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Abstract. Information on the relationship between cumulative fossil CO2 emissions and multi-

ple climate targets is essential to design emission mitigation and climate adaptation strategies. In

this study, the transient response in a climate parameter per trillion ton of CO2 emissions, termed

TCPRE, is quantified for a set of impact-relevant climate parameters and from a large set of multi-

forcing scenarios extended to year 2300 towards stabilization. A ~1000 member ensemble of the5

Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical

and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Uncertain-

ties in TCPRE estimates include both scenario uncertainty and model response uncertainty. Cumu-

lative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 ◦C

(68 % confidence interval (c.i.): 1.3 to 2.7 ◦C), a decrease in surface ocean pH of 0.19 (0.18 to10

0.22), and in a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative

emissions and transient response is high for pH and reasonably high for surface air and sea surface

temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean

and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and

carbon stocks in soils. The constrained model ensemble is also applied to determine the response15

to a pulse-like emission and in idealized CO2-only simulations. The Transient Climate Response

is constrained, primarily by long-term ocean heat observations, to 1.7 ◦C (68 % c.i.: 1.3 to 2.2 ◦C)

and the Equilibrium Climate Sensitivity to 2.9 ◦C (2.0 to 4.2 ◦C). This is consistent with results by

CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data

affected by natural climate variability.20

1 Introduction

How multiple climate targets are related to allowable CO2 emissions provides basic information to

design policies aimed to minimize severe or irreversible damage from anthropogenic climate change

1



(Steinacher et al., 2013). The emission of carbon dioxide from burning of fossil fuels is by far the

most dominant driver of the ongoing anthropogenic climate change and of ocean acidification (IPCC,25

2013; Gattuso et al., 2015). The increase of a broad set of climate variables such as atmospheric

carbon dioxide (CO2), CO2 radiative forcing, global air surface temperature or ocean acidification

depends on cumulative CO2 emissions (Allen et al., 2009; IPCC, 1995). It is thus informative to

quantify the link between cumulative, total CO2 emissions and different climate parameters. It is

advantageous to represent a climate target, e.g. the 2 ◦C global mean surface air temperature target30

by the United Nations, in terms of allowable total CO2 emissions, as total CO2 emissions is an

easy to communicate emission mitigation goal. While the link between cumulative CO2 emissions

and global mean surface air temperature has been extensively studied (IPCC, 2013), relatively little

attention has been paid to the relationship between cumulative CO2 emissions and other impact-

relevant variables such as sea level rise or ocean acidification. However, considering the link to35

emissions for other variables and from the global to the regional scale appears important as many

impact-relevant changes are not directly related to global mean surface air temperature.

It is also important to quantify the uncertainty in these links with CO2 emissions by using proba-

bilistic, observation-constrained approaches or multi-model ensembles. This enables one to establish

a budget for the amount of allowable carbon emissions if a given climate target or a set of targets is to40

be met with a given probability. Such budgets in probabilistic terms have been established for surface

air temperature, but only recently for a set of multiple climate-impact relevant variables (Steinacher

et al., 2013).

A climate target that is currently recognized by most world governments (United Nations, 2010)

places a limit of two degrees Celsius on the global mean warming since preindustrial times. This45

target emerged from the international negotiation process following the United Nations Framework

Convention of Climate Change (United Nations, 1992) that entered in force in 1994. Yet, the United

Nations Framework Convention of Climate Change has multiple objectives. It calls for the avoidance

of dangerous anthropogenic interference within the climate system as well as to allow for ecosys-

tems to adapt naturally to climate change, to ensure food production, and to enable sustainable50

economic development. These objectives cannot be encapsulated in one single target, e.g., a global

mean surface air temperature target, but may require multiple targets. These may be specific for indi-

vidual regions and components of the climate system, which includes the atmosphere, hydrosphere,

biosphere and geosphere and their interactions (United Nations, 1992). For example, targets may

include bounds for sea level rise, ocean acidification, and sea water warming that threatens marine55

ecosystem functioning and services (IPCC, 2014; Gattuso et al., 2015; Howes et al., 2015). Ocean

acidification is, like global warming, progressing with anthropogenic CO2 emissions, but, unlike

global warming, largely independent of the emissions and atmospheric abundance of non-CO2 forc-

ing agents. It is thus expected that the quantitative link to cumulative CO2 emissions is different

for ocean acidification parameters, e.g., surface ocean pH, than for global mean surface air temper-60
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ature. In general, the quantitative relationship to emissions and its uncertainty ranges are distinct for

different individual target variables.

Climate projections are associated with two fundamentally distinct types of uncertainties (e.g.

Hawkins and Sutton, 2009). First, the scenario uncertainty arises from the fact that future anthro-

pogenic emissions are not known because they depend largely on human actions and decisions, such65

as climate policies, technological advances, and other socio-economic factors. Second, the limited

understanding of the response of the coupled Earth system to the emissions for a given scenario

constitutes an additional uncertainty, termed the model or response uncertainty.

Well-defined metrics that summarize the Earth system response to a given forcing by a single or

few values are useful in many aspects. They allow one to quantify the response uncertainty, and to70

compare results from different sources, such as ensemble model simulations, model intercompar-

isons, or observation-based estimates, and ease, due to their relative simplicity, the communication

among scientists and between scientists, stakeholders, and the public. The Transient Climate Re-

sponse (TCR) and the Equilibrium Climate Sensitivity (ECS) are such metrics, which are used to

quantify the global mean surface air temperature (SAT) change associated with a doubling of at-75

mospheric CO2 (e.g. Knutti and Hegerl, 2008). The TCR measures the short-term response (i.e. the

temperature increase at the time of doubling atmospheric CO2 in a simulation with 1 % yr−1 in-

crease), while the ECS quantifies the long-term response after reaching a new equilibrium of the

system under the increased radiative forcing. TCR and ECS are metrics for the physical climate sys-

tem and they do not depend on the carbon cycle response (e.g. Huber and Knutti, 2014; Kummer and80

Dessler, 2014). TCR and ECS depend both on multiple physical feedbacks such as the water vapor,

the ice-albedo, or the cloud feedbacks. TCR depends also on the rate of ocean heat uptake. ECS

itself does not depend on the rate of ocean heat uptake, while observationally constrained estimates

of ECS do.

Certain metrics are helpful to reduce the scenario-dependency of results, which may facilitate the85

communication in a mitigation policy context (Allen et al., 2009). One such metric is the response

to a pulse-like emission of CO2 and other forcing agents as applied to compute global warming

potentials used in the greenhouse gas basket approach of the Kyoto protocol (Joos et al., 2013;

Myhre et al., 2013). Another metric is the Transient Climate Response to cumulative CO2 Emissions

(TCRE), which links the global mean surface air temperature increase to the total amount of CO290

emissions. In addition to the physical climate response, these metrics also depend on the response

of the carbon cycle. TCRE is a useful metric because it has been shown that global warming is

largely proportional to cumulative CO2 emissions and almost independent of the emission pathway

(Allen et al., 2009; Matthews et al., 2009; Zickfeld et al., 2009; IPCC, 2013; Gillett et al., 2013).

It essentially represents the combination of the TCR and the cumulative airborne fraction of CO295

(Gregory et al., 2009; Collins et al., 2013). More recently, additional metrics, the equilibrium and

multi-millennial climate response to cumulative CO2 emission, have been proposed to evaluate the
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long-term link between global mean surface air temperature and emission (Frölicher and Paynter,

2015).

