Comments to the Author:
Dear authors,

many thanks for the revised version. I am generally happy with this, but have failed to understand how
your answer to reviewer #1 comment on Page 7, lines 22-24 is reflected in the revised manuscript.
Where is this condensed version of the discussion meant to be found? The corresponding paragraph
appears to be unaltered, and does not reflect the reviewer comment and your reply to it. Please always
indicate where and how you have adjusted the revised manuscript when addressing a reviewer
comment.

Best wishes,
Sonke

Reply:

Thank you for pointing out this oversight on our part. We have updated the manuscript accordingly and
have attached the revised manuscript files. We have also updated the reviewer replies with specific
reference to the pages and lines that have been modified.



Reply to referee report #1

We would like to thank the reviewer for his or her feedback on the manuscript. These comments have
been very helpful for improving the manuscript. Below, we have listed the reviewer's comments (in
bold) and the corresponding edits to the manuscript.

Page 2, lines 8-9: ‘we then use real data to analyze the magnitude, seasonality, and spatial
distribution of each model estimate’, change ‘real data’ to ‘real data and inversion model results’
as some comparison used inversion results (seasonal cycle derived from real data through
inversion analysis) rather than directly to ‘real data’. Inversion model results with potentially
large uncertainties should not be confused with ‘real data’ or ‘atmospheric data’. The distinction
between ‘real data’ and ‘inversion model results’ has to be clearly noted throughout the
manuscript. In fact, the usage of inversion model results in addition to real data should be stated
in the title of the manuscript.

We have updated lines 8-9 according to the reviewer's suggestion.

Page 2, lines 10-11: ‘Many models predict a seasonality that is narrower than implied by
atmospheric CH4 data’, change to ‘Many models predict a seasonality that is narrower than
implied by inversion model results’

We have updated lines 10-11 accordingly.

Page 3, lines 16-17: ‘The present study compares the WETCHIMP CH4 flux estimates against
atmospheric CH4 data from 2007-2008 through two sets of analyses.” Change ‘against
atmospheric CH4 data’ to ‘against atmospheric CH4 data and inversion model results’.

We have updated lines 16-17 accordingly.

Page 4, lines 24-25: ‘Based on these synthetic experiments, we conduct a second set of analyses
using real atmospheric data.” Change to ‘Based on these synthetic experiments, we conduct a
second set of analyses using real atmospheric data and inversion model results.’

We have updated lines 24-25 accordingly.
Page 6, lines 11-12: ‘H(nxm)’, define m.

We have defined this variable in the revised manuscript (see pg 6, line 26). The variable “m” refers to
the number of emissions or flux grid boxes in both space and time.

Page 7, lines 18-19: ‘As a result, the model selection framework cannot scale other variables in X
to reproduce the atmospheric CH4 signal from wetlands’ what are the ‘other variables’ referring
to?

We have clarified this sentence in the revised manuscript (see pg. 7, lines 6-8). These other variables
are anthropogenic emissions sources and wetland fluxes in distant geographic regions. To rephrase this
sentence, the model selection framework cannot reproduce wetland fluxes by simply upscaling
anthropogenic emissions sources that might have a similar spatial distribution to wetlands.



Page 7, lines 22-24: ‘For consistency among the synthetic datasets, we scale the annual HBL CH4
budget in each WETCHIMP model to match the overall magnitude estimated by several top-
down studies’. Are the fluxes outside the HBL region scaled the same way? If the fluxes elsewhere
are scaled differently than the HBL region, then each WETCHIMP model has been altered and
the experiments are not evaluating the ‘original’ WETCHIMP models. How do the results vary
with and without scaling HBL as mentioned?

We downscale the WETCHIMP models to match the estimated magnitude in three existing top-down
studies. If we did not scale the WETCHIMP models to match observational studies, then we could
easily overstate the results and understate the role of model/measurement errors in the analysis. The
synthetic data would identify wetlands too easily, and the results would not be representative of the real
methane observations.

If we do not scale the magnitude of the WETCHIMP models, then wetland fluxes are a much larger
source relative to anthropogenic emissions and modeling errors. As the magnitude of the wetland fluxes
increases, the observations appear increasingly powerful and omniscient; the observations have no
difficulty seeing the “signal through the noise.” The results presented in this analysis are therefore
conservative in nature. We have added a condensed version of this discussion to the manuscript (see pg.
7, lines 17-23).

When we run model selection using real data (as opposed to synthetic data), the observation network
only selects flux models in Eastern and Western Canada. This result is broadly consistent with the
synthetic data experiments which also show the highest sensitivity to wetland fluxes in Eastern and
Western Canada. By contrast, this result is not consistent with synthetic data experiments that use
unscaled versions of models with high magnitude (e.g., LPJ-WHyMe and Orchidee). If we ran the
synthetic experiment with using these unscaled models, the results would indicate much higher
sensitivity to wetland fluxes than the real data experiments actually support.

Page 8, lines 3-5: ‘the intercept for each month is represented by a vector of ones in the matrix X,
and this intercept is always included within X.” The word ‘always’ is confusing. Is the ‘intercept’

included in ‘section 2.3 Real data experiments’ only or in ‘section 2.2 Synthetic data experiment’

also (then it should be mentioned in 2.2)?

This sentence applies to Sect. 2.3, not to Sect. 2.2 We have updated the wording accordingly (see pg. 9,
lines 1-2).

Page 10, lines 4-5: ‘We run several additional test scenarios to explore why the synthetic
observations may not always be able to detect wetland CH4 fluxes.” How many ‘repeats’ were

done in these test scenarios? How do the BIC test results vary with the number of repeats?

These scenarios are displayed in Figs. 3b-3e. We have clarified the wording in this sentence. We have
updated lines 4-5 accordingly.

Page 12, line 22: ‘4 Results and discussion: comparisons with atmospheric data’ change to ‘4
Results and discussion: comparisons with atmospheric data and inversion model results’

We have updated line 22 accordingly.

Page 13, lines 19-20: ‘LPJ-Bern and LPJ-WHyMe also use land cover maps and/or land surveys



to estimate wetland’ This is suggested as a reason why LPJ-Bern was ‘selected’ by the BIC
experiment. Explain why LPJ-WhyMe was not selected and what other factors could be active.

We have added an explanation of this point to the manuscript (see pg. 14, lines 1-8). Despite
similarities in the origin of these two models, LPJ-WHyMe has a relatively different spatial distribution
from LPJ-Bern (Fig. S1). Large fluxes in LPJ-WhyMe extend much further south in Ontario and much
further east in to Quebec and Labrador relative to LPJ-Bern. Models that use land cover maps or
dynamic modeling (e.g., LPJ-Bern and SDGVM) often have a distribution that appears more consistent
with atmospheric observations, but this quality does not guarantee consistency.

LPJ-Bern and LPJ-WHyMe use slightly different methane flux schemes, producing different spatial
distributions. According to Wania et al. (2013), WhyMe only simulates fluxes from high latitude
peatlands and uses an estimated peatland distribution from NCSCD (Tarnocai et al. 2009) to prescribe
the distribution of fluxes. LPJ-Bern includes several additional components in its methane flux scheme,
including GIEMS soil inundation, water/ice coverage from GICEW, and simulations of soil wetness
(refer to Wania et al. 2013). Both models further apply a scaling factor to peatland emissions to account
for micro-topography. LPJ-WHyMe uses a scaling factor of 0.75 and LPJ-Bern a scaling factors of
0.26. NCSCD distributes peatlands throughout eastern Canada in Ontario, Quebec, and Labrador.
Fluxes in LPJ-WHyMe mirror this distribution. LPJ-Bern, by contrast, uses a lower scaling factor for
peatlands and includes fluxes from other soil types. Therefore, LPJ-Bern estimates a distribution of
fluxes that is less similar to NCSCD and also less similar to LPJ-WHyMe.

Page 13, line 14: ‘all six WETCHIMP models’ change six to seven.

We have updated line 14 accordingly.



Reply to referee report #2

We would like to thank the reviewer for his or her feedback on the manuscript. These comments have
been very helpful for improving the manuscript. Below, we have listed the reviewer's comments (in
bold) and the corresponding edits to the manuscript.

BIC penalty term: Limited information is provided about the use of this term. To avoid confusion
about it, some further sentences are needed explaining its role in the experiments that are
presented. If I’m right it actually doesn’t play a role at all. The number of measurements is the
same for every inversion and so is the number of explanatory variables (p=16 in all experiments
if I am correct, it certainly doesn’t hurt to make this explicit in the text). Because of this the BIC
penalty term is the same in every experiment. If this is correct, then please state this explicitly.

We have added more explanation to the manuscript (see pg. 7, lines 27-28 and pg. 8, lines 1-2). The
penalty term does play a role in the results. The number of measurements (n) is the same for every
candidate model, but the number of explanatory variables (p) is not the same for all candidate models.

