
Summary of the revisions:

We have re-written many sections of the manuscript and have modified or replaced many of the 
figures. We discuss many of these changes in detail in the replies to the reviewers. Below is a list of 
several large-scale changes to the manuscript. We have also attached two pdf files that detail changes 
to the manuscript and to the supplement.

• We have re-designed the synthetic data experiments. The new setup provides analysis on why 

atmospheric observations can or cannot detect wetland fluxes. This revision adds depth to the 
analysis, as requested by reviewer #1. We also cut synthetic experiment #2, as suggested by 
reviewer #1. Furthermore, the revised approach addresses the concerns raised by reviewer #2. 
In particular, we use all of the WETCHIMP models in the analysis. We rely more heavily on 
the existing literature to support the methodology. Furthermore, we show that the method would
always select a wetland flux model if there were no measurement or modeling errors. These 
changes show that the result of the analysis are not spurious and that the methodology is not un-
tested.

• We have added additional information on atmospheric transport and modeling errors throughout

the manuscript. For example, we have added a section to the supplement on atmospheric 
transport and modeling errors. We also provide more extensive references to existing literature 
that directly addresses this topic. The re-designed synthetic data experiments further highlight 
the effect of atmospheric transport and modeling errors. These changes address suggestions 
from both reviewers.

• We have re-written the conclusions section based on the general comments from reviewer #1. 

The revised manuscript also provides more analysis on why discrepancies might exist between 
bottom-up models and results based upon atmospheric data. We discuss advantages and 
disadvantages of both bottom-up and top-down approaches, a more equitable balance than in 
the previous manuscript (as suggested by reviewer #1).

• We changed the wording and structure of the article based upon the general comments from 

reviewer #1. Among other changes, we provide more discussion of the observations and 
modeling framework. We also removed repeated/redundant material and made other stylistic 
edits recommended by reviewer #1.
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Abstract

Existing estimates of methane (CH4)
:
fluxes from North American wetlands vary widely in both

magnitude and distribution. In light of these disagreements, this study uses atmospheric methane
CH4 observations from the US and Canada to analyze seven different bottom-up, wetland
methane CH4 estimates reported in a recent model comparison project. We first use synthetic5

data to explore how well atmospheric observations can constrain wetland fluxes
:::::::
whether

:::::::
wetland

CH4 :::::
fluxes

:::
are

::::::::::
detectable

::
at

::::::::::::
atmospheric

::::::::::
observation

:::::
sites. We find that observation sites can

identify an atmospheric pattern from Canadian wetlands but not reliably from US wetlands.
The network can also identify the spatial distribution of fluxes in Canada at multi-province
spatial scales.

:::
the

::::::::::
observation

::::::::
network

::::
can

::::::
detect

:::::::::
aggregate

::::::::
wetland

::::::
fluxes

:::::
from

::::
both

:::::::
eastern10

:::
and

::::::::
western

:::::::
Canada

:::
but

:::::::::
generally

:::
not

:::::
from

:::
the

::::
US.

:
Based upon these results, we then use real

data to evaluate
::::::
analyze

:
the magnitude, temporal distribution

::::::::::
seasonality, and spatial distribu-

tion of each model estimate. Most models overestimate the magnitude of fluxes across Canada.
Most

:::
The

::::::::::
magnitude

::
of

:::::::::
Canadian

::::::
fluxes

::
in

:::::
many

:::::::
models

::
is

::::::
larger

::::
than

::::::::
indicated

:::
by

:::::::::::
atmospheric

::::::::::::
observations.

:::::
Many

:::::::
models

:
predict a seasonality that is too narrow, potentially

::::::::
narrower

::::
than15

:::::::
implied

::
by

::::::::::::
atmospheric CH4 ::::

data,
::::::::
possibly indicating an over-sensitivity to air or soil tempera-

tures. In addition, the
:::
The

:
LPJ-Bern and SDGVM models have a spatial

::::::::::
geographic distribution

that is most consistent with atmospheric observations, depending upon the season and region
. Unlike most models , LPJ-Bern and SDGVM

:::::
region

::::
and

:::::::
season.

::::::
These

:::::::
models

:
utilize land

cover maps , not just remote sensing inundation data,
::
or

::::::::
dynamic

:::::::::
modeling to estimate wetland20

coverage . A flux model with a constant spatial distribution outperforms all other existing flux
estimates across Canada.

:::::
while

:::::
most

:::::
other

:::::::
models

::::
rely

::::::::
primarily

:::
on

:::::::
remote

:::::::
sensing

::::::::::
inundation

:::::
data.

1 Introduction

Methane CH4 fluxes from wetlands play a
:
critical role in global climate change. Methane CH425

is the second-most important long-lived greenhouse gas;
:
,
::::
and the radiative forcing of the cur-

2
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rent atmospheric burden is approximately 26% of carbon dioxide
:::::::::::::
(Butler, 2014) . Wetlands are

possibly the largest single source of this gas to the atmosphere and account for roughly 30% of
global emissions (Ciais et al., 2013).

Despite the important role of wetland methane CH4 fluxes in climate change, existing esti-
mates of this source disagree markedly on the magnitude, seasonality, and spatial distribution of5

fluxes, from regional to global scales. In fact, a
:
recent global model comparison project named

WETCHIMP (Wetland and Wetland CH4 CH4 Inter-comparison of Models Project) found large
discrepancies among existing methane wetland models (Fig. 1, Melton et al., 2013; Wania et al., 2013)

:::::::::
differences

::::::
among

::::::::
existing CH4 :::::::

wetland
:::::::
models

::::::::::::::::::::::::::::::::::::::::::
(Fig. 1, Melton et al., 2013; Wania et al., 2013) . For ex-

ample, existing estimates of maximum global wetland coverage differ by over a factor of 610

– from 4.1 ⇥106 to 26.9 ⇥106 km2
::::::::
4.1⇥ 106

::
to

:::::::::::
26.9⇥ 106 km2 . Furthermore, estimates of

global natural wetland fluxes range from 92–264Tg CH4 yr�1TgCH4 yr�1. The relative mag-
nitude of these uncertainties increases at sub-global spatial scales. As a case in point, methane
CH4 estimates for Canada’s Hudson Bay Lowlands (HBL) range from 0.2 to 11.3Tg CH4

yr�1TgCH4 yr�1. These disagreements in current methane CH4 estimates do not bode well15

for scientists’ abilities to accurately predict future changes in wetland fluxes due to climate
change (Melton et al., 2013).

A
:
number of studies have used chamber measurements of methane CH4 to parameterize

or evaluate biogeochemical methane CH4 models (e.g., Livingston and Hutchinson, 2009).
However, these

:::::
These measurements usually encompass fluxes from a very small spatial scale

::::::::
relatively20

:::::
small

::::
area, and fluxes can vary by an order of magnitude over one meter or less (Waddington and Roulet, 1996; Hendriks et al., 2010) .

Methane
:::::
often

::::
vary

::::::
greatly

:::::
with

:::::::::
landscape

::::::::::::
heterogeneity

::
at

:::::
these

::::::
spatial

::::::
scales

::::::::::::::::::::::::::::::::::::::::::::::::
(Waddington and Roulet, 1996; Hendriks et al., 2010) .

CH4 data collected in the atmosphere , by contrast, sees the cumulative effect of methane CH4

fluxes across a much broader region (e.g., Kort et al., 2008; Pickett-Heaps et al., 2011; Miller et al., 2014)
:::::::
broader

::::::
region

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Winderlich et al., 2010; Pickett-Heaps et al., 2011; Miller et al., 2014) . Hence, at-25

mospheric data can provide an important
:
a
:::::::

unique
:
tool for evaluating existing methane CH4

flux estimates across different countries or continents.
The present study compares the WETCHIMP methane CH4 flux estimates against atmo-

spheric methane CH4 data from 2007–2008 through two sets of analyses. First, we construct

3
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progressively demanding
:
a
::::
set

::
of

:
synthetic data experiments to explore how well available

data can constrain wetland fluxes. Can the atmospheric data identify methane patterns from
wetlandsover distracting patterns in the atmosphere? These patterns include methane from
anthropogenic sources or random noise due to model and measurement errors. If yes, can the
observation sites detect spatial variability in the wetland fluxes? We seek to understand whether5

large uncertainties in wetland methane estimates point to a paucity of methane data – data
capable of calibrating or evaluating the models. In the alternative, perhaps these disagreements
would be much smaller if existing biogeochemical models leveraged all available data.

:::::::::
understand

:::::::
whether

:::
the

::::::::::::
atmospheric CH4 ::::::::::

observation
::::::::

network
::::
can

::::::
detect

:
CH4 ::::::

fluxes
:::::
from

:::::::::
wetlands.

:::
We

::::
also

:::::::
explore

:::
the

:::::::
factors

::::
that

::::::
might

:::::::
prevent

:::
the

::::::::
network

:::::
from

:::::::::
detecting

:::::::
wetland

:::::::
fluxes. To an-10

swer these questions, we utilize a modeling approach
:::::
model

::::::::
selection

::::::::::
procedure based upon the

Bayesian Information Criterion (BIC) , described in greater detail in Sect. ?? (Shiga et al., 2014; Fang et al., 2014; Fang and Michalak, 2015) .

Based on the
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sect. 2.2 Shiga et al., 2014; Fang et al., 2014; Fang and Michalak, 2015) .

::::
This

:::::::::
procedure

::::::::::
determines

::::::::
whether

:::::::
wetland

::::::
fluxes

:::::
from

::::::::
different

:::::::
regions

:::
and

::::::::
seasons

:::
are

:::::::::
necessary15

::
to

::::::::
describe

:::::::::
variability

::
in

:::::::::
synthetic

:::::::::::
atmospheric CH4 ::::::::::::

observations.
::::::
Based

::
on

:::::
these

:
synthetic ex-

periments, we conduct a second set of analyses using real atmospheric data. We use this data
to evaluate

:::::::
analyze the magnitude, seasonal cycle, and spatial distribution of each WETCHIMP

methane estimate. Of the seven available models, which have a magnitude, seasonal cycle, or
spatial distribution that is most consistent with the available data? We investigate this question20

over the United States CH4 ::::::::
estimate.

::::
We

::::::::::
investigate

:::::
these

:::::::::
questions

::::
over

::::
the

:::
US

:
and Canada

using methane CH4 data collected from towers and regular aircraft flights operated by NOAA
and its partners and from towers operated by Environment Canada.

2 Methods

This section first describes the atmospheric methane CH4 data and the atmospheric model that25

allows direct comparison between the data and various flux estimates. Subsequent sections de-

4
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scribe how we use these tools to construct both the synthetic and real data experiments outlined
in the introduction (Sect. 1).

2.1 Data and atmospheric model

The present study utilizes atmospheric methane observations at Environment Canadaand NOAA
observation sites CH4 :::::::::::

observations
::::
from

:::::::
aircraft

::::
and

:::::
tower

:::::::::
platforms

::::::
across

:::
the

:::
US

::::
and

:::::::
Canada,5

:
a
:::::
total

::
of

:::
14

:::
703

::::::::::::
observations

:::::
from

:::::::::::
2007–2008.

::::::
These

:::::::::::
observation

:::::
sites

:::::::
include

::::
four

:::::::
towers

::::::::
operated

::
by

::::::::::::
Environment

::::::::
Canada,

:::
and

:::
10

::::::
towers

:::
in

:::
the

:::
US

::::::::
operated

:::
by

:::::::
NOAA

:::
and

:::
its

::::::::
partners.

::::::::::::
Observations

:
at
::::
the

::::::
NOAA

::::::
towers

:::::::
consist

::
of

:::::
daily

:::::
flasks

::::::::::::
(occasionally

:::::::::
weekly),

:::
and

::::::::::::
observations

::
at

:::
the

::::::::::::
Environment

:::::::
Canada

:::::
sites

:::
are

::::::::::
continuous

::::::::::::::
measurements.

:::
As

::
in

:::::::::::::::::::
Miller et al. (2014) ,

:::
we

:::
use

:::::::::
afternoon

::::::::
averages

::
of

::::
this

::::::::::
continuous

::::
data.

::
In

::::::::
addition

::
to

:::::
these

:::::::
towers,

:::
we

::::::
utilize

:::::::::::
observations10

::::
from

:::
17

:::::::
regular

:::::::
NOAA

:::::::
aircraft

:::::::::::
monitoring

:::::::::
locations

::
in

::::
the

:::
US

::::
and

::::::::
Canada

:
(Fig.

:
2). These

include regular measurements from tower and aircraft platforms, a total of 14,703 observations
from 2007-2008. The

:::
We

::::::::::
incorporate

:::::::
aircraft

::::
data

:::
up

::
to

::::::
2500m

:::::::
altitude

::
as

::::
was

:::::
done

::
in

::::::::::::::::::
Miller et al. (2013) .

::::::::::::
Observations

:::::
above

::::
that

::::::
height

::::
are

:::::::
usually

:::::::::::::
representative

::
of

::::
the

::::
free

:::::::::::
troposphere

::::
with

:::::::
limited

:::::::::
sensitivity

::
to

:::::::
surface

:::::::
fluxes.

::::
The

:::::
tower

::::
and

:::::::
aircraft

:
observations used here are identical to

:::
the15

:::::
same

::
as those in Miller et al. (2013) and Miller et al. (2014).

We then employ an atmospheric transport model to relate methane CH4 fluxes at the Earth’s
surface to atmospheric concentrations at the observation sites. The modeling approach here
combines the Weather Research and Forecasting (WRF) meteorological model and a

:
particle-

following model known as STILT, the Stochastic Time-Inverted Lagrangian Transport model20

(e.g., Lin et al., 2003; Nehrkorn et al., 2010; Hegarty et al., 2013). WRF-STILT generates a
:
set

of footprints; these footprints quantitatively estimate the sensitivity of each observation to fluxes
at each surface location (with units of ppb per unit surface flux). We multiply the footprints by
a
:
flux model and add this product to an estimate of the ‘background’

::::::::::::
“background”

:
concen-

tration – the methane CH4 concentration of air entering the North American regional domain.25

:::
We

::::::::
estimate

::::
this

:::::::::::
background

::::::::::::
concentration

:::::
using

:
CH4 :::::::::::

observations
::::::::
collected

:::::
near

::
or

:::::
over

:::
the

::::::
Pacific

::::::
Ocean

::::
and

:::
in

:::
the

:::::
high

:::::::
Arctic,

::
a
:::::
setup

::::::::::
described

::
in

::::::
detail

:::
by

:::::::::::::::::::::
Miller et al. (2013) and

::::::::::::::::::
Miller et al. (2014) .

:
The resulting modeled concentrations can be compared directly against

5
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atmospheric methane CH4 observations. This modeling setup is identical to
:::
the

:::::
same

:::
as

::
in

Miller et al. (2013) and Miller et al. (2014). Both the observationsand
:::
The

:::::::::::::
observations, the

WRF-STILT model
:
,
:::::::::::
background

::::::::::::::
concentrations,

::::
and

:::::::::::
uncertainties

:::
in

:::
the

:::::::::
modeling

::::::::::
framework

are described in greater detail in those papers and in the supplement
::
the

:::::::::::
Supplement

::::
and

::
in

:::::
those

::::::
papers.5

Using this setup, we can compare predicted methane
:::::::
evaluate

:::::::::
predicted

:
CH4 concentra-

tions using the WETCHIMP flux estimates (Fig. 1) against observed atmospheric concentra-
tions.

::::
The

::::::::::::
WETCHIMP

:::::::
project

::::
was

::::::::
designed

:::
to

::::::::
compare

:::::::::
simulated

::::::::
wetland

:::::::::::
distributions

::::
and

::::::::
modeled CH4 :::::

fluxes
::
at

::::::::::
multi-year,

:::::::::::
continental

:::::
scales

:::::::::::::::::::::::::::::::::::::
(Melton et al., 2013; Wania et al., 2013) .

:::
The

:::::::
project

::::::::
entailed

::::::
several

::::
sets

:::
of

::::::
model

:::::
runs,

:::
but

:::::::::::::::::::::::::::
Melton et al. (2013) primarily

::::::::
reported

:::
on10

:::
one

:::
set

::
of

::::
runs

::
–
::::
runs

:::
for

::::::::::
1901–2009

::::
that

:::::
used

:::
the

:::::
same

::::::::
observed

:::::::
climate

:::
and

:::::
CO2 ::::::::::::

concentration
:::::::
datasets

::
to

::::::
force

:::
all

:::::::
models.

::::::
Each CH4 ::::::

model
:::::::
utilized

:::
its

:::::
own

:::::::::::::::
parameterization

:::
for

::::::::
wetland

::::
area

:::
and

::::::::::::
distribution.

:::
We

::::
use

:::
the

:::::::
outputs

:::::
from

::::
this

:::
set

:::
of

::::::
model

::::
runs

:::
in

:::
the

:::::::
present

::::::
study.

:
Of

the WETCHIMP models, seven provide aflux estimate
::::
flux

::::::::
estimate

:::
on

:
a
::::::::
suitable

::::
time

::::
step

:
for

boreal North America and six provide an estimate for temperate North America. These models15

include CLM4Me (Riley et al., 2011), DLEM (Tian et al., 2010), LPJ-Bern (Spahni et al., 2011),
LPJ-WHyMe (Wania et al., 2010), LPJ-WSL (Hodson et al., 2011), ORCHIDEE (Ringeval
et al., 2010), and SDGVM (Singarayer et al., 2011). All model outputs have a

:::
flux

::::::
model

:::::::
outputs

::::
used

:::::
from

:::
the

:::::::::::::
WETCHIMP

:::::
study

:::::
have

:
a
:
temporal resolution of one month. These models are

described in Melton et al. (2013) , Wania et al. (2013) ,
:::::::::::::::::::::::::::::::::::::
Melton et al. (2013); Wania et al. (2013) ,20

and the Supplement.

2.2 Model selection framework

:::::::::
Synthetic

:::::
data

::::::::::::
experiments

This study employs two synthetic data experiments to explore the sensitivity of atmospheric
observations to wetland fluxes: can the observations detect an atmospheric pattern from wetlands
fluxes over distracting patterns from anthropogenic emitters? If yes, can the observations detect25

spatial variability in wetland fluxes from different regions? We build a modeling approach based
upon the BICto answer these questions.

6
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The BIC is a model selection technique, and various forms of the BIC are used widely in
statistical regression analysis (e.g., ?Ramsey and Schafer, 2012) . It scores all possible combinations
of explanatory variables based on model-data fit, and it penalizes combinations that have a
greater number of variables

:::
We

::::::
assess

:::
the

:::::::
ability

::
of

::::
the CH4 :::::::::::

observation
::::::::
network

::
to

::::::
detect

:::::::
wetland

::::::
fluxes

:::
and

:::
use

::
a
::::::
model

::::::::
selection

::::::::::
framework

:::::::
adapted

:::::
from

:::
the

::::
BIC. The best combination5

or candidate model has the lowest BIC score
:
A
:::::::

model
::::::::
selection

::::::::::
framework

::::
can

::::
sort

:::::::
through

::
a

::::
large

::::::::
number

::
of

:::::::::
potential

:::::::::::
explanatory

::::::::
variables

::::
and

:::::
will

::::::
choose

::::
the

::::::::
smallest

:::
set

::
of

:::::::::
variables

:::
that

::::
best

::::::::
describe

:::
the

:::::::
dataset

::
of

:::::::
interest

:::::::::::::::::::::::::::::::
(e.g., Ramsey and Schafer, 2012) .

::
In

::::
the

::::::
current

::::::
setup,

:::
we

::::::::
generate

:::::::::
synthetic

:::::::::::
atmospheric

:
CH4 ::::::::::::

observations.
::::
The

::::::
model

:::::::::
selection

::::::::::
framework

:::::
then

::::::::
indicates

:::::::
whether

::
a
::::::::
wetland

::::::
model

::::::
and/or

::
an

::::::::::::::
anthropogenic

:::::::::
emissions

:::::::::
inventory

:::
are

:::::::::
necessary10

::
to

::::::::
describe

::::::::::
variability

:::
in

:::::
these

::::::::::::
observations.

:::
In

::::
this

:::::
way,

:::::::
model

:::::::::
selection

::::
can

:::::::
indicate

::::
the

:::::::::
sensitivity

::
of

::::
the

::::::::::
observation

::::::::
network

::
to

::::::::
wetland CH4 :::::

fluxes.
We use a form of the BIC that has been adapted for use within a geostatistical inverse model-

ing framework(e.g., ?Miller et al., 2014) .
:
.
::::
This

:::::
setup

::::
has

:::::::::
previously

:::::
been

:::::
used

::
to

::::::
select

:::::
either

:::::::::
bottom-up

:::::::
models

::
or

:::::::::::::
environmental

::::::
drivers

:::
of CO2 :::

and CH4 :::::
fluxes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Mueller et al., 2010; Yadav et al., 2010; Gourdji et al., 2012; Miller et al., 2013, 2014; Shiga et al., 2014; Fang et al., 2014; Fang and Michalak, 2015) .15

The implementation here parallels
:::::::
mirrors that of Fang et al. (2014)and Shiga et al. (2014) : ,

:::::::::::::::::
Shiga et al. (2014) ,

::::
and

:::::::::::::::::::::::::
Fang and Michalak (2015) :

BIC = ln | |+(z�HX�)T �1(z�HX�)| {z }
negative log-likelihood

+ p ln(n)| {z }
penalty term

(1)

The first term
:::
two

:::::
terms

:
in Eq.1 is

:::
(1)

::::
are the negative log-likelihood, a

:
measure of how well

the model fits the data. In that term ,
::::
The

:::
last

:::::
term

:::::::::
penalizes

:
a
:::::::::
particular

::::::
model

::::::
based

:::::
upon

:::
the20

:::::::
number

::
of

:::::::::::
explanatory

:::::::::
variables

:::
(p).

::::
The

:::::
best

:::::::::::
combination

:::
or

:::::::::
candidate

::::::
model

:::
has

::::
the

::::::
lowest

::::
BIC

:::::
score.