There is an apparent discrepancy between the TCR estimated with the most recent set of Earth100

System Models (ESM) versus some recent studies that invoke observational constraints (Otto et al.,

2013) and simplified models (Schwartz, 2012; Collins et al., 2013). These latter studies suggest the

possibility of a TCR below 1 ◦C, i.e. outside the very likely range given in the Fourth Assessment

Report of the IPCC (Collins et al., 2013). Shindell (2014b, a) suggest that there are biases in sim-

ple models that do not adequately account for the spatial distribution of forcings. Shindell found by105

analyzing ESM output that the transient climate sensitivity to historical aerosol and ozone forcing

is substantially greater than to CO2 forcing due to their spatial differences. Taking this into account

resolves the discrepancies in TCR estimates. Stainforth (2014) concluded from the study by Shindell

(2014b) that probabilistic 21st century projections based on simple models and observational con-

straints under-weight the possibility of high impacts and over-weight low impacts on multi-decadal110

timescales. Huber and Knutti (2014) find that the TCR and ECS of the ESMs are consistent with

recent climate observations when natural variability and updated forcing data are considered. Kum-

mer and Dessler (2014) concluded that considering a ≈ 33 % higher efficacy of aerosol and ozone

forcing than for CO2 forcing would resolve the disagreement between estimates of ECS based on the

twentieth century observational record and those based on climate models, the paleoclimate record,115

and interannual variations. van der Werf and Dolman (2014) applied a multiple regression approach

using historical temperature and radiative forcing data to find that recent temperature trends are influ-

enced by natural modes of variability such as the Atlantic Multi-decadal Oscillation. They estimated

TCR to be above 1 ◦C using century-long records. Yet, an updated probabilistic quantification of the

TCR, ECS, and TCRE with a spatially-explicit model and constrained by a broad set of observations120

is missing.

The goals of this study are (i) to establish the relation between cumulative CO2 emissions and

changes in illustrative, impact-relevant Earth System parameters, (ii) to quantify TCRE, TCR and

ECS, and (iii) to establish the response of different Earth System parameters to an emission pulse,

i.e. the Impulse Response Function. In analogy to TCRE, we introduce a new metric, the Transient125

Climate Parameter Response to cumulative CO2 Emissions (TCPRE). TCPREX is the change in a

climate parameter, X , in response to cumulative CO2 emissions of 1000 Gt C. To this end, we an-

alyzed TCPRE for variables that we deemed impact relevant and also reasonably well represented

in our model including surface air temperature, sea surface temperature, sea level, ocean acidity,

carbon storage in soils, and ocean overturning. The link and the linearity between the responses in130

the different variables and cumulative CO2 emissions is investigated in a structured way with an

observation-constrained model ensemble and a large set of emissions scenarios. This allows us not

only to address the scenario uncertainty but also the model uncertainty. We quantify uncertainties

related to specific greenhouse gas emission trajectories, i.e. scenario uncertainty, by analyzing re-
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sponses to CO2 emission pulses as well as to a set of 55 scenarios representing the evolution of135

carbon dioxide and other radiative agents. The response uncertainties for these scenarios are quanti-

fied with a ~1000-member model ensemble constrained by 26 observational data sets in a Bayesian,

Monte-Carlo-type framework with an Earth System Model of Intermediate Complexity. The model

features spatially-explicit representations of land use forcing, vegetation and carbon dynamics, as

well as physically consistent surface-to-deep transport of heat and carbon by a 3-D, dynamic model140

ocean, thereby partly overcoming deficiencies identified for box-type models used in earlier prob-

abilistic assessments (Shindell, 2014b, a). This allows us also to reassess the probability density

distribution, including best estimates and confidence ranges, for the Equilibrium Climate Sensitivity

(ECS), the Transient Climate Response (TCR), and the Transient Climate Response to cumulative

CO2 Emissions (TCRE).145

This paper is structured in the following way. In the methods section, first the modeling framework

is introduced (section 2.1). Specific subsections deal with model parameter selection and sampling

(2.1.1), observational constraints and the calculation of model skill scores (2.1.2), the procedure for

model spin-up (2.1.3), scenario choices and model simulations (2.1.4). The following sections then

cover the definition of TCRE and TCPREX (2.2), the calculation of probability density functions150

(2.3) and how the linearity of the responses to cumulative CO2 emissions is tested (2.4). Finally, we

discuss the selection of the analyzed climate parameters (X) in section 2.5. In the results section, we

first discuss the response in various climate parameters to CO2 emission pulses of various magnitude

to gain insight to which extent we may expect linearity in the response to emissions (section 3.1).

In section 3.2, we present results for the TCPRE of the global mean surface air and surface ocean155

temperatures, steric sea level rise, the Atlantic Meridional Overturning Circulation, global mean

surface ocean pH, the saturation of surface waters in the Southern Ocean and the tropics with respect

to calcium carbonate, as used to build coral reefs and shells and other structures of marine organisms,

and finally global soil carbon stocks. In section 3.3, results for the transient and equilibrium climate

sensitivity are presented. Discussion and conclusions complete the paper.160

2 Methods

2.1 Modeling framework

We apply the Bern3D-LPJ model in a Bayesian, probabilistic, observation-constrained approach

which is described in detail by Steinacher et al. (2013). Probabilistic assessments are widely used to

determine probability distributions of model parameters, climate sensitivity and many other climate165

parameters (e.g. Wigley and Raper, 2001; Knutti et al., 2002, 2003; Murphy et al., 2004; Knutti et al.,

2005; Schleussner et al., 2014; Bodman et al., 2013; Little et al., 2013; Harris et al., 2013; Holden

et al., 2013; Bhat et al., 2012; Holden et al., 2010; Olson et al., 2012; Williamson et al., 2013).

The Bern3D model was used in connection with an Ensemble Kalman Filter to constrain model
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parameters and regional air-sea carbon fluxes from observations (Gerber et al., 2009; Gerber and170

Joos, 2010, 2013). The Bern3D-LPJ is an Earth system Model of Intermediate Complexity (EMIC)

that consists of a three-dimensional dynamic ocean component (Müller et al., 2006; Parekh et al.,

2008) including sea-ice (Ritz et al., 2011a), a two-dimensional energy and moisture balance model of

the atmosphere (Ritz et al., 2011a, b), and a comprehensive terrestrial biosphere model with dynamic

vegetation (Sitch et al., 2003), permafrost, peatland (Spahni et al., 2013), and land-use (Strassmann175

et al., 2008) modules.

We rely here on simulations presented by Steinacher et al. (2013) as described in the following

subsections and illustrated in Fig. 1. Uncertainties in physical and carbon-cycle model parameters,

radiative efficiencies, climate sensitivity, and carbon-cycle feedbacks are taken into account by vary-

ing 19 key model parameters to generate a model ensemble with 5000 members (Table A1). Each180

ensemble member is assigned a skill score based on how well the model version is able to represent

the observational constraints. This skill score is used as a weight to compute probability density

functions and ensemble means for different model outcomes.

2.1.1 Model parameter sampling

Nineteen model parameters are sampled for the generation of the model ensemble (Table A1). The185

selection of these parameters has to balance computational costs versus maximum coverage of the

parameter space that is relevant for the model variables we are interested in.

Three parameters are sampled from the energy and moisture balance model of the atmosphere.

Most important, the nominal equilibrium climate sensitivity (ECS) determines the equilibrium

warming per change in radiative forcing. Technically, this is implemented by translating a given190

value for ECS to a value for the feedback parameter λ (Ritz et al., 2011a, b) using a calibration curve.

λ accounts for all feedbacks in the model that are not explicitly resolved. Diffusivity coefficients,

diffzonal and diffmerid,scale, control the depth-integrated heat fluxes (Ritz et al., 2011a, b). The uniform

zonal diffusivity is specified directly and diffmerid,scale is a scaling factor for the latitude-dependent

meridional diffusivity.195

The selection of the most relevant parameters for terrestrial photosynthesis, hydrology, vegetation

dynamics, soil organic matter decomposition and turnover is largely based on a previous study by

(Zaehle et al., 2005). They analyzed an earlier version of the model by sampling 36 parameters

and identified the most important ones in controlling carbon fluxes and pool sizes. Perhaps not

surprisingly, the most influential parameters either directly govern the input flux of carbon into a200

carbon pool or the time scale of carbon overturning for individual pools.

Four parameters are sampled that govern carbon assimilation and transpiration of water. These

are a scaling parameter to upscale assimilation from the leaf to the canopy level (αa), the intrinsic

quantum efficiency of CO2 uptake for C3 plants (αC3), a shape parameter specifying the degree

of co-limitation by light and Rubisco activity (θ), and a parameter that influences the link between205
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canopy conductance and evapotranspiration (gm), and thereby soil hydrology and water limitation of

photosynthesis. These parameters were identified as the four most important ones controlling NPP

and heterotrophic respiration and they are among the eight most important parameters controlling

carbon pool sizes (Zaehle et al., 2005).

