
Point-by-point response to the reviews including relevant 1 

changes made in the manuscript: 2 

Referee 1 3 

 4 
We thank the referee for the comments on our manuscript, which helped improving our study. We 5 

hope that our answers and the modifications are satisfactory. 6 

 7 

Page 2, Line 9: I don’t understand “substitute observed by modeled fluxes”. Substitute 8 

modeled fluxes for observed fluxes? 9 
We reformulated: “In addition we create synthetic observations using modeled fluxes instead of the 10 

observed ones, to explore the potential to infer prior uncertainties from model-model residuals”. 11 

 12 

Page 2, Line 11: Was the random error added to observed or modeled “tower” fluxes? If this 13 

was added to the observed fluxes, why? There is already random error in the measurements. 14 
We clarified: “ a random measurement noise was added to the modeled tower fluxes”. 15 

 16 

Page 2, Lines 14-15:  “This difference… ” isn’t clear.   Do the large biases exist with respect to 17 

5PM, or the other models? And how does a large bias cause a long temporal autocorrelation? 18 
We reformulated: “This difference is caused by a few sites with large biases between the data and 19 

the 5PM model.”  20 

Regarding the second question: we also computed the temporal autocorrelation time excluding 21 

those sites with a large model-data mismatch bias (see section 5.1, page 9408), and this was found 22 

to be less than half of the temporal autocorrelation time using all sites. 23 

Note that unfortunately the abstract contained the wrong numbers which were inconsistent with 24 

those in table 2 and in the text. We corrected this, and page 9394 lines 13,14  now reads: 30 and 70 25 

days. 26 

 27 

Page 3, line 10.  I don’t understand the term “regularized.”  Can this be defined?  It is used in 28 

more than one place, and I don’t recognize what concept is being communicated. 29 
“Regularization” is a standard term in statistics and refers to a process of introducing additional 30 

constraints in order to solve an ill-posed problem. See for instance:  31 

Hansen PC, Oleary DP, The use of the L-curve in the regularization of discrete ill-posed problems. 32 

SIAM journal of scientific computing, 14 (6) 1487-1503, 1993. 33 

We added: “In this way, the solution of the otherwise ill-posed problem is regularized in the sense 34 

that the optimization problem becomes one with a unique solution.” 35 

 36 

Page 4, lines 4-6. Coarser scale inversions may not explicitly utilize correlation lengths, but 37 

they are implicitly imposing a large correlation length (which may be entirely inappropriate). 38 

Please clarify. 39 
We clarified: “…(Houweling et al., 2004; Rödenbeck et al., 2003b). For the former case large 40 

correlation scales are implicitly assumed since fluxes within a grid-cell are fully correlated. For 41 

regional…”. 42 

 43 

Page 4, lines 13-14. I don’t understand this description. How can you derive a spatial 44 

correlation in the prior flux error from a coarse resolution inversion? 45 
We reformulated: “In some regional studies the same correlations are used as in large scale 46 

inversions…”. 47 

 48 

Page 4, lines 22-23. This is not correct. The pattern of fluxes was not used to evaluate the 49 

spatial correlation length. Lauvaux et al, 2012 tested the spatial correlation length scale by 50 



cross-validation of the posterior CO2 mole fractions. CO2 observations were reserved from 1 

the inversion, and the correlation length that provided the best fit to the reserved CO2 data 2 

was identified as the best choice. 3 
We clarified: “…based on cross-validation of the simulated against observed CO2 mole fractions. 4 

The simulated mole fractions were derived using the influence functions and the inverted fluxes”. 5 

 6 

Page 5, lines 1-4. This sentence is unintelligible. 7 
We clarified: “A recent study by Broquet et al. (2013) obtained good agreements between the 8 

statistical uncertainties as derived from the inversion system and the actual misfits calculated by 9 

comparing the posterior fluxes to local flux measurements at the European and 1-month scale”. 10 

 11 

Page 4, lines 12-13.  Make it clear that flux measurement sensitivities are areas, not lengths.  12 

You are describing dimensions of an area measurement.  This is not clear as written.  I also 13 

recommend that you note that the resolution of an inversion system is not necessarily the same 14 

as the true resolution of an inverse flux estimate. 15 
We clarified: “While typical inversion systems have a resolution ranging from tens of kilometers up 16 

to several degrees (hundreds of km), with the true resolution of the inverse flux estimates being 17 

even coarser, the spatial representativity of the flux observations typically covers an area with a 18 

radius of around a kilometer”. 19 

 20 

Page  4,  line 15.   There  are  many,  many  studies  of  flux  upscaling  with  towers  and 21 

spatial databases. The paper would benefit from a somewhat expanded review of this 22 

literature. 23 
We added: “…one applied by Chevallier et al., (2012). Typical approaches to up-scale site level 24 

fluxes deploy for example model tree algorithms, a machine learning algorithm which is trained to 25 

predict carbon flux estimates based on meteorological data, vegetation properties and types (Jung et 26 

al., 2009, Xiao et al., 2008), or neural networks (Papale and Valentini 2003). Nevertheless eddy 27 

covariance measurements provide…”. 28 

References added: 29 

Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy 30 

covariance observations: validation of a model tree ensemble approach using a biosphere model, 31 

Biogeosciences, 6, 2001-2013, doi:10.5194/bg-6-2001-2009, 2009.  32 

 33 

Papale, D. and Valentini, R., A new assessment of European forests carbon exchanges by eddy 34 

fluxes and artificial neural network spatialization. Global Change Biology, 9: 525–535. doi: 35 

10.1046/j.1365-2486.2003.00609.x, 2003 36 

 37 

Xiao, J. F., Zhuang, Q. L., Baldocchi, D. D., et al.: Estimation of net ecosystem carbon exchange for 38 

the conterminous United States by combining MODIS and AmeriFlux data, Agr. Forest Meteorol., 39 

148(11), 1827–1847, 2008. 40 

 41 

Page 7, line 25. What does “across entire daily course” mean? 42 
We mean flights were made at various times of the day to cover the daily course on average. 43 

We clarified: “… flown 52 and 54 times respectively, covering the daily course. Exact routes…”. 44 

 45 

Page 9, lines 13-14. Why is the year of EC data used to optimize respiration parameters 46 

singled out? What about the other parameters and years of EC data? 47 



For the heterotrophic respiration no calibration with many years was ever done here; so we 1 

followed an ad hoc procedure and chose the year 2007 to calibrate, which is the year for which the 2 

calculations presented in the paper have been done, to prevent any bias caused by a systematic error 3 

in the respiration. The calibration pertains by the way only to the “amplitude” of the respiration. 4 

 5 
For other parameters, the calibrations come from Groenendijk et al., (2011) and are based on 4.5 6 

years per site on average. 7 

We modified : “The “5 parameter model” (5PM) (Groenendijk et al., 2011), also used in 8 

atmospheric inversions (Tolk et al., 2011, Meesters et al., 2012), is a physiological model describing 9 

transpiration, photosynthesis, and respiration. It uses MODIS LAI (leaf area index) at 10km 10 

resolution, meteorological data (temperature, moisture, and downward shortwave radiative flux, 11 

presently from ECMWF at 0.25 degrees resolution), and differentiates PFTs for different vegetation 12 

types and climate regions. 5PM fluxes are pertained to station locations at hourly temporal 13 

resolution. The optimization has been done with EC-data from Fluxnet as described (except for 14 

heterotrophic respiration) in Groenendijk et al., 2011. Regarding the heterotrophic respiration, an ad 15 

hoc optimization using Fluxnet  EC-data from 2007 was performed since no previous optimization 16 

was availabe.” 17 

 18 

Page 10, line 3. English. I suggest, “it is the only model with spatial resolution (10 km) 19 

comparable to …”  20 
We corrected: “VPRM was used since it is the only model with spatial resolution (10 km) 21 

comparable to …”. 22 

 23 

Page 10, lines 6-8. Number of flights is repeated. Resolution of aircraft flight data contradicts 24 

earlier text that stated 2 km resolution. 25 
Repetition is deleted: “Each grid point was sampled 52 times in forests, and 54 in agricultural land”. 26 

We clarified: “… short flight distances. Aircraft NEE data, natively at 2 km resolution along the 27 

track, have been aggregated into 10 km segments, to maximize the overlap with the VPRM grid…”. 28 

 29 

Page 10, lines 15-16.  Do you neglect the impact of the observation errors?  Or is it just that 30 

you cannot separate these errors from errors in the model?  The observation errors are 31 

already part of the observations. 32 
As the observation errors are already part of the observations we do consider them in the model-33 

observation analysis. The word “neglect” here only means that the impact on the correlation lengths 34 

is not studied here. The impact is studied later in the model-model analysis where we consider or 35 

neglect the observation error by adding or not a random measurement error to the fluxes used as 36 

reference. 37 

We furthermore clarified: “therefore e-folding correlation length estimations do include the 38 

observation error term.”. 39 

 40 

Page 11, equations (2) and (3) and the “nugget” effect:  Mathematically,  when k=0, equation 41 

(2) = 1. What is this nugget effect? How can it exist for k=0? The numerator and denominator 42 

are identical when k=0. 43 
“Nugget” is a standard term in spatial statistics. The nugget effect can be attributed to measurement 44 

errors or spatial sources of variation at distances smaller than the sampling interval or both. See also 45 

Wackernagel, H., 2003, Multivariate Geostatistics, Springer. 46 

Page 9403 line 15. We clarified: “… also known as the nugget effect. The nugget effect is driven by 47 

measurement errors and variations at distances (spatial or temporal) smaller than the sampling 48 

interval. For this…”. 49 

 50 

Page 11, line 19. What does “distributed along the entire daily course” mean? And how can 51 

aircraft data span 36 days? Are the times in between the aircraft flights neglected? 52 



We removed that unclear wording: “distributed along the entire daily course”. 1 

36 days is the duration of the flight campaign. Within this period, flights were planned and made to 2 

equally sample each time of the day, along the campaign. Since flights are obviously discontinuous 3 

in time, they constitute a sub-sampling thus are insufficient to compute a daily average at each grid-4 

cell. Our approach was therefore to keep all individual fluxes to constrain the temporal 5 

autocorrelation, assuming that fluxes are overall not biased toward specific times of the day, given 6 

the sub-sampling is equally distributed.  7 

And yes, temporal gaps that are not sampled are not used in the analysis. 8 

 9 

Page 12, equation (4). Again, I don’t see how a nugget is relevant with the normalized 10 

correlation equation (2). 11 
We think that this is answered with the explanation of the nugget effect. 12 

 13 

Page 12-13. “... assuming that the involved prior errors for each model are identical in a sense 14 

that they share the same statistics and (are?) not correlated.” What does this mean? 15 
We reformulated: “, assuming that models have independent prior errors”. 16 

 17 

Page 13, line 8. Richardson et al., 2008, only deals with random sampling error. More recent 18 

papers add gap filling errors and friction velocity screening errors to the observational error 19 

assessment. 20 
We do not use gap filled data. The Richardson et al. (2008) reference was used to provide a 21 

somewhat realistic estimation of the observation error to be added in the model-model comparison. 22 

Including other sources of error such as resulting from gap filling and friction velocity screening 23 

would lead too far for this context.  24 

 25 

There are many years of flux tower data.  Only 2007 observations are used.  Why? Could the 26 

results be strengthened with additional years of observations? 27 
As we are interested in the daily time scale we used only 1 year data. Nevertheless by using 28 

additional years we would not expect to gain more information or significantly different correlation 29 

scales. For example Chevallier et al., 2012 used multiple years and we still have comparable results.   30 

page 9397 line 18-19. We have clarified in this regard, also in response to the second reviewers 31 

comments by adding the following paragraph:  32 

“Hilton et al., (2012) studied also the spatial model – data residual error structure using a 33 

geostatistical method. Hilton’s study is focused on the seasonal scale, i.e. investigated residual 34 

errors of seasonally aggregated fluxes. However, the state space (variables to be optimized 35 

considering also their temporal resolution) of current inversion systems is at high temporal 36 

resolution (daily or even three-hourly optimizations). Further, the statistical consistency between the 37 

error covariance and the state space is crucial. Thus the error structure at the daily time-scale is of 38 

interest here, and can be used in atmospheric inversions of the same temporal resolution. Similar to 39 

Hilton’s study we select an exponentially decaying model to fit the spatial residual autocorrelation.”  40 

 41 

Page 14, lines 3-6.  Your equations state (but do not define explicitly in the equations) that you 42 

are going to evaluate model-data, and model-model differences. The results, however, begin by 43 

stating standard deviations in observed NEE. I cannot tell what you have computed.  Please 44 

clarify the methods and the associated results so that these values can  be  interpreted by the 45 

reader. I think you are presenting time-constant, spatially varying standard deviations across 46 

sites, then summed over all times. But the paper should not make me guess what you are 47 

computing here, and the methods say nothing about this computation. 48 
This is just the standard deviation of the daily fluxes across all stations and all times to show how 49 

observed and modeled fluxes vary spatially and temporally. As this is a very general metric, we 50 

disagree that this should be stated explicitly in the methods section.   51 

 52 



Page 14, line 11. Why is this “in line” with the spatial standard deviation? Model-data 1 

differences at a given site are not necessarily related in any way to differences in observed 2 

fluxes across sites. 3 
We mean that the fact that the standard deviation of the residuals (modeled - observed) is only 4 

slightly smaller than the standard deviation of the fluxes themselves is in line with the small r-5 

square values. 6 

We have clarified the corresponding sentence: “Those values are only slightly smaller than the 7 

standard deviations of the observed or modeled fluxes themselves. This fact is in line with the 8 

generally low fraction of explained variance with r-square values …”.  9 

 10 

Page 14, line 13-14. What are “site specific correlations” that are presented as a single value?  11 

If these are site specific correlations, what site is being presented? Again, the methods are not 12 

sufficiently clear. 13 
We clarified: “When using site-specific correlations (correlations computed for each site, then 14 

averaged over all sites), …” . 15 

 16 

Page 14, lines 15-18. This sentence’s English needs work. Further, the statistical comparison 17 

(see above comment) isn’t clear.  Finally, the model-data difference, if I understand it, also 18 

includes a temporal component since it is summed over time.  As best  I  can  tell,  the  same  19 

data  go  into  both  calculations,  so  I  don’t  understand  how the authors can draw this 20 

fuzzy conclusion about ability to simulate temporal variability better than spatial variability. 21 

Clear, targeted work on this topic has been published elsewhere but has been neglected in the 22 

introduction to this paper.  This is also not clearly a main focus of this paper. I would suggest 23 

that you either expand the paper to address this topic properly, or delete this discussion. 24 
We added a clarification of the computation in Page 9406, line 13, and we also reformulate 25 

regarding also comment from reviewer 2:  26 

“When using site-specific correlations (correlations computed for each site, then averaged over all 27 

sites), the average fraction of explained variance increases to 0.38, 0.36, 0.35, and 0.42, for 28 

VPRM10, VPRM1, ORCHIDEE and 5PM, respectively. Note that for deseasonalized time-series 29 

(using a 2nd order harmonic, not shown) the same picture emerges with increased averaged site 30 

specific correlation compared to correlations using all sites. This indicates better performance for 31 

the models to simulate temporal changes (not only seasonal, but also synoptic) at the site level. 32 