:

::::
The

::::::::
variable z (n⇥ 1) represents the observations minus background concentrations, H

(n⇥m) the footprints, X
:::
and

::
 

:
(m⇥ p) a matrix of p explanatory variables, � (p⇥ 1) a set

of coefficients assigned to those variables, and  (n⇥n) a
:
covariance matrix derived from25

an atmospheric inversion framework. The data (z), footprints (H), and parameters that define
the covariance matrix ( ) are taken from

:::::
These

:::::::::
variables

:::
are

::::::
based

:::::
upon

::::
two

:::::::
existing

:::::::
inverse

7
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::::::::
modeling

:::::::
studies

:::
by Miller et al. (2013) and Miller et al. (2014) (refer to the Supplement). The

second term in Eq. 1 penalizes the BIC score of a particular model based upon the number of
explanatory variables (p) .

We employ this model selection framework to understand which explanatory variables
::::::
matrix

::
X

:::::::
(m⇥ p)

::::::::
contains

::
p
:::::::::::
explanatory

:::::::::
variables.

::
In

:::
the

:::::::
current

::::::
setup,

::
X

::::
can

:::::::
include

::
a

:::::::
wetland

::::
flux5

:::::::
estimate

:::::::
and/or

:::::::::
individual

::::::::::
emissions

:::::::
sources

:
from an anthropogenic emissions inventoryand

from the WETCHIMP ensemble are required to describe either synthetic or real methane data
at North American observation sites.

2.3 Synthetic data experiments

The experiments described in this section use synthetic
::::::::
inventory.

::
�

:::::::
(p⇥ 1)

::
is

:
a
:::
set

::
of

:::::::::::
coefficients10

:::
that

:::::
scale

:::
the

:::::::::
variables

::
in

:::
X.

:::
We

:::
set

:::::
these

:::::::::::
coefficients

::
to

::::
one

::
in

:::
the

:::
the

:::::::::
synthetic data generated

at each of the observation sites. We use
:::::::::::
experiments.

:::
As

::
a
::::::
result,

:::
the

::::::
model

::::::::
selection

::::::::::
framework

::::::
cannot

:::::
scale

:::::
other

::::::::
variables

::
in

:::
X

::
to

:::::::::
reproduce

::::
the

:::::::::::
atmospheric CH4 :::::

signal
:::::
from

:::::::::
wetlands.

:

::::
The

::::
first

:::::::::::
experiments

:::::::::
described

:::::
here

:::
use

:::::::::
synthetic

:::::::::::
atmospheric

:
CH4 ::::

data.
::::
We

::::::::
generate

:::
the

::::::::
synthetic

::::
data

:::::
using

::::
one

::
of

:::
the

:::::::::::::
WETCHIMP

::::::
models

::::
and

:::
the

:
anthropogenic emissions estimates15

for the US and Canada from Miller et al. (2013) and Miller et al. (2014), respectively, and
use one of the WETCHIMP models as the wetland flux estimate.

::::
For

:::::::::::
consistency

:::::::
among

:::
the

::::::::
synthetic

::::::::
datasets,

:::
we

:::::
scale

:::
the

:::::::
annual

:::::
HBL CH4 ::::::

budget
::
in

:::::
each

::::::::::::
WETCHIMP

::::::
model

::
to

::::::
match

:::
the

::::::
overall

::::::::::
magnitude

:::::::::
estimated

::
by

:::::::
several

::::::::
top-down

:::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pickett-Heaps et al., 2011; Miller et al., 2014; Wecht et al., 2014) .

We then multiply these fluxes by
:::
the

:::::::::
footprints

:
(Hto create the synthetic data at the measurement20

locations. We further add in
:
)
::::
and

::::
add error that is randomly generated from the covariance

matrix  
::::
( ).

:::::
This

::::::::::
covariance

:::::::
matrix

:::::::::
represents

::::::
errors

:::
in

:::::::::::
atmospheric

:::::::::
transport

::::
and

:::
in

:::
the

:::::::::::::
measurements – error that represents uncertainties in the fluxes, the measurements, and the
atmospheric transport model, among other error sources (refer to the Supplement).

::::::::::
collectively

:::::::
referred

::
to

:::
as

::::::::::
model-data

::::::::::
mismatch.

:::::
This

::::::
matrix

::::
also

::::::::::
represents

:::::::::::
uncertainties

:::
in

:::
the

:::::
prior

::::
flux25

::::::::
estimate.

::
In

::
a
::::::::::::
geostatistical

:::::::
inverse

:::::::
model,

::::
this

:::::
prior

::::
flux

::::::
model

::
is

::::::
given

:::
by

::::
X�

:::::
(refer

:::
to

:::
the

::::::::::
supplement

:::
for

:::::
more

:::::::
detail).

8
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The synthetic experiments ask progressively demanding questions that test the limits of
available data. In experiment one, we examine whether methane observations can detect patterns
in the atmosphere due to wetland fluxes from different regions. When given multiple possible
explanatory variables (including data from the EDGAR anthropogenic emissions inventory),
will the model selection framework choose a wetland estimate? If yes, the observations can
identify a pattern in atmospheric methane due to wetland fluxes and that pattern is large enough5

to be visible over other signals in the atmosphere. If not, then either the contribution of wetlands
at that site is small, or the observations cannot differentiate atmospheric patterns due to wetlands
over other atmospheric patterns due to anthropogenic sources or model-measurement errors.
This setup follows Shiga et al. (2014) , who explored the detectability of atmospheric patterns
from anthropogenic CO2 emissions.10

For this test, we generate the synthetic data using one of the WETCHIMP models. We then
allow the model selection framework to select wetland fluxes and/or the EDGAR data used
to generate the synthetic fluxes. We divide the

::::::::::::
WETCHIMP

:
wetland fluxes into four regions

(Fig.
:
2) and four seasons (winter, spring, summer, fall

::::
DJF,

:::::::
MAM,

::::
JJA,

:::
and

:::::
SON). The model se-

lection can choose none, some, or all of these sixteen wetland variables
:::::::::
framework

:::::
then

:::::::
chooses15

::::::::
variables

::::
that

:::
are

:::::::::
necessary

::
to

::::::::::
reproduce

:::
the

::::::::
synthetic

:::::
data,

::::::::
variables

::::
that

:::::::
include

::::::::
EDGAR

::::
and

:::
the

::
16

::::::::
wetland

::::
flux

:::::
maps. We run this

:::::
model

:::::::::
selection experiment 1000 times, generating new

synthetic data each time, and calculate the percentage of all trials in which the model selec-
tion chooses a

:
wetland model. In this experiment, the coefficients (�)are fixed to one. Note

that several of the WETCHIMP models overestimate the magnitude of fluxes (Sect. 4.2), so20

we only use models with asmaller magnitude to generate the synthetic data in this experiment
(CLM4Me, DLEM, SDGVM, andLPJ-WSL).

In experiment two, we investigate whether the observation network is sensitive to spatial
variability in the wetland fluxes, independent of magnitudeor seasonality

:::
The

:::::
1000

:::::::
repeats

:::
are

::::::
needed

::::
due

::
to

:::
the

:::::::
random

:::
or

:::::::::
stochastic

::::::
nature

::
of

:::
the

::::::::
synthetic

::::
data

:::::::::::
experiment;

:::
the

:::::::
results

::
of

:::
the25

:::::
model

:::::::::
selection

::::
can

::::
vary

::::::::
slightly,

::::::::::
depending

::
on

::::
the

:::::::::
particular

:::::::
random

::::::
errors

::::
that

:::
we

::::::::
generate

:::::
based

:::::
upon

:::
the

::::::::::
covariance

:::::::
matrix

::::
( ). In this setup , we do not fix the

::::
This

:::::::::
procedure

:::::::
ensures

:::
that

:::
the

::::::
model

:::::::::
selection

::::::
results

:::
are

::::
not

:::
the

::::::
output

::
of

::
a

:::::
single

:::::::::::
realization.

:::
We

::::
then

::::::
report

:::
on

::::
how

9



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

:::::::::
frequently

::::
each

:::
of

:::
the

:::
16

:::::::
wetland

::::
flux

:::::
maps

::
is

:::::::
chosen.

::
If

:
a
::::::::
wetland

::::
flux

::::
map

::
is

::::::
chosen

:::::
with

::::
high

:::::::::
frequency,

:::::
then

:
a
::::::::

wetland
::::
flux

:::::
map

::
is

:::::::::
necessary

:::
to

::::::::
describe

::::::::::
variability

::
in

:::
the

:::::::::
synthetic

:
CH4

::::::::::::
observations,

:::
and

::::
the

::::::::
synthetic

:::::::::::
observation

::::::::
network

::::
can

::::::
detect

:::::::::
aggregate

:::::::
wetland

:
CH4 :::::

fluxes
::::
from

:::
the

::::::
given

::::::
region

:::
and

:::::::
season.

:::::
This

:::::
setup

:::::::
mirrors

::::
that

::
of

::::::::::::::::::
Shiga et al. (2014) ,

::::
who

:::::::::
employed

:
a
::::::
model

::::::::
selection

::::::::::
framework

:::
to

:::::::
explore

:::
the

:::::::::::
detectability

:::
of

:::::::::::::
anthropogenic CO2 :::::::::

emissions.
:

:::
We

::::
also

:::::::
explore

::::
why

:::
the

:::::::::
synthetic CH4 :::::::::::

observations
::::
may

:::
not

:::
be

::::
able

::
to

::::::
detect

:::::::
wetland

::::::
fluxes.5

:::
We

:::
run

::
a

:::::
series

::
of

:::::
case

::::::
studies

::::
and

::
in

::::
each

::::
case

:::::::
remove

::
a
::::::::
different

:::::::::::
confounding

::::::
factor

::::
that

:::::
might

::::::
prevent

::::
the

:::::::
network

:::::
from

:::::::::
detecting

:::::::
wetland

:
CH4::::::

fluxes.
::
In

::::
one

:::::
case,

:::
we

:::::::
remove

:::::::::::::
anthropogenic

:::::::::
emissions.

::
In

:::::::::::
subsequent

:::::
cases,

:::
we

:::::::
remove

:::::::::::
model-data

:::::::::
mismatch

:::::
errors

::::::
and/or

:::::
prior

::::
flux

::::::
errors.

::
In

::::
each

:::::
case,

:::
we

::::::
re-run

:::
the

::::::
model

::::::::
selection

::::::::::
experiment

::::
and

::::::::
examine

:::::::
whether

:::
the

::::::
results

::::::::
improve

:::::
when

::::
each

:::
of

:::::
these

:::::::::::
confounding

:::::::
factors

::
is

:::::::::
removed.10

2.3

::::
Real

:::::
data

::::::::::::
experiments

::::
This

:::::
paper

::::::::::::
subsequently

:::::::::
compares

::::
the

::::::
spatial

:::::::::::
distribution,

:::::::::::
magnitude,

::::
and

::::::::::
seasonality

::
of

:::::
each

::::::::::::
WETCHIMP

:::::::
estimate

:::::::
against

::::
real

:::::::::::
atmospheric CH4 :::::::::::

observations,
::::::
using

:::
the

::::::::
synthetic

:::::::::::
experiments

::
to

:::::
guide

:::
the

::::::::
analysis.

:

:::
We

::::
first

:::::::
explore

::::
the

::::::
spatial

:::::::::::
distribution

:::
of

:::
the

::::::::::::
WETCHIMP

:::::
flux

:::::::::
estimates.

::::
We

:::::::
modify

:::
the15

:::::
model

:::::::::
selection

:::::
setup

:::
in

:::::
Sect.

:::
2.2

:::
to

:::::
focus

:::
on

::::
the

::::::
spatial

:::::::::::
distribution

:::
of

:::::
each

::::::::
estimate

:::::
using

:
a
:::::::::
procedure

::::::::::
developed

:::
by

::::::::::::::::::::
Fang et al. (2014) and

:::::::::::::::::::::::::
Fang and Michalak (2015) .

:::::::
Instead

::
of

::::::
fixing

:::
the coefficients (�) but rather estimate coefficients that minimize the log-likelihood in Eq. 1.
::
to

::::
one,

:::
we

:::::::
instead

::::::::
estimate

:::
the

:::::::::::
coefficients

:::::
using

::::
real

:::::::::::
atmospheric

:
CH4 :::::::::::

observations.
:
We also

include a spatial constant or intercept term in X that can change by month.
::
an

::::::::
intercept

:::::
term20

:::
that

::::
can

::::
vary

:::
by

:::::::
month;

:::
the

:::::::::
intercept

:::
for

:::::
each

::::::
month

::
is

:::::::::::
represented

:::
by

:
a
::::::
vector

:::
of

::::
ones

:::
in

:::
the

::::::
matrix

:::
X,

::::
and

::::
this

::::::::
intercept

::
is

:::::::
always

::::::::
included

::::::
within

:::
X.

::::
We

::::
then

::::
run

::::::
model

:::::::::
selection

:::::
using

:::
real

::::::::::::
observations.

:
As a result of this setup, the magnitude and

:
a
::::::::
wetland

::::::
model

::
is

:::
not

:::::::::
necessary

::
to

:::::::::
reproduce

::::::
either

::::
the

::::::::::
magnitude

:::
or

:
seasonality of the intercept can be adjusted to match

the data, but any spatial variability in the fluxes
:::::::::::
atmospheric

:
CH4 ::::

data;
:::
the

:::::::
model

::::::::
selection25

::::::::::
framework

:::
can

:::::::
simply

:::::
scale

:::
the

::::::::
intercept

:::::
term

::
or

:::::
scale

::::::::
EDGAR

::
to

::::::::::
reproduce

:::
the

::::::::::
magnitude

::
or

::::::::::
seasonality

::
of

::::
the

::::::::::::
observations.

::::
The

:::::::
spatial

::::::::::
distribution

:::
of

::::::::
wetland

::::::
fluxes,

:::::::::
however, can only

10
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come from the
:
a
:
wetland model. As in experiment one, the model selection framework can

choose among 16 wetland variables – variables that represent different regions and seasons.
If model selection chooses a wetland variable, then the spatial distribution in that variable is
necessary to reproduce the synthetic data. If not , then the observations are not sensitive to

:::
The

:::::
model

:::::::::
selection

:::::::::
procedure

::::
will

:::::
only

:::::::
choose

:
a
::::::::
wetland

::::::
model

::
if
::::
the

::::::
spatial

:::::::::::
distribution

::
of

::::
that

:::::
model

:::::::::
describes

:::::::::
sufficient,

::::::::::
additional

:::::::::
variability

::
in

::::
the

:::::::::::
observations

::::::::::::::::::::::
(e.g., Fang et al., 2014) .

:
5

::::::
Model

:::::::::
selection

::::
can

::::::::
therefore

::::::::
indicate

:::::::
which

::::::::::::
WETCHIMP

:::::::
models

:::::
have

::::
the

::::
best

:::::::
spatial

::::::::::
distribution

:::::::
relative

::
to

::::
the

:::::::::::
atmospheric

::::::::::::
observations;

::::
any

::::::::::::
WETCHIMP

::::::
model

::::::
chosen

:::
by

::::::
model

::::::::
selection

:::::
must

::::
have

::
a spatial variability in wetland fluxes for that region /season. This approach

follows that of Fang et al. (2014) , who employed a model selection framework to evaluate
::::::::::
distribution

::::
that

:::::::::
improves

:::::::::::
model-data

:::
fit,

::::
and

:::
the

::::::
model

:::::
must

::::::::
improve

::::
that

:::
fit

:::::
more

:::::
than

:::
the10

::::::
penalty

:::::
term

::
in

::::
Eq.

::
1.

::
A

::::::::
negative

:::::
result

:::::
does

:::
not

::::::::::
necessarily

::::::::
indicate

:::
that

::
a
::::::::::::
WETCHIMP

::::::
model

:::
has

::
a

::::
poor

:::::::
spatial

:::::::::::
distribution.

:::
In

::::
that

:::::
case, the

:::::::::::
observations

::::
may

::::
not

::
be

:::::
very

::::::::
sensitive

:::
to

:::
the

::::::
spatial

::::::::::
distribution

:::
of

::::::
fluxes

:::
for

:::
the

::::::
given

::::::
region

:::
or

:::::
given

:::::::
season.

:::::::::
Similarly,

::::
the spatial distri-

bution of biospheric CO2 flux models.
::
in

::
a

::::::::::::
WETCHIMP

::::::
model

:::::
may

::::::::
improve

:::::::::::
model-data

::
fit

:::
but

:::
not

:::
by

:::::
more

:::::
than

:::
the

:::::::
penalty

:::::
term

:::
in

:::
Eq.

:::
1.

:::
By

::::::::
contrast,

::
a

:::::::
positive

::::::
result

::::::::
indicates

::::
that

::
a15

::::::::::::
WETCHIMP

::::::
model

:::
has

::
a
:::::::::::
particularly

:::::
good

::::::
spatial

:::::::::::
distribution.

:::
As

:::
in

:::::
Sect.

::::
2.2,

:::
we

::::::
divide

:::
the

:::::::
wetland

::::::
fluxes

::::
into

::::
four

:::::::::::::::
sub-continental

:::::::
regions

::::
and

::::
four

::::::::
seasons.

::::
The

:::::::::::
Supplement

:::::::::
describes

:::
this

:::::
setup

:::
in

::::::
greater

::::::
detail.

:

2.4 Real data experiments

If experiment two is successful on synthetic data, we then apply the experiment to real data. We20

use the model selection framework to determine which, if any, bottom-up models have a spatial
distribution that can describe the methane observations more effectively than a spatial constant.

We also include a number of model-data time series to evaluate both
::::
then

:::::::
analyze

:
the magni-

tude and seasonality of the fluxes
:::::::::::
WETCHIMP

::::::
fluxes

:::::
using

::
a
:::::::
number

::
of

:::::::::::
model-data

::::
time

::::::
series.25

We model methane CH4 concentrations at a number of US and Canadian observation sites us-
ing

:::
the

:
WRF-STILT , WETCHIMP, and

::::::
model,

:::
the

::::::::::::
WETCHIMP

::::::::::
estimates,

:::
and

::::
the

:
EDGAR

11
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v4.2FT2010 (Olivier and Janssens-Maenhout, 2012; European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2013)
:::::::::
emissions

::::::::
inventory

::::::::
(Olivier

:::
and

::::::::::::::::::
Janssens-Maenhout,

::::::
2012;

::::::::
European

:::::::::::::
Commission,

::::
Joint

:::::::::
Research

::::::
Centre

:::::::::::::::::
(JRC)/Netherlands

:::::::::::::
Environmental

:::::::::::
Assessment

:::::::
Agency

::::::
(PBL),

:::::
2013). We average the observations and model output at the monthly scale and then compare
the magnitude of these model estimates for each month against the averaged observations.

Several studies indicate that EDGAR may underestimate emissions in certain regions of the
US and Canada (e.g., Kort et al., 2008; Miller et al., 2013, 2014; Wecht et al., 2014) . Therefore,5

we scale the magnitude of EDGAR v4.2FT2010 to match wintertime observations (November–April)
at each site using a standard major axis (SMA) regression. During those months, fluxes from
wetlands are small and any model biases are likely due to anthropogenic emissions. We then
apply this scaling factor, estimated for each site from winter data, to anthropogenic emissions
in all seasons. Miller et al. (2013) found that anthropogenic emissions in the US lack significant10

seasonality, so the wintertime scaling factors should be applicable to other seasons.
We further compare the seasonality of existing bottom-up models against the seasonality of

a recent inverse modeling estimate by Miller et al. (2014). We plot the monthly methane budget
as a fraction of the annual total

:::::::
budgets

:
for both the bottom-up models and the inversion esti-

mate. We only conduct this analysis for wetland flux regions that are visible to the observation15

network (synthetic experiments one and two)
:
,
:::
and

:::
we

::::
plot

:::
the

::::::::
monthly

:
CH4 ::::::

budget
::
as

::
a
:::::::
fraction

::
of

:::
the

::::::
annual

:::::
total.

Note that inter-annual variability in existing methane CH4 flux models is small relative to
the differences among these models; as a result, conclusions from the 2-year

:
2 year study pe-

riod (2007–2008) likely hold for other years. For example, the inter-annual variability in the20

total US/Canadian budget is ±7.3� 9.7%
:::::::::::
±7.3–9.7%

:
(standard deviation), depending upon

the model in question (Note that LPJ-Bern has even larger inter-annual variation due to an issue
with model spin-up described in Wania et al. (2013) .

::::::::::::::::
Wania et al., 2013 ).

3 Results and discussion: synthetic experiments

The synthetic experiments presented here explore the limits of existing atmospheric data for25

constraining wetland fluxes. We first leverage synthetic data to examine whether the atmospheric

12
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observation sites can distinguish an atmospheric pattern from wetland fluxes above other patterns
due anthropogenic emissions or simulated model, measurement, and emissions uncertainties.
If atmospheric observations are to constrain wetland methane CH4 fluxes, those observations
must , at minimum, identify an atmospheric pattern from wetland fluxes from other distracting
patterns in the model and/or data

::
be

::::
able

:::
to

::::::
detect

::::::::
wetland

:
CH4 :::::

fluxes
::::::
above

::::::
errors

:::
in

:::
the

::::::::
transport

::::::
model

::::
and

:::::
above

:::::
other

:::::::::
emissions

::::::::
sources

::::
such

:::
as

:::::
fossil

:::::
fuels

:::
and

::::::::::
agriculture.5

The results of this experiment are summarized in Fig. 3a. The four columns in Fig.3a
::
3a

:
dis-

play the results from an individual season in each of four geographic regions. In this experi-
ment, the observation network can detect a summertime methane pattern from wetlands in both
Eastern and Western Canada in

::::::::
synthetic

:
CH4 :::::::::::

observations
::::
can

::::::
detect

:::::::::
aggregate

:::::::
wetland

:
CH4

:::::
fluxes

:::::
from

::::::::
Eastern

:::::::::
Canadian

::::::::
wetlands

:::
in greater than 75% of all trials

:::
for

:::
the

::::::::
summer

::::
and10

:::
fall

:::::::
seasons. In the eastern US, the model selection framework chooses a wetland model in

50–75
::::::
25–50% of all trials in multiple different seasons. By contrast, the observations

::::::::
synthetic

CH4 :::
data

:
are least sensitive to wetland fluxes in the western US, and the model selection frame-

work chooses wetland fluxes from that region in less
::::
fewer

:
than 25% of all trials irrespective

of the season. This result may be due, in part, to the relatively dry climate and scant wetlands15

:::::
scant

::::::::
wetlands

::::
and

::::::
sparse

:::::::::::
atmospheric

::::::::::::
observations

:
in much of the west. The methane signal

from resource extraction and/or agriculture may also overshadow any patterns from wetlands.
The results also contain a number of seasonal trends

::::
vary

:::
by

:::::::
season. Of any region, the

observation
::::::::::
atmospheric

:
CH4 network is best able to constrain the seasonal cycle

:::::
fluxes

::::::
across

:::::::
multiple

:::::::
seasons

:
in eastern Canada. The largest wetland fluxes estimated for the US and Canada20

::
in

:::
the

::::::::::::
WETCHIMP

:::::::
models are in Ontario and Quebec .