Two parameters are sampled that control the turnover of carbon in vegetation. These are the time210

scale governing the conversion of sapwood to heartwood (τsapwood) and the maximum mortality rate

of trees (mortmax). Four parameters are sampled that govern the carbon turnover in mineral soils.

The fractions fsoil and fslow determine how much of decomposing litter enters the fast and slow

overturning soil pools and how much is released directly to the atmosphere. ksoil,scale is a global

scaling factor applied to the spatial and temporal variable decomposition rates of organic carbon215

in the fast and slow soil pools. Litter and soil decomposition rates depend on soil temperature and

thus are influenced by global warming. The parameter governing the temperature sensitivity of these

rates is also sampled. Finally, Cpeat,scale determines the initial amount of carbon stored in northern

peatlands.

Three parameters are sampled from the Bern3D ocean component. diffdia and diffiso are the diapy-220

cnal and isopycnal diffusivities that control the ocean circulation and thus the transport and vertical

mixing of heat, carbon, and other tracers (Müller et al., 2006; Schmittner et al., 2009). kgas,scale is

a scaling factor applied to the OCMIP-2 air-sea gas transfer velocity field (Müller et al., 2008) and

affects the oceanic uptake of anthropogenic carbon. The ocean carbonate chemistry and marine bi-

ology parameters are not perturbed in this study in order to save computational costs. The ocean225

chemistry is very well understood and the relevant parameters are already well constrained (Dick-

son, 2002). The marine biology parameters are considered of secondary importance for this study,

and when compared to the parameters affecting the physical transport and uptake of anthropogenic

carbon (Joos et al., 1999; Plattner et al., 2001; Heinze, 2004; Gangstø et al., 2008; Kwon et al.,

2009).230

Finally, two parameters were sampled to modulate the radiative forcing from well mixed green-

house gases (RFGHG,scale) and aerosols (RFaerosol,scale). They are applied as scaling factors to the pre-

scribed time series (or to the simulated radiative forcing in the case of atmospheric CO2) and reflect

the uncertainties given by Forster et al. (2007).

We generate a 5000-member ensemble from the prior distributions of those 19 key model param-235

eters using the Latin hypercube sampling method (McKay et al., 1979). The prior distributions are

selected such that the median matches the standard model configuration and the standard deviation

is 1
4 of the plausible parameter range based on literature and/or expert judgment (Table A1). Normal

prior distributions are chosen for ranges that are basically symmetric with respect to the standard

parameter value and log-normal priors are used for asymmetric ranges.240
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2.1.2 Observational constraints and the computation of skill scores

26 observation-based data sets are used to constrain the model results including projected Earth sys-

tem changes, allowable carbon emissions to meet a climate target or metrics such as the transient

and equilibrium climate sensitivity. A single skill score is computed by comparing observations and

model outcomes for each ensemble member and across all data sets. The data sets are organized in245

a hierarchical structure to balance the weight of individual data sets and groups of data. The skill

scores are used to weight results from individual ensemble members for the computation of ensemble

mean and uncertainties (probability density function). Figure A1 summarizes the observation-based

data sets and their hierarchical arrangement to compute skill scores (adapted from Fig. S3 and Ta-

ble S2 in Steinacher et al., 2013).250

The observational data sets combine information from satellite, ship-based, ice-core, and in-situ

measurements to probe both the mean state and transient responses in space and time. The energy

balance and its change over time is probed by annual mean time series of Southern and Northern

Hemisphere temperature from 1850 to 2010 (Brohan et al., 2006), of upper (0-700 m) ocean heat

content anomalies from 1955 to 2011 (Levitus et al., 2012), and from 1993 to 2008 (Lyman et al.,255

2010) and the ocean heat uptake over the period 2005 to 2010 (von Schuckmann and Le Traon,

2011). The atmospheric carbon balance is probed by the reconstructed atmospheric CO2 history

from ice cores (1850 to 1958; Etheridge et al., 1996) and direct atmospheric measurements (1959 to

2010; Keeling and Whorf, 2005; Conway and Tans, 2011) as well as global and temporal means of

net carbon uptake by the land and by the ocean for the periods 1959 to 2006, 1990 to 1999, and 2000260

to 2006 (Canadell et al., 2007). Oceanic processes, which are key for the uptake of both heat and

carbon, are probed using gridded data from the World Ocean Atlas (Locarnini et al., 2010; Antonov

et al., 2010; Garcia et al., 2010) and the Global Ocean Analysis Project (GLODAP Key et al., 2004);

surface fields and whole ocean fields are considered separately for individual tracers. Ocean tem-

perature (T) and salinity (S) fields probe the water mass distribution and T and S influences CO2265

solubility and carbonate chemistry. The transient tracer CFC-11 (distribution for 1995) and radio-

carbon (preindustrial) probe the ventilation time scales and thus the surface-to-deep transport rates

for carbon, heat and other tracers. The marine biological cycle is probed by comparing modeled

with observed fields of the major nutrient phosphate, as well as dissolved inorganic carbon (prein-

dustrial) and alkalinity (1995). Temperature, salinity and phosphate fields from the World Ocean270

Atlas include seasonal variations in the upper ocean. Land biosphere processes are constrained by

comparing modeled and observation-derived carbon stocks and fluxes. Vegetation carbon stock data

include two different data sets for about 140 sites each (Luyssaert et al., 2007; Keith et al., 2009)

and an estimate for the global preindustrial inventory (550±200 Gt C; Prentice et al., 2001). Gridded

soil carbon fields for low and mid latitudes (south of 50◦N; Global Soil Data Task Group, 2000)275

and high latitude North America (Tarnocai et al., 2009, 2007) and an estimate for the global soil

carbon content in the top 100 cm (1950±550 Gt C; Batjes, 1996). Net primary productivity is probed
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using observation-based estimates from around 80 sites (Olson et al., 2001) and 140 sites (Luyssaert

et al., 2007), and a gridded seasonal climatology of the fraction of absorbed photosynthetic active

radiation (Gobron et al., 2006). Finally, we probe the seasonal cycle of the net terrestrial carbon bal-280

ance by prescribing modeled net land-to-atmosphere fluxes in the TM2 transport model to compute

the average seasonal cycle of atmospheric CO2 at nine sites as monitored by the GLOBALVIEW

atmospheric CO2 network (GLOBALVIEW-CO2, 2011).

A hierarchical structuring of the data sets is applied for the computation of the skill scores. In-

dividual data sets consist of a single number, of site data, time series, as well as gridded two- and285

three-dimensional fields. The number of values included in a data set ranges from one to many thou-

sands. In addition, different data sets sometimes probe closely related quantities. It is thus necessary

to implement a formalism to avoid that the data sets with the largest number of data dominate the

outcome. The task is to attribute a weight to each individual data set that is appropriate in compari-

son with the other data sets. Here, this is done by organizing the data in a hierarchical structure for290

aggregating the scores of individual data sets to the total score. We consider four main data groups

probing the energy balance, termed “Heat” in Fig. A1, the atmospheric carbon balance, “CO2”,

ocean processes and inventories, “Ocean”, and land biosphere fluxes and stocks, “Land”. Each of

these groups has the same weight for the computation of the overall skill scores. The individual data

sets are further arranged in additional subgroups.295

From the simulation results over the historical period (“mod”) and the set of observational con-

straints (“obs”), we assign a score to each ensemble memberm as Sm ∝ exp(− 1
2

(Xmod
m −Xobs)2

σ2 ). This

likelihood-type function basically corresponds to a Gaussian distribution of the data-model discrep-

ancy (Xmod
m −Xobs) with zero mean and variance σ2. The overbar indicates that the error-weighted

data-model discrepancy is first averaged over all data points of each observational variable (volume300

or area-weighted) and then aggregated in the hierarchical structure by averaging variables belonging

to the same group. 3931 out of the 5000 ensemble members contribute less than a percent to the

cumulative skill
∑
mSm of all members m and are not used any further.

