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Abstract

Existing estimates of methane (CH4) fluxes from North American wetlands vary widely in both
magnitude and distribution. In light of these differences, this study uses atmospheric CH4 obser-
vations from the US and Canada to analyze seven different bottom-up, wetland CH4 estimates
reported in a recent model comparison project. We first use synthetic data to explore whether5

wetland CH4 fluxes are detectable at atmospheric observation sites. We find that the observation
network can detect aggregate wetland fluxes from both eastern and western Canada but gener-
ally not from the US. Based upon these results, we then use real data and inverse modeling
results to analyze the magnitude, seasonality, and spatial distribution of each model estimate.
The magnitude of Canadian fluxes in many models is larger than indicated by atmospheric10

observations. Many models predict a seasonality that is narrower than implied by inverse mod-
eling results, possibly indicating an over-sensitivity to air or soil temperatures. The LPJ-Bern
and SDGVM models have a geographic distribution that is most consistent with atmospheric
observations, depending upon the region and season. These models utilize land cover maps or
dynamic modeling to estimate wetland coverage while most other models rely primarily on15

remote sensing inundation data.
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1 Introduction

CH4 fluxes from wetlands play a critical role in global climate change. CH4 is the second-most
important long-lived greenhouse gas, and the radiative forcing of the current atmospheric burden
is approximately 26% of carbon dioxide (Butler, 2014). Wetlands are possibly the largest single
source of this gas to the atmosphere and account for roughly 30% of global emissions (Kirschke5

et al., 2013).
Despite the important role of wetland CH4 fluxes in climate change, existing estimates of this

source differ on the magnitude, seasonality, and spatial distribution of fluxes, from regional to
global scales. In fact, a recent global model comparison project named WETCHIMP (Wetland
and Wetland CH4 Inter-comparison of Models Project) found large differences among existing10

CH4 wetland models (Fig. 1, Melton et al., 2013; Wania et al., 2013). For example, existing
estimates of maximum global wetland coverage differ by about a factor of 6 – from 4.1× 106

to 26.9× 106 km2 . Furthermore, estimates of global natural wetland fluxes range from 92–
264TgCH4 yr

−1. The relative magnitude of these uncertainties increases at sub-global spatial
scales. As a case in point, CH4 estimates for Canada’s Hudson Bay Lowlands (HBL) range from15

0.2 to 11.3TgCH4 yr
−1. These disagreements in current CH4 estimates do not bode well for

scientists’ abilities to accurately predict future changes in wetland fluxes due to climate change
(Melton et al., 2013).

A number of studies have used chamber measurements of CH4 to parameterize or evaluate
biogeochemical CH4 models (e.g., Livingston and Hutchinson, 2009). These measurements20

usually encompass fluxes from a relatively small area, and fluxes can often vary greatly with
landscape heterogeneity at these spatial scales (Waddington and Roulet, 1996; Hendriks et al.,
2010). CH4 data collected in the atmosphere sees the cumulative effect of CH4 fluxes across
a broader region (e.g., Winderlich et al., 2010; Pickett-Heaps et al., 2011; Miller et al., 2014).
Hence, atmospheric data can provide a unique tool for evaluating existing CH4 flux estimates25

across different countries or continents.
The present study compares the WETCHIMP CH4 flux estimates against atmospheric CH4

data and inverse modeling results from 2007–2008 through two sets of analyses. First, we con-
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struct a set of synthetic data experiments to understand whether the atmospheric CH4 observa-
tion network can detect CH4 fluxes from wetlands. We also explore the factors that might pre-
vent the network from detecting wetland fluxes. To answer these questions, we utilize a model
selection procedure based upon the Bayesian Information Criterion (BIC) (Sect. 2.2 Shiga et al.,
2014; Fang et al., 2014; Fang and Michalak, 2015). This procedure determines whether wetland5

fluxes from different regions and seasons are necessary to describe variability in synthetic at-
mospheric CH4 observations. Based on these synthetic experiments, we conduct a second set
of analyses using real atmospheric data and inverse modeling results. We use this data to ana-
lyze the magnitude, seasonal cycle, and spatial distribution of each WETCHIMP CH4 estimate.
We investigate these questions over the US and Canada using CH4 data collected from towers10

and regular aircraft flights operated by NOAA and its partners and from towers operated by
Environment Canada.