::::
(Fig.

:::
1). It is therefore unsurprising that

the network is so sensitive to fluxes from this
:::
best

:::::
able

::
to

::::::
detect

::::::::
wetland

::::::
fluxes

:::
in

::::
that

:
re-

gion, even though there are relatively few observation sites in the area. In other regions, the
observation

::::::::::
atmospheric

:
CH4 network is less sensitive to wetlands during the winter, fall, and

spring seasons. For example, the model selection framework chooses a wetland model in less25

than 25
:::::::
shoulder

::::::::
seasons.

:::
We

::::
run

::::::
several

::::::::::
additional

::::
test

::::::::
scenarios

:::
to

:::::::
explore

::::
why

::::
the

::::::::
synthetic

::::::::::::
observations

:::::
may

:::
not

::::::
always

:::
be

::::
able

:::
to

::::::
detect

:::::::
wetland

:
CH4 ::::::

fluxes.
::::
We

:::::::
remove

:::::::::::::
anthropogenic

::::::::::
emissions

:::::
from

:::
the

13
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::::::::
synthetic

::::::
dataset

:::
for

:::
the

:::::::::::
experiment

::
in

::::
Fig.

:::
3b.

:::
We

:::::::
remove

:::
all

::::::
model

::::
data

:::::::::
mismatch

:::::
errors

::
in

::::
Fig.

:::
3c;

::::::::::
model-data

:::::::::
mismatch

::::::::::::
encompasses

:::::
errors

::
in

::::::::::::
atmospheric

::::::::
transport

:::
and

::
in

::::
the

:::::::::::::
measurements.

::::::::::::
Subsequently,

::::
we

:::::::
remove

:::
all

::::::
errors

::::
due

::
to

::::
the

:::::
prior

::::
flux

::::::::
estimate

:::
in

::::
Fig.

:::
3d.

:::
In

::::
Fig.

::::
3e,

:::
we

:::::::
remove

::::
both

:::::
types

:::
of

::::::
errors.

:::
In

::::
each

:::::
case,

::::
we

::::::
re-run

:::
the

::::::
model

:::::::::
selection

::::::::::
experiment

:::
to

:::
see

::
if

:::
the

:::::::::
sensitivity

:::
of

:::
the

:::::::::::
atmospheric

:
CH4 :::::::

network
:::
to

:::::::
wetland

::::::
fluxes

:::::::::
improves.

:

:::::::::::::
Anthropogenic

::::::::::
emissions

:::::
have

::::
only

::
a
:::::::
modest

::::::
effect

:::
on

:::
the

:::::::
results

::
in

::::::::
specific

:::::::
regions

::::
and5

:::::::
seasons.

:::
In

:::::
case

:::
(b)

::::::::
without

:::::::::::::
anthropogenic

::::::::::
emissions,

::::
the

::::::
results

::::::::
improve

:::
by

:::::::::
⇠25–50% of

all trials during the winter in all regions.
::
in

:::
the

::::
fall

::::
and

::::::
spring

::::::::
shoulder

::::::::
seasons

:::
for

:::::::
several

::::::::::
geographic

:::::::
regions.

:

The density of the observation network may also play a role in these results. Wetlands in the
Eastern US are sparse relative to Canada, but the higher density of observations in the Eastern10

US may contribute to a moderate success rate (> 50%) for that region. A recent observation
network expansion could play a key role in future efforts to constrain wetland fluxes across these
regions . Environment Canada has recently been expanding their observation network across
western and Arctic Canada (i. e. , Saskatchewan, Alberta, Northwest Territories, and Nunavut).
In addition, Earth Networks has begun to install new observation sites across the eastern US in15

a privately-funded initiative.
::
By

:::::::::
contrast,

:::
the

::::::::::
model-data

::::::::::
mismatch

:::
and

:::::
prior

:::::
flux

:::::
errors

:::::
have

:
a
::::::
much

:::::
larger

::::::
effect

:::
on

:::
the

::::::
model

:::::::::
selection

:::::::
results.

::::
The

::::::
results

::::::::
improve

:::::::::::::
incrementally

::::::
across

:::::
many

:::::::
regions

:::
and

::::::::
seasons

:::::
when

:::
we

:::::::
remove

::::::::::
model-data

:::::::::
mismatch

::::::
errors

::
in

::::
case

::::
(c).

::::
The

::::::
results

:::::::
improve

::::::
across

::::
the

:::::::
spring,

::::::::
summer,

::::
and

::::
fall

:::::::
seasons

::::
and

::::::::
improve

::::::
across

:::
all

:::::
four

::::::::::
geographic

:::::::
regions.

:::::::::
However,

::::
the

::::::::::
magnitude

::
of

::::
this

:::::::::::::
improvement

::
is

::::::
never

:::::
more

:::::
than

:::
25%.

:::::::::::
Model-data20

:::::::::
mismatch

:::::
errors

:::
are

::::::
likely

::::::::::
dominated

::
by

::::::
errors

::
in

::::::::
modeled

:::::::::::
atmospheric

:::::::::
transport.

::::::
These

::::::
results

:::::
imply

::::
that

::::::::
transport

::::::
errors

::::
play

::
an

:::::::::::
incremental

:::
yet

:::::::::
pervasive

::::
role

::
in

:::
the

::::::
utility

::
of

:::
the

:::::::::::
atmospheric

::::::::::::
observations.

Compared to experiment one, the second experiment asks a more demanding question of
the observation network: is the observation network sensitive to spatial variability in

:::
The

:::::
prior25

:::
flux

::::::
errors

:::::
have

::::
the

::::::
largest

::::::
effect

:::
on

:::
the

:::::::
results,

:::::::::::
particularly

:::::::
during

:::
the

::::::::
warmest

::::::::
seasons.

:::
In

::::
case

::::
(d),

:::
the

::::::
results

::::::
show

:::::
great

::::::::::::
improvement

:::::::
during

::::
fall,

:::::::
spring,

:::
and

::::::::
summer

::::
and

:::::
show

:::::
little

::::::::::::
improvement

::::::
during

::::::
winter

:::
or

::
in

::::
the

:::::::
western

:::::
US.

::
In

::::
the

:::::
setup

:::::
here,

:
the wetland fluxes from

14
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each region? Alternately, can a spatially-constant model reproduce the synthetic atmospheric
observations as well? Existing bottom-up estimates disagree markedly on the spatial distribution
of wetland fluxes, but perhaps atmospheric data can provide guidance

::::
prior

::::
flux

::::::::::::
uncertainties

::::
scale

:::::
with

::::
the

::::::::
seasonal

::::::::::
magnitude

:::
of

:::
the

:::::::
fluxes.

::::::
When

:::
we

:::::::
remove

::::
the

:::::
prior

::::
flux

:::::::
errors,

:::
the

::::::
results

:::::::::::::
concomitantly

:::::
show

::::
the

:::::::
greatest

::::::::::::
improvement

:::
in

:::::::
seasons

::::
that

:::::
have

::::::
larger

::::::
overall

:
CH4

::::::
fluxes.

:::::
These

:::::::
results

:::::::
indicate

::::
that

:::
the

::::
prior

::::::::
estimate

:::::::
greatly

:::::::
impacts

:::
the

::::::
utility

::
of

:::
the

:::::::::::
atmospheric5

CH4 :::::::::::
observations.

::
A

::::::::::::
geostatistical

:::::::
inverse

::::::
model

::::
can

:::::::
leverage

::::
any

::::::::::::
combination

::
of

::::
land

:::::::
surface

:::::
maps,

::::::::::::::
meteorological

::::::
maps,

::::::
and/or

::::::::::::::
anthropogenic

:::::::::
inventory

:::::::::
estimates

::
in

::::
the

:::::::::
inversion

:::::
prior.

:::::
These

::::::
maps

::
or

::::::::::
estimates

:::
are

::::::::::::
incorporated

::::
into

::::
the

:::
X

::::::
matrix

:::
in

::::
Eq.

::
1.

:::
If

::::::::
accurate

:::::
maps

:::
or

::::::::
estimates

::::
are

:::
not

:::::::::
available,

:::::
then

::::
the

:::::
prior

::::
flux

::::::
errors

::::
will

:::
be

::::::
large,

::::
and

:::
the

::::::
model

:::::::::
selection

::::::::::
framework

::::
will

:::
be

::::
less

::::::
likely

::
to

:::::::
choose

::::
any

::::::::::
particular

::::::::
variable.

::
If
::::::

these
:::::
maps

:::
or

:::::::::
estimates10

::::
have

:::::
high

:::::::::::
explanatory

::::::
power,

:::::
then

:::
the

:::::
prior

::::
flux

::::::
errors

::::
will

::
be

::::::
small,

::::
and

::::
the

::::::
model

::::::::
selection

::::::::::
framework

::::
will

:::
be

:::::
more

::::::
likely

::
to

:::::::
choose

::::
any

::::
one

:::::::::
variable.

:::
As

::
a
::::::
result,

::::
the

:::::::::::
detectability

:::
of

:::::::
wetland

:
CH4 :::::

fluxes
::::::
partly

:::::::
depends

:::
on

::::
the

::::::::::
availability

:::
of

::::
land

:::::::
surface

:::
or

::::::::::::::
meteorological

::::
data

:::
that

::::::::
matches

:::::
those

::::::
fluxes.

::::
The

::::::::::::
atmospheric

:::::::
network

::::
can

:::::
better

::::::
detect

:::::::
wetland

:
CH4 :::::

fluxes
:::::
when

:::::::
accurate

:::::
prior

:::::::::::
information

::::
can

:::::
guide

::::
that

::::::::::::
identification.15

Figure 3b displays the results of this experiment for each region and season. The available
data is only sensitive to spatial variability in certain cases. The model selection framework
::::
Case

:::
(e)

::::
(no

::::::::::
model-data

:::::::::
mismatch

::::::
errors

::::
and

:::
no

:::::
errors

:::
in

:::
the

:::::
prior

::::
flux

:::::::::
estimate)

::::::
shows

:::::
large,

:::::::::
ubiquitous

::::::::::::::
improvements;

:::
the

::::::
model

:::::::::
selection chooses a wetland model in > 75% of all trials

in eastern Canada during summer and fall and in western Canada during summer. In remote20

regions of northern Ontario and Quebec, large wetland fluxes dominate variability in atmospheric
methane. Hence, it is understandable that observations are most sensitive to the spatial distribution
of fluxes in this region. By contrast, the observation network is largely insensitive to spatial
variability in wetland fluxes across the US; in most instances, the model selection framework
favors aspatially-constant model over a wetland model for the two US

:::
100%

:
of

::::
the

:::::
time

::
in25

::::::
almost

:::
all

:::::::
regions

:::
and

::::::::
seasons.

::::
The

::::::
results

:::
for

::::::::
Eastern

:::::::
Canada

::::::
during

::::::
winter

:::
are

::::
the

:::::::::
exception.

::
In

::::::
winter,

:::
the

::::::::
wetland

::::::
model

::::::
cannot

::::::
always

:::::::
explain

:::::::
enough

:::::::::
variability

:::
in

:::
the

::::::::
synthetic

:::::::::::
observations

::
to

:::::::::
overcome

:::
the

::::
BIC

:::::::
penalty

:::::
term

::
in

::::
Eq.

::
1.

15
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::::
The

::::::
density

:::
of

:::
the

:::::::::::
atmospheric

:
CH4 :::::::

network
::::
may

::::
also

:::::
play

:
a
::::
role

::
in

::::::
these

::::::
results.

:::::::::
Wetlands

::
in

:::
the

:::::::
Eastern

::::
US

:::
are

::::::
sparse

:::::::
relative

:::
to

::::::
eastern

::::::::
Canada,

:::
but

::::
the

::::::
higher

:::::::
density

::
of

::::::::::::
observations

::
in

:::
the

:::::::
Eastern

:::
US

:::::
may

:::::::::
contribute

::
to

::
a

::::::::
moderate

:::::::
success

::::
rate

:::::::::::
(25� 50%)

:::
for

::::
that

::::::
region.

:::::::
Recent

:::
and

::::::::
planned

:::::::
network

::::::::::
expansions

:::
in

:::
the

::::::
eastern

::::
US

:::
and

:::
in

:::::::
Canada

:::::
could

::::
play

::
a

:::
key

::::
role

::
in

::::::
future

::::::
efforts

::
to

::::::::
constrain

::::::::
wetland

::::::
fluxes

::::::
across

:::::
these regions.

These
:::::::
Overall,

::::
the

:::::::::
synthetic

::::::::::
experiment

:
results indicate that the observation network has5

limited capacity to evaluate wetland fluxes over the United States.
::::::
cannot

::::::
detect

:::::::
wetland

::::::
fluxes

::::
from

:::
the

::::
US

::::
(i.e.,

::::::
model

:::::::::
selection

:::
has

::
a

:::::::
success

::::
rate

::::
<50%

:
).
:
Across Canada, the results are far

more promising ,
:::::
more

:::::::::
promising

::::
(i.e.,

:::::
near

:::
100%

::::::
success

::::
rate

::
in

:::::
some

:::::::::::::::
regions/seasons),

:
despite

the relative sparsity of the observation network there. Existing bottom-up methane estimates
are highly uncertain across Canada, and the synthetic experiments indicate that atmospheric10

observations can reduce these uncertainties.

4 Results and discussion: comparisons with atmospheric data

4.1 Spatial flux patterns

:::::::::::
distribution

::
of

::::
the

::::::
fluxes

We first compare the spatial distribution of the existing wetland
::::::::::::
WETCHIMP

:
flux estimates

against methane CH4 data from the atmospheric observation network. We apply experiment15

two to real data and report the results for regions and seasons that had a high success rate in
the synthetic experiment. That experiment examined whether the spatial variability in a wetland
model is more useful at describing the atmospheric data than a spatial constant. We now apply
this question to real data: do the WETCHIMP models have spatial variability that describe the
real data better than a spatial constant? If so, which models? This approach indicates whether20

each model contributes positive information on the location of wetland fluxes
:::
To

:::
this

:::::
end,

:::
we

:::
use

::
a

:::::::
version

::
of

:::
the

::::::
model

:::::::::
selection

::::::::::
framework

::::
that

:::::::
chooses

::::::::
wetland

:::::::
models

:::::
based

:::::
upon

:::::
their

::::::
spatial

::::::::::
distribution

:::::::::::::::::::::::::::::::::::::::::
(Fang et al., 2014; Fang and Michalak, 2015) .

::::::::::::
WETCHIMP

:::::::
models

::::
that

:::
are

::::::
chosen

:::
by

:::
the

:::::::::::
framework

::::
have

::
a
::::::
spatial

:::::::::::
distribution

::::
that

::
is
::::::

more
:::::::::
consistent

:::::
with

:::::::::::
atmospheric

:::::::::::
observations

:::::::
relative

::
to

:::::
those

::::
that

::::
are

:::
not

:::::::
selected.25

16
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The results of this real data experiment
::::::
model

::::::::
selection

:::::::
analysis

:
are displayed in Table 1. This

table only lists the regions and seasons that had asuccess rate >75in
:::::::
success

:::
rate

:::::
> 50%

::
in

:::
the

synthetic data experimenttwo. If a wetland model describes the distribution of fluxes better than
a spatial constant

:
;
:::
the

::::::::::::
atmospheric CH4 :::::::

network
:::
is

::::
most

:::::::::
sensitive

::
to

::::::::
wetland

:
CH4 ::::::

fluxes in
those regions /seasons, then the model selection framework should select that model.

Only a small number of WETCHIMP models are able to describe the distribution of wetland5

fluxes (as seen via the atmospheric observations) better than a spatial constant – between 0 –
28of the available models depending upon the region and season. The

:::
and

::::::::
seasons.

::::
Two

:::
of

:::
the

::::::::::::
WETCHIMP

:::::::
models

:::::
were

::::::
chosen

:::
by

::::
the model selection framework chooses

:
–

:
LPJ-Bern (in

eastern Canadaand LPJ-Bern and SDGVM in western Canada)
::::

and
:::::::::

SDGVM
:::
(in

:::::::
eastern

::::
and

:::::::
western

::::::::
Canada). The spatial patterns in the remaining WETCHIMP models do not perform10

better than a spatial constant when compared to atmospheric data.
::::::::::
distribution

::
of

:::::
these

:::::::
models

:::::::
improve

:::
the

:::::::::::
model-data

::
fit

:::::
more

:::::
than

:::
the

:::::::
penalty

::::
term

:::
in

:::
Eq.

::
1.

:

The LPJ-Bern and SDGVM models have several unique spatial characteristics that could
explain these results. Over eastern Canada, the LPJ-Bern model concentrates the largest

:::
and

::::::::
SDGVM

:::::::::::
concentrate

:::
the

:::::
large

:
fluxes in the HBL. Other models, by contrast, often distribute15

the fluxes more broadly across Ontario and Quebec or put the largest fluxes in Ontario outside
of the HBL. In western Canada, the LPJ-Bern and SDGVM models distribute fluxes broadly
across both northern

::::::::
SDGVM

::::::::::
distributes

::::::
fluxes

::::::
across

::::::::
northern,

:::::::
boreal Saskatchewan and Al-

berta. A number of other estimates like DLEM or CLM4Me assign relatively small fluxes in
these provinces relative to other regions.20

The LPJ-Bern and SDGVM models share another common characteristic: both model wet-
land area independently instead of relying solely on remote sensing inundation datasets. LPJ-WSL

:::
LPJ

:
-
:::::
WSL,

ORCHIDEE, DLEM, and CLM4Me use remote sensing inundation datasets like GEIMS
:::::::
GIEMS

(Global Inundation Extent from Multi-Satellites, Prigent et al., 2007) to construct a
:

wetland
map. Other models, like LPJ-Bern ,

:::
and

:
LPJ-WHyMe , and SDGVM also use land cover maps25

and/or land surveys to estimate wetland (or at least methane-producing) areaCH4 ::::::::::
-producing)

::::
area.

:::::::::
SDGVM

:::::::::
estimates

::::
this

::::
area

::::::::::::
dynamically

::
as

::
a
::::::::
function

:::
of

::::
soil

::::::::
moisture

:
(Melton et al.,

2013; Wania et al., 2013). Wetland maps generated using the two
::::
these

::::::::
different

:
approaches

17
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show substantial differences. Remote sensing datasets estimate relatively high levels of in-
undation in regions of Canada that are non-forested

:::
not

::::::::
forested

:
or have many small lakes

(see further discussion in Melton et al., 2013; Bohn et al., 2015) . Independently-generated wetland
maps, by contrast,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see further discussion in Melton et al., 2013; Bohn et al., 2015) .

:::
By

::::::::
contrast,

::::::::
modeling

:::::::::::
approaches

::::
that

::::::::::::
dynamically

::::::::
generate

::::::::
wetland

::::
area

:::
or

:::
use

:::::
land

:::::
cover

::::::
maps

:
assign

more wetlands over regions with high water tables but little surface water
::
as

::::
seen

:::
by

:::::::
remote5

:::::::
sensing

:::::
based

::::::::::
inundation

:::::::::
datasets). As a

:
result of these differences, models like LPJ-Bern as-

sign more wetlands and methane CH4 fluxes in the HBL relative to other regions of eastern
Canada.

4.2 Flux magnitude

We next compare the magnitude of predicted concentrations using the WETCHIMP models10

against atmospheric observations
:
at

::::::::::
individual

::::::::
locations. Unlike previous sections that utilized

model selection, this section employs several simple model-data timeseries
:::
time

::::::
series, dis-

played in Fig.4. We model methane concentrations at a number of US and Canadian observation
sites using WRF-STILT, the WETCHIMP flux estimates, and anthropogenic emissions from
the EDGAR v4.2FT2010 inventory.

::
4. This model estimate consists of several components: the15

background (in green) is the estimated concentration of methane
::::::::::
background

:::::::::::::
concentration

::
of

CH4 in clean air before entering the model domain as in Miller et al. (2013) and Miller et al. (2014)
:::::::::::::::::::::::
Miller et al. (2013, 2014) .

The estimated contribution of anthropogenic emissions from EDGAR v4.2FT2010 is added to
this background (in red). Note that the estimated scaling factors for EDGAR (Sect. 2.3) are
1.7± 0.3 at Chibougamau, 5.6± 0.5 at East Trout Lake, 2.4± 0.3 at Fraserdale, and 2.5± 0.320

at Park Falls. The contribution of wetland fluxes from the WETCHIMP models is then added to
the previous inputs, and the sum of all components (blue lines) can be compared directly against
measured concentrations.

The various WETCHIMP flux estimates produce very different modeled concentrations at the
:::::::::::
atmospheric observation sites (Fig. 4). Overall, modeled concentrations with the WETCHIMP25

fluxes usually exceed the methane CH4 measurements during summer. At Chibougamau, Fraserdale,
and Park Falls in early summer, all six WETCHIMP models predict methane CH4 concentra-

18
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tions that equal or exceed the observations. The ORCHIDEE, LPJ-WHyMe, and LPJ-Bern mod-
els always exceed the measurements during summer while DLEM and SDGVM better match the
observations at these sites. In contrast to these results, a recent study by Bohn et al. (2015) found
that the ensemble average is not biased over the Western Siberian Lowlands relative to inverse
modeling estimates. The models also show a large spread in that region.

::::::::
Notably,

:
a
::::::::
number

::
of

:::::::
previous

:::::::
studies

::::::
report

::::
that

:::
the

::::::::
EDGAR

:::::::::
inventory

:::::
may

:::::::::::::
underestimate

:::
US

:::::::::::::
anthropogenic

:
CH45

:::::::::
emissions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kort et al., 2008; Miller et al., 2013; Wecht et al., 2014; Turner et al., 2015) .

::
If

::::::::
EDGAR

::::::::::::
underestimate

::::::::::
emissions,

::::
then

:::
the

::::::::::::
WETCHIMP

:::::::
models

::::::
would

::
be

:::
an

::::
even

::::::
larger

:::::::::::
overestimate

::::::
relative

:::
to

:::
the

:::::::::::
atmospheric

:::::
data.