The variance σ2 represents the combined observational error and model discrepancy and needs

to be specified. The model discrepancy is the inherent model error that cannot be eliminated even305

with the best parameter settings and input data. While most of the observational data sets come

with estimates of the observational errors, the model discrepancy is difficult to specify. Here we

estimate the combined observational and model error with the variance of the model-data difference

for the best fitting model realisation (i.e. the model with the smallest mean squared error). In some

few cases where the observational error is larger than this estimate (and thus the combined error is310

clearly underestimated), the observational error is taken as total error.
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2.1.3 Spin-up procedure

The spin-up procedure for the 5000 ensemble members is tailored to keep computational costs low,

while at the same time achieving small model drift after completion of the spin-up. First, a very long

spin-up over more than 20,000 years is carried out with standard model parameters and preindustrial315

(year 1800) boundary conditions. The spin-up is then continued for all individual members from this

initial steady-state to adjust the model to the perturbed parameters. In this way, the new equilibrium

for the perturbed parameter set is reached faster than when starting from scratch.

The adjustment spin-up is done in a sequence where not all model components are active in all

steps to further decrease the computational costs. First, the physical ocean component is run stand-320

alone for 1500 years. Then, the atmospheric energy balance model is coupled again to the ocean

and the model is run for 1000 more years. Next, the oceanic biogeochemistry module is activated

with initial tracer fields from the standard model configuration. The model is run for another 1000

years to allow the biogeochemical fields to adjust to the new physics. In parallel, the terrestrial

component is run stand-alone for 400 years with the perturbed parameter settings, including an325

instantaneous adjustment of the soil carbon pools after 200 years by calculating the new pool sizes

analytically from the adjusted fluxes. Finally, the fully coupled model is run for another 200 years

and all transient simulations are started from this state.

The reliability of the spin-up procedure is verified by performing a 500 year long control run

without additional forcing and checking for unacceptable drift. Slight drifts in deep ocean tracers are330

accepted.

Modern peat carbon stocks are not in equilibrium with the current climate and boreal peatlands

still sequestered about 0.1 Gt C yr−1 during the last millennium (Charman et al., 2013; Yu et al.,

2010). Peat carbon distribution for our transient simulations is initialized with the output from a

transient simulation starting at the Last Glacial Maximum as described in Spahni et al. (2013). This335

initial pattern, and thus the total peat carbon inventory, is uniformly scaled with the value sampled

for the parameter Cpeat,scale.

After the spin-up, the 5000 member ensemble is run over the industrial period under prescribed

CO2 and non-CO2 forcing. The model output is compared with the observational data and the

ensemble is reduced to the 1069 simulations with the highest skill, as described in the previous340

section.

2.1.4 Model simulations

In a next step we run the constrained model ensemble for 55 greenhouse gas scenarios spanning

from high business-as-usual to low mitigation pathways. The set of scenarios consists of economi-

cally feasible multi-gas emission scenarios from the integrated assessment modeling community. In345

addition to the four RCP scenarios (Moss et al., 2010) that were selected for the Fifth Assessment
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Report (AR5) of the IPCC, we included 51 scenarios from the EMF-21 (Weyant et al., 2006), GGI

(Grübler et al., 2007), and AME (Calvin et al., 2012) projects. For these simulations, we prescribe

atmospheric CO2 and the non-CO2 radiative forcing derived from the emission scenarios (Fig. A2)

as described in Joos et al. (2001) and Strassmann et al. (2009). We note that the AME scenarios are350

less complete than the others because they do not provide emission paths for aerosols and some mi-

nor greenhouse gases. We therefore make the conservative assumption of constant aerosol emissions

at the level of the year 2005 (-1.17 Wm−2), which implies a significant cooling effect continued into

the future in those 23 (out of 55) scenarios (Fig. A2f). Please note that this effect does not affect

our estimates of TCR, ECS and TCRE, which are based on the atmospheric CO2-only simulations355

described below, nor the constraining of the model ensemble with observation-based data over the

historical period. The scenarios are extended from 2100 to 2300 by stabilizing atmospheric CO2

and the non-CO2 forcing by the year 2150 (see Steinacher et al., 2013, for details). Please note that

the extensions of the RCP scenarios beyond 2100 CE as used in the AR5 (Extended Concentration

Pathways, ECP; Meinshausen et al., 2011) are not identical to the extensions applied here. Our ex-360

tensions of RCP4.5 and RCP6 are similar to ECP4.5 and ECP6, but ECP8.5 differs significantly

from our extension of RCP8.5, where atmospheric CO2 is stabilized by 2150.

In addition to these multi-gas scenarios used by Steinacher et al. (2013), we run the model en-

semble for an idealized “2xCO2” scenario to determine TCR, ECS, and TCRE and an emission

pulse experiment. In the 2xCO2 simulation, atmospheric CO2 is increased by 1 % yr−1 from its365

preindustrial level until a doubling of the concentration is reached. After that, the atmospheric CO2

concentration is held fixed. All other forcings remain constant at preindustrial levels. The emission

pulse simulations are conducted as described by Joos et al. (2013). A pulse input of 100 Gt C is added

to a constant background atmospheric CO2 concentration of 389 ppm in year 2010, while all other

forcings are held constant at 2010 levels. The impulse response function (IRF) is then derived from370

the difference between simulations with and without emission pulse. Additionally, experiments with

pulse sizes of 1000, 3000, and 5000 Gt C were performed to test the sensitivity of the response to

the pulse size. These additional pulse experiments were run for a model configuration with median

parameter settings, which is able to reproduce the median response of the ensemble for the 100 Gt C

pulse (Fig. 2).375

2.2 Definition of TCRE and TCPREX

There are slightly different definitions of the Transient Climate Response to cumulative CO2 Emis-

sions (TCRE) in the literature. Matthews et al. (2009) define it similar to the Transient Climate

Response (TCR), i.e. as the ratio of warming to cumulative CO2 emissions in a simulation with

prescribed 1 % yr−1 increase in atmospheric CO2 at the time when atmospheric CO2 reaches dou-380

ble its preindustrial concentration. In the Fifth Assessment Report (AR5) of the IPCC, on the other

hand, TCRE is defined more generally as the annual mean global surface temperature change per
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unit of cumulated CO2 emissions in a scenario with continuing emissions (Collins et al., 2013). In

scenarios with non-CO2 forcings, such as the representative concentration pathways (RCPs), the

diagnosed TCRE thus also depends on the non-CO2 forcing. Further, the transient response should385

be distinguished from the peak response to cumulative emissions as defined in Allen et al. (2009),

although the TCRE is nearly identical to the peak climate response to cumulative CO2 emissions in

many cases (Collins et al., 2013).

The responses, TCR and TCRE, are defined for surface air temperature in previous studies. Here,

we extend the definition of TCRE to any climate variable X(t). We define the transient response,390

TCPREX , and peak response, TCPREXpeak, per cumulative CO2 emissions at a given time t as:

TCPREX(t) =
X(t)

E(t)
(1)

TCPREXpeak(t) =
X(tmax)

E(t)
with tmax : |X(tmax)|= max

t′≤t
(|X(t′)|), (2)

where E(t) are the cumulative CO2 emissions (either total or fossil-fuel only emissions; see Ap-

pendix).395

For the transient response analyses, TCPREX(t) is computed for every year t in the range 2000<

t≤ 2300 (i.e. 300 data points per simulation). In contrast, the peak response is represented by only

one data point per simulation. It is the value ofX(t) at the time tmax, i.e. where the maximum change

in the absolute value of X(t) between the years 2000 and 2300 occurs, divided by the cumulative

emissions in the year 2300, E(t= 2300), and denoted TCPREXpeak(t= 2300). Please note that the400

actual peak response might occur after 2300 CE, in which case TCPREXpeak is only an approximation.

Surface air temperature usually peaks before 2300 CE in the applied scenarios. Steric sea level rise,

on the other hand, continues to increase after 2300 CE due to the large thermal inertia of the oceans.

TCRE is used in this study as defined by Gillett et al. (2013). Thus, TCRE is equivalent to

TCPRE∆SAT derived from a simulation with prescribed 1 % yr−1 atmospheric CO2 increase and405

no other forcings.