2 Methods

This section first describes the atmospheric CH4 data and the atmospheric model that allows
direct comparison between the data and various flux estimates. Subsequent sections describe15

both the synthetic and real data experiments outlined in the introduction (Sect. 1).

2.1 Data and atmospheric model

The present study utilizes atmospheric CH4 observations from aircraft and tower platforms
across the US and Canada, a total of 14 703 observations from 2007–2008. These observation
sites include four towers operated by Environment Canada and 10 towers in the US operated by20

NOAA and its partners. Observations at the NOAA towers consist of daily flasks (occasionally
weekly), and observations at the Environment Canada sites are continuous measurements. As
in Miller et al. (2014), we use afternoon averages of this continuous data. In addition to these
towers, we utilize observations from 17 regular NOAA aircraft monitoring locations in the US
and Canada (Fig. 2). We incorporate aircraft data up to 2500m altitude as was done in Miller25
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et al. (2013). Observations above that height are usually representative of the free troposphere
with limited sensitivity to surface fluxes. These observations and the associated model runs
(described below) are the same as those in Miller et al. (2013) and Miller et al. (2014).

We then employ an atmospheric transport model to relate CH4 fluxes at the Earth’s surface
to atmospheric concentrations at the observation sites. The modeling approach here combines5

the Weather Research and Forecasting (WRF) meteorological model and a particle-following
model known as STILT, the Stochastic Time-Inverted Lagrangian Transport model (e.g., Lin
et al., 2003; Nehrkorn et al., 2010; Hegarty et al., 2013). WRF-STILT generates a set of foot-
prints; these footprints quantitatively estimate the sensitivity of each observation to fluxes at
each surface location (with units of ppb per unit surface flux). We multiply the footprints by10

a flux model and add this product to an estimate of the “background” concentration – the CH4

concentration of air entering the North American regional domain. We estimate this background
concentration using CH4 observations collected near or over the Pacific Ocean and in the high
Arctic, a setup described in detail by Miller et al. (2013) and Miller et al. (2014). The resulting
modeled concentrations can be compared directly against atmospheric CH4 observations. The15

observations, WRF-STILT runs, background concentrations, and uncertainties in the modeling
framework are described in greater detail in the Supplement, Miller et al. (2013), and Miller
et al. (2014).

Using this setup, we can evaluate predicted CH4 concentrations using the WETCHIMP flux
estimates (Fig. 1) against observed atmospheric concentrations. The WETCHIMP project was20

designed to compare simulated wetland distributions and modeled CH4 fluxes at multi-year,
continental scales (Melton et al., 2013; Wania et al., 2013). The project entailed several sets
of model runs, but Melton et al. (2013) primarily reported on one set of runs – runs for 1901–
2009 that used the same observed climate and CO2 concentration datasets to force all models.
Each CH4 model utilized its own parameterization for wetland area and distribution. We use25

the outputs from this set of model runs in the present study. Of the WETCHIMP models, seven
provide a flux estimate on a suitable time step for boreal North America and six provide an
estimate for temperate North America. These models include CLM4Me (Riley et al., 2011),
DLEM (Tian et al., 2010), LPJ-Bern (Spahni et al., 2011), LPJ-WHyMe (Wania et al., 2010),
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LPJ-WSL (Hodson et al., 2011), ORCHIDEE (Ringeval et al., 2010), and SDGVM (Singarayer
et al., 2011). All flux model outputs used from the WETCHIMP study have a temporal resolu-
tion of one month. These models are described in Melton et al. (2013); Wania et al. (2013), and
the Supplement.

2.2 Synthetic data experiments5

We assess the ability of the CH4 observation network to detect wetland fluxes and use a model
selection framework adapted from the BIC. A model selection framework can sort through a
large number of potential explanatory variables and will choose the smallest set of variables
that best describe the dataset of interest (e.g., Ramsey and Schafer, 2012). In the current setup,
we generate synthetic atmospheric CH4 observations. The model selection framework then in-10

dicates whether a wetland model and/or an anthropogenic emissions inventory are necessary to
describe variability in these observations. In this way, model selection can indicate the sensitiv-
ity of the observation network to wetland CH4 fluxes.