Further, the differences between site-specific…”. 33 

 34 

Figure 2 is not clear. Is each point a different site? How is this figure related (or not) to the 35 

“site specific correlations” noted on lines 13-14 of Page 14? 36 
We clarified the “site-specific” term in the previous comment. This figure refers to the averaged, 37 

site-specific correlation, for sites that have the same vegetation type. The x-axis lists the different 38 

vegetation types (7 in total). Each site is characterized according to its representative vegetation. 39 

The total number of sites sharing a common vegetation type is shown under the vegetation type. 40 

Hence each of the bars are vegetation (according to x position in the plot) and model (according to 41 

color code) specific.  42 

We also clarified the caption: “… Box and whisker plot for for site-specific correlation..”. 43 

 44 

Figure 3 has the same problem as Figure 2.  Please specify what distribution (sites?) are being 45 

illustrated by the box and whisker plots.  In addition, the sign of the bias is never defined. 46 

Finally, it would be useful to provide a conversion to gC m-2 yr-1. 47 
We clarified as in figure 2. 48 

Page 9406, line 24 With respect to the second comment we clarified: “Figure 3 shows the 49 

distribution of bias (defined as modeled – observed fluxes) for different…”.   50 

Regarding the conversion, we added in the figure caption: “(for conversion to gC m
-2 

yr
-1

 reported 51 

values in y axis should be multiplied by 378,7694)”.  52 



 1 

Figure 4 has too many lines of similar color and tiny size to be read clearly.  2 
We changed the color for the sites which were excluded from the analysis to better contrast with the 3 

remaining sites. However we note that this figure is not meant to be analyzed for each site 4 

individually (thin red and blue lines) but we rather want to show the average characteristics of the 5 

sites. Then the reader should concentrate on the all-site data (thick black and grey lines) and on the 6 

exponential fit (thick green and dark green lines). 7 

 8 

Page 14, line 28. All site? Flux site? Sub-site? The terminology surrounding Figure 4 needs to 9 

be cleaned up. I cannot tell what is being plotted. The text appears to contradict the figure 10 

caption, and the terminology changes enough to be quite confusing. 11 
“All-site” temporal autocorrelation is explained in page 9403 line 6. The “site data” as given in 12 

page 9402 equation 1 refers to the autocorrelation for each individual site and this is exactly what is 13 

plotted in figure 9 with the thin red lines. These show the temporal autocorrelations for each site (53 14 

in total). Sub-site is explained in the caption of figure 4. It is computed according to “all-site” but 15 

excluding those sites with large model data bias. To make this more clear, we have reformulated the 16 

figure caption:  17 

“Temporal lagged autocorrelation from model-data daily averaged NEE residuals for all models. 18 

Thin red lines correspond to different sites, while the blue thin lines reveal the sites with a bias 19 

larger than +/-2.5 μmol m
-2 

s
-1

. The thick black line shows the all-site autocorrelation, and the thick 20 

grey line indicates the all-site autocorrelation but for a sub-set that excludes sites with large model-21 

data bias (“sub-site”). The dark green line is the all-site exponential fit, and the light green line 22 

shows the all-site autocorrelation excluding the sites with large bias. The exponential fits use lag 23 

times up to 180 days.” 24 

 25 

Page 15, lines 2-10. Do not describe the figures in the text. The figures present these results. 26 

Discuss the significance of the figures in the text. 27 
We have shortened the text by deleting: “The all-sites correlation for the VPRM model at 10 km 28 

resolution remains positive for lags < 104 days and for lags > 253 days. Weak negative correlations 29 

were found in between with minimum value -0.03. In contrast we found only positive correlation 30 

for VPRM at 1 km resolution for the whole year with a minimum value of 0.002. Similarly, 31 

ORCHIDEE follows the same patterns with positive correlations for lags < 76 days and for lags > 32 

291. Minimum correlation was found to be -0.09. For 5PM model we also found only positive 33 

correlations. The minimum value was found to be 0.08.” 34 

However, some detail is needed in order to compare with the corresponding results by Chevallier et 35 

al., (2012). 36 

 37 

The exponential fit appears to be a poor choice.  Based on Figure 4, most of the site 38 

autocorrelations are below the fit lines at lag times of 30-70 days.   Thus the model used to fit 39 

these curves is quite biased.  It is also more biased for some model-data comparisons than for 40 

others.  This makes the comparison of decay times misleading, to the point perhaps of being 41 

meaningless. I would not publish results based on such a biased approximation of the site-42 

based results. I think this functional fit must be changed. At minimum, the quality of fit must 43 

be made very clear, and the logic for keeping this function, despite its relatively poor fit, 44 

articulated. 45 
We note that the fit is performed on the all-site and sub-site curves (black and grey lines). The 46 

referee should not compare the fit (light and dark green lines) with the thin red lines.  47 

We find r
2
 values between the all-site autocorrelation and the exponential fit of 0.94, 0.94, 0.92, and 48 

0.89 for VPRM10, VPRM1, ORCHIDEE and 5PM respectively. The standard deviations of the 49 

residuals (or RMSE for root mean square error) are 0.040, 0.036, 0.059, and 0.043 for the different 50 

models. Expressed as NRMSE (normalized RMSE, i.e. RMSE divided by the range of the 51 

autocorrelation), this results in values ranging from 0.061 to 0.092, which indicates relative errors in 52 



the fit of less than 10%.  We therefore disagree with the reviewer that the fit is poor. Further we 1 

highlight also the importance of this fitting model, which is quite simple and is using only few 2 

parameters, which is a critical point for proper implementation into the inversion systems. 3 

Following the suggestion of the reviewer for a better articulation of our arguments, we added the 4 

following indications: 5 

Page 9407 line 14 We added: “However the correlogram exhibits a nugget effect (values ranging 6 

from 0.31 to 0.48 for the different models)” 7 

Page 9407 line 17. We added: “The fit has a root mean square error ranging from 0.036 to 0.059 for 8 

the different biosphere models. The normalized RMSE (i.e. RMSE divided by the range of the 9 

autocorrelation) results in values ranging from 0.061 to 0.092 indicating relative errors in the fit of 10 

less than 10%.” 11 

 12 

Page 15 lines 13-15. If the correlation at zero lag is not 1, either your calculations are flawed 13 

or equation (2) does not represent your methods. 14 
In spatial statistics nugget effect is a standard term which describes the sharp decrease of the 15 

correlation for infinitesimal temporal separation distances. The value which drops is 1-a and this is 16 

the nugget as described in eq. 3. 17 

 18 

Page 15. A root mean square error of a functional fit to an autocorrelation curve is not very 19 

meaningful. Evaluating the quality of multiple potential fits to find the best fit to the data 20 

would be meaningful and improve the analysis. 21 
RMS error is a measure of agreement. Considering the relatively simple exponential model which 22 

contains only 2 parameters to be optimized, the agreement is satisfactory good.  23 

We would like to refer the referee to Chevallier et al. (2012), where a polynomial model was fitted 24 

with much more complexity (5
th

 order polynomial with 6 parameters), and the corresponding 25 

RMSE of 0.01 was not much smaller than the RMSE of 0.036 to 0.059 of our simpler (2 parameter) 26 

model. 27 

 28 

Page 16, line 5. “not applicable” 29 
We corrected: “…measurements are not applicable”. 30 

 31 

Page 16, lines 9-11.  The sites were screened because the bias was greater than 2.5 umol m-2 s-32 

1.  But now the text says that the bias for these sites was not greater than 2.5 umol m-2 s-1, 33 

just “larger than average.” I am confused. Please clarify. 34 
This threshold value is exceeded for all of those sites only for 5PM modeled fluxes. For the rest of 35 

the models the value was over the threshold only for some sites. Nevertheless the bias even though 36 

not exceeding always the threshold value yet, was larger than the averaged bias.  37 

We clarified: “… threshold of 2.5 μmol m
-2

 s simultaneously for each individual model…”. 38 

 39 

There is no functional fit to the aircraft data (figure 5). Given the poor quality of the fits in 40 

Figure 4, and I am not convinced that there really is a difference between the two data sets.  I 41 

would be much more convinced by a comparison of the mean or median values, binned by lag 42 

time. 43 
We replaced the wrong figure with the appropriate one which contains the model fit. The fit found 44 

to have 13 days e-folding length with values between 10 and 16 days within 95% confidence 45 

interval. Hence we disagree that this difference is not significant. We also disagree that the fit is 46 

biased.  47 

 48 

Page 16, line 29. What is the purpose of the root mean square error? 49 
The use of RMSE is very common as a general purpose error metric for numerical predictions. As 50 

RMSE has the useful property of being in the same units as the response variable, we can then 51 

evaluate how good the model performs.  52 



We also added the normalized RMSE (divided by the autocorrelation range) estimations: 1 

“… 5PM, respectively. The normalized RMSE is found to have values ranging from 0.05 to 0.084 2 

indicating relative errors of the fit less than 9%.”. 3 

 4 

Figure 6.   The exponential fit is consistently below the median at distances of 200-400km.  I 5 

would argue that your correlation computation shows consistently positive values out to 6 

approximately 200-400km, which is consistent with Hilton et al., (2013), who performed a 7 

similar calculation for North American flux tower sites and model-data differences using 8 

VPRM. Again, your exponential fit appears to be biased.  I do not believe that quoting the 9 

results of a biased fit is sound. 10 
The reviewer is right for the case of VPRM model which might be an exception. A careful look to 11 

the other two models (ORCHIDEE and 5PM) shows that autocorrelation values are well centered 12 

around the exponential for distances longer than 200km. We note also in Hilton’s paper that the 1
st
 13 

bin is at 500km with no information for the smaller scales. In our study we used bins of 14 

approximately 100km. 15 

 16 

Hilton et al., (2013), published a paper using very similar methods using North American flux 17 

towers,  a much longer time series of data,  and more evaluation of the robustness of the 18 

resulting length scales.  This was published in Biogeosciences.  The results contradict the 19 

results presented here in that Hilton et al (2013) found significantly larger length scales for 20 

their variogram fits.  The similarity is so great that the Hilton et al (2013) paper really should 21 

be cited and evaluated with respect to these results. 22 
Hilton et al. (2013) calculated the length scales by considering seasonal mean residuals. In our 23 

study we used daily averaged residuals since this is the temporal scale used in the state space for 24 

regional inverse models. This largely coarser time resolution used in Hilton et al. (3013) is likely 25 

the driver of the differences on the spatial scales.  26 

Regarding the robustness of the fit, Hilton et al., 2013 compared with the AIC criterion whether the 27 

exponential fit or the pure nugget (which means no spatial coherence) is better. We note that they 28 

did not fit different error models to evaluate which model was fitting better. We added also: 29 

Page 9397 line 18-19 “Hilton et al., (2012) studied also the spatial model – data residual error 30 

structure using a geostatistical method. Hilton’s study is focused on the seasonal scale, i.e. 31 

investigated residual errors of seasonally aggregated fluxes. However, the state space (variables to 32 

be optimized considering also their temporal resolution) of current inversion systems is at high 33 

temporal resolution (daily or even three-hourly optimizations). Further, the statistical consistency 34 

between the error covariance and the state space is crucial. Thus the error structure at the daily time-35 

scale is of interest here, and can be used in atmospheric inversions of the same temporal resolution. 36 

Similar to Hilton’s study, we select an exponentially decaying model to fit the spatial residual 37 

autocorrelation.” 38 

Page 9413 line 17 additional paragraph: “Only weak spatial correlations for model-data residuals 39 

were found, comparable to those identified by Chevallier et al. (2012) limited to short lengths up to 40 

40 km without any significant difference between the biospheric models (31 - 40 km). Hilton et al. 41 

(2012) estimated spatial correlation lengths of around 400km. However we note that significant 42 

differences exist between this study and Hilton et al. (2012) regarding the methods that were used 43 

and the landscape heterogeneity of the domain of interest. With respect to the first aspect the time 44 

resolution is much coarser (seasonal averaged flux residuals) compared to the daily averaged 45 

residuals used here. Furthermore spatial bins of 300 km were used for the autocorrelation analysis, 46 

which is far larger than the approximate bin width of 100 km that were used in our study. Regarding 47 

the second aspect North America has a more homogenous landscape compared to the European 48 

domain. The scales for each ecosystem type (e.g. forests, agricultural land etc.) are drastically larger 49 

than those in Europe as can be seen from MODIS retrievals (Friedl et al., 2002).”. 50 

 51 

Figure 7. How is the confidence interval computed? This is not a simple case of computing the 52 



standard deviation of a Gaussian. Please explain the methods. I am still dubious of the value 1 

of the exponential fit, but in any case the methodology for the confidence interval estimate 2 

must be explained. 3 

Page 9404 line 19 We clarified by adding following paragraph: “Confidence intervals for the 4 

estimated model parameters were computed based on the profile likelihood (Venzon and 5 

Moolgavkar, 1987) as implemented within the “confint” function from MASS package inside the R 6 

statistical language.”. 7 

 8 

Figure 7 points out something that is lacking from the primary results reported in the abstract 9 

– uncertainty bounds. These results suggest that the uncertainties in the computed correlation 10 

lengths are very large. This should be reported in the abstract. 11 
Page 9394 line 16 We added : “… up to few tens of km but with uncertainties up to 100% of this 12 

estimation”. 13 

 14 

The standard spatial statistical method for Figures 6 and 7 would be a variogram. Why have 15 

the authors chosen a different approach? 16 
The choice of the correlogram over the variogram was made since a) Chevallier et al. (2012) also 17 

used the correlogram for a similar analysis, and b) it was simpler to implement in the code.  18 

 19 

Page 18, lines 5-6. English. ‘it difficult to determine … where the asymptote lies” perhaps? 20 
Corrected, now reads : “making it difficult to identify where the asymptote lies.”. 21 

 22 

Figure  8  illustrates  again  how  poorly  the  exponential  model  fits  the  data. And the 23 

exponential model is not shown on the figure, which is inconsistent with figures 6 and 7. 24 

D=35km with a 95% confidence interval of 26-46 km is clearly biased given that none of the 25 

aircraft data reaches 1/e of the zero correlation anywhere within that range. The exponential 26 

model is poor and should not be used, or only with serious caveats about the biased nature of 27 

the fit. 28 
We corrected: the figure now shows the model fit. However, we disagree in this point with the 29 

reviewer, the fit is not biased when looking at the residuals in Fig. 8. 30 

 31 

Some of the colors in Figure 9 are nearly indistinguishable when used to plot very thin lines.  32 

Please either reduce the content of the figure or find a way to distinguish the different model-33 

model pairs more clearly. 34 
We reduced the information and we added also comparisons between VPRM50/ORCHIDEE 35 

following also the comment from referee #2 regarding the incompatible model resolution.  36 

