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This supplement provides more detail on the atmospheric observations, the wetland methane
flux estimates, and the statistical methods used throughout the paper.

S1 Atmospheric observation sites

Here we describe, in greater depth, the atmospheric methane observations collected across the
US and Canada in 2007–2008. The observations used here are identical to those in Miller et al.5

(2013) and Miller et al. (2014b), and the discussion below summarizes the data descriptions in
those papers.

The methane analysis in the main article uses either real or synthetic data at US and
Canadian observation sites – a total of 14,703 observations. Of those measurements, 2,009 are
from observation towers in Canada. These towers (from east to west) include Chibougamau,10

Quebec (CHM, 50◦N, 74◦W, 30m above ground level); Fraserdale, Ontario (FSD, 50◦N, 83◦W,
40m agl); East Trout Lake, Saskatchewan (ETL, 54◦N, 104◦W, 105m agl); and Candle Lake,
Saskatchewan (CDL, 54◦N, 105◦W, 30m agl, 2007 only). These sites, operated by Environment
Canada, measure methane continuously. In this study, as in Miller et al. (2014b), we use
only afternoon averages of the methane data and WRF-STILT model output (1pm - 7pm15

local time); small scale heterogeneities in the continuous data caused by turbulent eddies and
incomplete mixing make it difficult to model finer scale temporal patterns in the data. The
2,009 observations at these Canadian sites represent the total after averaging.

An additional 4,984 methane observations were collected from US towers operated by the
National Oceanic and Atmospheric Administration (NOAA) and its partners. These observa-20

tions include daily flask samples from a number of tower sites (weekly at Argyle and Ponca
City): Argyle, Maine (AMT, 45 ◦N, 69 ◦W, 107m above ground level (agl)); Erie, Colorado
(BAO, 40 ◦N, 105◦W, 300m agl); Park Falls, Wisconsin (LEF, 46◦N, 90◦W, 244m agl), Martha’s
Vineyard, Massachusetts (MVY, 41◦N, 71◦W, 12m agl); Niwot Ridge and Niwot Forest, Col-
orado (NWF, NWR, 40◦N, 105◦W, 2,3,23m agl); Ponca City, Oklahoma (SGP, 37◦N, 97◦W,25

60m agl); West Branch, Iowa (WBI, 42◦N, 93◦W, 379m agl); Walnut Grove, California (WGC,
38◦N, 121◦W, 91m agl), and Moody, Texas (WKT, 31◦N, 97◦W, 122, 457m agl).

A further 7710 methane measurements were obtained from flask samples on regular NOAA
aircraft flights and from the START08 (Stratosphere-Troposphere Analyses of Regional Trans-
port 2008) measurement campaign (Pan et al., 2010). As in Miller et al. (2013), we only use30

aircraft observations up to 2500m above ground level. Observations at higher altitudes are less
sensitive to surface emissions and were instead used by Miller et al. (2013) to optimize the
empirical methane boundary condition. In this study, we only use aircraft and tower-based
observations collected during daytime hours.

We further screen the data for biomass burning influence at the Canadian sites and at Park35

Falls, Wisconsin. At the these sites, we remove all days with CO that peaks above 200 ppb, as
was done in Miller et al. (2014b). When these sites see influence from distant anthropogenic
emissions, CO is often elevated, but it rarely exceeds 200 ppb except during time periods with
known fires (Miller et al., 2008).

S2 WETCHIMP methane flux models40

This section of the supplement details the WETCHIMP methane estimates from Melton et al.
(2013) and Wania et al. (2013). The seven methane estimates used in this study are shown
in Fig. S1. The wetland methane fluxes estimated by these models varies widely – both in
magnitude and in spatial distribution. For example, the SDGVM model places large fluxes
over the US Corn Belt relative to other regions while other models like Orchidee place large45
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fluxes in Northern Canada that extent far into the Northwest Territories. For a more in-depth
inter-comparison of these flux estimates, refer to Melton et al. (2013) and Wania et al. (2013).

S3 The synthetic data

In the main article, we use synthetic methane data to explore the sensitivity of atmospheric
observations to wetland fluxes (sections 2.3 and 3). This section describes in greater detail how50

we construct this synthetic data. The methods described here are adapted from Fang et al.
(2014) and Shiga et al. (2014), and the discussion below parallels the descriptions in those
studies.

The synthetic observations include contributions from anthropogenic sources, from wetlands,
and from simulated model and measurement errors:55

zsynthetic = H(santhro + swetland) + ε (S1)

In this equation, zsynthetic (n × 1) represents the synthetic observations generated for an ob-
servation site. The vector santhro (m× 1) represents emissions from anthropogenic sources and
swetland (m × 1) represents wetland fluxes. The footprint or sensitivity matrix H (n × m),
generated from WRF-STILT, models the impact of these emissions at the observation sites.

In this study, we use the a priori anthropogenic emissions estimates from Miller et al. (2013)60

and Miller et al. (2014b) for santhro. Those studies used activity data from the EDGAR inven-
tory and a model selection framework to construct a prior anthropogenic emissions estimate.
These EDGAR activity datasets include economic or demographic data that may predict the
spatial distribution of methane emissions (e.g., human or ruminant population maps).