We use a form of the BIC that has been adapted for use within a geostatistical inverse mod-
eling framework. This setup has previously been used to select either bottom-up models or15

environmental drivers of CO2 and CH4 fluxes (e.g., Mueller et al., 2010; Yadav et al., 2010;
Gourdji et al., 2012; Miller et al., 2013, 2014; Shiga et al., 2014; Fang et al., 2014; Fang and
Michalak, 2015). The implementation here mirrors that of Fang et al. (2014), Shiga et al. (2014),
and Fang and Michalak (2015):

BIC = ln |Ψ|+(z−HXβ)TΨ−1(z−HXβ)︸ ︷︷ ︸
negative log-likelihood

+ p ln(n)︸ ︷︷ ︸
penalty term

(1)20

The first two terms in Eq. (1) are the negative log-likelihood, a measure of how well the model
fits the data. The last term penalizes a particular model based upon the number of explanatory
variables (p). The best combination or candidate model has the lowest BIC score.

The variable z (n× 1) represents the observations minus background concentrations, H
(n×m) the footprints, and Ψ (n×n) a covariance matrix derived from an atmospheric in-25

version framework. The variable m refers to the total number of flux or emissions grid boxes
6
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in both space and time. These variables are based upon two existing inverse modeling studies
by Miller et al. (2013) and Miller et al. (2014) (refer to the Supplement). The matrix X (m×p)
contains p explanatory variables. In the current setup, X can include a wetland flux estimate
and/or individual emissions sources from an anthropogenic inventory. β (p× 1) is a set of co-
efficients that scale the variables in X. We set these coefficients to one in the the synthetic5

data experiments. As a result, the model selection framework cannot reproduce wetland fluxes
by simply upscaling anthropogenic emissions sources that might have a similar distribution to
wetlands.

The first experiments described here use synthetic atmospheric CH4 data. We generate the
synthetic data using one of the WETCHIMP models and the anthropogenic emissions estimates10

from Miller et al. (2013) and Miller et al. (2014). For consistency among the synthetic datasets,
we scale the annual HBL CH4 budget in each WETCHIMP model to match the overall mag-
nitude estimated by several top-down studies (Pickett-Heaps et al., 2011; Miller et al., 2014;
Wecht et al., 2014). We then multiply these fluxes by the footprints (H) and add error that is
randomly generated from the covariance matrix (Ψ). This covariance matrix represents errors15

in atmospheric transport and in the measurements – collectively referred to as model-data mis-
match. This matrix also represents uncertainties in the prior flux estimate. In a geostatistical
inverse model, this prior flux model is given by Xβ (refer to the supplement for more detail).

We divide the WETCHIMP wetland fluxes into four regions (Fig. 2) and four seasons (DJF,
MAM, JJA, and SON). The model selection framework then chooses variables that are neces-20

sary to reproduce the synthetic data, variables that include EDGAR and the 16 wetland flux
maps. The penalty term in Eq. 1 increases as we add wetland maps or add EDGAR to the X
matrix. Each variable added to X will increase the penalty term by ln(n); an additional vari-
able must improve the log-likelihood by more than this penalty term to be chosen by model
selection.25

We then run this framework 1000 times, generating new synthetic data each time, and calcu-
late the percentage of all trials in which the model selection chooses a wetland model. The 1000
repeats are needed due to the random or stochastic nature of the synthetic data experiment; the
results of the model selection can vary slightly, depending on the particular random errors that

7



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

we generate based upon the covariance matrix (Ψ). This procedure ensures that the model se-
lection results are not the output of a single realization. We then report on how frequently each
of the 16 wetland flux maps is chosen. If a wetland flux map is chosen with high frequency, then
a wetland flux map is necessary to describe variability in the synthetic CH4 observations, and
the synthetic observation network can detect aggregate wetland CH4 fluxes from the given re-5

gion and season. This setup mirrors that of Shiga et al. (2014), who employed a model selection
framework to explore the detectability of anthropogenic CO2 emissions.

We also explore why the synthetic CH4 observations may not be able to detect wetland fluxes.
We run a series of case studies and in each case remove a different confounding factor that might
prevent the network from detecting wetland CH4 fluxes. In one case, we remove anthropogenic10

emissions. In subsequent cases, we remove model-data mismatch errors and/or prior flux errors.
In each case, we re-run the model selection experiment and examine whether the results improve
when each of these confounding factors is removed.

2.3 Real data experiments

This paper subsequently compares the spatial distribution, magnitude, and seasonality of each15

WETCHIMP estimate against real atmospheric CH4 observations, using the synthetic experi-
ments to guide the analysis.