 37 

Figure 9: Why are the individual points not shown, as for the model-data comparison? I can 38 

understand reducing the information shown, but I am concerned about the quality of the 39 

exponential fit, and it is impossible to evaluate from this figure. 40 
In the figure below, which is similar to figure 7 we present the correlations of differences for all the 41 

different model-model combinations (model-data for figure 7) together with the respective 42 

exponentially decaying model fits. Figure 9 is not meant to present the goodness of fit neither to 43 

show all paired correlations.  44 

Nevertheless we plotted the spatial autocorrelation for the paired models in order to evaluate the 45 

exponential fit (referred to as figure 11 in the attached files). 46 



 1 
Above: Distance correlogram for the daily net ecosystem exchange (NEE) differences between 2 

pairs of models using all sites. Black dots represent the different site pairs; the blue line represents 3 

the median value of the points per 100-km bin, and the green line shows an exponential fit. Results 4 

are shown for differences between VPRM at a resolution of 50 km vs. ORCHIDEE (top left), 5 

between VPRM at a resolution of 1 km and 5PM (top right), between VPRM at a resolution of 50 6 

km and 5PM (bottom left), and between ORCHIDEE and 5PM (bottom right). 7 

 8 

Figure 10.  Again, the blue-green-purple lines are difficult to distinguish (all dark), and the 9 

red-green lines will be indistinguishable for those who are red-green colorblind. 10 
We corrected the plot and further we reduced the amount of information. We also added the 11 

VPRM50/ORCHIDEE comparisons. 12 

 13 

Discussion and conclusions.  The results are compared only to Chevallier’s publications, and 14 

that comparison is limited to the temporal autocorrelation.  There is insufficient effort to put 15 

these results into the context of prior work on this topic. 16 
Page 9413, lines 17 We added a new paragraph: “Only weak spatial correlations for model-data 17 

residuals were found, comparable to those identified by Chevallier et al. (2012) limited to short 18 

lengths up to 40 km without any significant difference between the biospheric models (31 - 40 km). 19 

Hilton et al. (2012) estimated spatial correlation lengths of around 400km. However we note that 20 

significant differences exist between this study and Hilton et al. (2012) regarding the methods that 21 

were used and the landscape heterogeneity of the domain of interest. With respect to the first aspect 22 

the time resolution is much coarser (seasonal averaged flux residuals) compared to the daily 23 

averaged residuals used here. Furthermore spatial bins of 300 km were used for the autocorrelation 24 

analysis, which is far larger than the approximate bin width of 100 km that were used in our study. 25 

Regarding the second aspect North America has a more homogenous landscape compared to the 26 

European domain. The scales for each ecosystem type (e.g. forests, agricultural land etc.) are 27 

drastically larger than those in Europe as can be seen from MODIS retrievals (Friedl et al., 2002).” 28 



Page 21, lines 26-28.  The observational errors are in your calculations.  It is not neglected. It 1 

cannot be isolated and removed, but it is not neglected. 2 
We deleted part of the sentence, which now reads: “Of note is that the eddy covariance observation 3 

error has no significant impact on the error structure, as the addition of an observation error to the 4 

analysis of model-model differences had only minor influence on the error structure.,. 5 

 6 

End of page 24 beginning of page 25. This is an interesting discussion. Again, the methods 7 

used for this interesting calculation are opaque. Please explain. Propagating these error 8 

estimates is not trivial. How was this done? 9 
The theoretical approach for this calculation is based on Rodger (2000) by introducing an 10 

aggregation operator. We explain with the following equation where “×” represents matrix 11 

multiplication notation: 12 

u × Qc × u
T
 . Qc is the full prior error covariance matrix with dimensions equal to the product 13 

between number of regions (grid-cells) and number of timesteps. With our setup this translates into 14 

184∙104∙8∙365 = 55877120
2
 elements (lon∙lat∙timesteps∙days). The main diagonal contains the 15 

model-data difference scaled down to account for the difference in spatial resolution of the state 16 

space. The off-diagonal elements contain the spatial and temporal correlations. u is a scalar operator 17 

that aggregates the full covariance to the target quantity (i.e. domain-wide and full year).   18 

Page 9416 line 24. We added: “… over longer time periods. To aggregate the uncertainty to large 19 

temporal and spatial scales, we used the following equation (after Rodgers, 2000):  20 

T

c uQuUa 
                                                                                                                           (7) 21 

Where “ ” denotes matrix multiplication, Qc is the prior error covariance matrix and u a scalar 22 

operator that aggregates the full covariance to the target quantity (e.g. domain-wide and full year).” 23 

Reference added: 24 

“Rodgers, C., D. Inverse methods for Atmosphere Sounding: Theory and Practice, World Sci., River 25 

Edge, N. J., 2000”  page 30 line 20 26 

 27 

Page 22 line 25-28 Same  section:  Comparing  your  aggregated  error  estimate  to  the  range  28 

of  existing continental-scale flux estimates (e.g.  Peylin et al, 2013) would be more useful than 29 

the very limited analysis presented. 30 
We agree with the reviewer and we added: “This value is also 8 times smaller when comparing it to 31 

the variance of the signal between 11 global inversions reported in Peylin et al., (2013) which was 32 

found to be 0.45 GtC/y, proving that the aggregated uncertainties are unrealistically small.” 33 

 34 

Same section: I agree that this analysis (pending evaluation of the unknown methods) would 35 

strongly suggest that the total continental-scale, annual flux errors are seriously 36 

underestimated, and I agree that this is an important issue to point out.  This should be part 37 

of the abstract, as it leads to significant uncertainty regarding the validity of the correlation 38 

lengths.  The current abstract suggests no such uncertainty regarding the conceptual model 39 

promoted in this paper. 40 
Page 9394 line 16. We added: “Propagating this error structure to annual continental – scale yields 41 

an uncertainty of 0.06 Gt C and strongly underestimates uncertainties typically used from 42 

atmospheric inversion systems, revealing the existence of another potential source of errors. Long 43 

spatial e-folding correlation lengths up to several…”. 44 

 45 

Page 25, paragraph starting with “Exponentially decaying …”.  This paragraph begins to give 46 

reasons for using an exponential model for the correlations. Some notes below about this 47 

discussion: 48 



1) This discussion belongs earlier in the paper. It presents the logic for using this fit. 1 

 We moved this paragraph and now is located in page 9412 early in the discussion. 2 

 3 

2) The reasons given are entirely reasons of simplicity and convenience, not accuracy of the fit. 4 

I would suggest that the best job of describing the correlations should be the primary goal of 5 

this paper. Considering how to simplify these correlation functions to make them convenient 6 

is another problem. I have already noted that I believe the exponential fit is so poor that it is 7 

significantly misleading. The analysis would be improved by evaluating different fits and 8 

finding what fits are best given the data. 9 
Regarding the simplicity and convenience we will refer the reviewer to Hilton et al., 2013. In that 10 

study two models were used. An exponentially decaying model and one that uses a pure nugget 11 

effect. The nugget only model is equivalent to an exponentially decaying model with the length 12 

scale of zero, which means no spatial correlation can be detected. So the assessment of whether the 13 

nugget only model or the exponentially decaying model in Hilton is appropriate, could simply be 14 

done, by assessing if the length scale in the exponentially decaying model is significantly different 15 

from zero.  16 

Further this study tries to give insights in the error structure targeting to describe prior uncertainties 17 

with a relevant way that the atmospheric inverse modeling community may benefit from it. The 18 

exponential model is widely used by this community. Describing the correlations with a pure 19 

mathematical way which makes a convenient fit but is not being used from the inverse modeling 20 

community is also of less importance. However we do not believe that the fits are poor. 21 

 22 

3) Lines 20-25. Computational simplicity is not a good reason to use the wrong correlation 23 

length. This is a disturbing discussion. 24 
We disagree with the reviewer at this point that the correlation lengths are wrong, see also responses 25 

to previous comments. The exponential model might be simple but performs satisfactory good. 26 

Further despite the hesitation of the reviewer regarding the importance of computational efficiency, 27 

this is a major issue for regional scale inverse modeling. 28 

 29 

Equation (7) does not exist in the paper. 30 
Page 9417 line 23 Corrected, the sentence now reads “Using the same hyberbolic equation for the 31 

spatial correlation…”. 32 

 33 

Page 26, lines 3-4. English needs work. And I’m not sure what is meant by “for the short 34 

spatial scales.”  And what studies have already used the correlation lengths derived from this 35 

study? I’m not sure that the ‘future work’ needs to be part of this paper 36 
With this sentence “ …short spatial scales” we mean that numerous studies in atmospheric inverse 37 

modeling use significantly larger spatial correlation scales than those derived in this study. However 38 

most of the inversion systems already use temporal correlation scales of around 1 month, which is 39 

in line with our findings.  40 

 41 

Referee 2  42 

 43 
We thank the referee for the comments on our manuscript, which certainly helped improving our 44 

study. We hope that our answers and the modifications are satisfactory. 45 

 46 

MAJOR CONCERN: 47 

My largest concern with the study is that the spatial resolution / support of the flux 48 

observations is substantially finer than the spatial resolution of the model simulations, making  49 

flux  values  at  these  disparate  scales  fundamentally  incompatible. The authors 50 



acknowledge as much in p.  9397 lines 11-13 “While typical inversion systems have a 1 

resolution ranging from tens of kilometers up to several degrees (hundreds of km), the spatial 2 

representativity of the flux observations is typically around a kilometer.” In the Chevallier et 3 

al.  studies that the authors cite, the analysis of errors was conducted by comparing km-scale 4 

flux observations with “a site-scale configuration of the ORCHIDEE model,” thereby leading 5 

to compatible spatial scales.  The resulting error statistics were then upscaled to be 6 

representative of the scales estimated by typical inversions. 7 
 8 

We agree with the reviewer that some of the scales seem incompatible, and have made the following 9 

changes in the manuscript: 10 

With respect to the model-model comparisons we produced fluxes also at 50 km resolution for 11 

VPRM model. VPRM now provides 3 different resolutions at 50 10 and 1 km (VPRM50 VPRM10 12 

and VPRM1 respectively).We compare VPRM at 50 km with ORCHIDEE (which has also 50 km 13 

spatial resolution). We add this in plot 9 and 10. VPRM10-5PM comparisons are also in line as both 14 

models have the same spatial resolution. 15 

We withdraw VPRM1-VPRM10 comparisons from plot 9 and we have also deleted following 16 

sentence: 17 

Page 9415 line 21-27 “A special case in the context of the model-model study is the comparison 18 

between VPRM1 and VPRM10, which is the only case that produced short spatial correlation 19 

scales. These two models only differ in the spatial resolution of MODIS indices EVI and LSWI (1 20 

vs. 10 km). Thus differences between those two models are only related to variability of these 21 

indices at scales below 10 km, which is not expected to show any spatial coherence. Indeed the 22 

results show only very short correlation scales (Fig. 9) with an exception during fall, however there 23 

the uncertainty is also large.” 24 

With respect to the model-data analysis VPRM1 fluxes are obtained at a spatial scale comparable 25 

with the flux observations. Further we found no significantly different spatial scales from the 26 

model-data residual autocorrelation analysis from the rest of the models (5PM, ORCHIDEE and 27 

VPRM10/50. Therefore we do not expect our results to be biased.  28 

We added the following sentences/paragraphs:  29 

page 9400 line 12 “… at hourly temporal resolution and at three spatial resolutions of 1, 10 and 50 30 

km (referred to as VPRM1,VPRM10 and VPRM50)”. 31 

We added a discussion about the scale mismatch: 32 

page 9402 line 2 “… over the year 2007. Simulated fluxes from the different models are at different 33 

spatial resolution, which makes comparisons difficult to interpret. For the model-data residual 34 

analysis, the models VPRM1, VPRM10, ORCHIDEE and 5PM were used. We note that VPRM1 35 

with 1km resolution is considered compatible when comparing with local measurements. For the 36 

model-model analysis we use VPRM50 at 50km resolution when comparing with ORCHIDEE 37 

fluxes, as both models share the same resolution. VPRM10 is considered also appropriate for 38 

comparisons with 5PM model as they both share same resolution (MODIS LAI resolution of 1 km 39 

aggregated to 10 km and meteorological resolution at 0.25 degrees). Following we compare 40 

VPRM50 with 5PM to investigate if the different spatial resolution influences the correlation scale 41 

as a measure of how trustful might be the derived scales from ORCHIDEE – 5PM comparisons.”,  42 

page 9405 line 1 : “For the model-model analysis fluxes derived from the model pairs VPRM50-43 

ORCHIDEE and VPRM10-5PM share the same spatial resolution and therefore are fully 44 

comparable. Similar to the …” 45 

page 9408 line 1 “The e-folding correlation lengths show no dependence on the modeled flux 46 

resolution as same results yielded from all models. Further we examined also the spatial 47 

autocorrelation from VPRM50-data residuals with no significant difference compared to previous 48 

results.”.  49 

3.2 Section is modified and refers to the new model-model pairs: 50 

“We investigate the model-model error structure of NEE estimates by replacing the observed fluxes 51 



which were used as reference, with simulated fluxes from all the biosphere models. Note that for 1 

consistency with the model-data analysis, the simulated fluxes contained the same gaps as the 2 

observed flux time series. The e-folding correlation time is found to be slightly larger compared to 3 

the model-data correlation times, for most of the cases. An exception is the 5PM-VPRM10 pair 4 

which produced remarkably larger correlation time (Table 2). Specifically, VPRM50-ORCHIDEE 5 

and VPRM10-5PM residuals show correlation times of 28 days (range between 24-32 days within 6 

95% confidence interval) and 131 (range between 128-137 days within 95% confidence interval), 7 

respectively. Significantly different e-folding correlation times are found for VPRM50-5PM 8 

compared to VPRM10-5PM with correlation times of 52 days (range between 49-56 days within 9 

95% confidence interval).Repeating the analysis excluding sites with residual bias larger than 10 

2.5μmol/m2s, correlation times of 28 and 100 days for VPRM50-ORCHIDEE and VPRM10-5PM 11 

are found, respectively. If we use ORCHIDEE-5PM pair the e-folding correlation time found to be 12 

38 days (range between 35-41 days within 95% confidence interval).  13 

Although the e-folding correlation times show but minor differences compared to the model-data 14 

residuals, this is not the case for the spatial correlation lengths (Fig. 9). The standard case (S) was 15 

applied for the annual analysis, with no minimum number of days with overlapping non-missing 16 

data for each site within the pairs. Taking VPRM50 as reference, much larger e-folding correlation 17 

lengths of 371 km with a range of 286-462 km within 95% confidence interval yielded for 18 

VPRM50-ORCHIDEE comparisons, and 1066 km for VPRM50-5PM were found. However 19 

VPRM10-5PM analysis which is also considered appropriate in terms of the spatial resolution 20 

compatibility contrary to the VPRM50-5PM pair, is in good agreement with VPRM50-ORCHIDEE 21 

spatial scale (230-440 km range within 95% confidence interval with the best fit being 335 km). 22 

With ORCHIDEE as reference the e-folding correlation length for the ORCHIDEE-5PM 23 

comparison is 276 km with a range of 183-360 km within 95% confidence interval. However the 24 

later correlation length might be affected by the different spatial resolution as the difference 25 

between VPRM10 and VPRM50 against 5PM suggests. Seasonal e-folding correlation lengths, 26 

using a minimum of 20 days overlap in the site-pairs per season (Fig. 9), are also significantly 27 

larger compared with those from the model-data analysis.  28 

When we add the random measurement error to the modeled fluxes used as reference (crosses in 29 

Fig. 9), we observe only slight changes in the annual e-folding correlation lengths, without a clear 30 

pattern. The correlation lengths show a random increase or decrease but limited up to 6%. 31 

Interestingly, the seasonal e-folding correlation lengths for most of the cases show a more clear 32 

decrease. For example, the correlation length of the VPRM10-5PM residuals during winter, 33 

decreases by 22% or even more for spring season. Despite this decrease, the e-folding seasonal 34 

correlation lengths remain significantly larger in comparison to those from the model-data analysis. 35 