Methane CH4 models that overestimate fluxes in North America do not always compen-
sate with smaller fluxes elsewhere. For example, the ORCHIDEE model not only estimates10

large fluxes over North America but also estimates higher fluxes over the tropics than any other
model (Melton et al., 2013). Hence, the disagreement in magnitude over North America not
only reflects uncertainty in the global distribution of wetland fluxes but also reflects uncertainty
in the global wetland budget.

4.3 Seasonal cycle15

Bottom-up methane CH4 flux estimates show variable performance when compared against
:::::::
features

:::::
when

::::::::::
compared

::
to

:
atmospheric observations, and the temporal distribution

:::::::
seasonal

:::::
cycle of these estimates is no exception. Figure

:
5 compares the seasonal cycle of the existing

estimates over Canada’s HBL. Eastern Canada is one of the largest wetland regions in North
America (Fig. 1), and unlike other regions, the observation network there can detect a clear20

wetland signal through most of the seasonal cycle
::::::
nearby

::::::::::::
atmospheric

::::::::::
observation

:::::
sites

:::
see

::
a

:::::
much

:::::
larger

:::::
CH4::::::::::::

enhancement
:::::
from

::::::::
wetlands

:::::::
relative

:::
to

:::::
other

:::::::
regions (Fig. 3

:
4
::::
and

:::
S4).

In this region, the bottom-up estimates diverge on the seasonal cycle of fluxes. Most estimates
predict peak fluxes in July or August, though two variations of the LPJ model predict seasonal
peaks in September and October (

:
– LPJ-WHyMe and LPJ-Bern, respectively). Discrepancies25

:
.
::::::::::::
LPJ-WHyMe

::
is

::
a

:::::::
module

::::::
inside

::
of

::::::::::
LPJ-Bern,

:
a
::::::::
possible

:::::::::::
explanation

:::
for

:::
the

:::::::
similar

::::::::
seasonal

:::::
cycle

::
in

:::::
these

:::
two

::::::::
models.

::::::::::
Differences

:
among models are also notable during the fall and spring

19
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seasons. For example, fluxes in June account for anywhere between 6 and 21% of the annual
methane CH4 budget, depending upon the model. Fluxes in October account for between 1 and
23% of the annual budget .

:::::
(Fig.

::::
5b).

The figure
:::::
Figure

::
5
:
also displays the seasonality of an inverse modeling estimate from Miller

et al. (2014) for comparison. That estimate incorporates observations from Chibougamau,
::::::::
Quebec,5

and Fraserdale,
:::::::
Ontario,

:
atmospheric measurement sites that are strongly influenced by fluxes

from the HBL. The discrepancies among the WETCHIMP models often exceed the 95% con-
fidence interval of the inversion estimate.

::::
The

::::::::::::
WETCHIMP

:::::::::
estimates

::::
are

:::::
often

:::::::::::
comparable

::
to

::::::::::::::::::::
Miller et al. (2014) in

::::::::::
magnitude

::::::
during

::::
fall

::::
and

:::::::
spring

:::::::
months

::::
but

:::::::
exceed

:::
the

:::::::::
inversion

:::::::
estimate

:::
in

::::::::
summer

:::::::
months

:::::
(Fig.

::::
5a).

:
On whole, the WETCHIMP estimates have anarrower10

::::::
models

:::::
have

::
a
:::::::::
narrower

:::::::
relative

:
seasonal cycle than the inversion estimate , which assigns

comparatively larger fluxes
:::::
(Fig.

::::
5b).

:::::
That

::::::::
estimate

:::::::
assigns

::
a
:::::::
greater

:::::::
portion

:::
of

:::
the

:::::::
annual

::::::
budget to the fall and spring shoulder seasons. A

::::::::::
Additional

::::::::
top-down

:::::::
studies

:::::
exist

:::
for

:::
the

::::::
HBL,

:::
but

:::::
those

:::::::
studies

:::
use

::
a
::::::::
seasonal

:::::
cycle

::::::
drawn

::::
from

:::
an

::::::::
existing

:::::::::
bottom-up

::::::
model

::::
and

:::
do

::::
not

:::::::
estimate

::::
the

::::::::
seasonal

:::::
cycle

:::::::::::::
independently

:::::
from15

CH4 :::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pickett-Heaps et al., 2011; Wecht et al., 2014; Turner et al., 2015) .

:::
By

::::::::::::
comparison,

:
a recent inverse modeling study of the Western Siberian Lowlands found parallel results for that
region – existing models also under-predict the shoulder seasons relative to summer months
::::::
predict

:
a
::::::::
seasonal

:::::
cycle

::::
that

::
is

::::::::
narrower

::::
than

:::
the

:::::::::::
seasonality

:::::::
implied

::
by

:::::::::::
atmospheric

::::::::::::
observations

(Winderlich, 2012; Bohn et al., 2015).20

Numerous possible explanations could underly this discrepancy
::::::::::
differences

::
in

::::
the

::::::::
seasonal

:::::
cycle

::
of

:
CH4 :::::

fluxes. For example, the bottom-up models could be too sensitive to soil/air
temperature , and may therefore shut off methane emissions too early. Compared to the inversion
estimate

:::::::::::
temperature

:::::::::
threshold

:::
for CH4 ::::::::::

production
::::
may

:::
be

:::
too

:::::
high

::
in

::::::
some

:::::::
models.

::::::::
Relative

::
to

::::::::
summer

:::::::
months, the bottom-up models predict small or minimal fluxes during fall/spring25

months when air temperatures are near freezing but soils are still unfrozen (Fig.S3
:::
S3). Ac-

cording to estimates from the North American Regional Reanalysis (NARR) (Mesinger et al.,
2006), surface soils in the HBL (0 and 10cm

::
10 cm depth) begin to thaw in April and are largely

unfrozen in May (Fig.S3
:::
S3). In the fall, surface soils (0cm cm depth) begin to freeze in Novem-

20
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ber, but deeper soils (10cm and 40cm
::
10

::::
and

::
40 cm) remain largely unfrozen until December.

Compared to the bottom-up models, the inversion estimate predicts a
:
wider seasonal window, a

result that is consistent with soil freeze/
::::::
would

::
be

::::::::::
consistent

::::
with

:::::
dates

:::
of

:::::
deep

:::
soil

::::::
freeze

::::
and

thaw.

5 Conclusions5

A recent model comparison study revealed substantial differences in existing
::::
wide

::::::::::
differences

::::::
among

:::::::
several

:
estimates of wetland methane CH4 fluxes – differences at global to regional

scales. In the first component of this study, we use two increasing stringent synthetic data
experiments to understand how sensitive

:
a
::::::::
synthetic

:::::
data

::::::::::
experiment

::
to

::::::::::
understand

::::::::
whether the

atmospheric observation network is to regional-scale wetland
:::
can

::::::
detect

::::::::
wetland CH4 fluxes.10

We find that the network can reliably identify an atmospheric pattern from Canadian wetlands
::::::::
aggregate

:::::::
wetland

::::::
fluxes

:::::
from

:::::
both

:::::::
eastern

::::
and

:::::::
western

::::::::
Canada. The network can identify a methane

pattern
:::::
detect

::::::::
wetland

:::::
fluxes

:
from the eastern US in 50� 75%

:
a
:::::::
smaller

::::::::
fraction of trials and

rarely from the western US. The network can also detect spatial variability in the Canadian
wetland source but rarely in the US wetland source. This analysis also accounts for distracting15

signals or patterns in the atmosphere from anthropogenic sources or simulated modeling errors.
These results indicate that uncertainties in current methane models can be reduced, if those
models begin to leverage available methane data. Furthermore, these discrepancies indicate
a disconnect between scientists who build process-based and/or biogeochemical models and
scientists who collect or use atmospheric methane data. Improved collaboration between these20

two groups could help reduce present uncertainties in natural methane fluxes, at least over
Canada.

::::::::::
atmospheric

:::::::::
transport

::::::
errors.

In a
:
second component of the study, we evaluate each existing

:::::::
analyze

:::::
each

:
bottom-up

methane model at regional scale CH4 ::::::
model

:::::
from

:::
the

:::::::::::::
WETCHIMP

:::::
study

:
using real atmo-

spheric data. We find that only 0–28of all models have a spatial pattern that describes the25

atmospheric data more effectively than a constant. The
:::
the LPJ-Bern and SDGVM models have

spatial distributions that are most consistent with atmospheric observations, depending upon the

21
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region and season of interest. In addition, almost all existing models overestimate the magnitude
of wetland methane CH4 fluxes when compared against atmospheric data at individual obser-
vation sites. The ensemble of models also appears to estimate aseasonal cycle

:::::
model

:::::::::
ensemble

::::
may

::::
also

::::::::
estimate

::
a
::::::::
seasonal

:::::
cycle

::::
for

:::::::
eastern

:::::::
Canada

:
that is too narrow across the HBL, a

large region of methane fluxesin North America. Overall, this study indicates numerous areas5

for improvement in existing
::::
(i.e.,

::::::
places

:::
too

:::::
much

:::
of

:::
the

::::
total

::::::
annual

::::
flux

::
in

::::
the

:::::::
summer

:::::::
relative

::
to

:::
the

:::
fall

::::
and

::::::
spring

::::::::
shoulder

:::::::::
seasons).

::::
The

::::::
results

:::
of

::::
this

:::::
paper

::::::::
suggest

::::::::
possible

:::::::::
pathways

::
to

::::::::
improve

::::::
future

:::::::::
top-down

:::::::::
estimates

::
of

:::::::
wetland

:
CH4 ::::::

fluxes.
::::
The

::::::
ability

:::
of

:::
the

:::::::::::
atmospheric

:::::::::::
observation

::::::::
network

:::
to

:::::
detect

::::::::
wetland

:::::
fluxes

::::::::
depends

:::
in

:::::
large

::::
part

:::::
upon

:::
the

:::::
prior

::::
flux

:::::::
model.

:::
In

:
a
:::::::::::::
geostatistical

::::::
inverse

:::::::
model,

::::
this10

:::::
model

::::
can

:::::::::::
incorporate

::::
land

:::::::
surface

:::::
maps

::
–

:::::::
wetland

::::::
maps,

:::::::::
estimates

::
of

:::::
land

:::::::
surface

:::::::::
processes,

:::
and

:::::
maps

:::
of

:::::::::::::
anthropogenic

::::::::::
emissions

:::::::
sources.

:::::
This

:::::::::::
information

:::::
plays

::
a
:::::
large

::::
role

::
in

::::::::
whether

:::::::::::
atmospheric

:::::::::::
observations

::::
can

::::::
detect

:::::::
wetland

::::::
fluxes;

::::
the

:::::::::::
observations

::::
can

:::::
more

:::::::
adeptly

:::::::
identify

:::::::
wetland

::::::
fluxes

:::::
when

::::::::
accurate

:::::
land

:::::::
surface

:::::
maps

::::
are

::::::::
available

::
to

::::::
guide

::::
that

:::::::::::::
identification.

:::
By

:::::::
contrast,

::::::::::::
atmospheric

::::::::
transport

::::
and

::::::::::::
measurement

:::::
errors

:::::
(i.e.,

::::::::::
model-data

:::::::::
mismatch

:::::::
errors)

::::
have15

:
a
::::::::::
ubiquitous

:::
but

:::::::
smaller

::::::
effect

::
on

::::
the

:::::
utility

:::
of

:::::::::::
atmospheric CH4 ::::::::::::

observations.
::::
The

::::::
results

:::::::::
presented

::::
here

:::::
also

::::
hold

::
a
:::::::
number

:::
of

:::::::::::
suggestions

:::
for

::::::
future bottom-up wetland

methane estimates
::::::::
modeling

:::::::
efforts:

1.
::::::
Spatial

::::::::::::
distribution:

::::::::::
Bottom-up

:::::::::
estimates

::::
that

:::
use

::::::::
surface

:::::
water

::::::::::
inundation

:::
as

:::
the

:::::
only

:::::
proxy

:::
for

:::::::
wetland

::::
area

:::
do

:::
not

::::::::
perform

::
as

::::
well

:::::::
relative

::
to

:::::::::::
atmospheric

::::::::::::
observations.

::::::::::
Bottom-up20

::::::
models

::::
that

::::
use

:::::::
satellite

::::::::::
inundation

::::
data

:::::::
should

::::::::::
incorporate

::::::::::
additional

:::::
tools

::::
like

:::::::
wetland

::::::::
mapping

::
or

::::::::
dynamic

:::::::::
modeling

::
to

:::::::
capture

:::::::::
wetlands

:::::::
covered

:::
by

::::::::::
vegetation.

2.
::::::::::
Magnitude:

::::::::
Existing

:::::::::
top-down

::::::
studies

::::
that

::::
use

:
a
:::::::
diverse

:::::
array

::
of

:::
in

:::
situ

::::
and

:::::::
satellite

:
CH4

:::::::::::
observations

:::::
show

:::::
good

::::::::::
agreement

::
on

:::
the

::::::::::
magnitude

::
of

:
CH4 :::::

fluxes
:::::
from

:::
the

:::::::
Hudson

::::
Bay

:::::::::
Lowlands

::::::
(HBL)

::::::
region

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Pickett-Heaps et al., 2011; Miller et al., 2014; Wecht et al., 2014; Turner et al., 2015) .25

:::::
These

:::::::
studies

:::::
could

:::
be

:::::
used

::
to

::::::::
calibrate

::::
the

:::::::::
magnitude

:::
of

::::::
future

::::::::::
bottom-up

:::::::::
estimates,

::
at

::::
least

::::
over

:::
the

:::::
HBL

::::::
where

:
CH4 :::::::::::

observations
:::::::
provide

::
a
::::::
strong

:::::::::
constraint

::
on

::::::::
wetland

::::::
fluxes.
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3.
::::::::
Seasonal

:::::
cycle:

::::::::::
Bottom-up

:::::::
models

:::
do

:::
not

:::::
show

:::::::::
consensus

:::
on

:::
the

::::::::
seasonal

:::::
cycle

::
of

:::::::
wetland

:::::
fluxes

::::::
across

::::::::
Canada.

:::::
Few

:::::::::
top-down

:::::::
studies

::::::::
estimate

:::
the

:::::::::
seasonal

:::::
cycle

:::::::::::::
independently

:::::
using

:::::::::::
atmospheric

::::::::::::
observations.

::::::::::
Additional

:::::::::
top-down

:::::::
studies

::::::
would

:::::::
indicate

:::
the

::::::
range

::
of

:::::::
seasonal

::::::
cycle

:::::::::
estimates

::::
that

:::
are

::::::::::
consistent

::::
with

::::::::::::
atmospheric

::::::::::::
observations,

:::::::::::
particularly

::::::
studies

::::
that

:::
use

::
a
:::::::
diverse

:::
set

::
of

:::::::::::
atmospheric

:::::::
models

::::::
and/or

:::::::
diverse

::::::::::::
observational

::::::::
datasets.

:::::
These

:::::::
efforts

:::::
could

:::::
help

:::::::::
reconcile

::::::::::
differences

:::
in

::::
the

::::::::
seasonal

:::::
cycle

:::::::
among

::::::::::
bottom-up5

::::::
models

::::
and

::::::::
between

::::::::::
bottom-up

::::::
models

::::
and

:::
the

:::::
few,

:::::::
existing

:::::::::
top-down

:::::::
studies.

:

:::::
These

:::::
steps

::::
will

:::::::::
hopefully

::::
lead

:::
to

:::::
better

::::::::::::
convergence

::::::
among

::::::::
wetland CH4 ::::::::

estimates
:::
for

::::::
North

::::::::
America.

:

The Supplement related to this article is available online at

doi:10.5194/bgd-0-1-2015-supplement.10

Acknowledgements. We thank Marc Fischer and Sebastien Biraud of Lawrence Berkeley Labs and John
Miller of NOAA; these collaborators operate several sites in the US greenhouse gas observation net-
work. We also thank Steven Wofsy of Harvard University and Thomas Nehrkorn of Atmospheric and
Environmental Research. The National Aeronautics and Space Administration (NASA) Advanced Su-
percomputing Division provided key computing resources and assistance. This work was supported by15

the Department of Energy Computational Science Graduate Fellowship Program of the Office of Sci-
ence and National Nuclear Security Administration in the Department of Energy under contract DE-
FG02-97ER25308. This work was also supported by a National Science Foundation Graduate Research
Fellowship.

urlstyle20

References

Andrews,
:

A. E., Kofler, J. D., Trudeau,
:
M. E., Williams, J. C., Neff,

:
D. H., Masarie,

:
K. A., Chao, D. Y.,

Kitzis,
:

D. R., Novelli,
:

P. C., Zhao,
:
C. L., Dlugokencky,

:
E. J., Lang,

:
P. M., Crotwell,

:
M. J., Fis-

cher,
:
M. L., Parker,

:
M. J., Lee, J. T., Baumann,

:
D. D., Desai,

:
A. R., Stanier,

:
C. O., De Wekker,S.

23

http://dx.doi.org/10.5194/bgd-0-1-2015-supplement.pdf


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

::
S.

:
F. J., Wolfe,

:
D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall

towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Net-
work: instrumentation, uncertainty analysis, and recommendations for future high-accuracy green-
house gas monitoring efforts, Atmospheric Measurement Techniques

::::::
Atmos.

:::::
Meas.

:::::
Tech., 7, 647–687,5

:::
doi:10.5194/amt-7-647-2014, 2014.

Bohn,
:
T. J., Melton,

:
J. R., Ito, A., Kleinen,

:
T., Spahni,

:
R., Stocker,

:
B. D., Zhang,

:
B., Zhu,

:
X.,

Schroeder, R., Glagolev, M. V., Maksyutov,
:
S., Brovkin,

:
V., Chen,

:
G., Denisov, S. N., Eliseev, A. V.,

Gallego-Sala,
:
A., McDonald,

:
K. C., Rawlins,M.

:::
M.A., Riley,

:
W. J., Subin,

:
Z. M., Tian,

:
H.,

Zhuang, Q., and Kaplan,
:
J. O.: WETCHIMP-WSL: intercomparison of wetland methane emissions10

models over
::::
West

:::::::
Siberia,

:::::::::::::
Biogeosciences,

:::
12,

::::::::::
3321–3349,

::::
doi:10.5194/bg-12-3321-2015,

:::::
2015.

:

:::::
Butler,

:::
J.:

:::
The

:
W

::::::
NOAA est

::::::
annual

:::::::::
greenhouse

::::
gas

:::::
index S

:::::::
(AGGI)iberia, BiogeosciencesDiscussions,

12http://www.esrl.noaa.gov/gmd/aggi/, 1907–1973, , 2015.
::::
2014.

:

Ciais,
:
P., Sabine,

:
C., Bala,

:
G., Bopp, L., Brovkin, V., and Canadell, J.: Carbon and Other Biogeochemical

Cycles -
:
– Final Draft Underlying Scientific Technical Assessment, chap. 6, IPCC Secretariat, Geneva,15

2013.
European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency

(PBL): Emission Database for Global Atmospheric Research (EDGAR), release EDGARv4.2
FT2010,

:::::::
available

:::
at: http://edgar.jrc.ec.europa.eu

::::
(last

::::::
access:

::
14

:::::
June

:::::
2015), 2013.

Fang,
::

Y. and Michalak,
::

A. M.: Atmospheric observations inform CO2 CO2 flux responses20

to enviroclimatic drivers, Global Biogeochem. Cy., 2014GB005034, ,
:::
29,

:::::::::::
GB005034,

:::
doi:10.1002/2014GB005034,

:
2015.

Fang,
:

Y., Michalak,
:
A. M., Shiga,

:
Y. P., and Yadav,

:
V.: Using atmospheric observations to evaluate

the spatiotemporal variability of CO
::
CO2 fluxes simulated by terrestrial biospheric models, Biogeo-

sciences, 11, 6985–6997,
:::
doi:10.5194/bg-11-6985-2014, 2014.25

Gourdji, S. M., Mueller, K. L., Schaefer, K., and Michalak,
::::::
Yadav,

::
V.,

::::::::::
Huntzinger,

::
D.

:::
N.,

::::::::
Andrews,

:
A. M.:

Global monthly averaged
::
E.,

::::::::
Trudeau,

:::
M.,

::::::
Petron,

:::
G.,

:::::::::
Nehrkorn,

:::
T.,

:::::::::::
Eluszkiewicz,

:::
J.,

::::::::::
Henderson,

::
J.,

::::
Wen,

:::
D.,

::::
Lin,

::
J.,

::::::
Fischer,

::::
M.,

::::::::
Sweeney,

::
C.,

::::
and

::::::::
Michalak,

::
A.

::::
M.:

:::::
North

::::::::
American CO2fluxes recovered

using a geostatistical inverse modeling approach: 2. Results including auxiliary environmental data, J.
Geophys.Res.-Atmos., 113, D21115, , 2008

:2 .
::::::::
exchange:

::::::::::::::
inter-comparison

:::
of

:::::::
modeled

::::::::
estimates

::::
with30

:::::
results

:::::
from

:
a
:::::::::
fine-scale

::::::::::
atmospheric

::::::::
inversion,

::::::::::::::
Biogeosciences,

::
9,

::::::::
457–475,

:
doi:10.5194/bg-9-457-

2012
:
,
:::::
2012.

Hegarty, J., Draxler, R. R., Stein,
:
A. F., Brioude,

:
J., Mountain,

:
M., Eluszkiewicz,

:
J., Nehrkorn,

:
T.,

Ngan, F., and Andrews, A.: Evaluation of Lagrangian Particle Dispersion Models with Measurements

24

http://dx.doi.org/10.5194/amt-7-647-2014
http://dx.doi.org/10.5194/bg-12-3321-2015
http://www.esrl.noaa.gov/gmd/aggi/
http://edgar.jrc.ec.europa.eu
http://dx.doi.org/10.1002/2014GB005034
http://dx.doi.org/10.5194/bg-11-6985-2014
http://dx.doi.org/10.5194/bg-9-457-2012
http://dx.doi.org/10.5194/bg-9-457-2012
http://dx.doi.org/10.5194/bg-9-457-2012


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

from Controlled Tracer Releases,
::::::
particle

:::::::::
dispersion

::::::
models

::::
with

::::::::::::
measurements

::::
from

:::::::::
controlled

:::::
tracer

:::::::
releases, J. Appl. Meteorol. Clim., 52, 2623–2637, 2013.