We first explore the spatial distribution of the WETCHIMP flux estimates. We modify the
model selection setup in Sect. 2.2 to focus on the spatial distribution of each estimate using
a procedure developed by Fang et al. (2014) and Fang and Michalak (2015). Instead of fixing20

the coefficients (β) to one, we instead estimate the coefficients using real atmospheric CH4

observations. We also include an intercept term that can vary by month; the intercept for each
month is represented by a vector of ones in the matrix X, and this intercept is included as
part of each candidate model for X. We then run model selection using real observations. As
a result of this setup, a wetland model is not necessary to reproduce either the magnitude or25

seasonality of the atmospheric CH4 data; the model selection framework can simply scale the
intercept term or scale EDGAR to reproduce the magnitude or seasonality of the observations.
The spatial distribution of wetland fluxes, however, can only come from a wetland model. The
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model selection procedure will only choose a wetland model if the spatial distribution of that
model describes sufficient, additional variability in the observations (e.g., Fang et al., 2014).

Model selection can therefore indicate which WETCHIMP models have the best spatial dis-
tribution relative to the atmospheric observations; any WETCHIMP model chosen by model
selection has a spatial distribution that improves model-data fit, and the model improves that5

fit more than the penalty term in Eq. 1. A negative result does not necessarily indicate that a
WETCHIMP model has a poor spatial distribution. In that case, the observations may not be
very sensitive to the spatial distribution of fluxes for the given region or given season. Simi-
larly, the spatial distribution in a WETCHIMP model may improve model-data fit but not by
more than the penalty term in Eq. 1. By contrast, a positive result indicates that a WETCHIMP10

model likely has a particularly good spatial distribution. As in Sect. 2.2, we divide the wetland
fluxes into four sub-continental regions and four seasons. The Supplement describes this setup
in greater detail.

We then analyze the magnitude and seasonality of the WETCHIMP fluxes using a number
of model-data time series. We model CH4 concentrations at a number of US and Canadian15

observation sites using the WRF-STILT model, the WETCHIMP estimates, and the EDGAR
v4.2FT2010 emissions inventory (Olivier and Janssens-Maenhout, 2012; European Commis-
sion, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2013).
We average the observations and model output at the monthly scale and then compare the mag-
nitude of these model estimates for each month against the averaged observations.20

We further compare the seasonality of existing bottom-up models against the seasonality of
a recent inverse modeling estimate by Miller et al. (2014). We plot the monthly budgets for
both the bottom-up models and the inversion estimate, and we plot the monthly CH4 budget as
a fraction of the annual total.

Note that inter-annual variability in existing CH4 flux models is small relative to the differ-25

ences among these models; as a result, conclusions from the 2 year study period (2007–2008)
likely hold for other years. For example, the inter-annual variability in the total US/Canadian
budget is ±7.3–9.7% (standard deviation), depending upon the model in question (Note that

9
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LPJ-Bern has even larger inter-annual variation due to an issue with model spin-up described in
Wania et al. (2013)).

3 Results and discussion: synthetic experiments

The synthetic experiments presented here explore the limits of existing atmospheric data for
constraining wetland fluxes. If atmospheric observations are to constrain wetland CH4 fluxes,5

those observations must be able to detect wetland CH4 fluxes above errors in the transport
model and above other emissions sources such as fossil fuels and agriculture.

The four columns in Fig. 3a display the results from an individual season in each of four
geographic regions. In this experiment, the synthetic CH4 observations can detect aggregate
wetland CH4 fluxes from Eastern Canadian wetlands in greater than 75% of all trials for the10

summer and fall seasons. In the eastern US, the model selection framework chooses a wetland
model in 25–50% of all trials in multiple different seasons. By contrast, the synthetic CH4

data are least sensitive to wetland fluxes in the western US, and the model selection framework
chooses wetland fluxes from that region in fewer than 25% of all trials irrespective of the season.
This result may be due, in part, to the scant wetlands and sparse atmospheric observations in15

much of the west.
The results also vary by season. Of any region, the atmospheric CH4 network is best able

to constrain fluxes across multiple seasons in eastern Canada. The largest wetland fluxes in the
WETCHIMP models are in Ontario and Quebec (Fig. 1). It is therefore unsurprising that the
network is best able to detect wetland fluxes in that region, even though there are relatively few20

observation sites in the area. In other regions, the atmospheric CH4 network is less sensitive to
wetlands during the winter, fall, and spring shoulder seasons.