In each experiment, we divide North America into 4 geographic regions and 4 seasons (for a total of 16
regions and seasons). The model selection framework will consider all possible combinations of these
16 variables. The combination with the lowest BIC score is the best or optimal model. For each
combination, the penalty term depends upon the number of variables (p) in that combination. In this
case, p can vary from 0 to 16. A variable (i.e., an emissions estimate for one region and one season)
must improve the log-likelihood (Eq. 1) by at least In(n) to be included in the best or optimal model. A
variable that does not improve the log-likelihood by at least that amount will not be included in the best
or optimal model.

A definition is missing of the word ‘selection experiment’. It could either mean the entire
procedure of selecting the optimal model or one single inversion. Page 7, line 6 suggests it is the
latter (1000 times). Page 8, line 21 suggests it is the first. This should be clarified.

We have clarified this point in the manuscript. We only use the phrase “model selection experiment” to
refer to the entire procedure (e.g., pg. 8, line 18; pg. 11, line 3; pg. 11, line 9).

An explanation is needed of why the state vector is different for the synthetic and real data model
selection experiments. Strictly speaking, by introducing the monthly offset term we do not know
anymore if results that were robust in the synthetic experiment are still robust in the real data
experiment.

This comment is true. In a previous version of the manuscript, we had included a synthetic data
experiment with a monthly offset term. The results were nearly identical to those in the current
manuscript (without a monthly offset term). A previous reviewer asked us to omit the synthetic
experiment with the monthly offset term; he/she felt that the results of this experiment were redundant,
so we changed the manuscript accordingly.

Page 11, line 6: “The atmospheric network can better detect ...” This statement suggests that flux
detection using atmospheric data benefits from good priors. I would rather argue that the poorer
our priors, the more we can learn from atmospheric data. If the wetland models were an order of
magnitude further apart, wouldn’t it have been easier to choose the right one?



The reviewer makes a great point here (see pg. 12, lines 6-7 of the revised manuscript). Let's say that
we have a hypothetical trace gas "Y" and have almost no bottom-up knowledge of where, why, or how
that gas is emitted. In that case, we could potentially gain a lot of information about Y from an
atmospheric inverse model; any knowledge about the magnitude, spatial distribution, and seasonality of
the fluxes would be an improvement over what we knew before. This scenario parallels the reviewer's
point above. On the other hand, let's say that we want to differentiate emissions of gas Y from industry
A versus industry B. If we know where industries A and B operate and how the spatial locations of
those industries differ, then we would stand a better chance of differentiating between those two
different emissions sources. In summary, the answer to this question may depend on what type of
information that one would like to learn about gas Y (or any other gas): whether one wants to learn
about the general magnitude and distribution of emissions or whether one wants to glean more detailed
information about who/what is responsible for those emissions.

Page 14, line 24: “Hence, the disagreement ... global wetland budget” What is suggested here is
that overestimated emissions over the North America, also mean that global emissions are
overestimated. However, this cannot be concluded from that fact that models that show high
emissions over North America have large global emissions, in combination with evidence the
North American emissions are overestimated. For that, additional evidence is needed that the
global emissions are indeed overestimated. Otherwise global emissions could still be correct
despite the fact that North American estimates were overestimated.

The reviewer makes a great point here. We have revised this paragraph to clarify its meaning (see pg.
15, lines 1-6). We intended to say the following: our analysis for North America does not necessarily
imply anything about the magnitude of fluxes in other regions of the globe. The models appear to
overestimate the magnitude of fluxes across boreal North America, but that result does not necessarily
imply that these models have underestimated fluxes elsewhere. For example, models that estimate the
largest fluxes for boreal North America often also estimate large fluxes in the tropics relative to other
models. I.e., the fluxes in these models should not simply be re-distributed from boreal to tropical
regions. Rather, one would want to analyze fluxes from each region separately.

Figure S4: I’m surprised to see that the model is doing a rather poor job in reproducing the
measurements at sites that are not much influenced by wetland emissions. To authors point to
papers suggesting that EDGAR underestimates anthropogenic emissions over the USA. However,
these differences point to an underestimate by about a factor 2, which seems too large. How
about sites along the coastline, which directly sample the marine background? Do those
measurements confirm that the initial concentrations are correctly dealt with? Some discussion is
needed of whether the uncertainty of the anthropogenic emissions is well enough represented in
the synthetic experiments. If the real data suggest that uncertainties are larger, then the derived
detectability of wetland emissions may have been too optimistic.

We have added additional explanation on this point to the Supplement (see pg. 6, lines 156-167).

The synthetic experiments do not use EDGAR because that estimate is likely too low for the US and
Canada. Instead, we use an anthropogenic emissions estimate from our previous study (Miller et al.
2013) in the synthetic data experiments. That anthropogenic emissions estimate is in good agreement
with atmospheric measurements from both tall towers (Fig. S6 in Miller et al. 2013, reprinted below)
and from aircraft (Fig. 4 in Miller et al. 2013, reprinted below). Fig. 4 and S6 in Miller et al. 2013 also
show that modeled concentrations with the EDGAR inventory underestimate measured concentrations
(see below) — a result that is consistent with Fig. S4 in the current paper.



In Miller et al. (2013), we also optimized the estimated “initial” or background concentration values to
match observations collected in the free troposphere by regular NOAA aircraft flights. Sections
"Methane Boundary Condition" and "Validation of the Boundary Condition" in the Supplement to
Miller et al. (2013) describe this boundary concentration validation in greater detail. The same
boundary condition estimate is used in the current paper.

Lastly, the uncertainties in the anthropogenic emissions are taken from Miller et al. (2013). In that
study, we used an approach called restricted maximum likelihood (RML) to estimate those
uncertainties (i.e., variances and covariances) (e.g., Kitanidis and Lane 1985, Michalak et al. 2004).
RML guarantees that the estimated uncertainties match against the actual model-data residuals.

A note of caution that is missing in the discussion section is that the WRF-STILT approach relies
on an accurate representation of PBL mixing. Care has been taken only too select afternoon
values. Nevertheless, it would be useful to have vertical profiles (e.g. from the aircraft
measurements) supporting the point that is made in Figure 4.

We have added a discussion of this issue to the Supplement (see pg. 6-8, lines 150-177). Our previous
paper, Miller et al. (2013), examined this issue in depth, and we have re-printed a number of relevant
figures at the end of this document. Fig. 4 in Miller et al. (2013), for example, shows the ability of
WREF-STILT to reproduce the vertical structure of the atmosphere at various aircraft observation sites.
The present study uses the same WRF-STILT runs, boundary condition estimate, and anthropogenic
emissions estimate as in that paper.

Suppl, page 1, line 36: ‘At these’ io ‘At the these’
Thank you for pointing this out. We have updated the text accordingly.
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[ Note to the editor: The figures below have already been published elsewhere. It may not be
appropriate to post these figures to the online discussion for copyright reasons. |

Relevant figures from Miller et al. (2013)
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Fig. 4. A model-measurement comparison at several regular NOAA/DOE aircraft monitoring sites (averaged over 2007-2008). Plots include the measure-
ments; the modeled boundary condition; the summed boundary condition and wetland contribution (from the Kaplan model); and the summed boundary,
wetland, and anthropogenic contributions (from EDGAR v4.2 and the posterior emissions estimate).
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Fig. 56. A model-measurement comparison at several tower sites. The EDGAR v4.2 and posterior model plots include the boundary condition, wetland
contribution modeled from the Kaplan inventory, and the anthropogenic contribution modeled from EDGAR and the posterior emissions, respectively.
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Fig. S7. A model-data comparison scatter plot for the posterior emissions estimate and EDGAR 4.2.



Relevant figures from Miller et al. (2014)
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Abstract

Existing estimates of methane (CH,4) fluxes from North American wetlands vary widely in
both magnitude and distribution. In light of these disagreementsdifferences, this study uses
atmospheric CH, observations from the US and Canada to analyze seven different bottom-up,
wetland CHy estimates reported in a recent model comparison project. We first use synthetic
data to explore whether wetland CH, fluxes are detectable at atmospheric observation sites. We
find that the observation network can detect aggregate wetland fluxes from both eastern and
western Canada but generally not from the US. Based upon these results, we then use real data
and inverse modeling results to analyze the magnitude, seasonality, and spatial distribution of
each model estimate. The magnitude of Canadian fluxes in many models is larger than indicated
by atmospheric observations. Many models predict a seasonality that is narrower than implied
by atmoespherie-datainverse modeling results, possibly indicating an over-sensitivity to air or
soil temperatures. The LPJ-Bern and SDGVM models have a geographic distribution that is
most consistent with atmospheric observations, depending upon the region and season. These
models utilize land cover maps or dynamic modeling to estimate wetland coverage while most
other models rely primarily on remote sensing inundation data.