Hendriks,D.
::
D.

:
M. D., van Huissteden,

:
J., and Dolman,

:
A. J.: Multi-technique assessment of spatial and5

temporal variability of methane fluxes in apeat meadow, Agriculture and Forest Meteorology,
::::
peat

:::::::
meadow,

::::
Agr.

::::::
Forest

::::::::
Meteorol.,

:
150, ,

:
757–774, , 2010. ,

::::
doi:10.1016/j.agrformet.2009.06.017

:
,
:::::
2010.

Hodson, E. L., Poulter,
:

B., Zimmermann,
:

N. E., Prigent, C., and Kaplan,
:
J. O.: The El Niño–Southern

Oscillation and wetland methane interannual variability, Geophys. Res. Lett., 38, L08810,
:::::::
L08810,10

:::
doi:10.1029/2011GL046861, 2011.

Kort,
:
E. A., Eluszkiewicz,

:
J., Stephens,

:
B. B., Miller,

:
J. B., Gerbig,

:
C., Nehrkorn,

:
T., Daube,

:
B. C.,

Kaplan,
:

J. O., Houweling,
:
S., and Wofsy,

:
S. C.: Emissions of CH4CH4 and N2ON2O over

the United States and Canada
:::::
United

::::::
States

::::
and

:::::::
Canada

:
based on a

:
receptor-oriented modeling

framework and COBRA-NA atmospheric observations, Geophys. Res. Lett., 35, L18808,
:::::::
L18808,15

:::
doi:10.1029/2008gl034031, 2008.

Lin,
:

J., Gerbig,
:

C., Wofsy,
:

S., Andrews,
:

A., Daube,
:
B., Davis,

::
K., and Grainger,

:
C.: A

:
near-

field tool for simulating the upstream influence of atmospheric observations: The
:::
the

:
Stochastic

Time-Inverted Lagrangian Transport (STILT) model,
:::::
model,

:
J. Geophys. Res.-Atmos., 108, 4493,

:::
doi:10.1029/2002jd003161, 2003.20

Livingston,
:
G. and Hutchinson,

:
G.: Enclosure-based measurement of trace gas exchange: applications

and sources of error, chap. 2, Methods in ecology
::
in:

::::::::
Methods

::
in
::::::::

Ecology, Wiley, London,
::::::
14–51,

2009.
Melton,

:
J. R., Wania,

:
R., Hodson, E. L., Poulter,

:
B., Ringeval,

:
B., Spahni,

:
R., Bohn, T., Avis,

:
C. A.,

Beerling,
:

D. J., Chen,
:
G., Eliseev,

:
A. V., Denisov,

:
S. N., Hopcroft,

:
P. O., Lettenmaier,

:
D. P., Ri-25

ley, W. J., Singarayer, J. S., Subin,
:
Z. M., Tian, H., Zürcher,

:
Zü

:::::
rcher,

:
S., Brovkin,

:
V., vanBodegom,

:::::::::
Bodegom,

::
P. M., Kleinen,

:
T., Yu,

:
Z. C., and Kaplan,

:
J. O.: Present state of global wet-

land extent and wetland methane modelling: conclusions from a model inter-comparison project
(WETCHIMP

:::::::::::
WETCHIMP), Biogeosciences, 10, 753–788,

:::
doi:10.5194/bg-10-753-2013, 2013.

Mesinger,30

::::::::
Mesinger,

:
F., Dimego,

:::::::
Dimego,

:
G., Kalnay,

::::::
Kalnay, E., Mitchell,

:::::::
Mitchell,

:
K., Shafran,

:::::::
Shafran, P. C.,

Ebisuzaki,
:::::::::
Ebisuzaki,

:::
W., Jovi,

::::
Jovi,

:::
D., Woollen,

:::::::
Woollen,

:::
J., Rogers,

::::::
Rogers,

:::
E.,

Berbery,
:::::::
Berbery, E. H., Ek,

:::
Ek, M. B., Fan,

:::
Fan,

:
Y., Grumbine,

:::::::::
Grumbine,

:
R., Higgins,

::::::
Higgins,

:
W.,

Li,
:::
Li, H., Lin,

:::
Lin,

:
Y., Manikin,

:::::::
Manikin,

:
G., Parrish,

::::::
Parrish,

:
D., and Shi,

:::
Shi,

:
W.: North American

25

http://dx.doi.org/10.1016/j.agrformet.2009.06.017
http://dx.doi.org/10.1029/2011GL046861
http://dx.doi.org/10.1029/2008gl034031
http://dx.doi.org/10.1029/2002jd003161
http://dx.doi.org/10.5194/bg-10-753-2013


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Regional Reanalysis.,
::::
North

:::::::::
American

::::::::
regional

:::::::::
reanalysis,

:
B. Am. Meteorol. Soc., 87, 343–360,

:::
doi:10.1175/BAMS-87-3-343, 2006.

Miller,
:

S. M., Wofsy,
:

S. C., Michalak,
:
A. M., Kort,

:
E. A., Andrews,

:
A. E., Biraud,

::
S. C.,5

Dlugokencky,
:

E. J., Eluszkiewicz,
::

J., Fischer,
:

M. L., Janssens-Maenhout,
:

G., Miller,
::

B. R.,
Miller,

:
J. B., Montzka, S. A., Nehrkorn, T., and Sweeney,

:
C.: Anthropogenic emissions of methane

in the United States,
:::::
United

::::::
States,

:
P. Natl. Acad. Sci. USA, 110, 20018–20022,

::::::::::::
20018–20022,

:::
doi:10.1073/pnas.1314392110, 2013.

Miller,
:

S. M., Worthy,D.
:::
D.

:
E. J., Michalak,

:
A. M., Wofsy,

:
S. C., Kort,

:
E. A., Havice,

:
T. C.,10

Andrews,
:
A. E., Dlugokencky,

:
E. J., Kaplan,

:
J. O., Levi,

:
P. J., Tian,

:
H., and Zhang,

:
B.: Ob-

servational constraints on the distribution, seasonality, and environmental predictors of North
American

:::::
North

:::::::::
American

:
boreal methane emissions, Global Biogeochem. Cy., 28, 146–160,

:::
doi:10.1002/2013GB004580, 2014.

:::::::
Mueller,

::
K.

:::
L.,

::::::
Yadav,

:::
V.,

::::::
Curtis,

::
P.

:::
S.,

::::::
Vogel,

:::
C.,

:::
and

:::::::::
Michalak,

:::
A.

:::
M.:

::::::::::
Attributing

:::
the

:::::::::
variability

::
of15

:::::::::::::
eddy-covariance

::::
CO2 :::

flux
::::::::::::
measurements

::::::
across

:::::::
temporal

::::::
scales

:::::
using

:::::::::::
geostatistical

:::::::::
regression

::
for

::
a

:::::
mixed

:::::::
northern

:::::::::
hardwood

:::::
forest,

::::::
Global

:::::::::::
Biogeochem.

::::
Cy.,

:::
24,

:
doi:10.1029/2009GB003642

:
,
:::::
2010.

Nehrkorn, T., Eluszkiewicz,
:
J., Wofsy, S. C., Lin,

:
J. C., Gerbig, C., Longo, M., and Freitas, S.: Coupled

Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport (WRF-STILT)
model, Meteorol. Atmos. Phys., 107, 51–64,

:::
doi:10.1007/s00703-010-0068-x, 2010.20

Olivier, J. and Janssens-Maenhout, G.: CO
::
CO2 emissions from fuel combustion, 2012 edition

::::
edn., chap.

III: Greenhouse-gas emissions,
:::
in:

::::::::::::::
Greenhouse-Gas

:::::::::
Emissions, International Energy Agency, Paris,

:::
III.1

::
–
:::::
III.51,

:
2012.

Pan,
:::
Pan,

:
L. L., Bowman,

::::::::
Bowman,

:
K. P., Atlas,

:::::
Atlas,

:
E. L., Wofsy,

:::::
Wofsy,

:
S. C., Zhang,

::::::
Zhang,

:
F.,25

Bresch,
::::::
Bresch,

:
J. F., Ridley,

:::::
Ridley,

::
B. A., Pittman,

:::::::
Pittman,

:
J. V., Homeyer,

:::::::
Homeyer,

::
C. R.,

Romashkin,
:::::::::
Romashkin,

:
P., and Cooper,

::::::
Cooper,

:
W. A.: The Stratosphere-Troposphere Analyses

of Regional Transport
:::
The

:::::::::::::::::::::
stratosphere-troposphere

:::::::::
analyses

:::
of

::::::::
regional

:::::::::
transport

::
2008

Experiment,
:::::::::
experiment,

:
B. Am. Meteorol. Soc., 91, 327–342,

:::
doi:10.1175/2009BAMS2865.1, 2010.

Pickett-Heaps, C. A., Jacob,
:
D. J., Wecht,

:
K. J., Kort,

:
E. A., Wofsy,

:
S. C., Diskin,

:
G. S., Wor-30

thy,D.
:::
D.

:
E. J., Kaplan,

:
J. O., Bey,

:
I., and Drevet,

:
J.: Magnitude and seasonality of wetland

methane emissions from the Hudson Bay Lowlands (Canada), Atmos. Chem. Phys., 11, 3773–3779,
:::
doi:10.5194/acp-11-3773-2011, 2011.

26

http://dx.doi.org/10.1175/BAMS-87-3-343
http://dx.doi.org/10.1073/pnas.1314392110
http://dx.doi.org/10.1002/2013GB004580
http://dx.doi.org/10.1029/2009GB003642
http://dx.doi.org/10.1007/s00703-010-0068-x
http://dx.doi.org/10.1175/2009BAMS2865.1
http://dx.doi.org/10.5194/acp-11-3773-2011


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Prigent,
:
C., Papa,

:
F., Aires, F., Rossow, W. B., and Matthews, E.: Global inundation dynamics inferred

from multiple satellite observations, 1993–2000, J. Geophys. Res.-Atmos., 112, D12107,
:::::::
D12107,

:::
doi:10.1029/2006JD007847, 2007.5

Ramsey, F. and Schafer, D.: The Statistical Sleuth: A Course in Methods of Data Analysis, Cengage
Learning, Boston, 3

:::
3rd

:
edn., 2012.

Riley,
:

W. J., Subin,
:
Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald,

:
N. M.,

and Hess,
:

P.: Barriers to predicting changes in global terrestrial methane fluxes: analyses using
CLM4Me, a methane biogeochemistry model integrated in CESM

:::::
CESM, Biogeosciences, 8, 1925–10

1953,
:::
doi:10.5194/bg-8-1925-2011, 2011.

Ringeval,
:
B., de Noblet-Ducoudré, N., Ciais,

:
P., Bousquet,

:
P., Prigent,

:
C., Papa,

:
F., and Rossow,

:
W. B.:

An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal
and interannual time scales, Global Biogeochem. Cy., 24, GB2003,

::::
doi:10.1029/2008GB003354,

2010.15

Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464, , 1978.
Shiga, Y. P., Michalak,

:
A. M., Gourdji,

:
S. M., Mueller, K. L., and Yadav,

:
V.: Detecting fossil fuel emis-

sions patterns from subcontinental regions using North American
::::
North

:::::::::
American

:
in situ CO2CO2

measurements, Geophys. Res. Lett., 41, 4381–4388,
:::
doi:10.1002/2014GL059684, 2014.

Singarayer,
:
J. S., Valdes,

:
P. J., Friedlingstein,

:
P., Nelson,

:
S., and Beerling,

:
D. J.: Late Holocene20

methane rise caused by orbitally controlled increase in tropical sources, Nature, 470, 82–85,
:::
doi:10.1038/nature09739, 2011.

Spahni,
:
R., Wania,

:
R., Neef,

:
L., vanWeele,

::::::
Weele, M., Pison,

:
I., Bousquet,

:
P., Frankenberg, C., Fos-

ter, P. N., Joos, F., Prentice,
:
I. C., and vanVelthoven,

:::::::::
Velthoven,

:
P.: Constraining global methane

emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665,
:::
doi:10.5194/bg-8-1643-2011,25

2011.
Tian,

:
H., Xu, X., Liu, M., Ren,

:
W., Zhang,

:
C., Chen,

:
G., and Lu,

:
C.: Spatial and temporal patterns of

CH4and N2O
::::
CH4:::

and
::::
N2O

:
fluxes in terrestrial ecosystems of North America during 1979-2008

:::::
North

:::::::
America

::::::
during

:::::::::
1979–2008: application of a global biogeochemistry model, Biogeosciences, 7, 2673–

2694,
:::
doi:10.5194/bg-7-2673-2010, 2010.30

::::::
Turner,

::
A.

:::
J.,

::::::
Jacob,

::
D.

:::
J.,

::::::
Wecht,

:::
K.

:::
J.,

:::::::::::
Maasakkers,

::
J.

:::
D.,

:::::::::
Lundgren,

:::
E.,

::::::::
Andrews,

:::
A.

:::
E.,

:::::::
Biraud,

::
S.

:::
C.,

:::::::
Boesch,

:::
H.,

::::::::
Bowman,

:::
K.

:::
W.,

::::::::::
Deutscher,

::
N.

::::
M.,

::::::
Dubey,

:::
M.

:::
K.,

::::::::
Griffith,

::
D.

:::
W.

:::
T.,

:::::
Hase,

:::
F.,

:::::
Kuze,

:::
A.,

:::::::
Notholt,

:::
J.,

::::::::
Ohyama,

:::
H.,

::::::
Parker,

:::
R.,

::::::
Payne,

:::
V.

:::
H.,

:::::::::
Sussmann,

:::
R.,

::::::::
Sweeney,

:::
C.,

::::::::
Velazco,

::
V.

:::
A.,

:::::::::
Warneke,

:::
T.,

:::::::::
Wennberg,

:::
P.

:::
O.,

::::
and

:::::::
Wunch,

::::
D.:

:::::::::
Estimating

::::::
global

::::
and

::::::
North

:::::::::
American

27

http://dx.doi.org/10.1029/2006JD007847
http://dx.doi.org/10.5194/bg-8-1925-2011
http://dx.doi.org/10.1029/2008GB003354
http://dx.doi.org/10.1002/2014GL059684
http://dx.doi.org/10.1038/nature09739
http://dx.doi.org/10.5194/bg-8-1643-2011
http://dx.doi.org/10.5194/bg-7-2673-2010


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

:::::::
methane

::::::::
emissions

:::::
with

::::
high

::::::
spatial

:::::::::
resolution

:::::
using

:::::::
GOSAT

::::::
satellite

:::::
data,

::::::
Atmos.

::::::
Chem.

::::::
Phys.,

:::
15,

::::::::::
7049–7069, doi:10.5194/acp-15-7049-2015,

:::::
2015.

:

Waddington,
:
J. and Roulet,

:
N.: Atmosphere-wetland carbon exchanges: Scale

::::
scale

:
dependency of5

CO2CO2 and CH4CH4 exchange on the developmental topography of apeatland,
::::::::
peatland, Global

Biogeochem. Cy., ,
:
10, ,

:
233–245, , 1996. ,

::::
doi:10.1029/95GB03871,

:::::
1996.

:

Wania,
:
R., Ross,

:
I., and Prentice, I. C.: Implementation and evaluation of a new methane model within

a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geoscientific Model Development,
::::::
Geosci.

:::::
Model

:::::
Dev., 3, 565–584,

:::
doi:10.5194/gmd-3-565-2010, 2010.10

Wania,
:

R., Melton,
:

J. R., Hodson, E. L., Poulter,
:
B., Ringeval,

:
B., Spahni,

:
R., Bohn, T., Avis,

:
C. A.,

Chen,
:
G., Eliseev,

:
A. V., Hopcroft,

:
P. O., Riley,

:
W. J., Subin,

:
Z. M., Tian,

:
H., vanBodegom,

:::::::::
Bodegom,

:
P. M., Kleinen,

:
T., Yu,

:
Z. C., Singarayer,

:
J. S., Zürcher,

::
Zü

::::
rcher,

:
S., Lettenmaier, D. P.,

Beerling,
:

D. J., Denisov,
:
S. N., Prigent, C., Papa,

:
F., and Kaplan,

:
J. O.: Present state of global

wetland extent and wetland methane modelling: methodology of a model inter-comparison project15

(WETCHIMP), Geoscientific Model Development
:::::::::::
WETCHIMP),

::::::
Geosci.

::::::
Model

::::
Dev.,

:
6, 617–641,

:::
doi:10.5194/gmd-6-617-2013, 2013.

Wecht,
:

K. J., Jacob,
:
D. J., Frankenberg,

:
C., Jiang,

:
Z., and Blake,

:
D. R.: Mapping of North American

:::::
North

:::::::::
American methane emissions with high spatial resolution by inversion of SCIAMACHY

::::::::::::
SCIAMACHY satellite data, J. Geophys. Res.-Atmos., 119, 7741–7756,

:::
doi:10.1002/2014JD021551,20

2014.
Winderlich,

:
J.: Setup of aCO2 and CH4 CO2 :::

and CH4 measurement system in Central Siberia and
modeling of its results, Ph.D.

::::
PhD

:
thesis, University of Hamburg, Hamburg, Germany,

:::::::
available

:::
at:

http://ediss.sub.uni-hamburg.de/volltexte/2012/5533/pdf/Dissertation.pdf
:::
(last

:::::::
access:

::
14

::::
June

:::::
2015),

2012.25

:::::::::
Winderlich,

:::
J.,

:::::
Chen,

::::
H.,

::::::
Gerbig,

::::
C.,

::::::
Seifert,

:::
T.,

::::::
Kolle,

:::
O.,

:::::
Lavrič,
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Table 1. Spatial
:::
flux

:
patterns chosen by the model selection framework

:
.

Region season
::::::
Season Models chosen over a constant model name(s)

::::::
Chosen

::::::
models

:

E. Canada summer 1 of 7 LPJ-Bern
:
,
:::::::
SDGVM

:

E. Canada fall 0 of 7
::::::::
LPJ-Bern

:

W. Canada summer 2 of 7 LPJ-Bern, SDGVM
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Figure 1. Mean of the annual methane fluxes estimated by the WETCHIMP models (a)
::
(a) and the range

of fluxes estimated by the ensemble (b)
:::
(b). Note that the range in estimates is larger than the mean. The

fluxes shown above are averaged over an entire grid cell
::
the

:::::::
average

::::
flux

:::
per

:::
m2

::
of

::::
land

::::
area, not per m2

of wetlands
:::::::
wetland

:::
area.
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Figure 2. The US and Canadian atmospheric methane observation network for 2007–2008 (14, 703 total
observations). Small yellow dots indicate observations from the START08 measurement campaign (Pan
et al., 2010). Larger dots indicate tower and aircraft sites with regular observations over the two year
period (Andrews et al., 2014). The grey background delineates the four regions used in the synthetic data
experiments (sect

:::
Sect. 2.2).
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Figure 3. This figure displays the results of the synthetic data experiments. These experiments examine
whether the observation network can (a) identify a methane pattern from

:::::
detect

::::::::
aggregate wetland CH4

fluxesand (b) identify spatial variability in the wetland fluxes. The figure shows the percentage of trials
that are successful. Darker shades indicate that the network is more sensitive to

::::::
wetland

:
fluxes in the

given region and season.
:::::
Panel

:::
(a)

:::::
shows

:::
the

::::::
results

:::
for

:::
the

:::::::
standard

:::::
setup

:::::
while

::::::
panels

::::
(b-e)

::::
show

:::
the

:::::
results

::
of

::::::
several

::::
test

::::
cases

:::
in

:::::
which

::::::::::::
anthropogenic

::::::::
emissions

::
or

::::::::
different

:::::
errors

:::
are

:::
set

::
to

::::
zero.
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Figure 4. These time series compare atmospheric methane measurements at several observation sites
against model estimates using the WETCHIMP ensemble and the EDGAR v4.2FT2010 anthropogenic
emissions inventory. The range of estimates

::::
Refer

::
to

::::
Fig.

:::
S4

:::
for

::::::::::
model-data

::::
time

:::::
series

::
at
:::::::::

additional
::::
sites,

::::::::::
particularly

::::
sites

:::
that

:::
are

::::::
distant

:
from the various WETCHIMP models is large

:::::::
wetlands.
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Figure 5. The seasonal cycle in methane fluxes estimated for the Hudson Bay Lowlands (HBL ;
:
(50–

60�� N, 75–96�� W). We include both the WETCHIMP estimates and an inverse modeling estimate from
Miller et al. (2014). Each

:::::
Panel

::
(a)

:::::::
displays

:::
the

:::::::
monthly

::::::
budget

::::
from

:::::
each

:::::::
estimate

:::::
while

:::
(b)

::::::
displays

::::
each month is displayed as a percentage of the annual budget estimated by a given model.This approach
highlights differences in the seasonality of the models and controls for differences in magnitude. In
general, the WETCHIMP models estimate a narrower seasonal cycle relative to Miller et al. (2014) .
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This supplement provides more detail on the atmospheric observations, the wetland methane

::::::
(CH

4

)
:
flux estimates, and the statistical methods used throughout the paper.

S1 Atmospheric observation sites

Here we describe, in greater depth, the atmospheric methane
:::::
CH

4

observations collected across
the US and Canada in 2007–2008. The observations used here are identical to

:::
the

:::::
same

:::
as those5

in Miller et al. (2013) and Miller et al. (2014b), and the discussion below summarizes the data
descriptions in those papers.

The methane
::::
CH

4:
analysis in the main article uses either real or synthetic data at US and

Canadian observation sites – a total of 14, 703 observations. Of those measurements, 2, 009 are
from observation towers in Canada. These towers (from east to west) include Chibougamau,10

Quebec (CHM, 50�N, 74�W, 30m above ground level); Fraserdale, Ontario (FSD, 50�N, 83�W,
40m agl); East Trout Lake, Saskatchewan (ETL, 54�N, 104�W, 105m agl); and Candle Lake,
Saskatchewan (CDL, 54�N, 105�W, 30m agl, 2007 only). These sites, operated by Environment
Canada, measure methane

::::
CH

4:
continuously. In this study, as in Miller et al. (2014b), we use

only afternoon averages of the methane
:::::
CH

4

data and WRF-STILT model output (1pm - 7pm15

local time); small scale heterogeneities in the continuous data caused by turbulent eddies and
incomplete mixing make it di�cult to model finer scale temporal patterns in the data. The
2, 009 observations at these Canadian sites represent the total after averaging.