We run several additional model selection experiments to explore why the synthetic obser-
vations may not always be able to detect wetland CH4 fluxes (Fig. 3b-e). We remove anthro-
pogenic emissions from the synthetic dataset for the experiment in Fig. 3b. We remove all model25

data mismatch errors in Fig. 3c; model-data mismatch encompasses errors in atmospheric trans-
port and in the measurements. Subsequently, we remove all errors due to the prior flux estimate

10
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in Fig. 3d. In Fig. 3e, we remove both types of errors. In each case, we re-run the model se-
lection experiment to see if the sensitivity of the atmospheric CH4 network to wetland fluxes
improves.

Anthropogenic emissions have only a modest effect on the results in specific regions and
seasons. In case (b) without anthropogenic emissions, the results improve by ∼25–50% in the5

fall and spring shoulder seasons for several geographic regions.
By contrast, the model-data mismatch and prior flux errors have a much larger effect on the

model selection results. The results improve incrementally across many regions and seasons
when we remove model-data mismatch errors in case (c). The results improve across the spring,
summer, and fall seasons and improve across all four geographic regions. However, the mag-10

nitude of this improvement is never more than 25%. Model-data mismatch errors are likely
dominated by errors in modeled atmospheric transport. These results imply that transport errors
play an incremental yet pervasive role in the utility of the atmospheric observations.

The prior flux errors have the largest effect on the results, particularly during the warmest
seasons. In case (d), the results show great improvement during fall, spring, and summer and15

show little improvement during winter or in the western US. In the setup here, the prior flux
uncertainties scale with the seasonal magnitude of the fluxes. When we remove the prior flux
errors, the results concomitantly show the greatest improvement in seasons that have larger
overall CH4 fluxes. These results indicate that the prior estimate greatly impacts the utility of
the atmospheric CH4 observations. A geostatistical inverse model can leverage any combina-20

tion of land surface maps, meteorological maps, and/or anthropogenic inventory estimates in
the inversion prior. These maps or estimates are incorporated into the X matrix in Eq. 1. If
accurate maps or estimates are not available, then the prior flux errors will be large, and the
model selection framework will be less likely to choose any particular variable. If these maps or
estimates have high explanatory power, then the prior flux errors will be small, and the model25

selection framework will be more likely to choose any one variable. As a result, the detectability
of wetland CH4 fluxes partly depends on the availability of land surface or meteorological data
that matches those fluxes. The atmospheric network can better differentiate wetland CH4 fluxes
from other CH4 sources when accurate prior information can guide that identification.

11



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Case (e) (no model-data mismatch errors and no errors in the prior flux estimate) shows large,
ubiquitous improvements; the model selection chooses a wetland model 100% of the time in al-
most all regions and seasons. The results for Eastern Canada during winter are the exception.
In winter, the wetland model cannot always explain enough variability in the synthetic observa-
tions to overcome the BIC penalty term in Eq. 1.5

The density of the atmospheric CH4 network may also play a role in these results. Wetlands
in the Eastern US are sparse relative to eastern Canada, but the higher density of observations
in the Eastern US may contribute to a moderate success rate (25−50%) for that region. Recent
and planned network expansions in the eastern US and in Canada could play a key role in future
efforts to constrain wetland fluxes across these regions.10

Overall, the synthetic experiment results indicate that the observation network cannot detect
wetland fluxes from the US (i.e., model selection has a success rate <50%). Across Canada, the
results are more promising (i.e., near 100% success rate in some regions/seasons), despite the
relative sparsity of the observation network there.

4 Results and discussion: comparisons with atmospheric data and inverse modeling re-15

sults

4.1 Spatial distribution of the fluxes

We compare the spatial distribution of the WETCHIMP flux estimates against CH4 data from
the atmospheric observation network. To this end, we use a version of the model selection
framework that chooses wetland models based upon their spatial distribution (Fang et al., 2014;20

Fang and Michalak, 2015). WETCHIMP models that are chosen by the framework have a spatial
distribution that is more consistent with atmospheric observations relative to those that are not
selected.

The results of this model selection analysis are displayed in Table 1. This table lists the
regions and seasons that had a success rate > 50% in the synthetic data experiment; the at-25

mospheric CH4 network is most sensitive to wetland CH4 fluxes in those regions and seasons.
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Two of the WETCHIMP models were chosen by the model selection framework – LPJ-Bern (in
eastern Canada) and SDGVM (in eastern and western Canada). The spatial distribution of these
models improve the model-data fit more than the penalty term in Eq. 1.