Overall, all models when used as reference show the same behavior with large e-folding correlation 36 

lengths that mostly decrease slightly when the random measurement error is included. Although the 37 

random measurement error was added as “missing part” to the modeled fluxes to better mimic 38 

actual flux observations, it did not lead to correlation lengths similar to those from the model-data 39 

residual analysis. To investigate if a larger random measurement error could cause spatial 40 

correlation scales in model-model differences, we repeated the analysis with artificially increased 41 

random measurement error (multiplying with a factor between 1 and 15). Only for very large 42 

random measurement errors did the model-model e-folding correlation lengths start coinciding with 43 

those of the model-data residuals (Fig. 10).”  44 

 45 

Page 18 line 14-18 We added: “Whilst fluxes from ORCHIDEE model are at much coarser 46 

resolution compared to the representative area from the flux measurements, VPRM1 fluxes (1 km 47 

resolution and only the meteorology at 25 km) are considered appropriate for the comparisons. 48 

Despite the scale mismatch results are in good agreement across all model-data pairs.”. 49 

Table 2 is also changed. 50 



Reference VPRM10 [days] VPRM1 [days] ORCHIDEE [days] 5PM [days] 

OBSERVATION 32 (27) 33 (29) 26 (24) 70 (34) 

VPRM50 - - 28 (28) 52 (46) 

VPRM10 - - - 131 (100) 

ORCHIDEE - - - 38 (32) 

5PM - - - - 

 1 

For all of the analysis, it would be important to more explicitly discuss the time scales for 2 

which the analyses are conducted, and emphasize that the error statistics computed therein 3 

are therefore only valid for that same (i.e.  daily) temporal resolution.  Both the spatial and 4 

temporal correlation lengths will be affected by the temporal resolution of the analyzed data. 5 

We made two additions to better clarify this:  6 

Page 9397 line 18 in response also from referee 1 comment we added “Further, the statistical 7 

consistency between the error covariance and the state space is crucial. Thus the error structure at 8 

the daily time-scale is of interest here, and can be used in atmospheric inversions of the same 9 

temporal resolution.” 10 

Page 9414 line 2. “… on the error structure. We note that the current analysis focuses to daily time 11 

scale and therefore the error statistics with respect to the estimated spatial and temporal correlation 12 

lengths are valid for such scales.”. 13 

 14 

Throughout the manuscript, the terms “correlation length” / “correlation time” (approxi- 15 

mately 3*tau and 3*d in the authors’ notation in eqns. 3 and 4) and the terms “e-folding time” 16 

(tau) and “e-folding correlation length” (d) and their variants are used, but due to the number 17 

of variations, it is not always clear when the authors are referring to 3*tau vs.  tau, and to 3*d 18 

vs.  d.  This should be made completely clear throughout to avoid confusion.  Please also pay 19 

close attention to this when comparing your numbers to those from earlier studies. 20 
We corrected and we refer to all lengths throughout the revised manuscript as “e-folding correlation 21 

lengths” following also the notation from Chevallier et al., (2012).  22 

 23 

For the airborne analysis, the authors find correlation lengths of approximately 39 days (3 * 24 

e-folding time of 13 days, page 9408 line 22).  Given that there are only 36 days of data, 25 

correlation lengths of much beyond ~18 days (half the maximum separation distance) cannot 26 

be reliably identified. This should, at a minimum, be discussed. 27 
We disagree at this point, and argue that e-folding times of 13 days can in fact well be fitted with  28 

time series data in which time differences are up to 35 days. This is also obvious from the 95% 29 

confidence interval which we added to the paper: 30 

 page 9408 line 22 “… correlation time of 13 days (range of 10 – 16 days within the 95% 31 

confidence interval). Whilst the …”.  32 

 33 

In terms of the overall correlation lags, the authors need to make a fundamental choice as to 34 

whether they are trying to represent errors at synoptic scales, or errors at seasonal scales.  35 

While the numbers that come out of their analysis represent errors at the seasonal-scale, it is 36 

important to note that this means that they are assuming that errors at the synoptic scale are 37 

very highly correlated.  This may not be a valid assumption.  Although I understand how 38 

these numbers come out of the analysis as it has been designed, some thought should be given 39 



to whether these are indeed the scales that are relevant to whatever atmospheric inversions 1 

the authors have in mind 2 
This is obviously a misunderstanding. We did not intend to estimate the error structure at synoptic 3 

scales but rather to study if the error structure has a seasonal dependence. We have made the 4 

manuscript more clear by adding: 5 

Page 9404 line 8. “… observations was applied. We note that we do not intend to investigate the 6 

errors at the seasonal scale but rather to study if different seasons trigger different error correlation 7 

structures. “ 8 

 9 

p. 9396 lines 11-12 This statement is not entirely correct. Objective approaches were proposed 10 

earlier by Michalak et al.  (2004, 2005), and have been applied in a number of studies since.  11 

The authors distinguish the Michalak et al.  (2004) study as applying a “geostatistical” 12 

approach, but fundamentally both inversion approaches rely on characterizing the statistical 13 

characteristics of prior errors.  I note that the Michalak et al. (2005) study was also for a 14 

classical Bayesian approach. 15 
We agree and clarified: “This is because only recently an objective approach to define prior 16 

uncertainties based on mismatch between modeled and observed fluxes has been developed 17 

(Chevallier et al., 2006 and 2012).”  18 

 19 

- Airborne flux observations: 10km spatial windows, but no indication of the “width” of the 20 

window (p. 9402 line 6), i.e. 10km x ?km. 21 
The width of the windows was indeed computed with footprint modeling. Each individual flux 22 

determination the footprint distance depends on atmospheric conditions and extends upwind the 23 

measurement transect. On average for the entire campaign, a peak footprint distance was computed 24 

at 514 m, while the 90% footprint distance (i.e including 90% of observed flux) was computed at 25 

3.9 km.  26 

Page 9402 first paragraph. We added: “Footprint areas of aircraft fluxes were computed with the 27 

analytical model of Hsieh et al. (2000) yielding an average footprint width containing 90% of the 28 

flux of 3.9 km. Averaging also over the different wind directions (perpendicular or parallel to the 29 

flight direction), and taking into account the 10 km length of the segments, the area that the aircraft 30 

flux data corresponds to, is around 23.5 km
2
 +- 12 km

2
.” 31 

 32 

p. 9402 lines 5-7: I disagree with this statement. Even if the aircraft observations were 33 

“grouped” into 10km segments, this still does not match the VPRM grid, as the airborne 34 

segments are not representative of a 10km “width,” just “length” along the flight path. 35 
The reviewer is correct. This recalls to the footprint analysis comment. 90% footprint width was 36 

computed at 3.9 km thus fluxes are not representative of entire VPRM grid-cells, but still the 10-km 37 

grouping is the best strategy adoptable.  38 

Page 9402 first paragraph. We corrected: “Aircraft NEE data, natively at 2 km resolution along the 39 

track, have been aggregated into 10 km segments, to maximize the overlap with the VPRM grid, 40 

obtaining 6 grid points in forest transects and 8 in agricultural land transects.”. 41 

 42 

p. 9403 eqn. 3 and associated text: A nugget parameter would typically be defined as one 43 

minus alpha in the notation used by the authors, as it represents the portion of the variability 44 

that is not spatially (or temporally) correlated. 45 
We corrected “(1-a)” Equation 3. 46 

 47 

p.   9406  line  13-18:  I  wonder  whether  the  better  correlations  at  the  site  scale  are 48 

simply due to the fact that the models and towers agree as to the overall seasonality of the 49 

fluxes.  A more representative analysis might be to calculate the correlations after removing 50 

an average seasonality. 51 
We did the analysis again with deseasonalized timeseries. For that we fit a 2-rank sinusoidal 52 



equation to the flux data and we subtract it from them. This results to the following correlation 1 

values for VPRM1, VPRM10, ORCHIDEE and 5PM respectively:  2 

All site correlations: 0.12, 0.10, 0.06, 0.14 3 

And for site scale: 0.18, 0.18, 0.16, 0.22 4 

Page 9406 line 15. We clarified by adding: “… and 5PM, respectively. Note that for deseasonalized 5 

time-series (using a 2
nd

 order harmonic, not shown) the same picture emerges with increased 6 

averaged site specific correlation compared to correlations using all sites. This indicates better 7 

performance for the models to simulate temporal changes (not only seasonal, but also synoptic) at 8 

the site level.” 9 

 10 

Manuscript version with marked-up changes 11 
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Abstract 1 

Assigning proper prior uncertainties for inverse modeling of CO2 is of high importance, both to 2 

regularize the otherwise ill-constrained inverse problem, and to quantitatively characterize the 3 

magnitude and structure of the error between prior and “true” flux. We use surface fluxes derived 4 

from three biosphere models VPRM, ORCHIDEE, and 5PM, and compare them against daily 5 

averaged fluxes from 53 Eddy Covariance sites across Europe for the year 2007, and against 6 

repeated aircraft flux measurements encompassing spatial transects. In addition we create synthetic 7 

observations using modeled fluxes to substituteinstead of the observed by modeled fluxesones, to 8 

explore the potential to infer prior uncertainties from model-model residuals. To ensure the realism 9 

of the synthetic data analysis, a random measurement noise was added to the modeled tower fluxes 10 

which were used as reference. The temporal autocorrelation time for tower model-data residuals 11 

was found to be around 3530 days for both VPRM and ORCHIDEE, but significantly different for 12 

the 5PM model with 7670 days. This difference is caused by a few sites with large model-data 13 

biases between the data and the 5PM model. The spatial correlation of the model-data residuals for 14 

all models was found to be very short, up to few tens of km. Long spatial but with uncertainties up 15 

to 100% of this estimation. Propagating this error structure to annual continental – scale yields an 16 

uncertainty of 0.06 Gt C and strongly underestimates uncertainties typically used from atmospheric 17 

inversion systems, revealing the existence of another potential source of errors. Long spatial e-18 

folding correlation lengths up to several hundreds of km were determined when synthetic data were 19 

used. Results from repeated aircraft transects in south-western France, are consistent with those 20 

obtained from the tower sites in terms of spatial autocorrelation (35 km on average) while temporal 21 

autocorrelation is markedly lower (13 days). Our findings suggest that the different prior models 22 

have a common temporal error structure. Separating the analysis of the statistics for the model data 23 

residuals by seasons did not result in any significant differences of the spatial e-folding correlation 24 

lengths. 25 



1 Introduction 1 

Atmospheric inversions are widely used to infer surface CO2 fluxes from observed CO2 dry mole 2 

fractions with a Bayesian approach (Ciais et al., 2000, Gurney et al., 2002, Lauvaux et al., 2008). In 3 

this approach a limited number of observations of atmospheric CO2 mixing ratios are used to solve 4 

for generally a much larger number of unknowns, making this an ill-posed problem. By using prior 5 

knowledge of the surface-atmosphere exchange fluxes and by using an associated prior uncertainty, 6 

the information retrieved in the inversion from the observations is spread out in space and time 7 

corresponding to the spatiotemporal structure of the prior uncertainty. In this way, the solution of 8 

the otherwise ill-posed problem is regularized in the sense that the optimization problem becomes 9 

one with a unique solution. This prior knowledge typically comes from process-oriented or 10 

diagnostic biosphere models that simulate the spatiotemporal patterns of terrestrial fluxes, as well as 11 

from inventories providing information regarding anthropogenic fluxes such as energy 12 

consumption, transportation, industry, and forest fires.   13 

The Bayesian formulation of the inverse problem is a balance between the a priori and the 14 

observational constraints. It is crucial to introduce a suitable prior flux field and assign to it proper 15 

uncertainties. When prior information is combined with inappropriate prior uncertainties, this can 16 

lead to poorly retrieved fluxes (Wu et al., 2011). Here, we are interested in biosphere-atmosphere 17 

exchange fluxes and their uncertainties, and make the usual assumption that the uncertainties in 18 

anthropogenic emission fluxes are not strongly affecting the atmospheric observations at the rural 19 

sites that are used in the regional inversions of biosphere-atmosphere fluxes. 20 

Typically inversions assume that prior uncertainties have a normal and unbiased distribution, and 21 

thus can be represented in the form of a covariance matrix. The covariance matrix is a method to 22 

weigh our confidence of the prior estimates. The prior error covariance determines to what extent 23 

the posterior flux estimates will be constrained by the prior fluxes. Ideally the prior uncertainty 24 

should reflect the mismatch between the prior guess and the actual (true) biosphere-atmosphere 25 

exchange fluxes. In this sense it needs to also have the corresponding error structure with its spatial 26 

and temporal correlations.  27 

A number of different assumptions of the error structure have been considered by atmospheric CO2 28 

inversion studies. Coarser scale inversions often neglect spatial and temporal correlations as the 29 

resolution is low enough for the inverse problem to be regularized (Bousquet et al., 1999, 30 

Rödenbeck et al., 2003a) or assume large spatial correlation lengths (several hundreds of km) over 31 

land (Houweling et al., 2004, Rödenbeck et al., 2003b). For the former case large correlation scales 32 

are implicitly assumed since fluxes within a grid-cell are fully correlated. For regional scale 33 

inversions, with higher spatial grid resolutions which are often less than 100 km, the spatial 34 



correlations are decreased (Chevallier et al., 2012) and the error structure need to be carefully 1 

defined. A variety of different assumptions exist. This is because only recently an objective 2 

approach to define prior uncertainties was followedbased on mismatch between modeled and 3 

observed fluxes has been developed (Chevallier et al., 2006 and 2012). In some regional studies, the 4 

same correlations are derived fromused as in large scale inversions in order to regularize the 5 

problem, although the change of resolution could lead to different correlation scales (Schuh et al., 6 

2010). Alternatively, they are defined with a correlation length representing typical synoptic 7 

meteorological systems (Carouge et al., 2010). In other cases, ad-hoc solutions are adopted, where 8 

the correlation lengths are assumed to be smaller than in the case of global inversions (Peylin et al., 9 

2005), or derived from climatological and ecological considerations (Peters et al., 2007) where 10 

correlation lengths only within the same ecosystem types have a value of 2000 km. In addition 11 

some studies use a number of different correlation structures in order to analyze which seems to be 12 

the most appropriate one based on some evaluationcross-validation of the resultingsimulated against 13 

observed CO2 mole fractions. The simulated mole fractions were derived using the influence 14 

functions and the inverted fluxes (Lauvaux et al., 2012). Michalak et al., (2004) applied a 15 

geostatistical approach based on the Bayesian method, in which the prior probability density 16 

function is based on an assumed form of the spatial and temporal correlation and no prior flux 17 

estimates are required. It optimizes the prior error covariance parameters, the variance and the 18 

spatial correlation length by maximizing the probability density function of the observations with 19 

respect to these parameters.  20 

A recent study by Broquet et al.,. (2013) obtained good agreements between the statistics at the 21 