An additional 4, 984 methane
::::
CH

4:
observations were collected from US towers operated

by the National Oceanic and Atmospheric Administration (NOAA) and its partners. These20

observations include daily flask samples from a number of tower sites (weekly at Argyle and
Ponca City): Argyle, Maine (AMT, 45 �N, 69 �W, 107m above ground level (agl)); Erie,
Colorado (BAO, 40 �N, 105�W, 300m agl); Park Falls, Wisconsin (LEF, 46�N, 90�W, 244m
agl), Martha’s Vineyard, Massachusetts (MVY, 41�N, 71�W, 12m agl); Niwot Ridge and Niwot
Forest, Colorado (NWF, NWR, 40�N, 105�W, 2,3,23m agl); Ponca City, Oklahoma (SGP, 37�N,25

97�W, 60m agl); West Branch, Iowa (WBI, 42�N, 93�W, 379m agl); Walnut Grove, California
(WGC, 38�N, 121�W, 91m agl), and Moody, Texas (WKT, 31�N, 97�W, 122, 457m agl).

A further 7710 methane
::
7

:::
710

:::::
CH

4:
measurements were obtained from flask samples on

regular NOAA aircraft flights and from the START08 (Stratosphere-Troposphere Analyses of
Regional Transport 2008) measurement campaign (Pan et al., 2010). As in Miller et al. (2013),30

we only use aircraft observations up to 2500m
:
2
::::::
500m above ground level. Observations at higher

altitudes are less sensitive to surface emissions and were instead used by Miller et al. (2013)
to optimize the empirical methane boundary condition

:::::::::
estimated

:::::
CH

4::::::::::
boundary

::::::::::
condition

::
or

:::::::::::
background

:::::::::::::::
concentrations. In this study, we only use aircraft and tower-based observations

collected during daytime hours.35

We further screen the data for biomass burning influence at the Canadian sites and at Park
Falls, Wisconsin. At the these sites, we remove all days with CO that peaks above 200 ppb, as
was done in Miller et al. (2014b). When these sites see influence from distant anthropogenic
emissions, CO is often elevated, but it rarely exceeds 200 ppb except during time periods with
known fires (Miller et al., 2008).40

S2 WETCHIMP methane
::::::
CH4:

flux models

This section of the supplement details the WETCHIMP methane
::::
CH

4:
estimates from Melton

et al. (2013) and Wania et al. (2013). The seven methane
:::::
CH

4

estimates used in this study are
shown in Fig. S1. The wetland methane

:::::
CH

4

fluxes estimated by these models varies widely
– both in magnitude and in spatial distribution. For example, the SDGVM model places large45

fluxes over the US Corn Belt relative to other regions while other models like Orchidee place

1



large fluxes in Northern Canada that extent far into the Northwest Territories. For a more
in-depth inter-comparison of these flux estimates, refer to Melton et al. (2013) and Wania et al.
(2013).

S3 The synthetic data
:::::::::::::::
Additional

:::::::::::::::::
information

::::
on

:::::
the

::::::::::
model

::::::::::::
selection50

::::::::
setup

In the main article, we use synthetic methane data to explore the sensitivity of atmospheric
observations to wetland fluxes (sections

::::
CH

4:::::
data

:::::
and

:
a
:::::::
model

:::::::::
selection

::::::::::
framework

:::
to

::::::::
examine

::::::::
whether

::::::::::::
atmospheric

:::::::::::::
observations

::::
can

::::::
detect

::::::::::
aggregate

::::::::
wetland

:::::
CH

4:::::::
fluxes

::::::
(Sect.

:
2.2 and 3).

This section describes in greater detail how we construct this synthetic data .
::::
first

:::::::::
describes55

:::
the

:::::::::
synthetic

:::::
data

:::::::::::::
experiments

::::::
(Sect.

::::
2.2)

:::::::::
followed

:::
by

::::::::::
additional

::::::
detail

:::
on

::::
the

::::::
model

:::::::::
selection

::::
runs

:::::
that

::::
use

::::
real

:::::
data

::::::
(Sect.

::::::
2.3).

:
The methods described here are adapted from Fang et al.

(2014)and
:
,
:
Shiga et al. (2014), and

:::
? ,

:::::
and the discussion below parallels the descriptions in

those studies.
The synthetic observations include contributions from anthropogenic sources, from wetlands,60

and from simulated model and measurement errors:

z
synthetic

= H(s
anthro

+ s
wetland

) + ✏ (S1)

In this equation, z
synthetic

(n ⇥ 1) represents the synthetic observations generated for an ob-
servation site. The vector s

anthro

(m ⇥ 1) represents emissions from anthropogenic sources,
and s

wetland

(m⇥ 1) represents wetland fluxes. The footprint or sensitivity matrix H (n⇥m),
generated from WRF-STILT, models the impact of these emissions at the observation sites.65

In this study, we use the a priori anthropogenic emissions estimates from Miller et al. (2013)
and Miller et al. (2014b) for s

anthro

. Those studies used activity data from the EDGAR inven-
tory and a model selection framework to construct a prior anthropogenic emissions estimate.
These EDGAR activity datasets include economic or demographic data that may predict the
spatial distribution of methane

:::::
CH

4

emissions (e.g., human or ruminant population maps).70

The wetland fluxes (s
wetland

) in Eq. S1 are taken from the WETCHIMP methane
::::
CH

4:
flux

models (experiment two in Melton et al. (2013)). We use only four of the seven WETCHIMP
models to generate synthetic data : CLM4Me, DLEM, LPJ-WSL, and SDGVM. These models
have an overall magnitude that most closely matches the methane budgets estimated by three
recent top-down studies over Canada’s

:::
For

:::
the

:::::::::
synthetic

:::::
data

:::::::::::::
experiments,

:::
we

:::::
scale

:::::
these

:::::::
models75

::
to

::::::
match

::::
the Hudson Bay Lowlands (HBL) (Pickett-Heaps et al., 2011; Miller et al., 2014b; Wecht et al., 2014) .

The magnitude of these four models is likely the most realistic among the WETCHIMP flux
estimates. The other WETCHIMP models, in contrast, predict much higher fluxes (Fig. 4).

:::::::
budget

:::::::::
estimated

:::
by

::::::::::::::::::::::::::::
Pickett-Heaps et al. (2011) ,

:::::::::::::::::::::
Miller et al. (2014b) ,

::::
and

::::::::::::::::::::
Wecht et al. (2014) .

::::
This

:::::::
scaling

::::::::
ensures

::::::
more

::::::::::
consistent

::
or

::::::::::::::
representative

::::::::
results.

:::::
The

::::::
larger

::::
the

::::::::
wetland

:::::
flux,

:::
the80

:::::
more

::::::
likely

::::
that

::::
the

::::::::::::
observation

::::::::
network

::::
can

:::::::
detect

::
a

::::
CH

4:::::::
fluxes

:::::
from

::::::::::
wetlands.

::::::::::
Therefore,

::
if

::
we

:::::::::
conduct

::::
the

:::::::::
synthetic

:::::
data

::::::::::::
experiment

::::::
using

::
a

::::
flux

:::::::
model

:::::
that

::::
has

:::
an

:::::::::::::
anomalously

:::::
large

:::::::::::
magnitude,

:::
we

::::::
would

:::::::::::::::
concomitantly

::::::
obtain

:::::::::::::
anomalously

::::::::::
optimistic

::::::::
results.

:

As in Miller et al. (2013) and Miller et al. (2014b), the emissions (s
anthro

and s
wetland

) are
regridded to a spatial resolution of 1� latitude by 1� longitude. The EDGAR activity data do85

not have any seasonality, so the anthropogenic emissions (s
anthro

) are seasonally invariant. The
WETCHIMP models have a monthly temporal resolution, as in Melton et al. (2013). That
study provides flux estimates for the years 1993-2004; we use the mean of these ten years for
all analysis in this study.

The final term in equation S1, ✏ (n⇥ 1), represents simulated errors in the measurements,90

in WRF-STILT, and in the fluxes (s
anthro

and s
wetland

). The magnitude and spatial/temporal

2
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Figure S1: Annual mean wetland methane
::::
CH

4:
fluxes from seven di↵erent WETCHIMP esti-

mates (Melton et al., 2013; Wania et al., 2013). The fluxes shown here are averaged over the
1993-2004 study period. Note that the fluxes shown above are averaged over the entire grid
cell, not per m2 of wetlands.
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structure of these errors were estimated in Miller et al. (2013) for the US and Miller et al. (2014b) for
Canada. The remainder of this section details the specific calculations for simulating

::::::
errors

::
in

✏ .
The errors in ✏ are distributed according to the covariance matrix  (n⇥ n) (Eq. 1):

✏ ⇠ N (0, ) (S2)

 = HQHT +R (S3)

The variances and covariances within  fall into two di↵erent categories. The first category95

are errors due to imperfect emissions, described by covariance matrixQ (m⇥m). In atmospheric
inversion studies, this matrix is typically termed the a priori covariance matrix. The diagonal
elements of Q describe a set of variances – di↵erences between the prior

:::::
fluxes

:
and the unknown

true emissions over long spatial or temporal scales. The o↵-diagonal elements of Q describe any
spatial and/or temporal covariances in these di↵erences. In Eq. S3, the footprint or sensitivity100

matrix (H) projects Q from units of (flux)2 into units of parts per billion squared, (ppb)2.
We refer to the second type of errors as model-data mismatch errors, denoted by covariance

matrix R (n ⇥ n). These include all errors in the WRF-STILT model or the measurements
that are unrelated to an imperfect flux estimate. Examples of model-data mismatch errors
include measurement error, atmospheric transport error, or errors due to the spatial or temporal105

resolution of WRF-STILT. Over the United States, we

::::
The

:::::::::
synthetic

:::::
data

:::::::::::
simulations

:::
in

::::
this

:::::
study

::::
use

::::::
values

:::
of

::
Q

::::
and

::
R

::::::::::
estimated

::
in

:::::::::::::::::::::::
Miller et al. (2013) and

:::::::::::::::::::::
Miller et al. (2014b) .

:::
In

::::
the

::::::::::
synthetic

:::::
data

::::::::
studies,

:::
we

::::::::::
construct

::
a
::::::::::
statistical

:::::::
model

:::::
that

::
is

:::::::::::::
representative

:::
of

::
a

::::::::::::
prototypical

::::
real

:::::
data

:::::::
inverse

:::::::
model.

::::::::::
Similarly,

:::
we

::::::
want

::
to

:
use values for R

andQ that were estimated by Miller et al. (2013) using WRF-STILT and the same atmospheric110

methane observations
:::
and

:::
R

:::::
that

::::
are

:::::::::::::::
representative

::
of

::::::
what

::::
one

:::::::
would

::::::
likely

:::::::::::
encounter

::
in

:
a
::::::::::
real-data

::::::
setup.

::::::::::::::::::::::::
Miller et al. (2013) and

::::::::::::::::::::::::::::::::
Miller et al. (2014b) constructed

:::::
real

:::::
data

:::::::
inverse

:::::::
models

:::::
over

:::
the

::::
US

:::::
and

:::::::::
Canada,

::::::::::::
respectively,

::::::
using

::::
the

::::::
same

::::::::::::
atmospheric

:::::::::::::
observations

::::
and

::::::::::::
WRF-STILT

::::::::::::
simulations

:
used in this study. Similarly, we use values for R and

::::::
Those

:::::::
studies

::::
used

::
a
:::::::
model

:::::::::
selection

::::::::::
framework

:::
to

:::::
find

:::::
prior

:::::::
models

:::::
that

::::::
show

::::::::
optimal

:::
fit

:::::::
against

:::::::::
available115

::::::::::::
observations.

:::
In

:::::
each

::::::
study,

::::
the

:::::::
authors

:::::
then

::::::::::
estimated

:::
the

:::::::::
elements

::
of

:::
Q

::::
and

::
R

::::::
using

::::
that

:::::
prior

::::::
model.

:::::
The

:::::::::
resulting

::::::::::
estimates

::
of

:
Q over Canada that were estimated in Miller et al. (2014b) ,

a parallel inverse modeling study over that country
:::
are

::::::::::::::
representative

:::
of

::::::
prior

:::::::
models

:::::
that

::::::
shows

::::::::
optimal

::::::::::
agreement

:::::
with

::::::::::::
atmospheric

:::::::::::::
observations.

::::
For

:::::
case

::::::
study

:::
(b)

::::
(no

::::::::::::::
anthropogenic

::::::::::
emissions),

::::
we

:::::::::
estimate

::
Q

::::::
using

::::
the

::::::
same

:::::::::
approach

:::
as

:::
in

::::::::::::::::::::
Shiga et al. (2014) .

:::
In

:::::
that

::::::
study,120

:::
the

::::::::
authors

:::::
used

::::
the

::::::::::
estimated

:::::::::
variances

:::::
and

:::::::::::
covariances

:::
of

:::
the

:::::::::::
remaining

::::::
fluxes

:::
(in

:::::
this

::::
case

:::::::
wetland

:::::::
fluxes)

:::
to

:::::::::
populate

:::
Q.

In order to simulate
:::
the

:::::
real

:::::
data

::::::::::::
experiments

::::::
(Sect.

:::::
2.3),

::::
we

:::::::::
estimate

:::::::
unique

::::::
values

:::
of

::
Q

::::
and

::
R

:::::
each

:::::
time

::::
we

::::
run

:::
the

:::::::
model

:::::::::
selection

:::::::::::
framework.

:::::
We

::::::::
estimate

::::::
these

::::::::::::
parameters

:::::
using

::::::::::
Restricted

::::::::::
Maximum

::::::::::
Likelihood

::::::::
(RML)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Corbeil and Searle, 1976; Kitanidis, 1995; Michalak et al., 2004; Gourdji et al., 2012) ,125

:::
the

::::::
same

::::::::::
procedure

:::::
used

::
in

:::::::::::::::::::::::
Miller et al. (2013) and

::::::::::::::::::::::
Miller et al. (2014b) .

:

:::
We

::::
use

::::::
these

:::::::::::
covariance

:::::::::
matrices

::
to

:::::::::
compute

:
✏ , we next

:::::::
through

:::::::
several

:::::::
steps.

::::::
First,

:::
we

compute the Cholesky decomposition of
:::
the

::::::::::
combined

::::::::::
covariance

::::::::
matrix  :

 = CCT (S4)

The covariance matrix  has units of (ppb)2, but its Cholesky decomposition (C) has units of
ppb, a fact that will become useful in the next step. With this decomposition in hand, we

::::
next

simulate a set of errors, ✏ (e.g., Fang et al., 2014; Shiga et al., 2014):

✏ = Cu (S5)

u ⇠ N (0,1) (S6)

4
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Figure S2: Total, summed footprint from the (a)
:::
(a) Canadian and (b)

:::
(b) US observation net-

works. The observation sites incorporated into this figure are shown in Fig. 2. Each individual
footprint (associated with an individual atmospheric observation) has units of concentration
per unit flux (ppb per µmol m�2 s�1). In this figure, we sum all footprints for 2007–2008.

where u represents a set of randomly-generated numbers with a mean of zero and variance of
one.130

We simulate 1000 synthetic datasets for each experiment to adequately sample the random
errors in ✏. We then use the model selection framework to find the optimal candidate model for
each of these datasets. The results presented in Fig. 3 are therefore the composite of thousands
of model selection runs: one model selection run for each synthetic dataset. We use a branch
and bound algorithm from Yadav et al. (2013) to improve the computational e�ciency of these135

model selection runs. Furthermore, we estimate the coe�cients (�) in Eq. 1 using Lagrange
multipliers to ensure that none of the estimated coe�cients have unrealistic negative values
(e.g., Miller et al., 2014a).

::
In

::::
the

:::::
real

:::::
data

::::::
setup

::::::
(Sect.

::::::
2.3),

:::
we

::::
run

::::
the

:::::::
model

:::::::::
selection

::::::::::
procedure

:::::
once

::::
for

:::::
each

::
of

:::
the

::::::
seven

::::::::::::::
WETCHIMP

::::
flux

:::::::::::
estimates.

::::
We

:::::
only

::::::::
include

::::
one

:::
of

::::
the

::::::
seven

::::::::::::::
WETCHIMP

::::
flux140

:::::::
models

::
in

::::::
each

::::::
model

:::::::::
selection

:::::
run.

:::::
As

::
a

:::::::
result,

::::
the

:::::::::::::
WETCHIMP

::::::::
models

:::
do

::::
not

:::::::::
compete

:::::::
against

::::
one

::::::::
another

::::
for

:::::::::
selection.

::::
In

:::::
each

:::::
run,

::::
the

::::::
model

:::::::::
selection

:::::::::::
framework

::::
can

::::::
select

::::
the

:::::
given

::::::::::::::
WETCHIMP

::::::
model

:::
in

::::
any

::
of

::::
the

:::::
four

:::::::::::
geographic

:::::::
regions

::::
and

::::
any

:::
of

::::
the

::::
four

:::::::::
seasons.

S4 Sensitivity
::::::::::
Overall

:::::::::::::::
sensitivity

:
of the observation network to

surface
::::::
CH4:

fluxes145

In this section, we describe the overall
::::::::
footprint

:::
or

:
sensitivity of the observation network to

methane
::::
CH

4:
fluxes. This sensitivity will play at least some role in network’s ability to identify

a signal from wetlands
:::::
detect

:::::::::
wetland

:::::
CH

4:::::::
fluxes. The WRF-STILT model quantifies this

sensitivity in terms of a footprint. Each row the matrix H is the footprint associated with a

5
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Figure S3: This figure displays the fraction of soil water that is unfrozen for the HBL in di↵erent
seasons and at di↵erent soil depths. Estimates are taken from NARR (Mesinger et al., 2006).

di↵erent atmospheric methane
::::
CH

4:
observation. In Fig. S2, we plot these footprints, summed150

over all of 2007–2008.
This figure show several distinctive patterns. First, the US network has a higher sensitivity

than the Canadian network. This pattern is due to the larger number of observation sites
over the US. Second, the highest sensitivities are clustered in distinctive regions with multiple
observation sites – Wisconsin, Texas/Oklahoma, and California, among other regions.155

S5 Soil freeze/thaw estimates from NARR

Figure S3 shows the soil freeze/thaw cycle at di↵erent depths averaged across the HBL. These
estimates are taken from North American Regional Reanalysis (NARR) (Mesinger et al., 2006),
and the values shown in Fig. S3 are average values for each month. The main article references
this figure in a discussion of the methane

::::
CH

4:
flux seasonal cycle (Sect. 4.3)

:
.
:

160

S6
:::::::::::::::
Additional

:::::::::::::::::
model-data

:::::::
time

:::::::::
series

::::
This

::::::::
section

::::::::
includes

:::::::::::
additional

::::::::::::
model-data

:::::
time

::::::
series

::::::::::
analogous

:::
to

::::::
those

:::
in

:::::
Fig.

:::
4.

::::::
That

:::::
figure

::::::::::
compares

:::::::::
averaged

:::::::::::::::
concentrations

:::::::::
modeled

:::
by

::::::::::::::
WRF-STILT

:::::::
against

::::::::::::::::::
monthly-averaged

::::::::::::
observations

:::
at

::::
four

:::::::::
di↵erent

::::::::::::
observation

:::::
sites.

:::::
The

:::::
sites

::::::::::
displayed

:::
in

:::::
that

::::::
figure

::::
are

:::::::
located

::::
near

::::::
large

:::::::::
wetlands

::::
and

:::
in

::::::::
regions

::::::
where

::::
the

::::::::::
synthetic

:::::
data

::::::::::::
experiments

:::::
had

::
a

:::::
high

:::::::
success165

::::
rate

:::::
(Fig.

::::
3).

:::::
The

:::::
sites

:::::::::
displayed

:::
in

::::
Fig.

::::
S4

::
in

:::::
this

:::::::
section

::::
are

::::::::
located

:::::::
further

:::::
from

:::::::::
wetlands

::::
and

::
in

::::::::
regions

:::::
that

::::
had

::
a
::::
low

::::::::
success

:::::
rate

::
in

::::
the

:::::
BIC

:::::::::::::
experiments.

::::
At

::::::
many

:::
of

::::
the

:::::
sites

::
in

::::
Fig.

::::
S4,

::::
the

::::::::
modeled

::::::::
wetland

:::::::
signal

::
is

::::::::
di�cult

:::
to

:::::::::::
distinguish.

:::::::
These

:::::
sites

:::::::::
contrast

:::::
with

:::::
those

::
in

::::
Fig.

::
4
:::::::
which

:::::
“see”

::
a
::::::::::
relatively

:::::
large

:::::
CH

4::::::::::
increment

:::::
from

::::::::::
wetlands.

:

6
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Figure S4:
::::
This

::::::
figure

:::
is

::::::::::
analogous

:::
to

::::
Fig.

::
4
:::::
and

::::::::
displays

::::::::::::::::::
monthly-averaged

:::::::::::
model-data

:::::
time

:::::
series

:::
for

:::::::::::
additional

::::::::::::
atmospheric

::::::::::::
observation

:::::
sites.
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S7
:::::::::::::::::
Uncertainty

:::
in

::::::
the

:::::::::::::::::
model-data

::::::::::::::::
framework170

::
A

::::::::
number

::
of

::::::::::
modeling

::::
and

::::::::::::::
measurement

:::::::::::::
uncertainties

:::::::::
influence

::::
the

:::::::
results

::::::::::
presented

:::
in

::::
this

::::::
paper.

:::::::
These

::::::::::::
uncertainties

::::
are

:::::::::
discussed

::
in

::::::
detail

:::
by

::::::::::::::::::::
Miller et al. (2013) ,

:::::::::::::::::::::
Miller et al. (2014b) ,

::::
and

:::::::::::::::::::::
Miller et al. (2014a) .

:::::
This

:::::::
section

:::::::::
provides

::
a

:::::::::
summary

:::
of

::::::
those

:::::::::::
discussions.

:

::::
The

:::::::
model

:::::::::
selection

::::::::::
framework

:::
in

::::
this

::::::
study

:::::::::
accounts

::::
for

:::::::::
modeling

:::
or

:::::::::::::
measurement

::::::
errors

::
in

:::
the

:::
R

::::::::::
covariance

:::::::
matrix

:::::
(Eq.