The LPJ-Bern and SDGVM models have several unique spatial characteristics that could
explain these results. Over eastern Canada, LPJ-Bern and SDGVM concentrate the large fluxes5

in the HBL. Other models, by contrast, often distribute the fluxes more broadly across Ontario
and Quebec or put the largest fluxes in Ontario outside of the HBL. In western Canada, SDGVM
distributes fluxes across northern, boreal Saskatchewan and Alberta.

The LPJ-Bern and SDGVM models share another common characteristic: both model wet-
land area independently instead of relying solely on remote sensing inundation datasets. LPJ -10

WSL, ORCHIDEE, DLEM, and CLM4Me use remote sensing inundation datasets like GIEMS
(Global Inundation Extent from Multi-Satellites, Prigent et al., 2007) to construct a wetland
map. Other models, like LPJ-Bern and LPJ-WHyMe also use land cover maps and/or land
surveys to estimate wetland (or at least CH4-producing) area. SDGVM estimates this area dy-
namically as a function of soil moisture (Melton et al., 2013; Wania et al., 2013). Wetland15

maps generated using these different approaches show substantial differences. Remote sensing
datasets estimate relatively high levels of inundation in regions of Canada that are not forested
or have many small lakes (see further discussion in Melton et al., 2013; Bohn et al., 2015). By
contrast, modeling approaches that dynamically generate wetland area or use land cover maps
assign more wetlands over regions with high water tables but little surface water as seen by re-20

mote sensing based inundation datasets. As a result of these differences, models like LPJ-Bern
assign more wetlands and CH4 fluxes in the HBL relative to other regions of eastern Canada.

Of note, LPJ-Bern and LPJ-WhyMe have many structural model similarities but predict rel-
atively different spatial distributions of CH4 fluxes. The latter estimates fluxes that are more
broadly distributed across Quebec and Labrador. LPJ-WhyMe only simulates fluxes from high25

latitude peatlands and uses an estimated peatland distribution from Tarnocai et al. (2009); this
distribution extends across Quebec and Labrador. LPJ-Bern, by contrast, includes fluxes from
non-peatland regions and applies a smaller scaling factor to peatland fluxes relative to LPJ-
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WHyMe Wania et al. (2013). As a result, the fluxes in LPJ-Bern have a spatial distribution that
is different from the peatland map and also different from LPJ-WHyMe.

4.2 Flux magnitude

We next compare the magnitude of predicted concentrations using the WETCHIMP models
against atmospheric observations at individual locations. Unlike previous sections that uti-5

lized model selection, this section employs several model-data time series, displayed in Fig. 4.
This model estimate consists of several components: the background (in green) is the esti-
mated background concentration of CH4 in clean air before entering the model domain as in
Miller et al. (2013, 2014). The estimated contribution of anthropogenic emissions from EDGAR
v4.2FT2010 is added to this background (in red). The contribution of wetland fluxes from the10

WETCHIMP models is then added to the previous inputs, and the sum of all components (blue
lines) can be compared directly against measured concentrations.

The various WETCHIMP flux estimates produce very different modeled concentrations at the
atmospheric observation sites (Fig. 4). Overall, modeled concentrations with the WETCHIMP
fluxes usually exceed the CH4 measurements during summer. At Chibougamau, Fraserdale,15

and Park Falls in early summer, all seven WETCHIMP models predict CH4 concentrations
that equal or exceed the observations. The ORCHIDEE, LPJ-WHyMe, and LPJ-Bern models
always exceed the measurements during summer while DLEM and SDGVM better match the
observations at these sites. Notably, a number of previous studies report that the EDGAR inven-
tory may underestimate US anthropogenic CH4 emissions (e.g., Kort et al., 2008; Miller et al.,20

2013; Wecht et al., 2014; Turner et al., 2015). If EDGAR underestimate emissions, then the
WETCHIMP models would be an even larger overestimate relative to the atmospheric data.

