 

peatland. Positive values indicate ecosystem release to the atmosphere and negative values 3 

indicate ecosystem uptake. Msd stands for Measured.  4 
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 1 

Figure 4. Monthly (a) and cumulative (b) NEE between the years 2007 and 2010 for the birch 2 

forest. Modelled NEE with spatial variability (red shadow) for each year is shown.  3 
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 1 

Figure 5. Dominant PFTs ((a) and (b)) and their biomass ((c) and (d)) in the study catchment, for 2 

the periods 1961-1990 ((a) and (c)) and 2051-2080 ((b) and (d)).  3 
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 1 

Figure 6. Time-series (column a) of annual mean temperature, precipitation sum, NEE 2 

(gC/m2/yr), averaged DOC export (gC/m2/yr) from the birch forest, birch tree line elevation (m) 3 

and catchment C-budget (gC/m2/yr) values between 1913 and 2080. The NEE data for the birch 4 

forest and the peatland have had the corresponding DOC and DIC values subtracted. Here the 5 

averaged C fluxes from the Stordalen peatland (the northeast side of the catchment) are used to 6 

represent for the averaged C fluxes for the whole catchment peatlands since only the Stordalen 7 

peatland DOC and DIC observations are currently available. The aerial photo-based 8 

classification of the Eriophorum and Palsa/Sphagnum peatland fractions within the Stordalen 9 

peatland is used to scale up the C fluxes. The trend of each dataset is shown with a red dashed 10 

line. The second and third columns (b and c) of the figure focus on the periods 1961-1990 and 11 

2051-2080 (these two periods are also indicated in the first column with shaded area). The 12 

numbers in bold type in columns b and c show the annual average of each quantity for the 13 

respective time period. The fractions of peatland, birch forest, tundra and lakes/rivers are 5.7%, 14 
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57.69%, 29.76% and 5%, respectively. Approximately 1.79% of the catchment area is estimated 1 

as being dominated by C3G and HSE, which are not included in the above classification. The last 2 

row shows the birch tree line elevation changes over the period.  3 
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 1 

Figure 7. Carbon flux differences (∆C fluxes) for different landcover types with and without a 2 

CO2 increase since 1960. Positive values of ∆C NEE imply a higher uptake or a lower emission 3 

of CH4 in the simulations with a CO2 increase compared to the simulation without a CO2 4 

increase. For the birch forest landcover type, the differences in gross primary production (GPP) 5 

and ecosystem respiration are shown in the panel (a), where the positive values indicate a higher 6 

photosynthesis rate and a higher respiration rate in the simulations with a CO2 increase, 7 

compared to the simulations without a CO2 increase. 8 