IodeJ UOISSNOSI(]

JTode g worsSsnosI(]

IodeJ UOISSNISI(]

Tode g uOISSNOSI(]



20

25

1 Introduction

CH, fluxes from wetlands play a critical role in global climate change. CHy is the second-most
important long-lived greenhouse gas, and the radiative forcing of the current atmospheric bur-
den is approximately 26 % of carbon dioxide (Butler, 2014). Wetlands are possibly the largest
single source of this gas to the atmosphere and account for roughly 30 % of global emissions

Despite the important role of wetland CH4 fluxes in climate change, existing estimates of
this source disagree-differ on the magnitude, seasonality, and spatial distribution of fluxes, from
regional to global scales. In fact, a recent global model comparison project named WETCHIMP
(Wetland and Wetland CHy4 Inter-comparison of Models Project) found large differences among
existing CHy wetland models (Fig. [T} Melton et al 2013 [Wania et al., [2013)). For example,
existing estimates of maximum global wetland coverage differ by ever-about a factor of 6 —
from 4.1 x 10% to 26.9 x 10°km? . Furthermore, estimates of global natural wetland fluxes
range from 92-264 Tg CH, yr—!. The relative magnitude of these uncertainties increases at
sub-global spatial scales. As a case in point, CH, estimates for Canada’s Hudson Bay Lowlands
(HBL) range from 0.2 to 11.3 Tg CH, yr—'. These disagreements in current CHy estimates do
not bode well for scientists’ abilities to accurately predict future changes in wetland fluxes due
to climate change (Melton et al., [2013).

A number of studies have used chamber measurements of CH, to parameterize or evaluate
biogeochemical CH4 models (e.g., [Livingston and Hutchinson, 2009). These measurements
usually encompass fluxes from a relatively small area, and fluxes can often vary greatly with
landscape heterogeneity at these spatial scales (Waddington and Roulet, [1996; [Hendriks et al.
2010). CH4 data collected in the atmosphere sees the cumulative effect of CH,4 fluxes across
a broader region (e.g., Winderlich et al., [2010; |Pickett-Heaps et al., 2011} [Miller et al., 2014).
Hence, atmospheric data can provide a unique tool for evaluating existing CH4 flux estimates
across different countries or continents.

The present study compares the WETCHIMP CH,4 flux estimates against atmospheric CHy
data and inverse modeling results from 2007-2008 through two sets of analyses. First, we con-
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struct a set of synthetic data experiments to understand whether the atmospheric CH, observa-
tion network can detect CHy4 fluxes from wetlands. We also explore the factors that might pre-
vent the network from detecting wetland fluxes. To answer these questions, we utilize a model
selection procedure based upon the Bayesian Information Criterion (BIC) (Sect.[2.2Shiga et al,
2014;|Fang et al., |2014; Fang and Michalak, 2015)). This procedure determines whether wetland
fluxes from different regions and seasons are necessary to describe variability in synthetic at-
mospheric CH4 observations. Based on these synthetic experiments, we conduct a second set
of analyses using real atmospheric data and inverse modeling results. We use this data to ana-
lyze the magnitude, seasonal cycle, and spatial distribution of each WETCHIMP CH,4 estimate.
We investigate these questions over the US and Canada using CH, data collected from towers
and regular aircraft flights operated by NOAA and its partners and from towers operated by
Environment Canada.

2 Methods

This section first describes the atmospheric CH,4 data and the atmospheric model that allows
direct comparison between the data and various flux estimates. Subsequent sections describe
both the synthetic and real data experiments outlined in the introduction (Sect. [I).

2.1 Data and atmospheric model

The present study utilizes atmospheric CH4 observations from aircraft and tower platforms
across the US and Canada, a total of 14 703 observations from 2007-2008. These observation
sites include four towers operated by Environment Canada ;-and 10 towers in the US operated by
NOAA and its partners. Observations at the NOAA towers consist of daily flasks (occasionally
weekly), and observations at the Environment Canada sites are continuous measurements. As
in Miller et al.[(2014)), we use afternoon averages of this continuous data. In addition to these
towers, we utilize observations from 17 regular NOAA aircraft monitoring locations in the US
and Canada (Fig. [J). We incorporate aircraft data up to 2500m altitude as was done in Miller
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et al.| (2013)). Observations above that height are usually representative of the free troposphere
with limited sensitivity to surface fluxes. The-tewer-and-aireraft-observations-used-here-These
observations and the associated model runs (described below) are the same as those in Miller
et al.|(2013)) and Miller et al.|(2014).

We then employ an atmospheric transport model to relate CH, fluxes at the Earth’s surface
to atmospheric concentrations at the observation sites. The modeling approach here combines
the Weather Research and Forecasting (WRF) meteorological model and a particle-following
model known as STILT, the Stochastic Time-Inverted Lagrangian Transport model (e.g., Lin
et al., 2003 Nehrkorn et al., 2010; Hegarty et al., 2013). WRF-STILT generates a set of foot-
prints; these footprints quantitatively estimate the sensitivity of each observation to fluxes at
each surface location (with units of ppb per unit surface flux). We multiply the footprints by
a flux model and add this product to an estimate of the “background” concentration — the
CH, concentration of air entering the North American regional domain. We estimate this back-
ground concentration using CH,4 observations collected near or over the Pacific Ocean and in
the high Arctic, a setup described in detail by Miller et al. (2013) and Miller et al. (2014).
The resulting modeled concentrations can be compared directly against atmospheric CH4 ob-
servations. This-medelingsetup-is-the-same-as-inMilleretal {201 3)-andMilleretal {2014}~
The observations, the-WRF-STILT medelruns, background concentrations, and uncertainties in
the modeling framework are described in greater detail in the Supplementand-in-these-papers,

Using thls setup, we can evaluate predlcted CHj concentrations using the WETCHIMP flux
estimates (Fig. [T) against observed atmospheric concentrations. The WETCHIMP project was
designed to compare simulated wetland distributions and modeled CH,4 fluxes at multi-year,
continental scales (Melton et al.l 2013; Wania et al., [2013). The project entailed several sets
of model runs, but Melton et al.| (2013) primarily reported on one set of runs — runs for 1901—
2009 that used the same observed climate and CO9 concentration datasets to force all models.
Each CH4 model utilized its own parameterization for wetland area and distribution. We use
the outputs from this set of model runs in the present study. Of the WETCHIMP models, seven
provide a flux estimate on a suitable time step for boreal North America and six provide an

5

IodeJ UOISSNOSI(]

IodeJ UOISSNISI(]

Tode g woISSNosI(]

IodeJ UOISSNOSI(]



20

25

estimate for temperate North America. These models include CLM4Me (Riley et al., 2011),
DLEM (Tian et al.| [2010), LPJ-Bern (Spahni et al., 2011), LPJ-WHyMe (Wania et al., 2010),
LPJ-WSL (Hodson et al.,2011), ORCHIDEE (Ringeval et al.,[2010), and SDGVM (Singarayer
et al.,2011). All flux model outputs used from the WETCHIMP study have a temporal resolu-
tion of one month. These models are described in[Melton et al.|(2013));'Wania et al.|(2013)), and
the Supplement.

2.2 Synthetic data experiments

We assess the ability of the CH,4 observation network to detect wetland fluxes and use a model
selection framework adapted from the BIC. A model selection framework can sort through a
large number of potential explanatory variables and will choose the smallest set of variables
that best describe the dataset of interest (e.g., Ramsey and Schafer, [2012). In the current setup,
we generate synthetic atmospheric CH,4 observations. The model selection framework then in-
dicates whether a wetland model and/or an anthropogenic emissions inventory are necessary to
describe variability in these observations. In this way, model selection can indicate the sensitiv-
ity of the observation network to wetland CH,4 fluxes.

We use a form of the BIC that has been adapted for use within a geostatistical inverse mod-
eling framework. This setup has previously been used to select either bottom-up models or
environmental drivers of COs and CHy fluxes (e.g., Mueller et al., 2010} [Yadav et al., 2010;
Gourdji et al., 20125 Miller et al., 2013, 2014; |Shiga et al., 2014; [Fang et al., [2014; Fang and
Michalak! [2015)). The implementation here mirrors that of [Fang et al.|(2014)), Shiga et al.|(2014),
and |[Fang and Michalak! (2015):

BIC = In|¥| + (2 — HX3)T® (2 —HXB)+ pln(n) (1)
——
negative log-likelihood penalty term

The first two terms in Eq. (I)) are the negative log-likelihood, a measure of how well the model
fits the data. The last term penalizes a particular model based upon the number of explanatory
variables (p). The best combination or candidate model has the lowest BIC score.
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The variable z (n x 1) represents the observations minus background concentrations, H
(n x m) the footprints, and ¥ (n X n) a covariance matrix derived from an atmospheric in-

version framework. The variable m refers to the total number of flux or emissions grid boxes
in both space and time. These variables are based upon two existing inverse modeling studies

by Miller et al.| (2013) and Miller et al.|(2014) (refer to the Supplement). The matrix X (m X p)
contains p explanatory variables. In the current setup, X can include a wetland flux estimate
and/or individual emissions sources from an anthropogenic inventory. 3 (p x 1) is a set of co-
efficients that scale the variables in X. We set these coefficients to one in the the synthetic data
experiments. As a result, the model selection framework cannot seale-other-variables-inX—to

reproduce-the-atmospherie-signal-from-wetlands-reproduce wetland fluxes by simply upscalin
anthropogenic emissions sources that might have a similar distribution to wetlands.