European and 1-month scale of both the prior and posterior statistical uncertainties as derived from 22 

their inversions of the biosphere fluxesinversion system and that of the averageactual misfits 23 

ofcalculated by comparing the prior and posterior estimates of the fluxes to the local flux 24 

measurements. at the European and 1-month scale. These good agreements relied in large part on 25 

their definition of the prior uncertainties based on the statistics derived in an objective way from 26 

model-data mismatch by Chevallier et al., (2006) and Chevallier et al., (2012). In these studies, 27 

modeled daily fluxes from a site scale configuration of the ORCHIDEE model are compared with 28 

flux observations made within the global FLUXNET site network, based on the eddy covariance 29 

method (Baldocchi et al., 2001), and a statistical upscaling technique is used to derive estimates of 30 

the uncertainties in ORCHIDEE simulations at lower resolutions. While typical inversion systems 31 

have a resolution ranging from tens of kilometers up to several degrees (hundreds of km), with the 32 

true resolution of the inverse flux estimates being even coarser, the spatial representativity of the 33 

flux observations is typically covers an area with a radius of around a kilometer. Considering also 34 

the scarcity of the observing sites in the flux network, the spatial information they bring is limited 35 



without methods for up-scaling such as the one applied by Chevallier et al., (2012). Nevertheless 1 

theseTypical approaches to up-scale site level fluxes deploy for example model tree algorithms, a 2 

machine learning algorithm which is trained to predict carbon flux estimates based on 3 

meteorological data, vegetation properties and types (Jung et al., 2009, Xiao et al., 2008), or neural 4 

networks (Papale and Valentini 2003). Nevertheless eddy covariance measurements provide a 5 

unique opportunity to infer estimates of the prior uncertainties by examining model-data misfits for 6 

spatial and temporal autocorrelation structures.  7 

Hilton et al., (2012) studied also the spatial model – data residual error structure using a 8 

geostatistical method. Hilton’s study is focused on the seasonal scale, i.e. investigated residual 9 

errors of seasonally aggregated fluxes. However, the state space (variables to be optimized 10 

considering also their temporal resolution) of current inversion systems is often at high temporal 11 

resolution (daily or even three-hourly optimizations). Further, the statistical consistency between the 12 

error covariance and the state space is crucial. Thus the error structure at the daily time-scale is of 13 

interest here, and can be used in atmospheric inversions of the same temporal resolution. Similar to 14 

Hilton’s study we select an exponentially decaying model to fit the spatial residual autocorrelation. 15 

In this study, we augment the approach of Chevallier et al., (2006 and 2012), to a multi-model - data 16 

comparison, investigating among others a potential generalization of the error statistics, suitable to 17 

be applied by inversions using different biosphere models as priors. This expectation is derived 18 

from the observation that the biosphere models, despite their potential differences typically have 19 

much information in common, such as driving meteorological fields, land use maps, or remotely 20 

sensed vegetation properties, and sometimes even process descriptions. We evaluate model – model 21 

mismatches to (I) investigate intra-model autocorrelation patterns and (II) to explore whether they 22 

are consistent with the spatial and temporal e-folding correlation lengths of the model – data 23 

mismatch comparisons. Model comparisons have been used in the past to infer the structure of the 24 

prior uncertainties. For example, Rödenbeck et al., (2003b) used prior correlation lengths based on 25 

statistical analyses of the variations within an ensemble of biospheric models. This approach is to a 26 

certain degree questionable, as it is unclear how far the ensemble of models actually can be used as 27 

representative of differences between modeled and true fluxes. However, if a relationship between 28 

model – data and model – model statistics can be established for a region with dense network of 29 

flux observations, it could be used to derive prior error structure also for regions with a less dense 30 

observational network.  31 

Moreover, to improve the knowledge of spatial flux error patterns, we make use of a unique set of 32 

aircraft fluxes measured on 2-km spatial windows along intensively sampled transects of several 33 

tens of km, ideally resolving spatial and temporal variability of ecosystem fluxes across the 34 



landscape without the limitation of the flux network with spatial gaps in between measurement 1 

locations. Lauvaux et al., (2009) compared results of a regional inversion against measurements of 2 

fluxes from aircraft and towers, while this is the first attempt to use aircraft flux measurements to 3 

assess spatial and temporal error correlation structures. 4 

This study focuses on the European domain for 2007 (tower data) and 2005 (aircraft data) and uses 5 

output from high-resolution biosphere models that have been used for regional inversions. Eddy 6 

covariance tower fluxes were derived from the FLUXNET ecosystem network (Baldocchi et al., 7 

2001), while aircraft fluxes were acquired within the CarboEurope Regional Experiment (CERES) 8 

in southern France. The methods and basic information regarding the models are summarized in 9 

Section 2. The results from model-data and model-model comparisons are detailed in Section 3. 10 

Discussion and conclusions are following in Section 4.  11 

 12 

2 Data and Methods 13 

Appropriate error statistics for the prior error covariance matrix are derived from comparing the 14 

output of three biosphere models which are used as priors for regional scale inversions with flux 15 

data from the ecosystem network and aircraft. We investigate spatial and temporal autocorrelation 16 

structures of the model-data residuals. The temporal autocorrelation is a measure of similarity 17 

between residuals at different times but at the same location as a function of the time difference.  18 

The spatial autocorrelation refers to the correlation, at a given time, of the model-data residuals at 19 

different locations as a function of spatial distance. With this analysis we can formulate and fit an 20 

error model such as an exponentially decaying model, which can be directly used in the mesoscale 21 

inversion system to describe the prior error covariance. 22 

 23 

2.1 Observations 24 

A number of tower sites within the European domain, roughly expanding from -12
o
 E to 35

o
 E and 25 

35
o
 N to 61

o 
N (see also Fig. 1), provide us with direct measurements of CO2 biospheric fluxes 26 

using the eddy covariance technique. This technique computes fluxes from the covariance between 27 

vertical wind velocity and CO2 dry mole fraction (Aubinet et al., 1999). We use Level 3, quality 28 

checked, half hourly observations of net ecosystem exchange fluxes (NEE), downloaded from the 29 

European Flux Database (www.europe-fluxdata.eu), and listed by site in Table 1. Each site is 30 

categorized into different vegetation types (Table 1). A land cover classification is used to label the 31 

sites as crop (17 sites), deciduous forest (6), evergreen forest (17), grassland (8), mixed forest (3), 32 

savannah (1 site), and shrub land (1). For the current study we focus on observations from these 53 33 

http://www.europe-fluxdata.eu/


European sites during the year 2007 (Fig. 1).  1 

Additionally, aircraft fluxes are used, obtained with an eddy covariance system installed onboard a 2 

SkyArrow ERA aircraft (Gioli et al., 2006). Flights were made in southern France during CERES 3 

(CarboEurope Regional Experiment) from May 17 to June 22, 2005. Eddy covariance fluxes were 4 

computed on 2-km length spatial windows along transects of 69-km above forest and 78-km above 5 

agricultural land, flown 52 and 54 times across entirerespectively, covering the daily course, 6 

respectively. Exact routes are reported in Dolman et al., 2006. 7 

 8 

2.2 Biosphere models 9 

We simulate CO2 terrestrial fluxes for 2007 with three different biosphere models described in the 10 

following. The “Vegetation Photosynthesis and Respiration Model” (VPRM) (Mahadevan et al., 11 

2008), used to produce prior flux fields for inverse studies (Pillai et al., 2012), is a diagnostic model 12 

that uses EVI - enhanced vegetation index and LSWI – land surface water index from MODIS, a 13 

vegetation map (Synmap, Jung et al., 2006) and meteorological data (temperature at 2m and 14 

downward shortwave radiative flux extracted from ECMWF short term forecast fields at 0.25 15 

degrees resolution) to derive gross biogenic fluxes. VPRM parameters controlling respiration and 16 

photosynthesis for different vegetation types (a total of four parameters per vegetation type) were 17 

optimized using eddy covariance data for the year 2005 collected during the CarboEuropeIP project 18 

(Pillai et al., 2012). For this study, VPRM fluxes are provided at hourly temporal resolution and at 19 

twothree spatial resolutions of 1, 10 and 1050 km (referred to as VPRM1 and ,VPRM10 and 20 

VPRM50). The difference between the 1,10 and 1050 km resolution version is the aggregation of 21 

MODIS indices to either 1, 10 or 1050 km, otherwise the same meteorology and VPRM parameters 22 

are used. At 10 km resolution VPRM uses a tiled approach, with fractional coverage for the 23 

different vegetation types, and vegetation type specific values for MODIS indices. For the 24 

comparison with the aircraft data VPRM produced fluxes for 2005 at 10 km spatial resolution. 25 

The “Organizing Carbon and Hydrology In Dynamic Ecosystems”, ORCHIDEE, model (Krinner et 26 

al., 2005) is a process based site scale to global land surface model that simulates the water and 27 

carbon cycle using meteorological forcing (temperature, precipitation, humidity, wind, radiation, 28 

pressure). The water balance is solved at a half-hourly time step while the main carbon processes 29 

(computation of a prognostic LAI, allocation, respiration, turnover) are called on a daily basis. It 30 

uses a tiled approach, with fractional coverage for 13 Plant Functional Types (PFT). It has been 31 

extensively used as prior information in regional and global scale inversions (Piao et al., 2009, 32 

Broquet et al., 2013). For the present simulation, we use a global configuration of the version 1.9.6 33 

of ORCHIDEE, where no parameter has been optimized against eddy covariance data. The model is 34 



forced with 0.5° WFDEI meteorological fields (Weedon et al., 2014). The PFT map is derived from 1 

an Olson land cover map (Olson 1994) based on AVHRR remote sensing data (Eidenshink and 2 

Faundeen 1994). The fluxes are diagnosed at 3-hourly temporal resolution and at 0.5 degree 3 

horizontal resolution. 4 

The “5 parameter model” (5PM) (Groenendijk et al., 2011), also used in atmospheric inversions 5 

(Tolk et al., 2011, Meesters et al., 2012), is a physiological model describing transpiration, 6 

photosynthesis, and respiration. It uses MODIS LAI (leaf area index) at 10km resolution, 7 

meteorological data (temperature, moisture, and downward shortwave radiative flux, presently from 8 

ECMWF at 0.25 degrees resolution), and differentiates PFTs for different vegetation types and 9 

climate regions. 5PM fluxes are provided at 0.25 degrees spatial and hourly temporal resolution. 10 

The optimization has been done with EC-data from Fluxnet as described (except for heterotrophic 11 

respiration) in Groenendijk et al., 2011. Regarding the heterotrophic respiration, an ad hoc 12 

optimization using Fluxnet optimization of the heterotrophic respiration, EC-data from 2007 was 13 

performed since no previous optimization was available were used here.   14 

Modeled fluxes for all above mentioned sites have been provided by the different models by 15 

extracting the fluxes from the grid cells which encompass the EC station location using vegetation 16 

type specific simulated fluxes, i.e. using the vegetation type within the respective grid cell for which 17 

the eddy covariance site is assumed representative. For most of the sites the same vegetation type 18 

was used for model extraction as long as this vegetation type is represented within the grid-cell. As 19 

VPRM uses a tile approach, for two cases (“IT-Amp”, “IT-MBo”) the represented vegetation type 20 

(crop) differ from the actual one (grass). For these cases, the fluxes corresponding to crop were 21 

extracted. Fluxes were aggregated to daily fluxes in the following way: first, fluxes from VPRM 22 

and 5PM as well as the observed fluxes were temporally aggregated to match with the ORCHIDEE 23 

3-hourly resolution; in a second step we created gaps in the modeled fluxes where no observations 24 

were available; the last step aggregated to daily resolution on the premise that a) the gaps covered 25 

less than 50% of the day, and b) the number of gaps (number of individual 3-hourly missing values) 26 

during day and during night were similar (not different by more than a factor two) to avoid biasing.  27 

Spatial and temporal correlation structures and the standard deviation of flux residuals (model-28 

observations) were examined for daily fluxes over the year 2007. Simulated fluxes from the 29 

different models are at different spatial resolution, which makes comparisons difficult to interpret. 30 

For the model-data residual analysis, the models VPRM1, VPRM10, ORCHIDEE and 5PM were 31 

used. We note that VPRM1 with 1 km resolution is considered compatible when comparing with 32 

local measurements. For the model-model analysis we use VPRM50 at 50km resolution when 33 

comparing with ORCHIDEE fluxes as both models share the same resolution. VPRM10 is 34 
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considered also appropriate for comparisons with 5PM model as they both share same resolution 1 

(MODIS LAI resolution of 1 km aggregated to 10 km and meteorological resolution at 0.25 2 

degrees). Following we compare VPRM50 with 5PM to investigate if the different spatial resolution 3 

influences the correlation scale as a measure of how trustful might be the derived scales from 4 

ORCHIDEE – 5PM comparisons.  5 

For the aircraft analysis, only the VPRM model was used since it is the only having a sufficiently 6 

highmodel with spatial resolution (10 km) comparable with aircraft flux footprint and capable of 7 

resolving spatial variability in relatively short flight distances. Aircraft NEE data , natively at 2 km 8 

resolution along the track, have been groupedaggregated into 10 km segments along the track, to 9 

matchmaximize the overlap with the VPRM grid, obtaining 6 grid points in forest transects and 8 in 10 

agricultural land transects. Each grid pointFootprint areas of aircraft fluxes were computed with the 11 

analytical model of Hsieh et al. (2000), yielding an average footprint width containing 90% of the 12 

flux ofwas sampled 52 times 3.9 km. Averaging also over the different wind directions 13 

(perpendicular or parallel to the flight direction), and taking into account the 10 km length of the 14 

segments, the area that the aircraft flux data corresponds to, is arround in forests, and 54 in 15 

agricultural land 23.5 km
2
 ± 12 km

2
. VPRM fluxes at each aircraft grid cell were extracted, and then 16 

linearly interpolated to the time of each flightflux observation. 17 

 18 

2.3 Analysis of model-observation differences 19 

Observed and modeled fluxes are represented as the sum of the measured or simulated values and 20 

an error term, respectively. When we compare modeled to observed data this error term is a 21 

combination of model (the prior uncertainty we are interested in) and observation error. Separating 22 

the observation error from the model error in the statistical analysis of the model-observation 23 

mismatch is not possible; therefore we first neglect the impact ofe-folding correlation length 24 

estimations do include the observation error term on the correlation lengths. Nevertheless later in 25 

the analysis of model-model differences we assess the impact of the observation error on estimated 26 

e-folding correlation lengths. 27 

The tower temporal autocorrelation is computed between the time series of model-observations 28 

differences xl,i at site l and the same series lagged by a time unit k (Eq. 1), where x  is the overall 29 

mean and N the number of observations: 30 
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In order to reduce boundary effects in the computation of the autocorrelation at lag times around 2 

one year, the one-year flux time series data (model and observations) for each site was replicated 3 

four times. This follows the approach of Chevallier et al., (2012), where sites with at least three 4 

consecutive years of measurements have been used. 5 

In the current analysis we introduce the all-site temporal autocorrelation by simultaneously 6 

computing the autocorrelation for all the observation sites, with M the number of the sites:   7 
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Temporal correlation scales  were derived by fitting an exponentially decaying model:   9 



t

e=r



 )1(                                                                                                                            (3) 10 