2.3 Calculation of probability density functions

Cumulative CO2 emissions Em,s(t) and climate response Xm,s(t) are diagnosed for each model

configuration 1≤m≤Nm (Nm = 1069), greenhouse-gas scenario 1≤ s≤Ns (Ns = 55), and sim-

ulation year 2000< t≤ 2300. For a given model configuration m and year t we obtain 55 points in410

the two-dimensional (E, X)-space, representing the response under different scenarios (Em,s(t),

Xm,s(t)). These points are considered to span the range of plausible emission-response combina-

tions for this model configuration. Technically, we use the the convex hull which is the smallest

region containing all points such that, for any pair of points within the region, the straight line seg-

ment that joins the pair of points is also within the region.415

By combining the convex hulls from all model configurationsm in the (E,X)-space we can derive

a two-dimensional probability density function (PDF), p(E,X), of the plausible emission-response
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combinations. The model ensemble is constrained in this step by weighting the contribution of an

individual model to the PDF with the model score Sm:

p(x,y) =
∑
m

θm(x,y)Sm (3)420

θm(x,y) =

1, if (x,y) ∈ C({(Em,s,Xm,s), s= 1, . . . ,Ns})

0, otherwise,
(4)

where C(P ) denotes the convex hull of the set of points P . Finally, the resulting field is normalized

for each emission E to obtain the relative probability map prel(E,X), as shown e.g. in Fig. 3a:

prel(E,X) =
p(E,X)

max
X

(p(E,X))
(5)

Alternatively, p(x,y), is normalized by its integral425

pnorm(E,X) =
p(E,X)∫∞

−∞ p(E,X)dX
, (6)

which then represents the PDF of the response in X for given emissions E. The probability that the

change X remains smaller than a target value, Xtarget, given emission E is then in percent:

pcum(E,Xtarget) =

Xtarget∫
−∞

pnorm(E,X)dX · 100% (7)

The allowable CO2 emissions, Eallowable, to not exceed the climate target Xtarget with a probability430

of 68% is then implicitly given by pcum(E,Xtarget) = 68%.

2.4 Testing the linearity of the response

From the probability maps in the (E,X) space, probability density functions are extracted at E =

1000, 2000, and 3000 Gt C. To compare the response at different emission levels the PDFs at 2000

and 3000 Gt C are rescaled to the response per 1000 Gt C. In a perfectly linear system we would435

expect that the rescaled PDFs are identical for the different emission levels. To test the linearity of the

response further, we fit a linear function X̂(E) = aX,m ·E to the points (Em,s(t), Xm,s(t)) for each

model configurationm. The linear function is forced through zero because we requireX(E = 0) = 0

at preindustrial (t= 1800). From the obtained coefficients aX,m of the model ensemble, we then

calculate a PDF for the sensitivity aX of the response to cumulative emissions under the assumption440

that a linear fit is reasonable. The goodness of fit is quantified by the correlation coefficients, rm, and

standard errors of the regression, σm =

√∑
s(Xm,s−X̂(Em,s))2

Ns
, for each model setup m. In Table 2,

the ensemble median and 68 %-range of aX , of rm, as well as the ensemble median standard error

(expressed as percentage of the median linear slope), σ̂, are reported.
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2.5 Selection of the climate parameters for analysis and computation of TCPRE445

We compute TCPREX and Impulse Response Functions (see section 3.1) for eight climate param-

eters. These are represented by the emission-driven changes in the model variables global mean

surface air temperature (∆SAT), surface ocean temperature (∆SST), steric sea level rise (SSLR),

the Atlantic Meridional Overturning Circulation (∆AMOC), global mean surface ocean pH (∆pH),

saturation of surface waters in the Southern Ocean (∆Ωarag,S.O.; south of 50◦S) and the tropics450

(∆Ωarag,trop.; 30◦N to 30◦S) with respect to calcium carbonate in the mineral form of aragonite,

and global soil carbon stocks (∆Csoil). These variables are deemed both impact relevant and rea-

sonably well represented in the Bern3D-LPJ Earth System Model of Intermediate Complexity. We

stress the illustrative nature of this selection. TCPREX may be computed for other climate param-

eters and regions in future work. In particular the determination of TCPREX for extreme events,455

such as droughts, heat waves, and floods, or for food production and fishery may be relevant for

policy-makers and stakeholders.

Changes in SAT and sea level are known to impact biological and physical systems (e.g. IPCC,

2014; Sherwood and Huber, 2010). Sea level rise is expected to affect coastal ecosystems such as

mangroves, to reduce coastal protection, and increase flood occurrence possibly affecting hundred460

millions of people living in low-lying cities and along the coast.

The uptake of CO2 by the ocean fundamentally changes the chemical composition of ocean waters

(Orr, 2011), generally referred to as “ocean acidification”. The reaction of dissolved CO2 with H2O

to H2CO3 and the dissociation of the latter lead to an increase in the hydrogen ion concentration

(H+), and a decrease in pH (pH=-log[H+]), and, through shifting acid-base equilibria, to a decrease465

in the concentration of carbonate ions, CO2−
3 . The decrease in CO2−

3 is associated with a decrease

in the saturation state of water with respect to calcium carbonate (CaCO3).

Ocean acidification in conjunction with warming waters poses large risks to marine species, ma-

rine ecosystems such as corals, sea grass meadows, and marine ecosystem services such as tropical

fisheries (e.g. Gattuso et al., 2015; Howes et al., 2015). Warming waters affect the aerobic scope470

of marine organisms and constrain marine habitats (Deutsch et al., 2015; Pörtner et al., 2011). The

saturation state of water with respect to aragonite and other mineral forms of calcium carbonate

determines whether water is corrosive (in the absence of protective mechanisms) to shells and struc-

tures made out of calcium carbonate. Model projections reveal large and sustained changes in the

saturation state of surface and deep waters for a range of emission scenarios (Orr et al., 2005; Joos475

et al., 2011). Waters in the Arctic Ocean, in coastal upwelling zones, and the Southern Ocean are be-

coming increasingly undersaturated with respect to aragonite (Steinacher et al., 2009; Gruber et al.,

2012) and ongoing changes in saturation state are largest in the tropics, possibly adversely affecting

net calcification rates of coral systems.

The AMOC contributes to the net heat transport into the North Atlantic region and changes in the480

AMOC may affect climate patterns in Europe and worldwide. Paleo data reveal a southward shift
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of the Inner Tropical Convergence Zone linked to a decrease or collapse of the AMOC with related

terrestrial ecosystem impacts (e.g. Bozbiyik et al., 2011). Finally, changes in the global soil carbon

inventory may be taken here as an indication of the strength of the land carbon-climate feedback as

well as a very rough proxy for soil fertility.485

3 Results

3.1 Climate response to a CO2 emission pulse: testing the linearity of the emission-response

relationship

In a first step, we explore how different climatic variables respond to a pulse-like input of carbon

into the atmosphere (Fig. 2) and determine the so-called Impulse Response Function (IRF) for the490

different climate parameters. The IRF experiments provide a framework to discuss path-dependency

and linearity in responses without the need to run many independent scenarios. IRFs for atmospheric

CO2, SAT, steric sea level rise (SSLR), and ocean and land carbon uptake are given elsewhere and

we refer the reader to the literature for a general discussion on IRFs, underlying carbon cycle and

climate processes, and time scales (e.g. Archer et al., 1998; Joos et al., 2013; Maier-Reimer and495

Hasselmann, 1987; Shine et al., 2005).