The first experiments described here use synthetic atmospheric CH, data. We generate the
synthetic data using one of the WETCHIMP models and the anthropogenic emissions estimates

from Miller et al. 12013) and Mlller et al.|(2014). Fe%eeﬂﬁﬁeneyameﬂgfheﬁynﬁxeﬁedataset&
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We then multlply these fluxes by the footprlnts H) and add error that is randomly generated
from the covariance matrix (¥). This covariance matrix represents errors in atmospheric trans-
port and in the measurements — collectively referred to as model-data mismatch. This matrix
also represents uncertainties in the prior flux estimate. In a geostatistical inverse model, this
prior flux model is given by X3 (refer to the supplement for more detail).

Note that we scale the annual HBL. CH4 budget in each WETCHIMP model to match the

overall magnitude estimated by several top-down studies (Pickett-Heaps et aleJMT
If we did not downscale the magnitude of the WETCHIMP models, the wetland fluxes would
be a much larger source relative to anthropogenic emissions and modeling/measurement errors.
The synthetic data experiments would identify wetlands too easily, would understate the relative

role of model/measurement errors, and would not be representative of the atmospheric methane
observations.
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We divide the WETCHIMP wetland fluxes into four regions (Fig. [2)) and four seasons (DJF,
MAM, JJA, and SON). The model selection framework then chooses variables that are neces-
sary to reproduce the synthetic data, variables that include EDGAR and the 16 wetland flux

maps. We-run-this-medel-selection-experiment-The penalty term in Eq. 1 increases as we add
wetland maps or add EDGAR to the X matrix. Each variable added to X will increase the
enalty term by In(n); an additional variable must improve the log-likelihood by more than this

enalty term to be chosen by model selection.
‘We then run this framework 1000 times, generating new synthetic data each time, and calcu-

late the percentage of all trials in which the model selection chooses a wetland model. The 1000
repeats are needed due to the random or stochastic nature of the synthetic data experiment; the
results of the model selection can vary slightly, depending on the particular random errors that
we generate based upon the covariance matrix (W). This procedure ensures that the model se-
lection results are not the output of a single realization. We then report on how frequently each
of the 16 wetland flux maps is chosen. If a wetland flux map is chosen with high frequency, then
a wetland flux map is necessary to describe variability in the synthetic CH,4 observations, and
the synthetic observation network can detect aggregate wetland CH4 fluxes from the given re-
gion and season. This setup mirrors that of |Shiga et al.|(2014), who employed a model selection
framework to explore the detectability of anthropogenic CO5 emissions.

We also explore why the synthetic CH,4 observations may not be able to detect wetland fluxes.
We run a series of case studies and in each case remove a different confounding factor that might
prevent the network from detecting wetland CHy fluxes. In one case, we remove anthropogenic
emissions. In subsequent cases, we remove model-data mismatch errors and/or prior flux errors.
In each case, we re-run the model selection experiment and examine whether the results improve
when each of these confounding factors is removed.

2.3 Real data experiments

This paper subsequently compares the spatial distribution, magnitude, and seasonality of each
WETCHIMP estimate against real atmospheric CH,4 observations, using the synthetic experi-
ments to guide the analysis.
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We first explore the spatial distribution of the WETCHIMP flux estimates. We modify the
model selection setup in Sect. [2.2] to focus on the spatial distribution of each estimate using
a procedure developed by [Fang et al|(2014) and [Fang and Michalak| (2015). Instead of fixing
the coefficients (3) to one, we instead estimate the coefficients using real atmospheric CHy
observations. We also include an intercept term that can vary by month; the intercept for each
month is represented by a vector of ones in the matrix X, and this intercept is always-included
within-included as part of each candidate model for X. We then run model selection using real
observations. As a result of this setup, a wetland model is not necessary to reproduce either
the magnitude or seasonality of the atmospheric CH,4 data; the model selection framework can
simply scale the intercept term or scale EDGAR to reproduce the magnitude or seasonality of
the observations. The spatial distribution of wetland fluxes, however, can only come from a
wetland model. The model selection procedure will only choose a wetland model if the spatial
distribution of that model describes sufficient, additional variability in the observations (e.g.,
Fang et al., [2014)).

Model selection can therefore indicate which WETCHIMP models have the best spatial dis-
tribution relative to the atmospheric observations; any WETCHIMP model chosen by model
selection must-have-has a spatial distribution that improves model-data fit, and the model must
improve-improves that fit more than the penalty term in Eq. [T} A negative result does not nec-
essarily indicate that a WETCHIMP model has a poor spatial distribution. In that case, the
observations may not be very sensitive to the spatial distribution of fluxes for the given region
or given season. Similarly, the spatial distribution in a WETCHIMP model may improve model-
data fit but not by more than the penalty term in Eq.[I] By contrast, a positive result indicates
that a WETCHIMP model likely has a particularly good spatial distribution. As in Sect. @, we
divide the wetland fluxes into four sub-continental regions and four seasons. The Supplement
describes this setup in greater detail.

We then analyze the magnitude and seasonality of the WETCHIMP fluxes using a number
of model-data time series. We model CH,4 concentrations at a number of US and Canadian
observation sites using the WRF-STILT model, the WETCHIMP estimates, and the EDGAR
v4.2FT2010 emissions inventory (Olivier and Janssens-Maenhout, 2012; European Commis-
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sion, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2013).

We average the observations and model output at the monthly scale and then compare the mag-
nitude of these model estimates for each month against the averaged observations.

We further compare the seasonality of existing bottom-up models against the seasonality of
a recent inverse modeling estimate by Miller et al.| (2014). We plot the monthly budgets for
both the bottom-up models and the inversion estimate, and we plot the monthly CH,4 budget as
a fraction of the annual total.

Note that inter-annual variability in existing CH, flux models is small relative to the differ-
ences among these models; as a result, conclusions from the 2 year study period (2007-2008)
likely hold for other years. For example, the inter-annual variability in the total US/Canadian
budget is +7.3-9.7% (standard deviation), depending upon the model in question (Note that
LPJ-Bern has even larger inter-annual variation due to an issue with model spin-up described in
Wania et al.| (2013))).

3 Results and discussion: synthetic experiments

The synthetic experiments presented here explore the limits of existing atmospheric data for
constraining wetland fluxes. If atmospheric observations are to constrain wetland CH, fluxes,
those observations must be able to detect wetland CH4 fluxes above errors in the transport
model and above other emissions sources such as fossil fuels and agriculture.

The four columns in Fig. 3 display the results from an individual season in each of four
geographic regions. In this experiment, the synthetic CH4 observations can detect aggregate
wetland CH, fluxes from Eastern Canadian wetlands in greater than 75 % of all trials for the
summer and fall seasons. In the eastern US, the model selection framework chooses a wetland
model in 25-50 % of all trials in multiple different seasons. By contrast, the synthetic CHy
data are least sensitive to wetland fluxes in the western US, and the model selection framework
chooses wetland fluxes from that region in fewer than 25 % of all trials irrespective of the season.
This result may be due, in part, to the scant wetlands and sparse atmospheric observations in
much of the west.
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The results also vary by season. Of any region, the atmospheric CH, network is best able
to constrain fluxes across multiple seasons in eastern Canada. The largest wetland fluxes in the
WETCHIMP models are in Ontario and Quebec (Fig. [T). It is therefore unsurprising that the
network is best able to detect wetland fluxes in that region, even though there are relatively few
observation sites in the area. In other regions, the atmospheric CH4 network is less sensitive to
wetlands during the winter, fall, and spring shoulder seasons.

We run several additional test-seenarios-model selection experiments to explore why the
synthetic observations may not always be able to detect wetland CHy fluxes —(Fig. 3b-¢). We
remove anthropogenic emissions from the synthetic dataset for the experiment in Fig. 3p. We
remove all model data mismatch errors in Fig. [3k; model-data mismatch encompasses errors
in atmospheric transport and in the measurements. Subsequently, we remove all errors due to
the prior flux estimate in Fig. [3d. In Fig. 3¢, we remove both types of errors. In each case, we
re-run the model selection experiment to see if the sensitivity of the atmospheric CH,4 network
to wetland fluxes improves.

Anthropogenic emissions have only a modest effect on the results in specific regions and
seasons. In case (b) without anthropogenic emissions, the results improve by ~25-50% in the
fall and spring shoulder seasons for several geographic regions.