:::::
S3).

:::::
This

:::::::::::
covariance

:::::::
matrix

::
is

::::::::
typically

:::::::::
included

:::
in

:
a
:::::::::
Bayesian175

:::::::::
synthesis

::
or

:::::::::::::
geostatistical

::::::::
inverse

::::::
model

:::::::::::::::::::::::::::::
(e.g., Michalak et al., 2004) .

::::
The

:::::::
errors

:::::::::
described

:::
by

::
R

:::
are

:::::::::::
collectively

::::::::
referred

:::
to

:::
as

:::::::::::
model-data

::::::::::
mismatch

:
–
::::
any

::::::
errors

:::
in

:::
the

::::::::::::
model-data

::::::::::
framework

::::
that

::::
are

:::::::::
unrelated

:::
to

:::
an

:::::::::
imperfect

:::::
flux

:::::::::
estimate.

:::::
This

::::::::::
mismatch

::::::::
includes

:::::::
errors

::
in

::::
the

::::::::
modeled

::::::
winds,

::::::
errors

:::
in

:::
the

:::::
CH

4 :::::::::
boundary

::::::::::
condition,

:::::
and

:::
any

:::::::
errors

:::
due

:::
to

:::
the

::::::
finite

:::::::
spatial

::
or

:::::::::
temporal

:::::::::
resolution

:::
of

::::
the

:::::::
model,

::::::::
among

:::::
other

:::::::::
possible

:::::
error

:::::::::
sources.

:::::
This

::::::::
section

:::
of

::::
the

:::::::::::
supplement180

::::
first

:::::::::
discusses

::::
the

:::::::
overall

:::::::::::
magnitude

:::
of

:::::
these

::::::::::::
model-data

::::::::::
mismatch

:::::::
errors

::::
and

:::::
then

:::::::::
discusses

::::::::::
individual

::::::::::::
components

::
of

::::
the

:::::::::::
model-data

:::::::::::
mismatch,

:::::::::
including

:::::::::
potential

::::::
errors

:::
in

:::
the

::::::::::
estimated

:::::
winds

:::::
and

::
in

::::
the

::::::::::
boundary

::::::::::
condition.

:

:::::
Both

:::::::::::::::::::::::
Miller et al. (2013) and

::::::::::::::::::::::::::::::
Miller et al. (2014b) estimate

::::
the

:::::::::::
magnitude

:::
of

:::::::::::
model-data

:::::::::
mismatch

::::::
errors

::::
for

:::::::::::
observation

:::::
sites

:::
in

:::
the

::::
US

::::
and

:::::::::
Canada,

::::::::::::
respectively.

::::::
These

::::::::
studies

:::::
used

:
a185

:::::::::
procedure

:::::::
known

:::
as

:::::::::::
Restricted

::::::::::
Maximum

:::::::::::
Likelihood

::::::::
(RML)

::
to

:::::::::
estimate

::::
the

::::::::::::
parameters

::::
that

::::::
define

:::::
both

:::
the

::
R

::::
and

:::
Q

::::::::::
covariance

:::::::::
matrices

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Corbeil and Searle, 1976; Kitanidis, 1995; Michalak et al., 2004; Gourdji et al., 2012) .

::::
The

::::::::::
estimated

::::::::::
mismatch

::::::
errors

::::::
range

:::
in

:::::::::::
magnitude

:::::
from

::::::
12-13

:::::
ppb

::::::::::
(standard

::::::::::::
deviations)

::
at

:::::::::
Canadian

::::::
tower

:::::
sites

::
to

::::::
20-30

::::
ppb

:::
at

::::::
tower

:::::
sites

::::
near

:::
oil

:::::
and

:::
gas

:::::::::::
operations

::
in

::::
the

:::::::::
southern

:::
US

:::::
(refer

:::
to

::::
Fig.

::::
S2

::
in

:::::::::::::::::::::::
Miller et al. (2013) and

:::::
Fig.

:::
S6

:::
in

::::::::::::::::::::::
Miller et al. (2014b) ).

:::::
This

:::::::::::
magnitude190

::::::
(12-30

:::::
ppb)

::
is
:::::::::::
equivalent

::
to

::::::
25–70%

::
of

:::
the

::::::::
average

:::::
CH

4::::::
signal

:::::
from

:::::::
North

::::::::::
American

:::::::::
emissions

::
as

:::::
seen

::
at

::::
the

::::::::
various

:::::::::::
observation

::::::
sites.

:

::::::
These

:::::::::::
model-data

::::::::::
mismatch

::::::
errors

:::::::::::
encompass

:::::::::
numerous

::::::::
sources

::
of

::::::
error,

::::
but

:::::
these

::::::
errors

:::
are

:::::
likely

:::::::::::
dominated

:::
by

:::::::::::::
uncertainties

:::
in

::::::::::::
atmospheric

:::::::::::
transport.

::::::::::::::::::::::::::::::::
Nehrkorn et al. (2010) generated

:::::
WRF

::::::::::::
meteorology

::::
for

:::
use

::
in

:::::::
STILT

::::
and

::::::::::
compared

:::
the

::::::::::
estimated

::::::
winds

::::::::
against

:::
US

::::
and

:::::::::
Canadian195

::::::::::::
radiosondes.

:::::::
They

::::::::::
computed

:::
a

:::::
root

::::::
mean

:::::::::
squared

::::::
error

:::::::::
(RMSE)

:::
of

::::::
2.5–4

:::
m

::::
s�1

:::
in

::::
the

::::::::::
horizontal

::::::
winds

:::::
and

::::::
found

:::
no

::::::::
change

:::
in

:::::
error

::::::::::
statistics

:::
at

::::
the

::::
top

:::
of

::::
the

::::::::::
boundary

::::::
layer.

:::::::::::::::::::::::::::
Hegarty et al. (2013) further

::::::::
coupled

::::
the

:::::::
STILT

:::::::
model

::::
with

::::::::
several

::::::::
weather

:::::::
models

::::
and

::::::
found

::::
that

::::::::::::
simulations

:::::
with

::::::
WRF

:::::::::
produced

::::::
lower

:::::
error

:::::::::
statistics

::::::::
relative

:::
to

::::::
other

::::::::
weather

::::::::
models.

:

:::::::
Several

:::::::::
existing

::::::::
studies

:::::
have

:::::::
shown

:::::::::::
consistent

:::::::
results

:::::::::
between

:::::::::::::
WRF-STILT

:::::
and

::::::
other200

::::::::::::
atmospheric

::::::::
models;

::::
this

::::::::::::
consistency

:::::
may

:::::::::
indicate

::
a

:::::
lack

::
of

:::::::::::
large-scale

:::::
bias

:::
in

::::::::::::
atmospheric

:::::::::
transport

::::::::::
estimated

::::
by

::::::::::::::
WRF-STILT.

::::
For

::::::::::
example,

:::::::::::
constraints

::::
on

:::::::::::::
summertime

::::
US

:::::::
carbon

:::::::::
monoxide

::::::::::
emissions

::::::::::
estimated

:::::
with

:::::::
STILT

::::
and

::::
the

::::::::::::::
GEOS-Chem

::::::
model

:::::::
match

:::
to

:::::::
within

:::
10%

:::::::::::::::::::::::::::::::::::::::::
(Miller et al., 2008; Hudman et al., 2008) .

::::::
CH

4::::::::
budgets

:::::::::::
estimated

:::
for

:::::
the

:::::
HBL

:::
in

::::::::
Canada

:::::
using

:::::::::::::
WRF-STILT

::::
and

:::::::::::::
GEOS-Chem

:::
are

:::::::
similar

:::
to

::::::
within

:::
10%

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pickett-Heaps et al., 2011; Miller et al., 2014b; Wecht et al., 2014) .205

:::::::::::::
Furthermore,

::::
CH

4:::::::::
budgets

:::::::::
estimated

::::
for

:::
the

::::
US

:::::
with

:::::::::::::
WRF-STILT

::::
and

:::::::::::::
GEOS-Chem

:::::::
match

::
to

::::::
within

:::::
⇠10%

:::::::::::::::::::::::::::::::::::::::
(Miller et al., 2013; Turner et al., 2015) .

:

::::
The

:::::
CH

4:::::::::::
boundary

::::::::::
condition

::
is

:::::::::
another,

::::::::::::
potentially

:::::
large

:::::::
source

:::
of

::::::::::::
uncertainty

:::
in

::::
the

::::
CH

4::::::::::
modeling

::::::::::::
framework.

::::
To

:::::::
create

:::::
this

::::::::::
boundary

:::::::::::
condition,

:::
we

::::::::::::
interpolate

::::::::::::
atmospheric

::::
CH

4:::::::::::::
observations

:::::
near

::
or

:::::
over

::::
the

:::::::
Pacific

::::
and

:::::::
Arctic

::::::::
Oceans

:::
to

::::::
create

::
a
::::::::::
boundary

::::::::::
“curtain.”210

::::
This

::::::::
curtain

::::::::::
estimates

:::::
CH

4:::::::::::::::
concentrations

::::
over

::::
the

::::::::
Pacific

::::
and

:::::::
Arctic;

:::
it

::::::
varies

:::
by

:::::::::
latitude,

::::::::
altitude,

:::::
and

:::::
time

:::::
(see

:::::
Fig.

::::
S4

:::
in

::::::::::::::::::::::
Miller et al. (2014b) ).

:::::
We

::::::
then

:::::::
sample

:::::::::::::::
concentrations

:::::
along

::::
this

::::::::
curtain

::::::::::
depending

::::::
upon

:::
the

:::::::
ending

:::::::::
latitude,

:::::::::
altitude,

::::
and

:::::
time

::
of

:::::
each

:::::::::::::
WRF-STILT

::::::::::
trajectory.

:::::::
These

:::::::::
sampled

:::::::::::::::
concentrations

::::::::
become

::::
the

::::::::::
boundary

::::::::::
condition

::
–
::::
an

:::::::::
estimate

::
of

:::
the

:::::
CH

4::::::::::::::
concentration

:::
in

:::
air

:::::::
before

:::::
that

:::
air

::::::::
reaches

::::::
North

::::::::::
America.

:::::::::::::::::::::::
Miller et al. (2013) and215

::::::::::::::::::::::::::::
Miller et al. (2014b) describe

::::
this

:::::
setup

:::
in

:::::::
greater

::::::
detail

:::::
along

:::::
with

::::
the

::::::::::
associated

:::::::::::::
uncertainties.

:::
For

::::::::::
example,

:::::::::::::::::::::::::::::
Miller et al. (2013) compared

::::
the

::::::::::
boundary

::::::::::
condition

:::::::::
estimate

:::::::
against

::::::::
aircraft

::::
data

:::::::::
collected

::::::
above

:::::::
3000m

:::::
over

:::
the

:::::::
United

:::::::
States.

::::::
They

::::::
found

:::
an

::::::::
average

:::::::::
di↵erence

:::
of

:::
2.7

::::
ppb
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::::::::
between

::::
the

::::::::
aircraft

::::::::::::
observations

:::::
and

::::::::::
boundary

:::::::::
condition

::::::::::
estimate.

::::::::::::::::::::::::
Miller et al. (2013) then

::::::::
adjusted

::::
the

::::::::::
boundary

::::::::::
condition

::::::
based

:::::
upon

:::::
this

:::::::
aircraft

::::::
data.

::::::
They

:::::::::::::
subsequently

::::::::::
estimated220

:
a
:::::
total

::::
US

:::::
CH

4:::::::
budget

::::::
using

::::::::::
boundary

:::::::::::
conditions

:::::
with

::::
and

::::::::
without

::::
the

::::::::
aircraft

::::::::::::
adjustment.

::::
The

:::::
total

:::::
CH

4:::::::
budget

::::::
using

::::
the

:::::::::::::::::
aircraft-corrected

::::::::::
boundary

::::::::::
condition

::::
was

:::::::::::::::
approximately

::
5%

::::::
higher

:::::
than

::::
the

::::::::::::
unadjusted

::::::::::
boundary

::::::::::
condition

:::::::::
estimate.

::::::
This

:::::::
result

:::::::::
indicates

::::
the

::::::::
possible

::::::
e↵ects

::
of

::::::::::
boundary

::::::::::
condition

:::::::::::::
uncertainties

:::
on

::
a

:::::::::::::
national-scale

:::::
CH

4::::::::
budget

::::::::
estimate.
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Reply to reviewer #1

S. M. Miller, et. al.

We would like to thank the reviewer for suggestions and comments on the manuscript. The
reviewer’s detailed suggestions have been very helpful in improving the manuscript. Below,
we have included the reviewers comments (in bold) along with our reply and the associated
changes/updates to the manuscript.

1 Overall comments:

• Concerning the language, the authors frequently make use of question sen-
tences, often of rhetorical nature, which I personally find quite annoying
within the context of a journal article. So I highly recommend rewriting
these passages. Particularly these question sentences are often unnecessarily
repeated throughout the paper.

We have revised this language accordingly.

• The structure is clear and concise, though at some sections slightly unbalanced
– in some cases (e.g. Section 2.1) you skip over many essential details and
refer to existing manuscripts, while in others (e.g. 2.2) you provide many
details where you could also have used citations instead.

We have added more detail to Section 2.1 on WRF-STILT and on the WETCHIMP model
comparison project. We have edited Section 2.2 to rely more heavily on the existing
literature.

• The authors claim in the conclusions section (p.9357, ll.3↵) that bottom-up
and top-down modelers should do a better job in joining forces to arrive at
more solid estimates of methane emission budgets, a statement that I fully
support (even though I don’t think it belongs into a conclusion section in the
way it is presented here ..). At the same time, they work out various system-
atic di↵erences between bottom-up and top-down products within the context
of this study, and attribute all the ’blame’ to the bottom-up models, with-
out even starting to discuss shortcomings in the inverse modeling approach
which also lead to (well known) large uncertainties. Stated a bit provocative,
it sounds like the authors’ intention is to tell bottom-up modelers that they
need to do a much better job, and better ask the top-down crowd how to do
things right

The reviewer makes a reasonable point. Both bottom-up models and top-down, inverse
models have respective strengths and weaknesses/uncertainties; neither provides the final
word on greenhouse gas fluxes. We certainly do not want to ‘blame’ anyone or any previous
research e↵ort, and we have revised the manuscript wording where possible to make this
point clearer. Both top-down and bottom-up modelers often express a desire to meld
e↵orts in a way that would leverage the respective strengths of each approach. This goal

1



is easier said than done. As the reviewer points out, this statement in the conclusions
section is likely too cursory or too provocative, and we have removed it. In the revised
manuscript, we not only suggest future improvements to bottom-up models but also to
top-down estimates.

• Moreover, I was disappointed to find that the authors don’t really make an
e↵ort to explain where such di↵erences might stem from.

In the revised manuscript, we have augmented this discussion of ‘why’ or ‘how’ in sections
4.1 – 4.3. Atmospheric data can often provide useful information on the magnitude, lo-
cation, or timing of fluxes, but it is usually much more di�cult to infer how or why these
fluxes occurred. In several instances, we can hypothesize why model-data di↵erences oc-
cur. For example, existing bottom-up flux estimates exhibit di↵erent spatial distributions
over North America, and many of those di↵erences appear to stem from the underlying
wetland distribution. In the paper, we discuss this di↵erence in context of atmospheric
data; bottom-up models that are most consistent with the atmospheric data use wetland
distributions that are based, at least in part, on land cover mapping. We also discuss
discrepancies in seasonality and why these discrepancies may occur (Section 4.3).

• However, a comprehensive interpretation of the observed di↵erences as pre-
sented herein needs to include an extensive section that discusses the uncer-
tainties and potential biases that stem from the atmospheric inversion part of
the comparison.

We have added a section to the supplement that highlights the largest sources of uncer-
tainties in the top-down analysis conducted in the paper.

The analysis in this paper is based upon inversion frameworks developed in Miller et al.
(2013), Miller et al. (2014b), and Miller et al. (2014a). Those papers discuss, in detail,
the uncertainties and potential biases that stem from inverse modeling. For example,
Miller et al. (2013) explore uncertainties in the estimated methane boundary condition,
uncertainties in the estimated covariance matrix parameters (the parameters that define
 ), uncertainties due to atmospheric transport in WRF-STILT, uncertainties due to
geological CH4 sources, and uncertainties in the attribution of CH4 to individual sources.
Miller et al. (2014b) discuss uncertainties due to the nested meteorology domains in
WRF-STILT, uncertainties in the methane boundary condition, uncertainties due to the
sparsity of the CH4 observation network, uncertainties in atmospheric transport estimated
by WRF-STILT, and uncertainties in the covariance matrix parameters. Finally, Miller
et al. (2014a) discuss uncertainties in the flux estimate due to the assumptions made by the
statistical modeling framework. In addition to these inverse modeling papers, Nehrkorn
et al. (2010) and Hegarty et al. (2013) also discuss atmospheric transport uncertainties in
the WRF-STILT modeling framework.

The uncertainties that were estimated/developed in those existing studies are used through-
out the current manuscript. For example, these uncertainties form the basis of the R and
Q covariance matrices which are an integral part of the model selection analysis (see Eq.
1 and Fig. 3). In addition, the inversion estimates in Fig. 5 of the revised manuscript are
shown in context of the confidence interval estimated from the inversion. This confidence
interval accounts for limited data coverage, transport model errors, the finite resolution
of the inverse model, and other error sources (as discussed in Miller et al. (2014b)).
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2 Detailed comments:

• P.9345f, Section 2.1: As mentioned above, I think this is extremely short.
Even though the details might be given somewhere else, the reader needs
more information to understand what approaches you used in the context of
this study.

We have expanded this section to describe the data, atmospheric model, and WETCHIMP
methane models in greater detail.

• p.9346, l.16f: You never explain and/or discuss how the low temporal reso-
lution (monthly) of emission fluxes is actually coupled to your mixing ratio
observations, which probably have a temporal resolution of 1-3hrs (details
also not given in the text)? Do you assume flat temporal trends in emission
rates over the course of one month, then a step change to the rates of the
next month? If so, you should add a sensitivity study how this low temporal
resolution in the bottom-up products a↵ect your inversion results. Didn’t you
have access to bottom-up products with a higher temporal resolution?

We have clarified this point in the manuscript. We are limited by the temporal resolution
of the bottom-up products from the WETCHIMP study; those methane flux simulations
have a monthly temporal resolution. With that said, observations during the first ten
days of each month have footprints that extend into the previous month. As a result, the
model estimate at any given site is often based upon wetland flux estimates from multiple
time periods. In this way, the WRF-STILT model estimate is not a step change from one
month to the next.

• p.9346f.: Section 2.1 is almost of equal length compared to 2.1, even though
also here you could refer many of the details to e.g. the Gourdji et al. ref-
erence. These are just minor details, but they make the paper appear unbal-
anced in parts.

We have expanded Section 2.1 to describe the data, atmospheric model, and WETCHIMP
flux products in greater detail. Reviewer #2 asked a number of questions about the model
selection framework, so we have also expanded Section 2.2 to better explain the statistical
approach for a non-technical audience.

• p.9347↵.: the strategy of the synthetic modeling setup needs to be rewritten
in some parts. Some details are only given in the last paragraph, which are
required earlier to understand the concept. For example, you only mention in
the past paragraph that the 16 combinations of regions/seasons are optimised
separately. Also, one thing that is not clear to me: in 1000 repeats di↵er-
ent combinations of turning the 16 options for regions/seasons are randomly
created. If each region/season gets an individual model fit through the BIC
approach, why do you need the repeats?

The reviewer makes an astute point here. We have re-arranged the information in Section
2.3 as the reviewer suggested.

The 1000 repeats are needed due to the random or stochastic nature of the synthetic
data simulations. We add random noise to the synthetic data to simulate the e↵ect of
real-world modeling and measurement errors. We do not know the exact value of these
modeling or measurement errors. Instead, we have an estimate of the properties of these
errors (i.e., their variances and covariances), and we can simulate a plausible set of errors
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using these estimated properties and a random number generator. The results of the
model selection can vary slightly, depending on the particular random numbers that we
draw. Hence, we repeat the synthetic data experiments over and over again (1000 times
in total) and average the results across all 1000 repeats. This procedure ensures that the
model selection results are not the output of a single random number draw. We have
clarified this setup in the revised manuscript.

• p.9349, ll.25↵: Your assigned scaling factors for EDGAR emissions should be
discussed in more detail as sources of uncertainty in the simulated mixing
ratio time series! What about the influence of boundary layer height, which
is certainly shallower in winter, and might thus exaggerate the influence of
ground sources on mixing ratio changes in the atmosphere.

We do not scale the EDGAR emissions inventory in the revised manuscript. Many atmo-
spheric CH4 observation sites near wetlands are also located far from large anthropogenic
emissions. As a result, any e↵ort to scale the EDGAR inventory at these sites could be
error-prone. Instead, we present the inventory as is.

Miller et al. (2013) and Miller et al. (2014b) explore in detail the possible influence of
boundary layer height. Miller et al. (2013), for example, found no significant seasonality in
their US CH4 emissions estimate (Fig. S8 in that paper). Seasonal bias in the estimated
boundary layer height could manifest as erroneous seasonality in the emissions estimate.
The absence of seasonality in estimated US emissions suggests an absence of bias in
estimated boundary layer heights.

• p.9350↵, Section 3, first part: I’m lacking a summarising conclusion/discussion
here. To what extent does the ratio of natural to anthropogenic emissions in-
fluence the detectability of wetland fluxes? And to what extent is the network
configuration responsible?

We have expanded the first synthetic data study to explore these questions in greater
depth. For example, we explore how these results change if we set anthropogenic emissions
to zero. Similarly, we explore how these results change if we set atmospheric transport
errors to zero. These expanded results are summarized in Fig. 3 and section 3.

• p.9351f, Section 3, second part: since the patterns displayed in Figs. 3a
and 3b are virtually the same, the question arises whether you can truly
separate the 2 e↵ects you are looking after. After all, it boils down to the
same question: What is the ratio of natural and anthropogenic emissions in
a certain region/season, and how well is the observation network designed to
capture these signals. I therefore strongly recommend to explain better if the
2 steps of virtual experiments truly provide di↵erent answers!