A main goal of this section on IRF is to discuss to which extent one may expect a close-to-linear re-

lationship between cumulative CO2 emissions and a climate parameter of interest. A linear relation-

ship between emissions and parameterX has the advantage that the determination of TCPREX does

not depend on the choice of scenario nor the magnitude of CO2 emissions. In addition, TCPREX500

would, in the case of linearity, fully describe the parameter response to any CO2 emissions. We start

with a description of the model setup, followed by theoretical considerations, then discuss linearity

in the context of CO2-only scenario uncertainty by analyzing median model responses, then turn to

the response uncertainty by relying on the full model ensemble and compare scenario and response

uncertainty. Finally, we briefly address the scenario uncertainty due to non-CO2 forcing.505

3.1.1 Model simulations to determine IRFs

CO2 is added instantaneously to the model atmosphere to determine IRFs. This results in a sudden

increase in atmospheric CO2 and radiative forcing. Afterwards, the evolution in the perturbation of

atmospheric CO2 and in any climate variable of interest, e.g. global mean surface air temperature,

is monitored in the model. The resulting curve is the impulse response function (Fig. 2). Here,510

1069 runs were carried out in different model configurations by adding emissions of 100 Gt C to an

atmospheric CO2 background concentration of 389 ppm, which corresponds to the concentration in

the year 2010. Additionally, simulations with emission pulses of 1000, 3000 and 5000 Gt C were run

for a median model configuration (Methods). For comparability, all IRFs are normalized to a carbon

input of 100 Gt C.515
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3.1.2 The link between IRF and TCPRE: theoretical considerations

The motivation to analyze IRFs is two-fold. First, the dynamic of a linear (or approximately linear

system) is fully characterized by its response to a pulse-like perturbation, i.e., the response of variable

X at year t to earlier annual emissions, e, at year t′ can be represented as the weighted sum of all

earlier annual emissions. The weights are the values of the IRF curve at emission age t− t′:520

X(t) =
∑
t′

e(t′) · IRF(t− t′), (8)

where the sum runs over all years t′ with annual emissions up to year t. IRFs thus provide a con-

venient and comprehensive quantitative characterization of the response of a model. IRFs form also

the basis for the metrics used to compare different greenhouse gases in the Kyoto basket approach

and to compute CO2 equivalent concentrations (Joos et al., 2013; Myhre et al., 2013) and are used525

to build substitute models of comprehensive models (Joos et al., 1996). Second and relevant for the

TCPRE and for this study, IRFs allow us to gauge whether there is a roughly linear relationship

between cumulative CO2 emissions

E(t) =
∑
t′

e(t′) (9)

and the change in a climate variable of interest, X(t). The transient response for variable X to530

cumulative CO2 emissions is in this notation:

TCPREX(t) =
X(t)

E(t)
(10)

We note that there is a close relationship between Eqs. (8) to (10) and thus between cumulative CO2

emissions E(t), response X(t) and TCPREX . The IRF provides the link between these quantities.

Three conditions are to be met for a strict linear relationship between cumulative CO2 emissions535

E and response X for any emission pathway: (i) the response is independent of the magnitude of

the emissions, (ii) the response is independent of the age of the emission, i.e., the time passed since

emissions occurred (in this case the IRF and the response TCPREX is a constant and all emissions

are weighted equally in Eq. 8), and (iii) non-CO2 forcing factors play no role; a point that will be

discussed later in section 3.1.4. While these conditions are not fully met for climate variables, they540

may still approximately hold for plausible emission pathways. For the range of RCP scenarios, the

mean age of the CO2 emissions varies between a few decades to hundred years for the industrial pe-

riod and up to year 2100, then it increases up to 300 years until 2300 CE (Fig. 2c). More than half of

the cumulative CO2 emissions have typically an age older than 30 years (Fig. 2c). If the IRF curve

is approximately flat after a few decades and independent of the pulse size, then the vast majority of545

emission is weighted by a similar value in Eq. (8). Consequently, the relationship between response

X(t) and cumulative emissions, E(t) is approximately linear and path-independent. This response

sensitivity per unit emission, X(t)/E(t), corresponds to an “effective” (emission-weighted) mean
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value of the IRF and is the transient response to cumulative CO2 emissions TCPREX . Indeed, the

IRF for many variables varies within a limited range after a few decades (Fig. 2). Then, an approx-550

imately linear relationship between E(t) and X(t) holds and TCPREX is approximately scenario-

independent.

3.1.3 IRFs: median results

The median values of the (normalized) IRFs (Fig. 2, solid and dashed lines; Table 1) vary within

a limited range over the period from 30 year to the end of the simulation (500 year) and for the555

different pulse sizes of 100 to 3000 Gt C for global mean surface air temperature (SAT), surface

ocean pH, Atlantic Meridional Overturning (AMOC), and to a somewhat lesser degree for steric sea

level rise (SSLR). Consequently, we expect a close-to-linear relationship between these variables

and cumulative CO2 emissions.

For a given pulse size, the median of the IRF for the saturation with respect to aragonite in the trop-560

ical (Ωarag, trop.) and Southern Ocean (Ωarag,S.O.) surface waters and for the global soil carbon inventory

varies within a limited range. However, the normalized IRFs for these variables vary substantially

with the magnitude of the emission pulse. Thus, we expect a non-linear relationship between the

ensemble median responses and cumulative CO2 emissions for these quantities.

The atmospheric CO2 perturbation declines by about a factor of two within the first 100 years565

for an emission pulse of 100 Gt C. This means that the atmospheric CO2 concentration at a specific

time depends strongly on the emission path of the previous 100 years. In addition, the IRF differ

for different pulse sizes because the efficiency of the oceanic and terrestrial carbon sinks decreases

with higher atmospheric CO2 concentrations and warming. The fraction remaining airborne after

500 years is about 75 % for a pulse input of 3000 Gt C, about 2.5 times larger than the fraction570

remaining for a pulse of 100 Gt C (Fig. 2a). Thus, we do not expect a scenario-independent, linear

relationship between atmospheric CO2 and cumulative emissions.

At first glance, it may be surprising that the responses in SAT, SSLR, AMOC, and pH do not

much depend on the size of the emission pulse given the strong sensitivity of the atmospheric CO2

response to the pulse size. For the physical variables, this is a consequence of near-cancellation of575

non-linearity in the carbon cycle and in the relationship between radiative forcing and atmospheric

CO2 (Joos et al., 2013). The long-term response in atmospheric CO2 (Fig. 2a) increases with in-

creasing emissions and the fraction remaining airborne is substantially larger for large than for small

emission pulses. On the other hand, radiative forcing depends logarithmically on atmospheric CO2

and the change in forcing per unit change in CO2 is smaller at high than at low atmospheric CO2580

concentrations. As a consequence, the response in radiative forcing is rather insensitive to the mag-

nitude of the emission pulse and so is the response in climate variables forced by CO2 radiative

forcing. A similar effect applies for pH. Changes in dissolved [CO2] and [H+] in the surface ocean

closely follow changes in atmospheric CO2 as the typical time-scale to equilibrate the ocean mixed
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layer with an atmospheric CO2 perturbation is of the order of a year and because changes in [H+]585

are roughly proportional to [CO2] (Orr, 2011). pH is by definition the (negative) logarithm of the

H+ concentration. As for radiative forcing, non-linearities in the CO2 and thus H+ response roughly

cancel when applying the logarithm to compute pH.

3.1.4 Response versus scenario uncertainty

The Monte-Carlo IRF experiments allow us also to assess the response or model uncertainty (Fig. 2,590

orange range). The 90 % confidence range in the IRF are substantially larger than the variation

of the (normalized) median IRF for the variables SAT, SSLR, AMOC, and soil carbon inventory.

Consequently, the model uncertainty will dominate the uncertainty in TCPREX and is larger than

uncertainties arising from dependencies on the carbon emission pathway. On the other hand, the

response uncertainty from our 1069 Monte Carlo model setups are more comparable to the variation595

in the median IRFs for atmospheric CO2, and surface water saturation with respect to aragonite in

the tropical ocean and Southern Ocean.

In addition to the path dependency and the response uncertainty in TCPREX discussed above,

forcing from non-CO2 agents will affect TCPREX . We expect a notable influence of non-CO2

agents on the physical climate variables SAT, SSLR, and AMOC. For example, Strassmann et al.600

(2009) attributed simulated surface warming to individual forcing components for a range of miti-

gation and non-mitigation scenarios. They find that non-CO2 greenhouse gas forcing causes up to

50 % as much warming as CO2 forcing and that the non-CO2 forcing is only partly offset by aerosol

cooling by 2100. On the other hand, we expect a small influence of non-CO2 forcing on pH and sat-

uration state which is predominantly driven by the atmospheric CO2 perturbation (Steinacher et al.,605

2009; McNeil and Matear, 2007).