By contrast, the model-data mismatch and prior flux errors have a much larger effect on the
model selection results. The results improve incrementally across many regions and seasons
when we remove model-data mismatch errors in case (c). The results improve across the spring,
summer, and fall seasons and improve across all four geographic regions. However, the mag-
nitude of this improvement is never more than 25%. Model-data mismatch errors are likely
dominated by errors in modeled atmospheric transport. These results imply that transport errors
play an incremental yet pervasive role in the utility of the atmospheric observations.

The prior flux errors have the largest effect on the results, particularly during the warmest
seasons. In case (d), the results show great improvement during fall, spring, and summer and
show little improvement during winter or in the western US. In the setup here, the prior flux
uncertainties scale with the seasonal magnitude of the fluxes. When we remove the prior flux
errors, the results concomitantly show the greatest improvement in seasons that have larger
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overall CH, fluxes. These results indicate that the prior estimate greatly impacts the utility of
the atmospheric CH,4 observations. A geostatistical inverse model can leverage any combina-
tion of land surface maps, meteorological maps, and/or anthropogenic inventory estimates in
the inversion prior. These maps or estimates are incorporated into the X matrix in Eq. (1} If
accurate maps or estimates are not available, then the prior flux errors will be large, and the
model selection framework will be less likely to choose any particular variable. If these maps or
estimates have high explanatory power, then the prior flux errors will be small, and the model
selection framework will be more likely to choose any one variable. As a result, the detectability
of wetland CH, fluxes partly depends on the availability of land surface or meteorological data
that matches those fluxes. The atmospheric network can better detectdifferentiate wetland CHy
fluxes from other CHy4 sources when accurate prior information can guide that identification.

Case (e) (no model-data mismatch errors and no errors in the prior flux estimate) shows large,
ubiquitous improvements; the model selection chooses a wetland model 100% of the time in al-
most all regions and seasons. The results for Eastern Canada during winter are the exception.
In winter, the wetland model cannot always explain enough variability in the synthetic observa-
tions to overcome the BIC penalty term in Eq.

The density of the atmospheric CH,4 network may also play a role in these results. Wetlands
in the Eastern US are sparse relative to eastern Canada, but the higher density of observations
in the Eastern US may contribute to a moderate success rate (25 — 50 %) for that region. Recent
and planned network expansions in the eastern US and in Canada could play a key role in future
efforts to constrain wetland fluxes across these regions.

Overall, the synthetic experiment results indicate that the observation network cannot detect
wetland fluxes from the US (i.e., model selection has a success rate <50%). Across Canada, the
results are more promising (i.e., near 100% success rate in some regions/seasons), despite the
relative sparsity of the observation network there.
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4 Results and discussion: comparisons with atmospheric data and inverse modeling results

4.1 Spatial distribution of the fluxes

We compare the spatial distribution of the WETCHIMP flux estimates against CH, data from
the atmospheric observation network. To this end, we use a version of the model selection
framework that chooses wetland models based upon their spatial distribution (Fang et al.,2014;
Fang and Michalak,2015)). WETCHIMP models that are chosen by the framework have a spatial
distribution that is more consistent with atmospheric observations relative to those that are not
selected.

The results of this model selection analysis are displayed in Table [I] This table lists the
regions and seasons that had a success rate > 50 % in the synthetic data experiment; the at-
mospheric CH4 network is most sensitive to wetland CH4 fluxes in those regions and seasons.
Two of the WETCHIMP models were chosen by the model selection framework — LPJ-Bern (in
eastern Canada) and SDGVM (in eastern and western Canada). The spatial distribution of these
models improve the model-data fit more than the penalty term in Eq.

The LPJ-Bern and SDGVM models have several unique spatial characteristics that could
explain these results. Over eastern Canada, LPJ-Bern and SDGVM concentrate the large fluxes
in the HBL. Other models, by contrast, often distribute the fluxes more broadly across Ontario
and Quebec or put the largest fluxes in Ontario outside of the HBL. In western Canada, SDGVM
distributes fluxes across northern, boreal Saskatchewan and Alberta.

The LPJ-Bern and SDGVM models share another common characteristic: both model wet-
land area independently instead of relying solely on remote sensing inundation datasets. LPJ -
WSL, ORCHIDEE, DLEM, and CLM4Me use remote sensing inundation datasets like GIEMS
(Global Inundation Extent from Multi-Satellites, [Prigent et al., 2007) to construct a wetland
map. Other models, like LPJ-Bern and LPJ-WHyMe also use land cover maps and/or land
surveys to estimate wetland (or at least CH4-producing) area. SDGVM estimates this area dy-
namically as a function of soil moisture (Melton et al.| 2013} Wania et al., 2013). Wetland
maps generated using these different approaches show substantial differences. Remote sensing
datasets estimate relatively high levels of inundation in regions of Canada that are not forested
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or have many small lakes (see further discussion in Melton et al., 2013 Bohn et al., 2015). By
contrast, modeling approaches that dynamically generate wetland area or use land cover maps
assign more wetlands over regions with high water tables but little surface water as seen by re-
mote sensing based inundation datasets). As a result of these differences, models like LPJ-Bern
assign more wetlands and CH, fluxes in the HBL relative to other regions of eastern Canada.
Of note, LPJ-Bern and LPJ-WhyMe have many structural model similarities but predict
relatively different spatial distributions of CH, fluxes. The latter estimates fluxes that are more
broadly distributed across Quebec and Labrador. LPJ-WhyMe only simulates fluxes from high

latitude peatlands and uses an estimated peatland distribution from [Tarnocai et al|(2009) ; this
distribution extends across Quebec and Labrador. LPJ-Bern, by contrast, includes fluxes from

non-peatland regions and applies a smaller scaling factor to peatland fluxes relative to LPJ-WHyMe

Wania et al.| (2013)) . As aresult, the fluxes in LPJ-Bern have a spatial distribution that is different
from the peatland map and also different from LPJ-WHyMe.

4.2 Flux magnitude

We next compare the magnitude of predicted concentrations using the WETCHIMP models
against atmospheric observations at individual locations. Unlike previous sections that uti-
lized model selection, this section employs several model-data time series, displayed in Fig.
This model estimate consists of several components: the background (in green) is the esti-
mated background concentration of CHy in clean air before entering the model domain as in
Miller et al.[(2013},2014). The estimated contribution of anthropogenic emissions from EDGAR
v4.2FT2010 is added to this background (in red). The contribution of wetland fluxes from the
WETCHIMP models is then added to the previous inputs, and the sum of all components (blue
lines) can be compared directly against measured concentrations.

The various WETCHIMP flux estimates produce very different modeled concentrations at the
atmospheric observation sites (Fig. ). Overall, modeled concentrations with the WETCHIMP
fluxes usually exceed the CH4 measurements during summer. At Chibougamau, Fraserdale,
and Park Falls in early summer, all six-seven WETCHIMP models predict CH,4 concentrations
that equal or exceed the observations. The ORCHIDEE, LPJ-WHyMe, and LPJ-Bern models
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always exceed the measurements during summer while DLEM and SDGVM better match the
observations at these sites. Notably, a number of previous studies report that the EDGAR inven-
tory may underestimate US anthropogenic CH4 emissions (e.g., Kort et al., 2008 Miller et al.
2013; [Wecht et al.l [2014; [Turner et al., 2015). If EDGAR underestimate emissions, then the
WETCHIMP models would be an even larger overestimate relative to the atmospheric data.

Many models appear to overestimate the magnitude of fluxes across boreal North America,

but this result does not necessarily imply that these models have underestimated fluxes elsewhere.
CH4 models that everestimate-fluxes+n-estimate the largest fluxes across boreal North Amer-

ica do not always compensate with smaller fluxes elsewherein other regions of the globe. For
example, the ORCHIDEE model not only estimates large fluxes over North America but also

4.3 Seasonal cycle

Bottom-up CH, flux estimates show variable features when compared to atmospheric observa-
tions, and the seasonal cycle of these estimates is no exception. Figure 5| compares the seasonal
cycle of the existing estimates over Canada’s HBL. Eastern Canada is one of the largest wetland
regions in North America (Fig.[I)), and nearby atmospheric observation sites see a much larger
CH,4 enhancement from wetlands relative to other regions (Fig. 4 and [S4).

In this region, the bottom-up estimates diverge on the seasonal cycle of fluxes. Most estimates
predict peak fluxes in July or August, though two variations of the LPJ model predict seasonal
peaks in September and October — LPJ-WHyMe and LPJ-Bern, respectively. LPI-WHyMe is
a module inside of LPJ-Bern, a possible explanation for the similar seasonal cycle in these
two models. Differences among models are also notable during the fall and spring seasons. For
example, fluxes in June account for anywhere between 6 and 21 % of the annual CH4 budget,
depending upon the model. Fluxes in October account for between 1 and 23 % of the annual

budget (Fig.[b).
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Figure [3 also displays the seasonality of an inverse modeling estimate from Miller et al.
(2014) for comparison. That estimate incorporates observations from Chibougamau, Quebec,
and Fraserdale, Ontario, atmospheric measurement sites that are strongly influenced by fluxes

from the HBL. The-diserepancies-among-Differences between this inverse modeling estimate

2 J UOISSNOSI(]

and the WETCHIMP models often exceed the 95 % confidence interval of the mvefﬂeﬁes&ma{emvel:se

model. The WETCHIMP estimates are often comparable to Miller et al.| (2014) in magnitude
during fall and spring months but exceed the inversion-inverse modeling estimate in summer
months (Fig. [Ba). On whole, the WETCHIMP models have a narrower relative seasonal cycle
than the inversion-inverse modeling estimate (Fig. [5p). That estimate assigns a greater portion
of the annual budget to the fall and spring shoulder seasons.