The wetland fluxes (swetland) in Eq. S1 are taken from the WETCHIMP methane flux65

models (experiment two in Melton et al. (2013)). We use only four of the seven WETCHIMP
models to generate synthetic data: CLM4Me, DLEM, LPJ-WSL, and SDGVM. These models
have an overall magnitude that most closely matches the methane budgets estimated by three
recent top-down studies over Canada’s Hudson Bay Lowlands (HBL) (Pickett-Heaps et al.,
2011; Miller et al., 2014b; Wecht et al., 2014). The magnitude of these four models is likely70

the most realistic among the WETCHIMP flux estimates. The other WETCHIMP models, in
contrast, predict much higher fluxes (Fig. 4).

As in Miller et al. (2013) and Miller et al. (2014b), the emissions (santhro and swetland) are
regridded to a spatial resolution of 1◦ latitude by 1◦ longitude. The EDGAR activity data do
not have any seasonality, so the anthropogenic emissions (santhro) are seasonally invariant. The75

WETCHIMP models have a monthly temporal resolution, as in Melton et al. (2013). That
study provides flux estimates for the years 1993-2004; we use the mean of these ten years for
all analysis in this study.

The final term in equation S1, ε (n× 1), represents simulated errors in the measurements,
in WRF-STILT, and in the fluxes (santhro and swetland). The magnitude and spatial/temporal80

structure of these errors were estimated in Miller et al. (2013) for the US and Miller et al. (2014b)
for Canada. The remainder of this section details the specific calculations for simulating ε.

The errors in ε are distributed according to the covariance matrix Ψ (n× n) (Eq. 1):

ε ∼ N (0,Ψ) (S2)

Ψ = HQHT + R (S3)

The variances and covariances within Ψ fall into two different categories. The first category
are errors due to imperfect emissions, described by covariance matrix Q (m×m). In atmospheric
inversion studies, this matrix is typically termed the a priori covariance matrix. The diagonal85

elements of Q describe a set of variances – differences between the prior and the unknown true
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Figure S1: Annual mean wetland methane fluxes from seven different WETCHIMP estimates
(Melton et al., 2013; Wania et al., 2013). The fluxes shown here are averaged over the 1993-2004
study period. Note that the fluxes shown above are averaged over the entire grid cell, not per
m2 of wetlands.
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Figure S2: Total, summed footprint from the (a) Canadian and (b) US observation networks.
The observation sites incorporated into this figure are shown in Fig. 2. Each individual footprint
(associated with an individual atmospheric observation) has units of concentration per unit flux
(ppb per µmol m−2 s−1). In this figure, we sum all footprints for 2007–2008.

emissions over long spatial or temporal scales. The off-diagonal elements of Q describe any
spatial and/or temporal covariances in these differences. In Eq. S3, the footprint or sensitivity
matrix (H) projects Q from units of (flux)2 into units of parts per billion squared, (ppb)2.

We refer to the second type of errors as model-data mismatch errors, denoted by covariance90

matrix R (n×n). These include all errors in the WRF-STILT model or the measurements that
are unrelated to an imperfect flux estimate. Examples of model-data mismatch errors include
measurement error, atmospheric transport error, or errors due to the spatial or temporal reso-
lution of WRF-STILT. Over the United States, we use values for R and Q that were estimated
by Miller et al. (2013) using WRF-STILT and the same atmospheric methane observations used95

in this study. Similarly, we use values for R and Q over Canada that were estimated in Miller
et al. (2014b), a parallel inverse modeling study over that country.

In order to simulate ε, we next compute the Cholesky decomposition of Ψ:

Ψ = CCT (S4)

The covariance matrix Ψ has units of (ppb)2, but its Cholesky decomposition (C) has units
of ppb, a fact that will become useful in the next step. With this decomposition in hand, we
simulate a set of errors, ε (e.g., Fang et al., 2014; Shiga et al., 2014):

ε = Cu (S5)

u ∼ N (0,1) (S6)

where u represents a set of randomly-generated numbers with a mean of zero and variance of
one.100

We simulate 1000 synthetic datasets for each experiment to adequately sample the random
errors in ε. We then use the model selection framework to find the optimal candidate model for
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Figure S3: This figure displays the fraction of soil water that is unfrozen for the HBL in different
seasons and at different soil depths. Estimates are taken from NARR (Mesinger et al., 2006).

each of these datasets. The results presented in Fig. 3 are therefore the composite of thousands
of model selection runs: one model selection run for each synthetic dataset. We use a branch
and bound algorithm from Yadav et al. (2013) to improve the computational efficiency of these105

model selection runs. Furthermore, we estimate the coefficients (β) in Eq. 1 using Lagrange
multipliers to ensure that none of the estimated coefficients have unrealistic negative values
(e.g., Miller et al., 2014a).

S4 Sensitivity of the observation network to surface fluxes

In this section, we describe the overall sensitivity of the observation network to methane fluxes.110

This sensitivity will play at least some role in network’s ability to identify a signal from wetlands.
The WRF-STILT model quantifies this sensitivity in terms of a footprint. Each row the matrix
H is the footprint associated with a different atmospheric methane observation. In Fig. S2, we
plot these footprints, summed over all of 2007–2008.

This figure show several distinctive patterns. First, the US network has a higher sensitivity115

than the Canadian network. This pattern is due to the larger number of observation sites
over the US. Second, the highest sensitivities are clustered in distinctive regions with multiple
observation sites – Wisconsin, Texas/Oklahoma, and California, among other regions.

S5 Soil freeze/thaw estimates from NARR

Figure S3 shows the soil freeze/thaw cycle at different depths averaged across the HBL. These120

estimates are taken from North American Regional Reanalysis (NARR) (Mesinger et al., 2006),
and the values shown in Fig. S3 are average values for each month. The main article references
this figure in a discussion of the methane flux seasonal cycle (Sect. 4.3).
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