Many models appear to overestimate the magnitude of fluxes across boreal North America,
but this result does not necessarily imply that these models have underestimated fluxes else-
where. CH4 models that estimate the largest fluxes across boreal North America do not always25

compensate with smaller fluxes in other regions of the globe. For example, the ORCHIDEE
model not only estimates large fluxes over North America but also estimates higher fluxes over
the tropics than any other model (Melton et al., 2013).
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4.3 Seasonal cycle

Bottom-up CH4 flux estimates show variable features when compared to atmospheric observa-
tions, and the seasonal cycle of these estimates is no exception. Figure 5 compares the seasonal
cycle of the existing estimates over Canada’s HBL. Eastern Canada is one of the largest wetland
regions in North America (Fig. 1), and nearby atmospheric observation sites see a much larger5

CH4 enhancement from wetlands relative to other regions (Fig. 4 and S4).
In this region, the bottom-up estimates diverge on the seasonal cycle of fluxes. Most estimates

predict peak fluxes in July or August, though two variations of the LPJ model predict seasonal
peaks in September and October – LPJ-WHyMe and LPJ-Bern, respectively. LPJ-WHyMe is
a module inside of LPJ-Bern, a possible explanation for the similar seasonal cycle in these10

two models. Differences among models are also notable during the fall and spring seasons. For
example, fluxes in June account for anywhere between 6 and 21% of the annual CH4 budget,
depending upon the model. Fluxes in October account for between 1 and 23% of the annual
budget (Fig. 5b).

Figure 5 also displays the seasonality of an inverse modeling estimate from Miller et al.15

(2014) for comparison. That estimate incorporates observations from Chibougamau, Quebec,
and Fraserdale, Ontario, atmospheric measurement sites that are strongly influenced by fluxes
from the HBL. Differences between this inverse modeling estimate and the WETCHIMP mod-
els often exceed the 95% confidence interval of the inverse model. The WETCHIMP estimates
are often comparable to Miller et al. (2014) in magnitude during fall and spring months but20

exceed the inverse modeling estimate in summer months (Fig. 5a). On whole, the WETCHIMP
models have a narrower relative seasonal cycle than the inverse modeling estimate (Fig. 5b).
That estimate assigns a greater portion of the annual budget to the fall and spring shoulder
seasons.

Additional top-down studies exist for the HBL, but those studies use a seasonal cycle drawn25

from an existing bottom-up model and do not estimate the seasonal cycle independently from
CH4 observations (Pickett-Heaps et al., 2011; Wecht et al., 2014; Turner et al., 2015). By com-
parison, a recent inverse modeling study of the Western Siberian Lowlands found parallel results
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for that region – existing models also predict a seasonal cycle that is narrower than the season-
ality implied by atmospheric observations (Winderlich, 2012; Bohn et al., 2015).

Numerous possible explanations could underly differences in the seasonal cycle of CH4

fluxes. For example, the temperature threshold for CH4 production may be too high in some
models. Relative to summer months, the bottom-up models predict small fluxes during fall/spring5

months when air temperatures are near freezing but soils are still unfrozen (Fig. S3). According
to estimates from the North American Regional Reanalysis (NARR) (Mesinger et al., 2006),
surface soils in the HBL (0 and 10 cm depth) begin to thaw in April and are largely unfrozen in
May (Fig. S3). In the fall, surface soils (0 cm depth) begin to freeze in November, but deeper
soils (10 and 40 cm) remain largely unfrozen until December. Compared to the bottom-up mod-10

els, the inverse modeling estimate predicts a wider seasonal window, a result that would be
consistent with dates of deep soil freeze and thaw.

5 Conclusions

A recent model comparison study revealed wide differences among several estimates of wetland
CH4 fluxes – differences at global to regional scales. In the first component of this study, we15

use a synthetic data experiment to understand whether the atmospheric observation network can
detect wetland CH4 fluxes. We find that the network can reliably identify aggregate wetland
fluxes from both eastern and western Canada. The network can detect wetland fluxes from the
eastern US in a smaller fraction of trials and rarely from the western US. This analysis also
accounts for distracting signals in the atmosphere from anthropogenic sources or simulated20

atmospheric transport errors.
In a second component of the study, we analyze each bottom-up CH4 model from the WETCHIMP

study using real atmospheric data. We find that the LPJ-Bern and SDGVM models have spa-
tial distributions that are most consistent with atmospheric observations, depending upon the
region and season of interest. In addition, almost all models overestimate the magnitude of wet-25

land CH4 fluxes when compared against atmospheric data at individual observation sites. The
model ensemble may also estimate a seasonal cycle for eastern Canada that is too narrow (i.e.,
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places too much of the total annual flux in the summer relative to the fall and spring shoulder
seasons).