Here t is the time lag. For the exponential fit, lags up to 180 days were used (thus the increase in 11 

correlations for lag times larger than 10 months is excluded). At zero lag time the correlogram has a 12 

value of one (fully correlated), however for even small lag times this drops to values smaller than 13 

one, also known as the nugget effect. The nugget effect is driven by measurement errors and 14 

variations at distances (spatial or temporal) smaller than the sampling interval. For this we include 15 

the nugget effect variable α.  16 

The aircraft temporal autocorrelation was similarly computed according to Eq. 1 using VPRM, and 17 

the same exponentially decaying model (Eq. 3) was used to fit the individual flight flux data, 18 

distributed along the entire daily course.. The temporal interval was limited at 36 days by the 19 

experiment duration. 20 

For the spatial analysis the correlation between model-observation residuals at two different 21 

locations (i.e sites or aircraft grid points) separated by a specific distance was computed in a way 22 

similar to the temporal correlation, and involved all possible pairs of sites and aircraft grid points. 23 

Additional data treatment for the spatial analysis was applied to reduce the impact of tower data 24 

gaps, as it is possible that the time series for two sites might have missing data at different times. 25 

Thus in order to have more robust results, we also examined spatial structures by setting a minimum 26 



threshold of 150 days of overlapping observations within each site pair. Furthermore spatial 1 

correlation was investigated for seasonal dependence, where seasons are defined as summer (JJA), 2 

fall (SON), winter (DJF for the same year), and spring (MAM). In those cases a different threshold 3 

of 20 days of overlapping observations was applied. We note that we do not intend to investigate the 4 

errors at the seasonal scale but rather to study if different seasons trigger different error correlation 5 

structures.  6 

To estimate

 

the spatial correlation scales, the pairwise correlations were grouped into bins of 100 7 

km distance for towers and 10 km for aircraft data, respectively (dist). Following the median for 8 

each bin was calculated, and a model similar to Eq. 3 was fitted, but omitting the nugget effect 9 

variable: 10 

r = e

-
dist

d
                                                                                                               (4) 11 

The nugget effect could not be constrained simultaneously with the spatial correlation scale d, given 12 

the relatively coarse distance groups, the fast drop in the median correlation from one at zero 13 

distance to small values for the first distance bin combined with the somewhat variations at larger 14 

distances. Note that this difference between the spatial and the temporal correlation becomes 15 

obvious in the results section 3.  16 

Confidence intervals for the estimated model parameters were computed based on the profile 17 

likelihood (Venzon and Moolgavkar, 1987) as implemented within the “confint” function from 18 

MASS package inside the R statistical language. 19 

As aircraft fluxes cannot obviously be measured at the same time at different locations, given the 20 

relatively short flight duration (about one hour) we treated aircraft flux transect as instantaneous 21 

‘snapshots’ of the flux spatial pattern across a landscape, neglecting temporal variability that may 22 

have occurred during flight. 23 

 24 

2.4 Analysis of model-model differences 25 

We evaluate both model-data flux residuals and model-model differences in a sense of pairwise 26 

model comparisons, in order to assess if model-model differences can be used as proxy for the prior 27 

uncertainty, assuming that the involved prior errors for each model are identical in a sense that they 28 

share the same statistics and not correlated.models have independent prior errors. For the model-29 

model analysis fluxes derived from the model pairs VPRM50-ORCHIDEE and VPRM10-5PM 30 

share the same spatial resolution and therefore are fully comparable. Similar to the model-31 

observation analysis, the statistical analysis gives a combined effect of both model errors. We assess 32 
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the impact in the error structure between model-observation and model-model comparisons caused 1 

by the observation error by adding a random measurement error to each model-model comparison. 2 

This error has the same characteristics as the observation error which is typically associated with 3 

eddy covariance observations; the error characteristics were derived from the paired observation 4 

approach (Richardson et al., 2008). Specifically, we implement the flux observation error as a 5 

random process (white noise) with a double-exponential probability density function. This can be 6 

achieved by selecting a random variable u drawn from the uniform distribution in the interval (-1/2, 7 

1/2), and then applying Eq. 5 to get a Laplace distribution (also referred to as the double-8 

exponential) 9 

   uuμ=x  21ln)sgn(
2


                                                                                             (5) 10 

Here μ=0 and σ is the standard deviation of the double-exponential. We compute the σ according to 11 

Richardson et al., (2006) as 12 

 Fα+α=σ 21
                                                                                                                                 (6) 13 

where F is the flux and α1, α2 are scalars specific to the different vegetation classes. Lasslop et al., 14 

(2008) found that the autocorrelation of the half hourly random errors is below 0.7 for a lag of 30 15 

min, and falls off rapidly for longer lag times. Thus we assume the standard deviation for hourly 16 

random errors to be comparable with the half hourly errors. Hourly random errors specific for each 17 

reference model are generated for each site individually. With ORCHIDEE as reference with fluxes 18 

at 3-hourly resolution, a new ensemble of 3-hourly random noise was generated with σ for the 3-19 

hourly errors modified (divided by the square root of three to be coherent with the hourly σ). As 20 

both modeled and observed fluxes share the same gaps, the random errors were aggregated to daily 21 

resolution, with gaps such to match those of observed fluxes. Finally the daily random errors were 22 

added to the modeled fluxes.  23 

 24 

3 Results 25 

3.1 Model-data comparison for tower and aircraft fluxes 26 

Observed daily averaged NEE fluxes, for all ground sites and the full time-series, yield a standard 27 

deviation of 3.01 µmol m
-2

 s
-1

, while the modeled fluxes were found to be less spatially varying and 28 

with a standard deviation of 2.84, 2.80, 2.53, 2.64 µmol m
-2

 s
-1

 for VPRM10, VPRM1, ORCHIDEE 29 

and 5PM respectively. 30 

The residual distribution of the models defined as the difference between simulated and observed 31 

daily flux averages for the full year 2007 was found to have a standard deviation of 2.47, 2.49, 2.7 32 

and 2.25 µmol m
-2

 s
-1

 for VPRM10, VPRM1, ORCHIDEE and 5PM respectively. Those values are 33 



only slightly smaller than the standard deviations of the observed or modeled fluxes themselves, 1 

which. This fact is in line with the generally low fraction of explained variance with r-square values 2 

of 0.31, 0.27, 0.12, and 0.25 for VPRM10, VPRM1, ORCHIDEE and 5PM respectively. When 3 

using site-specific correlations, (correlations computed for each site, then averaged over all sites), 4 

the average fraction of explained variance increases to 0.38, 0.36, 0.35, and 0.42, for VPRM10, 5 

VPRM1, ORCHIDEE and 5PM, respectively. Note that for deseasonalized time-series (using a 2
nd

 6 

order harmonic, not shown) the same picture emerges with increased averaged site specific 7 

correlation compared to correlations using all sites. This indicates better performance for the models 8 

to simulate temporal changes (not only seasonal, but also synoptic) at the site level, and. Further, 9 

the differences between site-specific to the overall r-square values indicate limitation of the models 10 

to reproduce observed spatial (site to site) differences. Figure 2 shows the correlation between 11 

modeled and observed daily fluxes as a function of the vegetation type characterizing each site. All 12 

models exhibit a significant scatter of the correlation ranging from 0.9 for some sites to 0 or even 13 

negative correlation for some crop sites, with the highest correlation coefficients for deciduous and 14 

mixed forest. 15 

The distribution is biased by -0.07, 0.26, 0.92 and 0.25 µmol m
-2

 s
-1

 for VPRM10, VPRM1, 16 

ORCHIDEE and 5PM, respectively. Figure 3 shows the bias distribution of bias (defined as 17 

modeled – observed fluxes) for different vegetation types. Bias and standard deviation seem to 18 

depend on the vegetation type for all models, without a clear general pattern.  19 

The temporal autocorrelation was calculated for model-data residuals for each of the flux sites (“site 20 

data” in Fig. 4), but also for the full dataset (“all-site” in Fig. 4). The “all site” temporal 21 

autocorrelation structure of the residuals appears to have the same pattern for all models. It decays 22 

smoothly for time lags up to 3 months and then remains constant near to 0 or to some small 23 

negative values. The temporal autocorrelation increases again for time lags > 10 months, which is 24 

caused by the seasonal cycle. The all-sites correlation for the VPRM model at 10 km resolution 25 

remains positive for lags < 104 days and for lags > 253 days. Weak negative correlations were 26 

found in between with minimum value -0.03. In contrast we found only positive correlation for 27 

VPRM at 1 km resolution for the whole year with a minimum value of 0.002. Similarly, 28 

ORCHIDEE follows the same patterns with positive correlations for lags < 76 days and for lags > 29 

291. Minimum correlation was found to be -0.09. For 5PM model we also found only positive 30 

correlations. The minimum value was found to be 0.08. These temporal autocorrelation results 31 

agree with the findings of Chevallier et al., (2012).  32 

The exponentially decaying model in Eq. 3 was used to fit the data. At zero separation time (t=0) 33 

the correlogram value is 1. However the correlogram exhibits a nugget effect (i.e. a value of 34 
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0.39values ranging from 0.31 to 0.48 for VPRM10the different models) as a consequence of an 1 

uncorrelated part of the error. For the current analyses we fit the exponential model with an initial 2 

correlation different from 1. The fit has a root mean square error of 0.041.ranging from 0.036 to 3 

0.059 for the different biosphere models. The normalized RMSE (i.e. RMSE divided by the range 4 

of the autocorrelation) results in values ranging from 0.061 to 0.092 indicating relative errors in the 5 

fit of less than 10%. The e-folding time (defined as the lag required for the correlation to decrease 6 

by a factor of e (63% of its initial value) ranged between 26-70 days for the different models (see 7 

Table 2). Specifically, for VPRM10 and VPRM1 the e-folding time is 32 and 33 days respectively 8 

(30-34 days within 95% confidence interval for both). Confidence intervals for the e-folding time 9 

were calculated by computing the confidence intervals of the parameter in the fitted model. For 10 

ORCHIDEE best fit was 26 days (23-28 days within 95% confidence interval). In contrast, 5PM 11 

yields a significantly longer correlation time between 65-75 days (95% confidence interval) with 12 

the best fit being 70 days.  13 

For a number of sites a large model-data bias was found. In order to assess how the result depends 14 

on individual sites where model-data residuals are more strongly biased the analysis was repeated 15 

under exclusion of sites with an annual mean of model-data flux residuals larger than 2.5μmol/m
2
s. 16 

This threshold value is roughly half of the most deviant bias. In total 9 sites (“CH-Lae’’, “ES-ES2”, 17 

“FR-Pue”, “IT-Amp”, “IT-Cpz”, “IT-Lav”, “IT-Lec”, “IT-Ro2”, “PT-Esp”) across all model-data 18 

residuals were excluded. From these sites “CH-Lae” appears to have serious problems related to the 19 

steep terrain, where the basic assumptions made for eddy covariance flux measurements are not 20 

well applicable (Göckede et al., 2008). The rest of the sites are located in the Mediterranean region, 21 

and suffer from summer drought according to the Köppen-Geiger climate classification map 22 

(Kottek et al., 2006); in those cases a large model - data bias is expected as existing models tend to 23 

have difficulties to estimate carbon fluxes for drought prone periods (Keenan et al., 2009). The 24 

model-data bias at those sites does not necessarily exceed the abovementioned threshold of 25 

2.5μmol/m
2
s simultaneously for each individual model, but a larger bias than the average was 26 

detected. After exclusion of those sites the temporal correlation times were found to be between 33-27 

35 days within 95% confidence interval for 5PM with the best fit value being 34 days. The rest of 28 

the models had temporal e-folding times of 27, 29 and 24 days (1
st
 row of Table 2), while the all-site 29 

correlation remains positive for lags <76, <79, <66 days for VPRM10, VPRM1 and ORCHIDEE 30 

respectively. Some weak negative correlations exist, with a minimum value of -0.06, -0.02, -0.09, -31 

0.005 for VPRM10, VPRM1, ORCHIDEE and 5PM respectively.  32 

The temporal correlation of differences between VPRM10 and aircraft flux measurements could be 33 

computed for time intervals up to 36 days (Fig. 5) corresponding to the duration of the campaign. 34 



The correlation shows an exponential decrease, and levels off after about 25 days with an e-folding 1 

correlation time of 13 days (range of 10 – 16 days within the 95% confidence interval). Whilst the 2 

general behavior is consistent with results obtained for VPRM-observation residuals for flux sites, 3 

the correlation time is two times smaller.  4 

Regarding spatial error correlations, results for all models show a dependence on the distance 5 

between pairs of sites. The median correlation drops within very short distances (Fig. 6). Fitting the 6 

simple exponentially decaying model (Eq. 4) to the correlation as a function of distance we find an 7 

e-folding correlation length d of 40, 37, 32 and 31 km with a root mean square error (RMSE) of 8 

0.14, 0.09, 0.05 and 0.07 for VPRM10, VPRM1, ORCHIDEE and 5PM, respectively. The 9 

normalized RMSE is found to have values ranging from 0.05 to 0.084 indicating relative errors of 10 

the fit less than 9%. Spatial correlation scales are also computed for a number of different data 11 

selections (cases) in addition to the standard case shown in Fig. 6 (case S): using only pairs with at 12 

least 150 overlapping days of non-missing data (case S*), using only pairs with identical PFT (case 13 

I), using only pairs with different PFT (case D), and using only pairs with at least 150 overlapping 14 

days for the D and I cases (cases D*, I*). The results for these cases are summarized in Fig. 7. Also 15 

95% confidence intervals were computed, and the spread spatial correlation was found to be 16 

markedly more critical than for the time correlations. Note that for some cases the 2.5%-ile (the 17 

lower bound of the confidence interval) hit the lower bound for correlation lengths (0 km). The e-18 

folding correlation lengths are similar for each of the models: this also means that no dependence on 19 

the spatial resolution was detectable. Further we examined also the spatial autocorrelation from 20 

VPRM50-data residuals with no significant difference compared to previous results.  21 

Interestingly, if we restrict the analysis to pairs with at least 150 overlapping days between site 22 

pairs, larger correlation scales are found (case S* in Fig. 7). Considering only pairs with different 23 

PFT (case D), consistently, all e-folding correlation lengths are found to be smaller compared to the 24 

standard case (S). This is expected to a certain degree, as model errors should be more strongly 25 

correlated between sites with similar PFTs than between sites with different PFTs. By considering 26 

only pairs within the same vegetation type (case I) we observe a significant increase of the e-folding 27 

correlation length relative to case S for VPRM at 10 and 1 km resolution to values of 432 km and 28 

305 km, respectively. The ORCHIDEE and 5PM models show some (although not significant) 29 

increase in e-folding correlation length. Restricting again the analysis to pairs with at least 150 30 

overlapping days for the D and I cases (D*, I*) we observe an increase of the e-folding correlation 31 

lengths that is however significant only for VPRM at 10 and 1 km.  32 

Seasonal dependence of the e-folding correlation lengths for at least 20 overlapping days per season 33 

and for all site-pairs is also shown in Fig. 7. VPRM showed somewhat longer correlation lengths 34 



during spring and summer, ORCHIDEE had the largest lengths occurring during summer and fall, 1 

and 5PM e-folding correlation lengths show slightly enhanced values during spring and summer. 2 

However, none of these seasonal differences are significant with respect to the 95% confidence 3 

interval. 4 

The spatial error correlation between VPRM10 model and aircraft fluxes measured during May-5 