Additional top-down studies exist for the HBL, but those studies use a seasonal cycle drawn
from an existing bottom-up model and do not estimate the seasonal cycle independently from
CH,4 observations (Pickett-Heaps et al., 2011} Wecht et al., 2014} [Turner et al., 2015)). By com-
parison, a recent inverse modeling study of the Western Siberian Lowlands found parallel results
for that region — existing models also predict a seasonal cycle that is narrower than the season-
ality implied by atmospheric observations (Winderlichl, 2012; [Bohn et al., 2015).

Numerous possible explanations could underly differences in the seasonal cycle of CHy
fluxes. For example, the temperature threshold for CH4 production may be too high in some
models. Relative to summer months, the bottom-up models predict small fluxes during fall/spring
months when air temperatures are near freezing but soils are still unfrozen (Fig. S3). According
to estimates from the North American Regional Reanalysis (NARR) (Mesinger et al., 2000),
surface soils in the HBL (0 and 10 cm depth) begin to thaw in April and are largely unfrozen in
May (Fig. S3). In the fall, surface soils (0 cm depth) begin to freeze in November, but deeper
soils (10 and 40 cm) remain largely unfrozen until December. Compared to the bottom-up mod-
els, the inversion-inverse modeling estimate predicts a wider seasonal window, a result that
would be consistent with dates of deep soil freeze and thaw.
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5 Conclusions

A recent model comparison study revealed wide differences among several estimates of wetland
CH,4 fluxes — differences at global to regional scales. In the first component of this study, we
use a synthetic data experiment to understand whether the atmospheric observation network can
detect wetland CH4 fluxes. We find that the network can reliably identify aggregate wetland
fluxes from both eastern and western Canada. The network can detect wetland fluxes from the
eastern US in a smaller fraction of trials and rarely from the western US. This analysis also
accounts for distracting signals in the atmosphere from anthropogenic sources or simulated
atmospheric transport errors.

In a second component of the study, we analyze each bottom-up CH4 model from the WETCHIM

study using real atmospheric data. We find that the LPJ-Bern and SDGVM models have spa-
tial distributions that are most consistent with atmospheric observations, depending upon the
region and season of interest. In addition, almost all models overestimate the magnitude of wet-
land CH,4 fluxes when compared against atmospheric data at individual observation sites. The
model ensemble may also estimate a seasonal cycle for eastern Canada that is too narrow (i.e.,
places too much of the total annual flux in the summer relative to the fall and spring shoulder
seasons).

The results of this paper suggest possible pathways to improve future top-down estimates
of wetland CH,4 fluxes. The ability of the atmospheric observation network to detect wetland
fluxes depends in large part upon the prior flux model. In a geostatistical inverse model, this
model can incorporate land surface maps — wetland maps, estimates of land surface processes,
and maps of anthropogenic emissions sources. This information plays a large role in whether
atmospheric observations can detect wetland fluxes; the observations can more adeptly identify
wetland fluxes when accurate land surface maps are available to guide that identification. By
contrast, atmospheric transport and measurement errors (i.e., model-data mismatch errors) have
a ubiquitous but smaller effect on the utility of atmospheric CH, observations.

The results presented here also hold a number of suggestions for future bottom-up modeling
efforts:
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. Spatial distribution: Bottom-up estimates that use surface water inundation as the only

proxy for wetland area do not perform as well relative to atmospheric observations. Bottom-
up models that use satellite inundation data should incorporate additional tools like wet-
land mapping or dynamic modeling to capture wetlands covered by vegetation.

. Magnitude: Existing top-down studies that use a diverse array of in situ and satellite CHy4

observations show good agreement on the magnitude of CH, fluxes from the Hudson
Bay Lowlands (HBL) region (e.g., |Pickett-Heaps et al.| 2011} Miller et al., 2014} Wecht
et al.l 2014} [Turner et al., 2015). These studies could be used to calibrate the magnitude
of future bottom-up estimates, at least over the HBL where CH,4 observations provide a
strong constraint on wetland fluxes.

. Seasonal cycle: Bottom-up models do not show consensus on the seasonal cycle of wet-

land fluxes across Canada. Few top-down studies estimate the seasonal cycle indepen-
dently using atmospheric observations. Additional top-down studies would indicate the
range of seasonal cycle estimates that are consistent with atmospheric observations, par-
ticularly studies that use a diverse set of atmospheric models and/or diverse observa-
tional datasets. These efforts could help reconcile differences in the seasonal cycle among
bottom-up models and between bottom-up models and the few, existing top-down studies.

These steps will hopefully lead to better convergence among wetland CHy4 estimates for North
America.
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Table 1. Spatial flux patterns chosen by the model selection framework.

Region

Season  Chosen models

E. Canada
E. Canada
W. Canada

summer LPJ-Bern, SDGVM
fall LPJ-Bern
summer SDGVM
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Figure 1. Mean of the annual methane fluxes estimated by the WETCHIMP models (a) and the range of
fluxes estimated by the ensemble (b). Note that the range in estimates is larger than the mean. The fluxes
shown above are the average flux per m? of land area, not per m? of wetland area.
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Figure 2. The US and Canadian atmospheric methane observation network for 2007-2008 (14 703 total
observations). Small yellow dots indicate observations from the START08 measurement campaign
2010). Larger dots indicate tower and aircraft sites with regular observations over the two year
period (Andrews et al.| 2014). The grey background delineates the four regions used in the synthetic data

Data and regions used in the BIC experiments

experiments (Sect. [2.2).
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Figure 3. This figure displays the results of the synthetic data experiments. These experiments examine
whether the observation network can detect aggregate wetland CH,4 fluxes. The figure shows the per-
centage of trials that are successful. Darker shades indicate that the network is more sensitive to wetland
fluxes in the given region and season. Panel (a) shows the results for the standard setup while panels
(b-e) show the results of several test cases in which anthropogenic emissions or different errors are set
to zero.
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Figure 4. These time series compare atmospheric methane measurements at several observation sites
against model estimates using the WETCHIMP ensemble and the EDGAR v4.2FT2010 anthropogenic
emissions inventory. Refer to Fig.[S4]for model-data time series at additional sites, particularly sites that
are distant from large wetlands.

28

IodeJ UOISSNOSI(] IodeJ UOISSNoSI(] IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]



a) HBL fluxes: monthly budgets b) HBL fluxes: % of annual total

—e— Miller et al. (2014)
95% confidence

30|%

- :
interval
WETCHIMP -
n models A
EN
o |
N =43
T é |
S 5
= ks N
3
- X O]

o_m

T T T T T T 1 T T
Jan Mar May Jul

OI%

T 1T T T T T T T T 1
Jan Mar May Jul Sep Nov

Stlep Nvl:)v
Figure 5. The seasonal cycle in methane fluxes estimated for the HBL (50-60° N, 75-96° W). We in-
clude both the WETCHIMP estimates and an inverse modeling estimate from [Miller et al.|(2014). Panel
(a) displays the monthly budget from each estimate while (b) displays each month as a percentage of the

annual budget estimated by a given model.
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This supplement provides more detail on the atmospheric observations, the wetland methane
(CHy) flux estimates, and the statistical methods used throughout the paper.

S1 Atmospheric observation sites

Here we describe, in greater depth, the atmospheric CHy observations collected across the US
and Canada in 2007-2008. The observations used here are the same as those in Miller et al.
(2013) and Miller et al. (2014b), and the discussion below summarizes the data descriptions in
those papers.

The CHy4 analysis in the main article uses either real or synthetic data at US and Canadian
observation sites — a total of 14703 observations. Of those measurements, 2009 are from
observation towers in Canada. These towers (from east to west) include Chibougamau, Quebec
(CHM, 50°N, 74°W, 30m above ground level); Fraserdale, Ontario (FSD, 50°N, 83°W, 40m agl);
East Trout Lake, Saskatchewan (ETL, 54°N, 104°W, 105m agl); and Candle Lake, Saskatchewan
(CDL, 54°N, 105°W, 30m agl, 2007 only). These sites, operated by Environment Canada,
measure CHy continuously. In this study, as in Miller et al. (2014b), we use only afternoon
averages of the CHy data and WRF-STILT model output (1pm - 7pm local time); small scale
heterogeneities in the continuous data caused by turbulent eddies and incomplete mixing make
it difficult to model finer scale temporal patterns in the data. The 2009 observations at these
Canadian sites represent the total after averaging.