The results of this paper suggest possible pathways to improve future top-down estimates
of wetland CH4 fluxes. The ability of the atmospheric observation network to detect wetland
fluxes depends in large part upon the prior flux model. In a geostatistical inverse model, this5

model can incorporate land surface maps – wetland maps, estimates of land surface processes,
and maps of anthropogenic emissions sources. This information plays a large role in whether
atmospheric observations can detect wetland fluxes; the observations can more adeptly identify
wetland fluxes when accurate land surface maps are available to guide that identification. By
contrast, atmospheric transport and measurement errors (i.e., model-data mismatch errors) have10

a ubiquitous but smaller effect on the utility of atmospheric CH4 observations.
The results presented here also hold a number of suggestions for future bottom-up modeling

efforts:

1. Spatial distribution: Bottom-up estimates that use surface water inundation as the only
proxy for wetland area do not perform as well relative to atmospheric observations. Bottom-15

up models that use satellite inundation data should incorporate additional tools like wet-
land mapping or dynamic modeling to capture wetlands covered by vegetation.

2. Magnitude: Existing top-down studies that use a diverse array of in situ and satellite CH4

observations show good agreement on the magnitude of CH4 fluxes from the Hudson
Bay Lowlands (HBL) region (e.g., Pickett-Heaps et al., 2011; Miller et al., 2014; Wecht20

et al., 2014; Turner et al., 2015). These studies could be used to calibrate the magnitude
of future bottom-up estimates, at least over the HBL where CH4 observations provide a
strong constraint on wetland fluxes.

3. Seasonal cycle: Bottom-up models do not show consensus on the seasonal cycle of wet-
land fluxes across Canada. Few top-down studies estimate the seasonal cycle indepen-25

dently using atmospheric observations. Additional top-down studies would indicate the
range of seasonal cycle estimates that are consistent with atmospheric observations, par-
ticularly studies that use a diverse set of atmospheric models and/or diverse observa-
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tional datasets. These efforts could help reconcile differences in the seasonal cycle among
bottom-up models and between bottom-up models and the few, existing top-down studies.

These steps will hopefully lead to better convergence among wetland CH4 estimates for North
America.

The Supplement related to this article is available online at5

doi:10.5194/bgd-0-1-2016-supplement.
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Table 1. Spatial flux patterns chosen by the model selection framework.

Region Season Chosen models

E. Canada summer LPJ-Bern, SDGVM
E. Canada fall LPJ-Bern
W. Canada summer SDGVM
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Figure 1. Mean of the annual methane fluxes estimated by the WETCHIMP models (a) and the range of
fluxes estimated by the ensemble (b). Note that the range in estimates is larger than the mean. The fluxes
shown above are the average flux per m2 of land area, not per m2 of wetland area.
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Data and regions used in the BIC experiments

Figure 2. The US and Canadian atmospheric methane observation network for 2007–2008 (14 703 total
observations). Small yellow dots indicate observations from the START08 measurement campaign (Pan
et al., 2010). Larger dots indicate tower and aircraft sites with regular observations over the two year
period (Andrews et al., 2014). The grey background delineates the four regions used in the synthetic data
experiments (Sect. 2.2).
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  d) No errors in the prior fluxes  e) No mismatch or prior flux errors    
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Figure 3. This figure displays the results of the synthetic data experiments. These experiments examine
whether the observation network can detect aggregate wetland CH4 fluxes. The figure shows the per-
centage of trials that are successful. Darker shades indicate that the network is more sensitive to wetland
fluxes in the given region and season. Panel (a) shows the results for the standard setup while panels
(b-e) show the results of several test cases in which anthropogenic emissions or different errors are set
to zero.
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Figure 4. These time series compare atmospheric methane measurements at several observation sites
against model estimates using the WETCHIMP ensemble and the EDGAR v4.2FT2010 anthropogenic
emissions inventory. Refer to Fig. S4 for model-data time series at additional sites, particularly sites that
are distant from large wetlands.
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Figure 5. The seasonal cycle in methane fluxes estimated for the HBL (50–60◦ N, 75–96◦ W). We in-
clude both the WETCHIMP estimates and an inverse modeling estimate from Miller et al. (2014). Panel
(a) displays the monthly budget from each estimate while (b) displays each month as a percentage of the
annual budget estimated by a given model.
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