June along continuous transects at forest and agriculture land use (Fig. 8) shows an exponential 6 

decay up to the maximum distance that was encompassed during flights (i.e. 70 km). Of note is that 7 

only two measurements were available at 60 km distance and none for larger distances making it 8 

difficult to identify where the asymptote lyinglies. Nevertheless fitting the decay model (Eq. 4) 9 

leads to d = 35km (26 – 46 km within the 95% confidence interval), which is in good agreement 10 

with the spatial correlation scale derived for VPRM10 using flux sites during both spring and 11 

summer (Fig. 7). 12 

 13 

3.2 Model-model comparison 14 

We investigate the model-model error structure of NEE estimates by substituting replacing the 15 

observed fluxes which were used as reference, with simulated fluxes from all the biosphere models. 16 

Note that for consistency with the model-data analysis, the simulated fluxes contained the same 17 

gaps as the observed flux time series. The e-folding correlation time is found to be slightly larger 18 

compared to the model-data correlation times, for most of the cases. An exception are is the 5PM-19 

VPRM10 and 5PM-VPRM1 pairs which they produced remarkably larger correlation times (Table 20 

2). Specifically, VPRM150-ORCHIDEE and VPRM10-5PM residuals show correlation times of 21 

3028 days (range between 274-332 days within 95% confidence interval) and 131 (range between 22 

128-137 days within 95% confidence interval), respectively. Significantly different e-folding 23 

correlation times are found for VPRM50-5PM compared to VPRM10-5PM with correlation times 24 

of 52 days (range between 49-56 days within 95% confidence interval). Repeating the analysis 25 

excluding sites with residual bias larger than 2.5μmol/m
2
s, correlation times of 31 28 and 100 days 26 

for VPRM150-ORCHIDEE and VPRM10-5PM are found, respectively. If we use ORCHIDEE-27 

5PM pair as reference the e-folding correlation times arefound to be 30, 28 and 38 days (range 28 

between 35-41 days within 95% confidence interval) with respect to VPRM10, VPRM1 and 5PM 29 

comparisons respectively.  30 

Although the e-folding correlation times show but minor differences compared to the model-data 31 

residuals, this is not the case for the spatial correlation lengths (Fig. 9). The standard case (S) was 32 

applied for the annual analysis, with no minimum number of days with overlapping non-missing 33 

data for each site within the pairs. Taking VPRM50 as reference, much larger e-folding correlation 34 
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lengths of 3712 km with a range of 2086-4621 km within 95% confidence interval yielded for 1 

VPRM510-ORCHIDEE comparisons, and 31066 km for VPRM510-5PM were found. However 2 

VPRM10-5PM analysis which is also considered appropriate in terms of the spatial resolution 3 

compatibility contrary to the VPRM50-5PM pair, is in good agreement with VPRM50-ORCHIDEE 4 

spatial scale (230-440 km range within 95% confidence interval with the best fit being 335 km). 5 

With ORCHIDEE as reference the e-folding correlation length for the ORCHIDEE-5PM 6 

comparison is 278 276 km with a range of 183-360 km within 95% confidence interval. 7 

SeasonalHowever the later correlation length might be affected by the different spatial resolution as 8 

the difference between VPRM10 and VPRM50 against 5PM suggests. Seasonal e-folding 9 

correlation lengths, using a minimum of 20 days overlap in the site-pairs per season (Fig. 9), are 10 

also significantly larger compared with those from the model-data analysis.  11 

When we add the random measurement error to the modeled fluxes used as reference (crosses in 12 

Fig. 9), we observe only slight changes in the annual e-folding correlation lengths, without a clear 13 

pattern. The correlation lengths show a random increase or decrease but limited up to 6%. 14 

Interestingly, the seasonal e-folding correlation lengths for most of the cases show a more clear 15 

decrease. For example, the correlation length of the VPRM10-5PM residuals during winter, 16 

decreases by 22% or even more for spring season. Despite this decrease, the e-folding seasonal 17 

correlation lengths remain significantly larger in comparison to those from the model-data analysis. 18 

Overall, all models when used as reference show the same behavior with large e-folding correlation 19 

lengths that mostly decrease slightly when the random measurement error is included. Although the 20 

random measurement error was added as “missing part” to the modeled fluxes to better mimic 21 

actual flux observations, it did not lead to correlation lengths similar to those from the model-data 22 

residual analysis. To investigate if a larger random measurement error could cause spatial 23 

correlation scales in model-model differences, we repeated the analysis with artificially increased 24 

random measurement error (multiplying with a factor between 1 and 15). Only for very large 25 

random measurement errors did the model-model e-folding correlation lengths start coinciding with 26 

those of the model-data residuals (Fig. 10).  27 

 28 

4. Discussion and conclusions 29 

We analyzed the error structure of a-priori NEE uncertainties derived from a multi-model – data 30 

comparison by comparing fluxes simulated by three different vegetation models to daily averages of 31 

observed fluxes from 53 sites across Europe, categorized into 7 land cover classes. The different 32 

models showed comparable performance with respect to reproducing the observed fluxes; we found 33 

mostly insignificant differences in the mean of the residuals (bias) and in the variance. Site-specific 34 

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight



correlations between simulated and observed fluxes are significantly higher than overall 1 

correlations for all models, which suggest that the models struggle with reproducing observed 2 

spatial flux differences between sites. Furthermore, the site-specific correlations reveal a large 3 

spread even within the same vegetation class, especially for crops (Fig. 2). This is likely due to the 4 

fact that none of the models uses a specific crop model that differentiates between the different crop 5 

types and their phenology. The models using remotely sensed vegetation indices (VPRM and 5PM) 6 

better capture the phenology; ORCHIDEE is the only model that differentiates between C3 and C4 7 

plants, but shows the largest spread in correlation for the crop. Differences in correlations between 8 

the different vegetation types were identified for all the biosphere models, however it must be noted 9 

that the number of sites per vegetation type is less than 10 except for crop and evergreen forests.  10 

Model-data flux residual correlations were investigated to give insights regarding prior error 11 

temporal scales which can be adopted by atmospheric inversion systems. Whilst fluxes from 12 

ORCHIDEE model are at much coarser resolution compared to the representative area from the flux 13 

measurements, VPRM1 fluxes (1 km resolution and only the meteorology at 25 km) are considered 14 

appropriate for the comparisons. Despite the scale mismatch results are in good agreement across 15 

all model-data pairs.  16 

Exponentially decaying correlation models are a dominant technique among atmospheric inverse 17 

studies to represent temporal and spatial flux autocorrelations (Rödenbeck et al., 2009, Broquet et 18 

al., 2011, Broquet et al., 2013). However, regarding the temporal error structure we need to note the 19 

weakness of this model to capture the slightly negative values at 2-10 months lags and, more 20 

importantly, the increase in correlations for lag times larger than about 10 months. Error 21 

correlations were parameterized differently by Chevalier et al., (2012) where the prior error was 22 

investigated without implementing it to atmospheric inversions. Polynomial and hyperbolic 23 

equations were used to fit temporal and spatial correlations respectively. Nevertheless, we use here 24 

e-folding lengths not only for their simplicity in describing the temporal correlation structure with a 25 

single number, but also because this error model ensures a positive definite covariance matrix (as 26 

required for a covariance). This is crucial for atmospheric inversions as otherwise negative, 27 

spatially and temporally integrated uncertainties may be introduced. In addition it can keep the 28 

computational costs low; this is because the hyperbolic equation has significant contributions from 29 

larger distances: for the case of the VPRM1 model, at 200 km distance the correlation according to 30 

Chevallier et al., hyperbolic equation is 0.16, compared to 0.004 for the exponential model. As a 31 

consequence, more none-zero elements are introduced to the covariance matrix, which increases 32 

computational costs in the inversion systems. Using the same hyberbolic equation for the spatial 33 

correlation, d-values of 73, 39, 12 and 20 km were found with a RMSE of 0.11, 0.07, 0.05, 0.07 for 34 



VPRM10, VPRM1, ORCHIDEE and 5PM respectively. A similar RMSE was found when using the 1 

exponential (0.14, 0.09, 0.05 and 0.07), indicating similar performance of both approaches with 2 

respect to fitting the spatial correlation. 3 

Autocorrelation times were found to be in line with findings of Chevallier et al., (2012). The model-4 

data residuals were found to have an e-folding time of 32 and 26 days for VPRM and ORCHIDEE 5 

respectively, and 70 days for 5PM. This significant difference appears to have a strong dependence 6 

on the set of sites used in the analysis. Excluding nine sites with large residual bias, the 7 

autocorrelation time from the 5PM-data residuals drastically decreased and became coherent with 8 

the times of the other biosphere models. The all-models and all-sites autocorrelation time was found 9 

to be 39 days, which reduces to 30 days (28-31 days within 95% confidence interval), when 10 

excluding the sites with large residual bias, coherent with the single model times. From the model-11 

model residual correlation analysis, the correlation time appear to be consistent with the above-12 

mentioned results, and lies between 28 and 46 days for most of the ensemble members. However 13 

model-model pairs consisting of the VPRM and 5PM models produced larger times up to 131 days; 14 

omitting sites with large residual biases this is reduced to 100 days (99-105 days within 95% 15 

confidence interval). This finding could be attributed to the fact that despite the conceptual 16 

difference between those models, they do have some common properties. Both models were 17 

optimized against eddy covariance data although for different years (2005 and 2007 respectively), 18 

while no eddy covariance data were used for the optimization of ORCHIDEE. In addition, VPRM 19 

and 5PM both use data acquired from MODIS, although they estimate photosynthetic fluxes by 20 

using different indices of reflectance data. Summarizing the temporal correlation structure, it 21 

appears reasonable to a) use same error correlation in atmospheric inversions regardless which 22 

biospheric model is used as prior, b) use an autocorrelation length of around 30 days.  23 

Only weak spatial correlations for model-data residuals were found, comparable to those identified 24 

by Chevallier et al. (2012) limited to short lengths up to 40 km without any significant difference 25 

between the biospheric models (31 - 40 km). Hilton et al. (2012) estimated spatial correlation 26 

lengths of around 400km. However we note that significant differences exist between this study and 27 

Hilton et al. (2012) regarding the methods that were used and the landscape heterogeneity of the 28 

domain of interest. With respect to the first aspect the time resolution is much coarser (seasonal 29 

averaged flux residuals) compared to the daily averaged residuals used here. Furthermore spatial 30 

bins of 300 km were used for the autocorrelation analysis, which is far larger than the approximate 31 

bin width of 100 km that were used in our study. Regarding the second aspect North America has a 32 

more homogenous landscape compared to the European domain. The scales for each ecosystem 33 

type (e.g. forests, agricultural land etc.) are drastically larger than those in Europe as can be seen 34 
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from MODIS retrievals (Friedl et al., 2002).  1 

Although the estimated spatial scales are shorter than the spatial resolution that we are solving for 2 

(100 km bins), the autocorrelation analysis of aircraft measurements made during CERES supports 3 

the short scale correlations. These measurements have the advantage of providing continuous 4 

spatial flux transects along specific tracks that were sampled routinely (in this case over period of 5 

36 days at various times of the day), thus resolving flux spatial variability also at small scales, 6 

where pairs of eddy covariance sites may not be sufficiently close. On the other hand, aircraft 7 

surveys are necessarily sporadic in time. Of note is that the impact of the eddy covariance 8 

observation error on the estimated prior error and its structure had to be initially neglected as it is 9 

not possible to subtract the unknown error from the observations. However we do not expect this to 10 

have ahas no significant impact on the error structure, as the addition of an observation error to the 11 

analysis of model-model differences had only minor influence on the error structure.  We note that 12 

the current analysis focuses to daily time scale and therefore the error statistics with respect to the 13 

estimated spatial and temporal e-folding correlation lengths are valid for such scales.    14 

Model-data residual e-folding correlation lengths show a clear difference, between the cases where 15 

pairs only with different (D) or identical (I) PFT were considered, with the latter resulting in longer 16 

correlation lengths, but only identified for the VPRM model at both resolutions. The “D” case has 17 

slightly shorter lengths for all models than the standard case (S). One could argue that as VPRM 18 

uses PFT specific parameters that were optimized against 2005 observations, the resulting PFT 19 

specific bias could lead to longer spatial correlations. However ORCHIDEE and 5PM also show 20 

comparable biases (Fig. 3), but long correlation scales were not found. Moreover we repeated the 21 

spatial analysis after subtracting the PFT specific bias from the fluxes, and the resulting correlation 22 

lengths showed no significant change. The impact of data gaps was also investigated by setting a 23 

threshold value of overlapping observations between site pairs. Setting this to 150 days results in an 24 

increase for the “S” case up to 60 km, but only for the VPRM model. For the “D” and “I” cases 25 

when setting the same threshold value (D
* 

and I
*
) we only found an insignificant increase, 26 

indicating that data gaps are hardly affecting the “D” and “I” cases. These findings suggest that 27 

high-resolution diagnostic models might be able to highlight the increase of the spatial correlation 28 

length between identical PFTs vs. different PFTs. Note that the Chevallier et al., (2012) study 29 

concluded that assigning vegetation type specific spatial correlations is not justified, based on 30 

comparisons of eddy covariance observations with ORCHIDEE simulated fluxes. The current study 31 

could not further investigate this dependence, as the number of pairs within a distance bin is not 32 

large enough for statistical analyses, when using only sites within the same PFT. With respect to the 33 

seasonal analysis, spatial correlations are at the same range among all models and seasons. 34 



Although in some cases (VPRM10 and VPRM1 spring) the scales are larger, they suffer from large 1 

uncertainties. Hence, implementing distinct and seasonally dependent spatial correlation lengths in 2 

inversion systems cannot be justified.  3 

The analysis of model-model differences did not reproduce the same spatial scales as those from the 4 

model-data differences, but instead spatial e-folding correlation lengths were found to be 5 

dramatically larger. Adding a random measurement error to the modeled fluxes used as reference 6 

slightly reduced the spatial correlation lengths to values ranging from 86 278 to 320 1058 km. Even 7 

when largely inflating the measurement error, the resulting spatial correlation lengths (Fig. 10) still 8 

do not approach those derived from model-data residuals. Only when the measurement error is 9 

scaled up by a factor of 8 or larger (which is quite unrealistic as this corresponds to a mean error of 10 

1.46 μmol m
-2

 s
-1

 or larger, which is comparable to the model-data mismatch where a standard 11 

deviation of around 2.5 μmol m
-2

 s
-1 

was found), the e-folding correlation lengths are consistent 12 

with those based on model-data differences. Whilst the EC observations are sensitive to a footprint 13 

area of about 1 km
2
, the model resolution is too coarse to capture variations at such a small scale. 14 

This local uncorrelated error has not been taken into account by the analysis of model-data residuals 15 

as the error model could not be fitted with a nugget term included, favoring therefore smaller 16 

correlation scales. The analysis of differences between two coarser models (excluding VPRM at 1 17 

km for the reason mentioned in the next paragraph) does not involve such a small scale component, 18 

thus resulting in larger correlation scales. This would suggest that for inversion studies targeting 19 

scales much larger than the eddy covariance footprint scale, the statistical properties of the prior 20 

error should be derived from the model-model comparisons.  21 

A special case in the context of the model-model study is the comparison between VPRM1 and 22 

VPRM10, which is the only case that produced short spatial correlation scales. These two models 23 

only differ in the spatial resolution of MODIS indices EVI and LSWI (1 vs. 10 km). Thus 24 

differences between those two models are only related to variability of these indices at scales below 25 