An additional 4984 CH,4 observations were collected from US towers operated by the Na-
tional Oceanic and Atmospheric Administration (NOAA) and its partners. These observations
include daily flask samples from a number of tower sites (weekly at Argyle and Ponca City):
Argyle, Maine (AMT, 45 °N, 69 °W, 107m above ground level (agl)); Erie, Colorado (BAO, 40
°N, 105°W, 300m agl); Park Falls, Wisconsin (LEF, 46°N, 90°W, 244m agl), Martha’s Vineyard,
Massachusetts (MVY, 41°N, 71°W, 12m agl); Niwot Ridge and Niwot Forest, Colorado (NWF,
NWR, 40°N, 105°W, 2,3,23m agl); Ponca City, Oklahoma (SGP, 37°N, 97°W, 60m agl); West
Branch, Iowa (WBI, 42°N, 93°W, 379m agl); Walnut Grove, California (WGC, 38°N, 121°W,
91m agl), and Moody, Texas (WKT, 31°N, 97°W, 122, 457m agl).

A further 7710 CHy measurements were obtained from flask samples on regular NOAA air-
craft flights and from the STARTO08 (Stratosphere-Troposphere Analyses of Regional Transport
2008) measurement campaign (Pan et al., 2010). As in Miller et al. (2013), we only use aircraft
observations up to 2 500m above ground level. Observations at higher altitudes are less sensitive
to surface emissions and were instead used by Miller et al. (2013) to optimize the estimated
CH4 boundary condition or background concentrations. In this study, we only use aircraft and
tower-based observations collected during daytime hours.

We further screen the data for biomass burning influence at the Canadian sites and at Park
Falls, Wisconsin. At the-these sites, we remove all days with CO that peaks above 200 ppb, as
was done in Miller et al. (2014b). When these sites see influence from distant anthropogenic
emissions, CO is often elevated, but it rarely exceeds 200 ppb except during time periods with
known fires (Miller et al., 2008).

S2 WETCHIMP CH, flux models

This section of the supplement details the WETCHIMP CHy estimates from Melton et al.
(2013) and Wania et al. (2013). The seven CHy estimates used in this study are shown in Fig.
S1. The wetland CHy fluxes estimated by these models varies widely — both in magnitude and
in spatial distribution. For example, the SDGVM model places large fluxes over the US Corn
Belt relative to other regions while other models like Orchidee place large fluxes in Northern
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Canada that extent far into the Northwest Territories. For a more in-depth inter-comparison
of these flux estimates, refer to Melton et al. (2013) and Wania et al. (2013).

S3 Additional information on the model selection setup

In the main article, we use synthetic CHy data and a model selection framework to examine
whether atmospheric observations can detect aggregate wetland CHy fluxes (Sect. 2.2 and 3).
This section first describes the synthetic data experiments (Sect. 2.2) followed by additional
detail on the model selection runs that use real data (Sect. 2.3). The methods described here
are adapted from Fang et al. (2014), Shiga et al. (2014), and Fang and Michalak (2015), and
the discussion below parallels the descriptions in those studies.

The synthetic observations include contributions from anthropogenic sources, from wetlands,
and from simulated model and measurement errors:

Zsynthetic — H(Santhro + Swetland) + € (Sl)

In this equation, Zgynthetic (72 X 1) represents the synthetic observations generated for an ob-
servation site. The vector Santhro (m X 1) represents emissions from anthropogenic sources,
and Syetland (M X 1) represents wetland fluxes. The footprint or sensitivity matrix H (n x m),
generated from WRF-STILT, models the impact of these emissions at the observation sites.

In this study, we use the a priori anthropogenic emissions estimates from Miller et al. (2013)
and Miller et al. (2014b) for Santhro. Those studies used activity data from the EDGAR inven-
tory and a model selection framework to construct a prior anthropogenic emissions estimate.
These EDGAR activity datasets include economic or demographic data that may predict the
spatial distribution of CH4 emissions (e.g., human or ruminant population maps).

The wetland fluxes (Syetlana) in Eq. S1 are taken from the WETCHIMP CHy flux models
(experiment two in Melton et al. (2013)). For the synthetic data experiments, we scale these
models to match the Hudson Bay Lowlands (HBL) budget estimated by Pickett-Heaps et al.
(2011), Miller et al. (2014b), and Wecht et al. (2014). This scaling ensures more consistent or
representative results. The larger the wetland flux, the more likely that the observation network
can detect a CH, fluxes from wetlands. Therefore, if we conduct the synthetic data experiment
using a flux model that has an anomalously large magnitude, we would concomitantly obtain
anomalously optimistic results.

As in Miller et al. (2013) and Miller et al. (2014b), the emissions (Santhro and Syetland) are
regridded to a spatial resolution of 1° latitude by 1° longitude. The EDGAR activity data do
not have any seasonality, so the anthropogenic emissions (Santhro) are seasonally invariant. The
WETCHIMP models have a monthly temporal resolution, as in Melton et al. (2013). That
study provides flux estimates for the years 1993-2004; we use the mean of these ten years for
all analysis in this study.

The final term in equation S1, € (n x 1), represents simulated errors in the measurements, in
WRF-STILT, and in the fluxes (Santhro and Syetland)- The errors in € are distributed according
to the covariance matrix ¥ (n x n) (Eq. 1):

e ~N(0,¥) (S2)
¥ =HQH" +R (S3)

The variances and covariances within W fall into two different categories. The first category
are errors due to imperfect emissions, described by covariance matrix Q (mxm). In atmospheric
inversion studies, this matrix is typically termed the a priori covariance matrix. The diagonal
elements of Q describe a set of variances — differences between the prior fluxes and the unknown
true emissions over long spatial or temporal scales. The off-diagonal elements of Q describe any
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Figure S1: Annual mean wetland CHy4 fluxes from seven different WETCHIMP estimates
(Melton et al., 2013; Wania et al., 2013). The fluxes shown here are averaged over the 1993-2004
study period. Note that the fluxes shown above are averaged over the entire grid cell, not per
m? of wetlands.
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spatial and/or temporal covariances in these differences. In Eq. S3, the footprint or sensitivity
matrix (H) projects Q from units of (flux)? into units of parts per billion squared, (ppb)?.

We refer to the second type of errors as model-data mismatch errors, denoted by covariance
matrix R (n x n). These include all errors in the WRF-STILT model or the measurements
that are unrelated to an imperfect flux estimate. FExamples of model-data mismatch errors
include measurement error, atmospheric transport error, or errors due to the spatial or temporal
resolution of WRF-STILT.

The synthetic data simulations in this study use values of Q and R estimated in Miller
et al. (2013) and Miller et al. (2014b). In the synthetic data studies, we construct a statistical
model that is representative of a prototypical real data inverse model. Similarly, we want to use
values for Q and R that are representative of what one would likely encounter in a real-data
setup. Miller et al. (2013) and Miller et al. (2014b) constructed real data inverse models over
the US and Canada, respectively, using the same atmospheric observations and WRF-STILT
simulations used in this study. Those studies used a model selection framework to find prior
models that show optimal fit against available observations. In each study, the authors then
estimated the elements of Q and R using that prior model. The resulting estimates of Q are
representative of prior models that shows optimal agreement with atmospheric observations.
For case study (b) (no anthropogenic emissions), we estimate Q using the same approach as in
Shiga et al. (2014). In that study, the authors used the estimated variances and covariances of
the remaining fluxes (in this case wetland fluxes) to populate Q.

In the real data experiments (Sect. 2.3), we estimate unique values of Q and R each time we
run the model selection framework. We estimate these parameters using Restricted Maximum
Likelihood (RML) (Corbeil and Searle, 1976; Kitanidis, 1995; Michalak et al., 2004; Gourdji
et al., 2012), the same procedure used in Miller et al. (2013) and Miller et al. (2014b).

We use these covariance matrices to compute € through several steps. First, we compute
the Cholesky decomposition of the combined covariance matrix ¥:

= cc? (S4)

The covariance matrix ¥ has units of (ppb)?, but its Cholesky decomposition (C) has units of
ppb. With this decomposition in hand, we next simulate a set of errors, € (e.g., Fang et al.,
2014; Shiga et al., 2014):

e =Cu (S5)
u ~N(0,1) (S6)

where u represents a set of randomly-generated numbers with a mean of zero and variance of
one.

We simulate 1000 synthetic datasets for each experiment to adequately sample the random
errors in €. We then use the model selection framework to find the optimal candidate model
for each of these datasets. The results presented in Fig. 3 are therefore the composite of
thousands of model selectlon runs: one model selection run for each synthetlc dataset We use

‘ select = -e-we-also estimate the coefﬁ<31ents (B) in Eq 1 using
Lagrange multlphers to ensure that none of the estimated coefficients have unrealistic negative
values (e.g., Miller et al., 2014a).