In summary, uncertainty in the response dominate over the uncertainty arising from path depen-

dency for SAT, SSLR, AMOC, and soil carbon. For CO2-only or CO2-dominated scenarios, we

expect close-to-linear relationship between cumulative CO2 emissions and SAT, surface ocean pH,

AMOC, and to some extent for SSLR. In other words, the concept of TCPREX should work partic-610

ularly well for these parameters. On the other hand, less well expressed linear behavior is found for

global soil carbon and surface water saturation with respect to aragonite. In the next section, we will

elaborate on these findings and quantify TCPREX .

3.2 The Transient Climate Parameter Response to cumulative CO2 Emissions

We investigate the response in multiple climate variables, X(t), as a function of cumulative fossil or615

total CO2 emissions E(t). We used the model ensemble presented in Steinacher et al. (2013) for 55

multi-gas emission scenarios from the integrated assessment modeling community which range from

very optimistic mitigation to high business-as-usual scenarios (Methods). From those simulations

we determine the transient response to cumulative CO2 emissions TCPREX(t) =X(t)/E(t) (Ta-
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bles 2 and A2; Figs. 3–5). In addition, we also present results for the peak response TCPREXpeak(t=620

2300) = maxt′(X(t′)/E(t= 2300)) (Tables 2 and A2, Fig. 3).

The discussion of results is guided by the results shown in Figs. 3 to 5. These show the relative

probability of change in the parameterX for given cumulative CO2 emissions (e.g., colors in Fig. 3a)

together with the linear regression slopes (black dashed lines). These graphs allow one to visually

inspect the linearity in response to cumulative CO2 emissions and results include both scenario and625

response uncertainty. In accompanying panels (e.g., Fig. 3b), the focus is on scenario uncertainty

versus response uncertainty. The relationship between change and cumulative emissions is plotted

for the ensemble median and for the 55 scenarios (55 colored lines). In addition, the 68% and 90%

confidence interval for the response (or model) uncertainty is given for one scenario, RCP8.5, by

red dashed and dotted lines. These graphs allow one to infer scenario and response uncertainty630

individually.

TCPRE∆SAT: We find a largely linear relationship between cumulative CO2 emissions and both

transient and peak warming (Fig. 3a and c) for the set of emission scenarios considered here. These

linear relationships confirm the finding from the pulse experiment above, i.e. that the response in

the global SAT change is largely independent from the pathway of CO2 emissions in our model.635

We note, however, that some low-end scenarios show a non-linear behavior due to non-CO2 forcing

(Fig. 3b). Some AME scenarios show a decrease in temperature due to a strong reduction in the

non-CO2 forcing while cumulative emissions continue to increase slightly. Other scenarios (mostly

from GGI) deviate from the linear relationship when negative emissions decrease the cumulative

emissions while the increased temperature is largely sustained. These non-linearities are evident as640

large changes in the slope between SAT and cumulative emissions towards the end of the individual

simulations, that is after ≈ 2150 CE when atmospheric CO2 is stabilized and emissions are low

(Fig. 3b). Yet those deviations are not large enough to eliminate the generally linear relationship

found for this set of scenarios.

The projected warming for a given amount of CO2 emissions is associated with a considerable645

uncertainty which increases with higher cumulative emissions. This uncertainty arises from both,

the response uncertainty of the model ensemble such as the uncertain climate sensitivity or oceanic

carbon uptake, as well as from the scenario uncertainty. The scenario uncertainty is mainly due

to different assumptions for the non-CO2 forcing in the scenarios. The AME scenarios, for exam-

ple, assume a relatively strong negative forcing from aerosols which leads to a consistently smaller650

warming than in the other scenarios (Fig. 3b). The response and scenario uncertainty appear to be of

the same order of magnitude (Fig. 3b).

The median transient response is 2.0 ◦C (Tt C)−1 (1.1–3.4 ◦C (Tt C)−1 68 % confidence inter-

val) evaluated at 1000 Gt C total emissions and similar for 2000 and 3000 Gt C. The median peak

warming response is slightly larger. It is 2.3 ◦C (Tt C)−1 (1.5–3.8 ◦C (Tt C)−1 68 % confidence655

interval) for scenarios with 1000 Gt C total emissions and decreases slightly to 1.9 ◦C (Tt C)−1
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(1.3–2.7 ◦C (Tt C)−1 68 % c.i.) for scenarios with 3000 Gt C total emissions (Fig. 3d; Table 2).

The corresponding responses to fossil-fuel emissions only are accordingly somewhat higher, e.g.

2.2 ◦C (Tt C)−1 (1.3–3.8 ◦C (Tt C)−1) for the transient response evaluated at 1000 Gt C fossil emis-

sions (Fig. A3, Table A2).660

We fitted a linear function through zero to the results of each ensemble member and then

calculated the probability density functions from the individual slopes. The median slope is

1.8 ◦C (Tt C)−1 (1.1–2.6 ◦C (Tt C)−1) for the peak response and values are similar for the tran-

sient response (Table 2). These slopes are somewhat lower than the direct results but in general the

linear regression approach is able to reproduce the distribution of the peak and transient warming665

response per 1000 Gt C CO2 emissions, although the confidence interval is narrower and the long

tail of the distribution might be underestimated.

TCRE: Following Matthews et al. (2009) and Gillett et al. (2013), we also determined the TCRE

for our model ensemble from scenario where atmospheric CO2 is increasing by 1 % yr−1 until twice

the preindustrial concentration is reached. No other forcing agents are included. Correspondingly,670

we find a slightly lower median TCRE of 1.7 ◦C (Tt C)−1 (1.3–2.3 ◦C (Tt C)−1 68 % c.i.; 1.0–

2.7 ◦C (Tt C)−1 5–95 % c.i.) than for the SAT response in the multi-agent scenarios. The 68 % c.i.

includes the scenario uncertainty range in TCRE (1.5 to 2.0 ◦C) obtained by Herrington and Zickfeld

(2014) with a single model setup and for a range of CO2-only scenarios (with constant future non-

CO2 forcing). Gillett et al. (2013) report a TCRE of 0.8–2.4 ◦C (Tt C)−1 (5–95 % range) from 15675

models of the Coupled Model Intercomparison Project (CMIP5) for a 2xCO2 scenario and a range

of 0.7–2.0 ◦C (Tt C)−1 estimated from observations. Those ranges are somewhat lower than our

5–95 % ranges of 0.9–3.1 ◦C (Tt C)−1 obtained by linear regression from the scenarios that include

non-CO2 forcing and 1.0–2.7 ◦C (Tt C)−1 from the 2xCO2 simulations.

TCPRE∆SST: The transient response in sea surface temperature (SST) shows the same charac-680

teristics as the response in SAT (Fig. 3e,f). The response is 1.5 ◦C (Tt C)−1 (0.9–2.5 ◦C (Tt C)−1

68 % c.i.) evaluated at 1000 Gt C total emissions, and 1.3 ◦C (Tt C)−1 (0.9–1.8 ◦C (Tt C)−1) for the

linear regression approach.

TCPRESSLR and TCPRE∆AMOC: Compared to global mean warming, the responses in steric sea

level rise (SSLR) and in the strength of the Atlantic meridional overturning circulation (AMOC) are685

more emission-path dependent (Fig. 4b,d). In all scenarios applied here, it is assumed that atmo-

spheric CO2 and total radiative forcing is stabilized after 2150. This yields a slow additional growth

in cumulative emissions after 2150, whereas SSLR continues largely unabated and the AMOC con-

tinues to recover. This results in a steep slope in the relationship between cumulative CO2 emissions

and these variables after 2150 as well visible in Fig. 4b. The path-dependency also results in larger690

differences between transient and peak responses (Table 2). The projected peak SSLR is described

remarkably well by a linear regression (Table 2). Yet, these results for the peak SSLR response are

somewhat fortuitous and influenced by our choice to stabilize atmospheric CO2 and forcings after
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2150 in all scenarios and by the stop of simulations in year 2300. We emphasize that SSLR would

continue to increase beyond the end of the simulation and TCPRESSLR are thus only indicative for695

the period from today to year 2300.