Part one of the synthetic data experiments asks a question of magnitude and part two
asks a question related to the spatial distribution fluxes. In particular, part one investi-
gates whether the observation network can detect any kind of atmospheric pattern from
wetlands. Part one asks a basic question about about the detectability of wetlands over
patterns from anthropogenic sources or from model errors. Part two investigates whether
it matters to the observation network where those fluxes are located. Part two is pre-
requisite for the real data experiments in section 4.1.

In many ways, it makes sense that the first and second synthetic data experiments pro-
duce similar results, but that result is not necessarily guaranteed. In regions with large
wetland fluxes, those fluxes often display high spatial variance. The first synthetic data
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experiment often produces positive results when the wetland fluxes are large. The second
synthetic data experiment often produces positive results when the fluxes display high
spatial variance. Hence, the first and synthetic data experiments often produce similar
results. Furthermore, we show in the revised manuscript that these results are not neces-
sarily due to the ratio of natural and anthropogenic emissions (refer to Section 3 of the
revised manuscript).

Fang et al. (2014) validated and tested the model selection framework used in the second
synthetic experiment. That study used atmospheric observations and model selection to
di↵erentiate among spatial patterns in CO2 flux estimates for North America. We have
elaborated on this discussion in the revised manuscript.

• p.9351↵, Section 4.1: I think it is a very important finding that plausible
spatial patterns in CH4 emissions from bottom-up models are only based on
land cover maps, not on the remotely sensed inundation maps. Here, you
provide the only detailed recommendation to the bottom-up community how
their model estimates can be improved! So this definitely deserves a more
detailed discussion, and a more prominent place in the conclusions.

We have expanded this discussion in section 4.1 and have featured this result more promi-
nently in the conclusions.

• p.9354↵, Section 4.2: these results basically indicate that none of the bottom-
up models is useful for North American regional simulations ... the sum-
mertime emissions seem to be extremely overestimated, so that the resulting
seasonal courses in modeled data are opposite of what the observations show.
This isn’t discussed at all ... ??? I think what definitely needs to be added
here is an uncertainty estimate of the background data set, and the scal-
ing factors of the EDGAR emissions. Given the substantial overestimates in
summertime emissions by virtually all models, it’s hard to imagine how these
models could be re-calibrated to match the observations, given that the other
modeling components are correct ...

We would hesitate to say that none of the bottom-up models is “useful” for North Ameri-
can regional simulations. We would argue that there is an opportunity to tune the seasonal
and spatial patterns in these bottom-up estimates. Similarly, the revised manuscript also
o↵ers several suggestions for improving future top-down emissions studies.

We do not scale the EDGAR emissions inventory in the revised manuscript. We have
also added a discussion on boundary condition uncertainties to the supplement. This
discussion mirrors the boundary condition uncertainty analysis in Miller et al. (2013) and
Miller et al. (2014b).

• p.9354, l.12f: you need to provide an explanation why you restricted your
time series analysis to only a few sites, and why you chose those 4.

We chose those four sites because they are located near large wetlands and in regions
where the synthetic data experiments produced positive results; the wetland methane
signal is easier to distinguish at these sites relative to others. In the revised manuscript,
we have added plots of all remaining US and Canadian sites in the supplement (Fig. S4).

• p.9355f, Section 4.3: I think it’s not enough to base the seasonality analy-
sis on relative flux contributions from each month alone. Since most of the
bottom-up models (as shown in Fig.4) have very high flux emissions rates in
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summertime, it may well be that the shoulder season fluxes are matching the
inverse product quite well, while there are simply way o↵ in the peak of the
warm season.

We have added a second panel to Fig. 5. That panel shows the absolute budget in Tg
CH4 per month. The revised version of Fig. 5 therefore allows the viewer to compare
both the relative and absolute seasonal cycle in each model.

• p.9356, ll.10↵: It’s a plausible explanation that air temperatures are signif-
icantly decoupled from the conditions in the soil (where CH4 is produced)
for fall, but not for spring ... even if you can show through NARR that soils
start thawing in April, this isn’t possible without air temperatures that are
appropriately high ...

Another possible explanation is that the temperature threshold for CH4 production may
be too high in some existing models. Most models predict relatively small fluxes when
soils are cold but still above freezing. And most predict dramatically larger fluxes in the
summer when both soil and air temperatures are at their peak. Our analysis suggests
that the shape of the seasonal cycle may be broader than that predicted by many models;
the relative di↵erence between cool-season and warm-season fluxes may not be as great as
predicted by many bottom-up estimates. This conclusion is supported by flux measure-
ments taken across the North Slope of Alaska by Donatella Zona (University of She�eld).
Her paper is currently under review. We have added to this discussion in section 4.3 of
the revised manuscript.

• p.9357, ll.3↵: As mentioned already above, this hasn’t been discussed earlier,
and I don’t think this is the proper place to start with this kind of agenda. I
agree with the general statement, but if you want to place it in a publication
you need to be more constructive. Your results show that there are obvi-
ously still large discrepancies between the methane signal that is simulated
by WETCHIMP models, and the methane signal as seen from the atmospheric
observations. Still, you don’t o↵er any conclusions how information from at-
mospheric methods might be used to improve the bottom-up models ...

The reviewer makes a good suggestion here. We have removed this statement from the
conclusions.

• p.9357, 2nd paragraph (ll.8↵): I think this part of the conclusions needs
more details. You just list your basic findings, without even attempting to
interpret where these di↵erences come from. Also, you seem to assume that
any atmospheric inverse modeling product (or the approach to link tower
observations to surface fluxes through atmospheric inverse modeling) can be
regarded as the ‘truth’, and all discrepancies with bottom-up products can be
attributed to shortcomings in the latter.

We have revised the wording of the article to make the top-down, atmospheric analysis
sound less absolute (relative to bottom-up modeling). We have also included more dis-
cussion in Sections 4.1-4.3 and in the Conclusions, discussion that emphasizes plausible
reasons for any discrepancies between the top-down analysis in the paper and existing
bottom-up estimates of wetland fluxes.
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Reply to reviewer #2

S. M. Miller, et. al.

We would like to thank the reviewer for suggestions and comments on the manuscript. The
reviewer’s detailed suggestions have been very helpful in improving the manuscript. Below,
we have included the reviewers comments (in bold) along with our reply and the associated
changes/updates to the manuscript.

1 Summary

• In general, a new method of statistical analysis (BIC for CH4 wetland flux
model selection) needs to be tested fully to understand the abilities and lim-
itations to give confidence to the results.

The statistical methods and associated applications in this paper are by no means new.
Model selection based upon the BIC has been used widely across statistics and has been
used in numerous top-down studies of CO2 and CH4 to select a flux model. Schwarz
(1978) originally developed the Bayesian Information Criterion (BIC), and BIC-based
model selection has subsequently been used widely in statistical modeling (Ramsey and
Schafer, 2012). In more recent years, several studies have used BIC-based model selection
to explain patterns in eddy-covariance CO2 flux measurements (Mueller et al., 2010; Yadav
et al., 2010). A number of atmospheric inverse modeling studies have also employed BIC-
based model selection to choose bottom-up models or environmental datasets for the prior
flux estimate; these inverse modeling studies have applied BIC-based model selection to
both CO2 (Gourdji et al., 2012) and CH4 (Miller et al., 2013, 2014a) flux problems. In
addition to the aforementioned applications, BIC-based model selection has also been
used to investigate the detectability of atmospheric patterns from surface sources (Fang
et al., 2014; Shiga et al., 2014; Fang and Michalak, 2015). The model selection methods
outlined in those three papers are identical to those used in the present manuscript.

In the revised manuscript, we have included more references to these sources to bolster
the methods outlined in Section 2.2.

• Examine the uncertainties for each model components, such as sensitivity of
the methodology to transport errors, flux errors, background concentration
estimates, other assumptions/approximations and their interactions, as well
as the stability or robustness of the analysis. If a thorough analysis is not
done, at least a full discussion of the potential problems is needed to put the
preliminary results in the proper perspective.

The analysis in this paper is based upon several existing inverse modeling studies, studies
that use the same WRF-STILT model simulations, background concentration estimate,
covariance matrix parameters, etc. (Miller et al., 2013, 2014a,b). Those studies discuss po-
tential modeling and measurement errors in great detail. For example, Miller et al. (2013)
explore uncertainties in the estimated methane boundary condition, uncertainties in the
estimated covariance matrix parameters (the parameters that define ), uncertainties due
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to atmospheric transport in WRF-STILT, uncertainties due to geological CH4 sources,
and uncertainties in the attribution of CH4 to individual sources. Miller et al. (2014a) dis-
cuss uncertainties due to the nested meteorology domains in WRF-STILT, uncertainties
in the methane boundary condition, uncertainties due to the sparsity of the CH4 obser-
vation network, uncertainties in atmospheric transport estimated by WRF-STILT, and
uncertainties in the covariance matrix parameters. Finally, Miller et al. (2014b) discuss
uncertainties in the flux estimate due to the assumptions made by the statistical modeling
framework.

We have added a new section to the supplement (S7) that summarizes and highlights the
discussion in these previous papers.

2 General comments

• In Section 3: 4 of the 7 models were selected from WETCHIMP for the syn-
thetic data experiment to evaluate the BIC method. Presumably the authors
expected (without su�cient reasons) the 3 remaining models to be ‘unaccept-
able’, including LPJ-Bern. Yet BIC results in section 4.1 indicate LPJ-Bern
is selected most often when using real observations, bringing into question the
value and correctness of this BIC method (in its current form). This suggests
the rejection of LPJ-Bern could be a problematic assumption in section 3
and/or the BIC methodology is not working. Possibly other assumptions and
approximations (such as uncertainty estimates, model transport errors, etc.)
are incorrect, the whole new method needs to be evaluated much more thor-
oughly as noted above. In general, much stronger justifications are needed
for model selection. The BIC analysis should be done for all WETCHIMP
models in the synthetic data experiment. If the range of flux model variations
is too large, then what is the range of applicability for the BIC method?

We have revised the manuscript to include all seven WETCHIMP models in the synthetic
data experiment.

In the original manuscript, we did not include three models in the synthetic experiments
because those models had an anomalously large magnitude relative to the other model
estimates. The larger the wetland flux, the more likely that the observation network can
detect a methane pattern from wetlands. Therefore, if we conduct the synthetic data
experiment using a flux model that has an anomalously large magnitude (see Fig. 4), we
would concomitantly obtain anomalously optimistic results. Thus, we had not included
these three models in the synthetic data experiments to avoid biasing the experiment
results.

The analysis in Section 4.1 examines a completely di↵erent question, one that is inde-
pendent of the flux model’s magnitude. Rather, that experiment examines which models
have spatial distributions that are consistent with the data. That analysis disentangles
the spatial distribution of the fluxes from other confounding questions of magnitude or
seasonality. Unlike the first synthetic data experiment, the analysis in Section 4.1 is
insensitive to the magnitude of the flux models.

We have clarified the experimental design in sections 2.3 – 2.4 to prevent any confusion.
In the revised manuscript, we have also included all seven WETCHIMP models in the
synthetic data experiments. We have scaled the magnitude of those models to match
Pickett-Heaps et al. (2011), Miller et al. (2014a), and Wecht et al. (2014); this step ensures
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that the BIC results in Section 3 will not be biased by anomalously large WETCHIMP
flux models, as explained above.

• The authors stated ‘By contrast, the observation network is largely insensitive
to spatial variability in wetland fluxes across the US; in most instances, the
model selection framework favors a spatially-constant model over a wetland
model for the two US regions.’ (page 9352, lines 9-12). Was ‘a spatially-
constant model’ included in the work and the BIC model ‘favors’ or selected
it over the other models? The comparison to ‘a spatially-constant model’
in general needs to be explained and documented more clearly. If the BIC
method actually selects the ‘spatially-constant model’ (a clearly wrong model),
maybe this is an indication of the lack of ability of the method.

We have added additional explanation to the manuscript to clarify this concept. The
‘spatially-constant model’ is analogous to an intercept term in a regression. It is standard
practice to include an intercept in regression modeling; this intercept is always included
in the model, irrespective of the availability or suitability of other explanatory variables.
In spatial statistics, that intercept term is a spatial constant, hence the phrase ‘spatially-
constant model.’

The BIC-based model selection framework examines every possible combination of ex-
planatory variables. The BIC-based framework will then score each combination of ex-
planatory variables based upon how well each fits the observations and based upon the
number of variables in each combination; combinations with a large number of variables
receive a larger penalty (Eq. 1). Each candidate combination always includes an intercept
term. It is plausible that none of the variables explain substantial variability in the obser-
vations. In such case, the best-scoring model may be one that only includes an intercept
(the most basic possible model). The intercept term is almost certainly not the “true”,
correct model; the intercept does not represent the unknown methane flux processes that
occur within soils. Similarly, the intercept almost never explains all variability in the ob-
servations. Rather, the model selection framework may choose the intercept-only model
if other candidate variables have limited ability to explain the atmospheric data.

A hypothetical example helps illustrate this concept. In theory, we could use model
selection to explore whether observations at the LEF tower in Wisconsin can detect a
methane pattern from wetland fluxes in Siberia. We could examine this question using a
synthetic data experiment like the first experiment in Section 2.3. Any variability in the
observations at LEF would be unrelated to methane fluxes in Siberia. Therefore, a model
selection framework would not choose a Siberian flux model as an explanatory variable.
That result is not necessarily a judgement on the accuracy of the Siberian flux model.
Similarly, that result does not indicate that the intercept is a ‘perfect model.’ Rather,
that result simply indicates that methane observations at LEF cannot be explained by
fluxes in Siberia.

In addition, it is important to note that BIC-based analysis in sections 3 and 4.1 address
di↵erent questions, and we do not expect any one model to be selected by the model
selection framework in all cases. The first synthetic data experiment explores whether
the atmospheric observation network can detect an atmospheric pattern from wetland
sources. The second experiment asks a more detailed question – whether the network is
sensitive to the location of wetland fluxes. The network could select both the intercept
and a wetland model in the first experiment but may only select the intercept (no wetland
model) in the second experiment. In that case, the network can detect an atmospheric
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CH4 pattern from wetlands but cannot pinpoint the geographic origin of that atmospheric
pattern.

For additional discussion, refer to Shiga et al. (2014); the authors used model selection
to explore the detectability of anthropogenic CO2 fluxes across North America. Our
experimental design parallels that study.

• The 3 subsections, 4.1, 4.2, 4.3 seem to be unrelated and somewhat conflict
with each other. Sections 4.2 and 4.3 did not make use of the information from
4.1 that LPJ-Bern and SDGVM performed best in the BIC analysis. In fact,
the best model from 4.1, LPJ-Bern performed poorly in the flux magnitude
and seasonal maximum comparison in section 4.2. There is no explanation
on this discrepancy. This could be an indication of the problem in the BIC
analysis in selecting a poorly performing flux model.

Subsections 4.1, 4.2, and 4.3 analyze the spatial distribution, magnitude, and seasonality
of each WETCHIMP model, respectively. Those sections examine each of these qualities
individually; each section should be unrelated to the others. A model that best matches
the magnitude of the observations will not necessarily have a spatial distribution that
best matches the observations (and vice versa). Similarly, a model that best matches the
magnitude of the observations at annual scale will not necessarily have a seasonality that
best matches the observations (and vice versa). For example, the spatial distribution of
LPJ-Bern compares favorably against the data, but its magnitude must be scaled down-
ward to match the observations. This result is neither a discrepancy in the methodology
nor a problem in the model selection framework.

• Section 4.3 is a comparison of all 7 flux models to the results of another in-
version model, Miller et al. 2014. Since inversion model results are highly
uncertain, this simple model to model type comparison has little useful in-
formation unless the authors can show independently that the Miller et al.
2014 results are good and can serve as a benchmark for comparison. At the
minimum, the WETCHIMP fluxes should be compared to a variety of in-
version model results to see the uncertainty possible for the inversion model
results. The authors should note in the manuscript that section 4.3 is only a
comparison of models, which is di↵erent than comparison to ‘available data’
(page 9345, lines 6-9, see above).

We disagree with the premise that an observation-based estimate like this one provides
‘little useful information.’ Fig. 5 displays the uncertainties in the inverse modeling esti-
mate. Refer to the supplement and Miller et al. (2014a) for a more detailed discussion of
the uncertainties.

There are few regional-scale inversions that estimate the seasonal cycle of wetland fluxes
from the HBL using in situ or satellite methane observations. Miller et al. (2014a) is the
only study that we are aware of. Three other top-down methane studies, Pickett-Heaps
et al. (2011), Wecht et al. (2014), and Turner et al. (2015), examine methane fluxes from
the HBL. However, those studies use the seasonality from a bottom-up model and do
not estimate the seasonal cycle independently using atmospheric or satellite data. For
reference, Melton et al. (2013) provides a list of existing methane inversion studies that
are relevant to wetland fluxes.

4



3 Specific comments

• Page 9345, line 1: ‘biogeochemical models leveraged all available data’, what
is this vague ‘all available data’ referring to?

We have modified this line to be more specific.

• Page 9346: ”background” concentration – the methane concentration of air
entering the North American regional domain? Do all STILT particles always
leave the North American regional domain during the model simulations?
Provide more information on the estimation of the background concentra-
tion and the whole model settings to enable other scientists to check and/or
compare results.

Refer to bullet point #2 above and to the reply to Reviewer #1. Both discuss modeling
uncertainties, including uncertainties in the estimated background concentrations.

• Page 9346, lines 21-24: repeating lines 23-27 on page 9344.

We have condensed the text to remove this repetition.

• Page 9347, line 7: change ‘first term in Eq. (1)’ to ‘first two terms in Eq. (1)’.

We have updated the text accordingly.

• Page 9348, line 29: ‘We also include a spatial constant or intercept term in
X’. What is the physical or numerical significance of the ‘spatial constant or
intercept term’. How do the results compared with or without the ‘spatial
constant or intercept term’?

Refer to the earlier discussion on the intercept for an explanation of this point.

• Page 9353, line 26: change ‘GEIMS’ to ‘GIEMS’.

We have changed the text accordingly.

• Page 9354, lines 16-20: ‘The estimated contribution of anthropogenic emis-
sions from EDGAR v4.2FT2010 is added to this background (in red). Note
that the estimated scaling factors for EDGAR (Sect. 2.4) are 1.7±0.3 at Chi-
bougamau, 5.6±0.5 at East Trout Lake, 2.4±0.3 at Fraserdale, and 2.5±0.3
at Park Falls.’ Explain the meaning of the di↵erent scaling factors and how
realistic are they (up to 5.6x)? What are the spatial regions these scaling
factors are applied to?

In the revised manuscript, we do not scale the EDGAR inventory. Many atmospheric CH4

observation sites near wetlands are also located far from large anthropogenic emissions.
As a result, any e↵ort to scale the EDGAR inventory at these sites could be error-prone.
Instead, we present the inventory as is.

• Page 9364: left figure contains wrong information ‘Observation site (Fig. 4)’.
Units in the right figure conflicts with caption.

The figure should be correct as is.

• Page 9368: Label each curve in Fig. 5 as in Fig. 4.

We have updated the figure accordingly.
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4 Supplement

• Page 2, lines 56-57: ‘In this equation, zsynthetic (n x 1) represents the syn-
thetic observations generated for an observation site’. What is the number of
sites (k) and does n vary for each of the k sites?

We have added more detail to the supplement on the observation sites.

The study includes 15 total tower-based observation sites and 17 regular aircraft-based
observation sites. Refer to Miller et al. (2013), Miller et al. (2014a), or the NOAA
program websites (http://www.esrl.noaa.gov/gmd/ccgg/insitu/, http://www.esrl.
noaa.gov/gmd/ccgg/aircraft/) for more detail individual observation sites. The ob-
servations at each tower site are either daily flasks (most US sites) or daily averages of
continuous data (Canadian sites). A few sites, including the tower sites in Oklahoma
and in Maine only have weekly flask measurements. The frequency of the regular aircraft
observations varies depending upon the site (see http://www.esrl.noaa.gov/gmd/ccgg/
aircraft/).

• Page 2, lines 71-72: ‘The other WETCHIMP models, in contrast, predict
much higher fluxes (Fig. 4)’. Fig. 4 only showed concentrations or mole
fractions, change ‘much higher fluxes’ to ‘much higher concentrations’.

We have changed the text accordingly.

• Page 2, 80-82: ‘The magnitude and spatial/temporal structure of these errors
were estimated in Miller et al. (2013) for the US and Miller et al. (2014b) for
Canada.’ The referenced works were for di↵erent prior fluxes. Authors need
to show why new error estimates are not needed.

There are two covariance matrices used in the paper (Fig. S3). The first matrix, R de-
scribes model-data mismatch errors – errors in the measurements, atmospheric transport,
and errors due to the finite spatial or temporal resolution of WRF-STILT. These errors
should be invariant to the choice of prior model.

The second matrix, Q, describes the residuals between the true fluxes (denoted s) and
prior model estimate (X�). The diagonal terms quantify the variance of these residuals
and the o↵-diagonal terms quantify the spatial and temporal covariances in these residuals.
The variances and covariances in Q can change depending upon the choice of prior model.

In the synthetic data studies, we construct a statistical model that is representative of
a prototypical real data inverse model. Similarly, we want to use values for Q and R
that are representative of what one would likely encounter in a real-data setup. Miller
et al. (2013) and Miller et al. (2014a) constructed real data inverse models over the US
and Canada, respectively. Those studies used a model selection framework to find prior
models that show optimal fit against available observations. In each study, the authors
then estimated the elements of Q and R using that prior model. The resulting estimates
of Q are representative of prior models that shows optimal agreement with atmospheric
observations. We use these values of Q and R in the synthetic data studies. We also use
these prototypical variances and covariances to generate random errors in the synthetic
data (see Section 2.3).

We have revised the treatment of the covariance matrix parameters in the real data exper-
iments (Section 2.4). Previously, we had used covariance matrix parameters from Miller
et al. (2013) and Miller et al. (2014a) in these experiments. In the revised manuscript,
we re-estimate the covariance matrix parameters for each prior model. We estimate these
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parameters using Restricted Maximum Likelihood (RML) (Corbeil and Searle, 1976; Ki-
tanidis, 1995; Michalak et al., 2004; Gourdji et al., 2012), the same procedure used in
Miller et al. (2013) and Miller et al. (2014a).

We have added an explanation of these concepts in the supplement.

• Page 3: Correct the di↵erence in units in the Figure and caption.

The figure should be correct as is. We could not find any di↵erence or discrepancy in the
units.
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