In the real data setup (Sect. 2.3), we run the model selection procedure once for each of
the seven WETCHIMP flux estimates. We only include one of the seven WETCHIMP flux
models in each model selection run. As a result, the WETCHIMP models do not compete
against one another for selection. In each run, the model selection framework can select the
given WETCHIMP model in any of the four geographic regions and any of the four seasons.
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Figure S2: Total, summed footprint from the (a) Canadian and (b) US observation networks.
The observation sites incorporated into this figure are shown in Fig. 2. Each individual footprint
(associated with an individual atmospheric observation) has units of concentration per unit flux
(ppb per pmol m~2 s71). In this figure, we sum all footprints for 2007-2008.

S4 Overall sensitivity of the observation network to CH, fluxes

In this section, we describe the overall footprint or sensitivity of the observation network to
CH,4 fluxes. This sensitivity will play at least some role in network’s ability to detect wetland
CHy4 fluxes. The WRF-STILT model quantifies this sensitivity in terms of a footprint. Each
row the matrix H is the footprint associated with a different atmospheric CHy observation. In
Fig. S2, we plot these footprints, summed over all of 2007—2008.

This figure show several distinctive patterns. First, the US network has a higher sensitivity
than the Canadian network. This pattern is due to the larger number of observation sites
over the US. Second, the highest sensitivities are clustered in distinctive regions with multiple
observation sites — Wisconsin, Texas/Oklahoma, and California, among other regions.

S5 Soil freeze/thaw estimates from NARR

Figure S3 shows the soil freeze/thaw cycle at different depths averaged across the HBL. These
estimates are taken from North American Regional Reanalysis (NARR) (Mesinger et al., 2006),
and the values shown in Fig. S3 are average values for each month. The main article references
this figure in a discussion of the CHy flux seasonal cycle (Sect. 4.3).

S6 Additional model-data time series

This section includes additional model-data time series analogous to those in Fig. 4. That
figure compares averaged concentrations modeled by WRF-STILT against monthly-averaged
observations at four different observation sites. The sites displayed in that figure are located
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Figure S3: This figure displays the fraction of soil water that is unfrozen for the HBL in different
seasons and at different soil depths. Estimates are taken from NARR (Mesinger et al., 2006).

near large wetlands and in regions where the synthetic data experiments had a high success
rate (Fig. 3). The sites displayed in Fig. S4 in this section are located further from wetlands
and in regions that had a low success rate in the BIC experiments. At many of the sites in
Fig. S4, the modeled wetland signal is difficult to distinguish. These sites contrast with those
in Fig. 4 which “see” a relatively large CHy increment from wetlands.

S7 Validation of the WRF-STILT model

This section describes work that validates the atmospheric transport estimated by WRF-STILT.
The supplements to Miller et al. (2013) and Miller et al. (2014b) provide detailed validation of
the atmospheric transport and boundary condition estimate; refer to those papers for additional
information. Those papers use the same WRF-STILT simulations and boundary condition
estimate as in the present paper. This section of the Supplement discusses a number of key

A number of figures in Miller et al. (2013) and Miller et al. (2014b) illustrate the ability of
the WRE-STILT model to reproduce daily and seasonal patterns in the observations at different
sites across the US and Canada. Those studies used an geostatistical inverse model to estimate
CHy fluxes for the US and Canada, respectively. Figures S6 and S7 in Miller et al. (2013) compare
modeled concentrations using this estimate against observed concentrations. The figures also
display the estimated boundary condition and modeled concentrations with the EDGAR inventory
for comparison. Modeled concentrations using the flux estimate in that paper can reproduce

day-to-day variations in CH4 concentrations at tall tower sites in Wisconsin, California, and
Texas (Fig. S6 in Miller et al. (2013 among other tall tower locations. Figure 4 in Miller et al.

is able to reproduce seasonal variability in CH4 concentrations at tower sites across Canada

2014Db) further
compares modeled concentrations against observed concentrations at sites in Canada. WREF-STILT
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Miller et al. (2013) validate WRF-STILT’s ability to reproduce the vertical structure of the
atmosphere. Figure 4 in Miller et al. (2013) shows modeled and observed concentrations at
regular NOAA aircraft sites, averaged across the 20072008 study period. The first panel of
that figure displays observed and modeled concentrations averaged across all aircraft sites and
the remaining panels display individual aircraft sites in Oklahoma, New Jersey, and Iowa. At
all of these sites, WRF-STILT is able to reproduce CHy enhancements near the surface and can
reproduce vertical patterns in the aircraft observations.

The next section provides additional discussion of uncertainties and errors in the WRF-STILT
model.

S8 Uncertainty in the model-data framework

A number of modeling and measurement uncertainties influence the results presented in this
paper. These uncertainties are discussed in detail by Miller et al. (2013), Miller et al. (2014b),
and Miller et al. (2014a). This section provides a summary of those discussions.

The model selection framework in this study accounts for modeling or measurement errors
in the R covariance matrix (Eq. S3). This covariance matrix is typically included in a Bayesian
synthesis or geostatistical inverse model (e.g., Michalak et al., 2004). The errors described by R
are collectively referred to as model-data mismatch — any errors in the model-data framework
that are unrelated to an imperfect flux estimate. This mismatch includes errors in the modeled
winds, errors in the CH4 boundary condition, and any errors due to the finite spatial or temporal
resolution of the model, among other possible error sources. This section of the supplement
first discusses the overall magnitude of these model-data mismatch errors and then discusses
individual components of the model-data mismatch, including potential errors in the estimated
winds and in the boundary condition.

Both Miller et al. (2013) and Miller et al. (2014b) estimate the magnitude of model-data
mismatch errors for observation sites in the US and Canada, respectively. These studies used a
procedure known as Restricted Maximum Likelihood (RML) to estimate the parameters that
define both the R and Q covariance matrices (e.g., Corbeil and Searle, 1976; Kitanidis, 1995;
Michalak et al., 2004; Gourdji et al., 2012). The estimated mismatch errors range in magnitude
from 12-13 ppb (standard deviations) at Canadian tower sites to 20-30 ppb at tower sites near
oil and gas operations in the southern US (refer to Fig. S2 in Miller et al. (2013) and Fig. S6
in Miller et al. (2014b)). This magnitude (12-30 ppb) is equivalent to 25-70% of the average
CHy signal from North American emissions as seen at the various observation sites.

These model-data mismatch errors encompass numerous sources of error, but these errors
are likely dominated by uncertainties in atmospheric transport. Nehrkorn et al. (2010) gener-
ated WRF meteorology for use in STILT and compared the estimated winds against US and
Canadian radiosondes. They computed a root mean squared error (RMSE) of 2.5-4 m s™! in
the horizontal winds and found no change in error statistics at the top of the boundary layer.
Hegarty et al. (2013) further coupled the STILT model with several weather models and found
that simulations with WRF produced lower error statistics relative to other weather models.

Several existing studies have shown consistent results between WRF-STILT and other atmo-
spheric models; this consistency may indicate a lack of large-scale bias in atmospheric transport
estimated by WRF-STILT. For example, constraints on summertime US carbon monoxide emis-
sions estimated with STILT and the GEOS-Chem model match to within 10% (Miller et al.,
2008; Hudman et al., 2008). CH4 budgets estimated for the HBL in Canada using WRF-STILT
and GEOS-Chem are similar to within 10% (Pickett-Heaps et al., 2011; Miller et al., 2014b;
Wecht et al., 2014). Furthermore, CH4 budgets estimated for the US with WRF-STILT and
GEOS-Chem match to within ~10% (Miller et al., 2013; Turner et al., 2015).
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The CH4 boundary condition is-or background concentrations are another, potentially large
source of uncertainty in the CHy modeling framework. To create this boundary condition,
we interpolate atmospheric CHy observations near or over the Pacific and Arctic Oceans to
create a boundary “curtain.” This curtain estimates CH4 concentrations over the Pacific and
Arctic; it varies by latitude, altitude, and time (see Fig. S4 in Miller et al. (2014b)). We
then sample concentrations along this curtain depending upon the ending latitude, altitude,
and time of each WRF-STILT trajectory. These sampled concentrations become the boundary
condition — an estimate of the CH,4 concentration in air before that air reaches North America.
Miller et al. (2013) and Miller et al. (2014b) describe this setup in greater detail along with the
associated uncertainties. For example, Miller et al. (2013) compared the boundary condition
estimate against aircraft data collected above 3000m over the United States. They found an
average difference of 2.7 ppb between the aircraft observations and boundary condition estimate.
Miller et al. (2013) then adjusted the boundary condition based upon this aircraft data. They
subsequently estimated a total US CHy budget using boundary conditions with and without
the aircraft adjustment. The total CHy4 budget using the aircraft-corrected boundary condition
was approximately 5% higher than the unadjusted boundary condition estimate. This result
indicates the possible effects of boundary condition uncertainties on a national-scale CH4 budget
estimate.
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