10 km, which is not expected to show any spatial coherence. Indeed the results show only very 26 

short correlation scales (Fig. 9) with an exception during fall, however there the uncertainty is also 27 

large. 28 

The large e-folding correlation lengths yielded from this model-model residual analysis suggest that 29 

the models are more similar to each other than to the observed terrestrial fluxes, at least on spatial 30 

scales up to a few hundred kilometers regardless of their conceptual differences. This might be 31 

expected ato some extent due to elements that the models share. Respiration and photosynthetic 32 

fluxes are strongly driven by temperature and downward radiation, respectively, and those 33 

meteorological fields have significant commonalities between the different models. VPRM and 34 



5PM both use temperature and radiation from ECMWF analysis and short-term forecasts. Also the 1 

WFDEI temperature and radiation fields used in ORCHIDEE are basically from the ERA-Interim 2 

reanalysis, which also involves the integrated forecasting system (IFS) used at ECMWF (Dee et al., 3 

2011). Regarding the vegetation classification all models are site specific and therefore are using the 4 

same PFT for each corresponding grid-cell. Photosynthetic fluxes are derived with the use of 5 

MODIS indices in VPRM (EVI and LSWI) and in 5PM (LAI and albedo).  6 

Using full flux fields from the model ensemble (rather than fluxes at specific locations with 7 

observation sites only) to assess spatial correlations in model-model differences is not expected to 8 

give significantly different results, as the sites are representative for quite a range of geographic 9 

locations and vegetation types within the domain investigated here. 10 

The current study intended to provide insight on the error structure that can be used for atmospheric 11 

inversions. Typically, inversion systems have a pixel size ranging from 10 to 100 km for regional 12 

and continental inversions, and as large as several degrees (hundreds of km) for global inversions. If 13 

a higher resolution system assumes such small-scale correlations (as those found in the current 14 

analysis), in the covariance matrix, of note is that this leads to very small prior uncertainties when 15 

aggregating over large areas and over longer time periods. To aggregate the uncertainty to large 16 

temporal and spatial scales, we used the following equation (after Rodgers, 2000):  17 

T

c uQuUa                                                                                                                                   (7) 18 

Where “” denotes matrix multiplication, Qc is the prior error covariance matrix and u a scalar 19 

operator that aggregates the full covariance to the target quantity (e.g. domain-wide and full year). 20 

For example, with a 30 km spatial and a 40 day temporal correlation scale, annually and domain-21 

wide (Fig. 1) aggregated uncertainties are around 0.06 GtC. This is about a factor ten smaller than 22 

uncertainties typically used e.g. in the Jena inversion system (Rödenbeck et al., 2005). This value is 23 

also 8 times smaller when comparing it to the variance of the signal between 11 global inversions 24 

reported in Peylin et al., (2013) which was found to be 0.45 GtC/y, proving that the aggregated 25 

uncertainties are unrealistically small. In addition, the aggregated uncertainties using the VPRM10-26 

ORCHIDEE error structure (32 days and 320 km temporal and spatial correlation scales) are found 27 

to be 0.46 GtC/y which is also much smaller than the difference between VPRM10 (NEE= - 1.45 28 

GtC/y) and ORCHIDEE (NEE= - 0.2 GtC/y), when aggregated over the domain shown in Fig. 1. 29 

Although this analysis does capture the dominating spatiotemporal correlation scale in the error 30 

structure, it fails in terms of the error budget, suggesting that also other parts of the error structure 31 

are important as well. Therefore additional degrees of freedom (e.g. for a large-scale bias) need to 32 

be introduced in the inversion systems to fully describe the error structure.  33 
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Exponentially decaying correlation models are a dominant technique among atmospheric inverse 1 

studies to represent temporal and spatial flux autocorrelations (Rödenbeck et al., 2009, Broquet et 2 

al., 2011, Broquet et al., 2013). However, regarding the temporal error structure we need to note the 3 

weakness of this model to capture the slightly negative values at 2-10 months lags and, more 4 

importantly, the increase in correlations for lag times larger than about 10 months. Error 5 

correlations were parameterized differently by Chevalier et al., (2012) where the prior error was 6 

investigated without implementing it to atmospheric inversions. Polynomial and hyperbolic 7 

equations were used to fit temporal and spatial correlations respectively. Nevertheless, we use here 8 

e-folding lengths not only for their simplicity in describing the temporal correlation structure with a 9 

single number, but also because this error model ensures a positive definite covariance matrix (as 10 

required for a covariance). This is crucial for atmospheric inversions as otherwise negative, 11 

spatially and temporally integrated uncertainties may be introduced. In addition it can keep the 12 

computational costs low; this is because the hyperbolic equation has significant contributions from 13 

larger distances: for the case of the VPRM1 model, at 200 km distance the correlation according to 14 

Eq. 7 is 0.16, compared to 0.004 for the exponential model. As a consequence, more none-zero 15 

elements are introduced to the covariance matrix, which increases computational costs in the 16 

inversion systems. Using the parameterization from Eq. 7 for the spatial correlation, d-values of 73, 17 

39, 12 and 20 km were found with a RMSE of 0.11, 0.07, 0.05, 0.07 for VPRM10, VPRM1, 18 

ORCHIDEE and 5PM respectively. A similar RMSE was found when using the exponential (0.14, 19 

0.09, 0.05 and 0.07), indicating similar performance of both approaches with respect to fitting the 20 

spatial correlation.  21 

Whilst temporal scales found from this study have already been used in inversion studies, this is not 22 

the case to our best knowledge for the short spatial scales. The impact of the prior error structure 23 

derived from this analysis, on posterior flux estimates and uncertainties will be assessed in a 24 

subsequent paper. For that purpose, findings from this study are currently implemented in three 25 

different regional inversion systems aiming to focus on network design for the ICOS atmospheric 26 

network. 27 
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Table 1: Eddy covariance sites measuring CO2 fluxes that were used in the analysis. The land cover 1 

classification which is used, is coded as follows; CRO, DCF, EVG, MF, GRA, OSH, SAV for crops, 2 

deciduous forest, evergreen forest, mixed forest, grass, shrub and savanna respectively. 3 

 4 

Site code Site name Land cover 

classification 

Latitude Longitude Citation 

BE-Bra Brasschaat MF 51.31 4.52 Gielen et al., 2013 

BE-Lon Lonzee CRO 50.55 4.74 Moureaux et al., 2006 

BE-Vie Vielsalm MF 50.31 6.00 Aubinet et al., 2001 

CH-Cha Chamau GRA 47.21 8.41 Zeeman et al., 2010 

CH-Dav Davos ENF 46.82 9.86 Zweifel et al., 2010 

CH-Fru Frebel GRA 47.12 8.54 Zeeman et al., 2010 

CH-Lae Laegern MF 47.48 8.37 Etzold et al., 2010 

CH-Oe1 

Oensingen 

grassland GRA 47.29 7.73 

Ammann et al., 2009 

CH-Oe2 Oensingen crop CRO 47.29 7.73 Dietiker et al., 2010 

CZ-BK1 Bily Kriz forest ENF 49.50 18.54 Taufarova et al., 2014 

DE-Geb Gebesee CRO 51.10 10.91 Kutsch et al., 2010 

DE-Gri Grillenburg GRA 50.95 13.51 Prescher et al., 2010 

DE-Hai Hainich DBF 50.79 10.45 Knohl et al., 2003 

DE-Kli Klingenberg CRO 50.89 13.52 Prescher et al., 2010 

DE-Tha Tharandt ENF 50.96 13.57 Prescher et al., 2010 

DK-Lva Rimi GRA 55.68 12.08 Soussana et al., 2007 

ES-Agu Aguamarga OSH 36.94 -2.03 Rey et al., 2012 



ES-ES2 

El Saler-Sueca 

(Valencia) CRO 39.28 -0.32 

- 

ES-LMa 

Las Majadas del 

Tietar (Caceres) SAV 39.94 -5.77 

Casals et al., 2011 

FI-Hyy Hyytiälä ENF 61.85 24.30 Suni et al., 2003 

FR-Aur AuradeŽ  CRO 43.55 1.11 Tallec et al., 2013 

FR-Avi Avignon CRO 43.92 4.88 Garrigues et al., 2014 

FR-Fon Fontainebleau DBF 48.48 2.78 Delpierre et al., 2009 

FR-Hes Hesse DBF 48.67 7.07 Longdoz et al., 2008 

FR-LBr Le Bray ENF 44.72 -0.77 Jarosz el al., 2008 

FR-Lq1 

Laqueuille 

intensive GRA 45.64 2.74 

Klumpp et al., 2011 

FR-Lq2 

Laqueuille 

extensive GRA 45.64 2.74 

Klumpp et al., 2011 

FR-Mau Mauzac GRA 43.39 1.29 Albergel et al., 2010 

FR-Pue Puechabon EBF 43.74 3.60 Allard et al., 2008 

HU-Mat Matra CRO 47.85 19.73 Nagy et al., 2007 

IT-Amp Amplero GRA 41.90 13.61 Barcza et al., 2007 

IT-BCi Borgo Cioffi CRO 40.52 14.96 Kutsch et al., 2010 

IT-Cas Castellaro CRO 45.07 8.72 Meijide et al., 2011 

IT-Col Collelongo DBF 41.85 13.59 Guidolotti et al., 2013 

IT-Cpz Castelporziano EBF 41.71 12.38 Garbulsky et al., 2008 

IT-Lav Lavarone ENF 45.96 11.28 Marcolla et al., 2003 



IT-Lec Lecceto EBF 43.30 11.27 Chiesi et al., 2011 

IT-LMa Malga Arpaco GRA 46.11 11.70 Soussana et al., 2007 

IT-MBo Monte Bondone GRA 46.01 11.05 Marcolla et al., 2011 

IT-Ren Renon ENF 46.59 11.43 Marcolla et al., 2005 

IT-Ro2 Roccarespampani 2 DBF 42.39 11.92 Wei et al., 2014 

IT-SRo San Rossore ENF 43.73 10.28 Matteucci et al., 2014 

NL-Dij Dijkgraaf CRO 51.99 5.65 Jans et al., 2010 

NL-Loo Loobos ENF 52.17 5.74 Elbers et al., 2011 

NL-Lut Lutjewad CRO 53.40 6.36 Moors et al., 2010 

PT-Esp Espirra EBF 38.64 -8.60 Gabriel et al., 2013 

PT-Mi2 Mitra IV (Tojal) GRA 38.48 -8.02 Jongen et al., 2011 

SE-Kno KnottŒsen ENF 61.00 16.22 - 

SE-Nor Norunda ENF 60.09 17.48 - 

SE-Sk1 Skyttorp 1 ENF 60.13 17.92 - 

SK-Tat Tatra  ENF 49.12 20.16 - 

UK-AMo Auchencorth Moss GRA 55.79 -3.24 Helfter et al., 2015 

UK-EBu Easter Bush GRA 55.87 -3.21 Skiba et al., 2013 

 

 

 

 

 



Table 2: Annual temporal autocorrelation times in days, from model-data and model-model 

residuals. The number within the brackets shows the correlation times when excluding sites with 

large model-data bias from the analysis. 

Reference VPRM10 [days] VPRM1 [days] ORCHIDEE [days] 5PM [days] 

OBSERVATION 32 (27) 33 (29) 26 (24) 70 (34) 

VPRM50 - - 28 (28) 52 (46) 

VPRM10 - 47 (46)- 30 (31)- 131 (100) 

VPRM1 - - 28 (28) 116 (85) 

ORCHIDEE - - - 38 (32) 

5PM - - - - 
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Figure 1. Eddy covariance sites used in the study. The dashed line delimits the exact domain used to 

calculate the aggregated fluxes.  
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 1 

Figure 2. Box and whisker plot for site-specific correlation coefficients between modeled and 2 

observed daily fluxes as a function of the vegetation type. The numbers beneath the x-axis indicate 3 

the number of sites involved. The bottom and the top of the box denote the first and the third 4 

quartiles. The band inside the box indicates the central 50% and the line within is the median. 5 

Upper and lower line edges denote the maximum and the minimum values excluding outliers. 6 

Outliers are shown as circles.  7 
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Figure 3. Box and whisker plot for the annual site -specific biases of the models differentiated by 2 

vegetation type. Units at y-axis are in μmol m
-2 

s
-1

. (for conversion to gC m
-2 

yr
-1

 reported values in 3 

y axis should be multiplied by 378,7694). 4 
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 7 

 8 
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Figure 4. Temporal lagged autocorrelation from model-data daily averaged NEE residuals for all 2 

models. RedThin red lines correspond to different sites, while the dark magenta color revealsblue 3 

thin lines reveal the sites with a bias larger than +/-2.5 μmol m
-2 

s
-1

. BlackThe thick black line 4 

shows the all-site autocorrelation, and the thick grey line indicates the all-site autocorrelation 5 

excludingbut for a sub-set that excludes sites with large model-data bias (“sub-site”). The dark 6 

green line is the all-site exponential fit using lags up to 180 days, and the light green line shows the 7 

all-site autocorrelation excluding the sites with large bias. The exponential fits use lag times up to 8 

180 days. 9 
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Figure 5. Temporal autocorrelation for VPRM10 – aircraft NEE residuals. Black dots represent 2 

individual flux transects pairs sampled at different times as function of time separation. Black 3 

circles represent daily scale binned data. 4 
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 1 

Figure 6. Distance correlogram for the daily net ecosystem exchange (NEE) residuals using all sites. 

Black dots represent the different site pairs; the blue line represents the median value of the points 

per 100-km bin and the green an exponential fit. Results are shown for residuals of VPRM at a 

resolution of 10 km (top left) and 1 km (top right), ORCHIDEE (bottom left), 5PM (bottom right). 
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Figure 7. Annual and seasonal e-folding correlation length of the daily averaged model-data NEE 2 

residuals for VPRM at 10 and 1 km resolution, ORCHIDEE and 5PM. "S" refers to the standard 3 

case where all pairs were used, “D” refers to the case where only pairs with different vegetation 4 

types were used, "I" denotes the case in which only pairs with identical vegetation type were 5 

considered, and “*” denotes that in addition 150 days of common non-missing data are required for 6 

each pair of sites. The dot represents the best-fit value when fitting the exponential model. The 7 

upper and the lower edge of the error bars show the 2.5 and 97.5 percentiles of the length value. 8 

Note the scale change in the y-axis at 100 km. 9 
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Figure 8. Distance correlogram between VPRM10 and aircraft NEE measurements. Black dots 

represents the different aircraft grid points pairs; black circles represent 10 km scale binned data. 
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Figure 9. Annual and seasonal e-folding correlation length for an ensemble of daily averaged NEE 2 

differences between two models without (filled circle) and with random measurement errors added 3 

to the modeled fluxes used as reference (crosses). The symbols represents the best fit value when 4 

fitting the exponential model, and the upper and lower edge of the error bars show the 2.5 and 97.5 5 

percentiles of the correlation length. The first acronym at the legend represents the model used as 6 

reference and the second the model which was compared with. Note that for the VPRM10/VPRM1 7 

case during spring (with and without random error), the 97.5 percentile of the length value exceeds 8 

the y-axis and has a value of 1073, 1626 km respectively. 9 
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Figure 10. Annual e-folding correlation lengths as a function of the factor used for scaling the 

random measurement error, for all model-model combinations. The black dot-dash lines 

reveal the range of the spatial correlation lengths generated from the model-data comparisons.  

 

 

 