For AMOC, the response is somewhat stronger for low-emission than high-emission paths

(Fig. 4d). For 1000 Gt C total emissions, we find a peak reduction in AMOC of −24 % (−35 to

−15 %) (Table 2). This sensitivity is larger than found by Herrington and Zickfeld (2014), but sim-

ulated changes in AMOC are known to be model dependent.700

TCPREpH and TCPRE∆Ωarag,S.O. and TCPRE∆Ωarag,tropics : Surface ∆pH shows a very tight and linear

relationship with cumulative CO2 emissions (Fig. 4e,f). This is consistent with a small influence of

non-CO2 forcing agents, a small response uncertainty and a relatively small dependency on the CO2

emission pathway as revealed by the IRF experiments. Both scenario and response uncertainty are

smaller than for other variables. pH decreases by about 0.2 unit per 1000 Gt C emissions from fossil705

sources.

For Ωarag, the non-linearities are more pronounced than for the physical variables and pH with

a proportionally stronger response at low total emissions (∆Ωarag =−0.68 to −0.54 (Tt C)−1 at

1000 Gt C total emissions) and weaker response at higher total emissions (∆Ωarag =−0.43 to

−0.35 (1000 Gt C)−1 at 3000 Gt C total emissions, Fig. 5b and d). Again, results for fossil-fuel710

emissions only are provided in Fig. A3 and Table A2.

TCPRE∆Csoil : Finally, the change in global soil carbon (Fig. 5e,f) shows a similar response as

SSLR, with continued carbon release from soils after stabilization of greenhouse gas concentrations

in mid to high emission scenarios. Like the ocean heat uptake, the respiration of soil carbon can

be slow, particularly in deep soil layers at high latitudes, and it takes some time to reach a new715

equilibrium at a higher temperature. The response uncertainty represented by the model spread for

a given scenario, however, is even larger than the spread from the scenarios. For the same scenario,

the 90 % confidence interval ranges from a very high loss of up to 40 % to increases in global soil

carbon by a few percent (Fig. 5f).

In summary, we find that not only global mean surface air temperature, but also the other target720

variables investigated here show a monotonic relationship with cumulative CO2 emissions in multi-

gas scenarios. The relationship with cumulative CO2 emission is highly linear for pH as evidenced

by the high correlation coefficient and the invariance in the ensemble median and confidence range

from total emissions (Table 2). Changes in steric sea level, meridional overturning circulation, and

aragonite saturation are generally less linearly related to cumulative emissions than global pH and725

surface air temperature. These variables show a substantial non-linear response after stabilization

of atmospheric CO2. Nevertheless, the PDF of the peak response for all these variables can be

reproduced relatively well with a linear regression yielding correlations of r = 0.8–0.98 and standard

errors of σ̂ = 30–40 % (Table 2).
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3.3 Transient and equilibrium climate sensitivity730

TCR is estimated from the ensemble simulations with 1 % yr−1 increase until doubling of atmo-

spheric CO2 and in combination with the observational constraints (Methods). TCR is constrained

to a median value of 1.7 ◦C with 68 and 90 % c.i. of 1.3–2.2 ◦C and 1.1–2.6 ◦C, respectively. The

68 % range is somewhat narrower than the corresponding IPCC AR5 range of 1.0–2.5 ◦C, (Collins

et al., 2013). The CMIP5 model mean and 90 % uncertainty range of 1.8 and 1.2–2.4 ◦C (Flato et al.,735

2013) are fully consistent with our observation-constrained estimates.

ECS is estimated by extending the 2xCO2 simulations by 1500 yrs (at constant radiative forcing)

and fitting a sum of exponentials to the resulting temperature response. Median ECS is 2.9 ◦C with

constrained 68 and 90 % c.i. of 2.0–4.2 ◦C and 1.5–6.0 ◦C. Again, the CMIP5 model mean and 90 %

range of 3.2 and 1.9–4.5 ◦C are well within our observation-constrained estimates. However, our740

68 % confidence interval is narrower than the IPCC AR5 estimate of 1.5–4.5 ◦C, particularly on the

low end.

3.3.1 Influence of individual observational data on the probability distribution

26 different observational data sets are applied to constrain carbon cycle and physical climate re-

sponses. This raises the question to which extent an individual data set or a group of data sets con-745

strain the model responses and and whether some data sets may unintentionally deteriorate estimates.

Uncertainties in the carbon cycle are irrelevant for the physical metrics TCR and ECS. Correspond-

ingly, data sets aimed to constrain the carbon cycle response, e.g. land carbon inventory data, should

not affect estimates of TCR and ECS.

The effect of the different observational constraints on the constrained, posterior distribution for750

TCR and ECS is estimated by applying only subsets of the observational data. First, the subsets of

constraints is given the full weight as if they were the only available data (Fig. 6a and c). As expected,

the data groups “land” and “ocean”, targeted towards carbon cycle responses, do not influence the

outcomes for TCR and ECS. The subgroups “heat” (SAT and ocean heat uptake records) and “CO2”

both constrain TCR and ECS and shift the prior PDF towards the fully constrained PDF when applied755

alone (Fig. 6a and c). The SAT record tends to constrain TCR and ECS to slightly higher values and

the ocean heat uptake data to slightly lower values than the full constraint.

Interestingly, also the “CO2” subgroup narrows the probability distribution for TCR and ECS,

although less than the SAT and ocean heat records. The “CO2” subgroup includes data sets of the

atmospheric CO2 increase over the industrial period and observation-based estimates of the ocean760

and land carbon uptake for recent periods. Ocean carbon and heat uptake are governed by similar

processes, namely the surface-to-deep transport of excess carbon and heat from the surface to the

deep ocean. Apparently, model members that are not able to describe the ocean carbon uptake and the

evolution in atmospheric CO2 reasonably well, fail also to match observational records for SAT and
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ocean heat content. The PDF for the “CO2” subgroup displays several maxima for ECS and similar765

for TCR. We are not in a position to provide a firm explanation for these maxima, but speculate that

this result may be related to the limited number of members in our ensemble and that the multi-

dimensional model parameter space is not completely sampled.

Second, the subsets of constraints are added successively (Fig. 6b and d). Unlike above, weights

associated to each subgroup are now set to correspond to the weights they will have in the fully770

constrained set (i.e. after adding all the subsets). Please note that the fully constrained posterior

distribution does not depend on the order of applying the individual constraints. When applied se-

quentially with their corresponding weights in the full constraint, ocean heat uptake represents the

strongest constraint. In contrast, the SAT record changes the prior PDF only slightly (dashed magenta

line in Fig. 6b and d) when applied with its corresponding weight in the full constraint. Similarly,775

adding the group “CO2” after the ocean heat uptake data shifts the PDF only slightly (solid magenta

vs. cyan line in Fig. 6b and d). This suggests that the CO2 data does not add substantial information

with respect to TCR and ECS that is not already captured by the temperature data. In summary, the

subgroup “heat” represents the strongest constraints for TCR and ECS. In particular the ocean heat

uptake data is important for constraining these metrics and exerts the dominant influence on the final780

PDFs.

4 Discussion

We have quantified the Transient Climate Parameter Response to cumulative CO2 Emissions,

TCPREX , for multiple Earth system variables, the responses to a CO2 emission pulse defining

the Impulse Response Function (IRF), and three other important climate metrics, the Equilibrium785

Climate Sensitivity (ECS), the Transient Climate Response (TCR), and the the Transient Climate

Response to cumulative CO2 Emissions (TCRE). TCPREX and IRF are evaluated for global and

regional changes in physical and biogeochemical parameters. The linearity and path-dependency

in responses and scenario uncertainties as well as model response uncertainties are quantified. Our

probabilistic results are derived with an observationally constrained ~1000-member ensemble of the790

Bern3D-LPJ model and for 55 different greenhouse gas scenarios and additional idealized simula-

tions.

A caveat is that we apply a cost-efficient Earth System Model of Intermediate Complexity with

limitations in spatial and temporal model resolution and mechanistic representation of important

climate processes. However and in contrast to reduced-form, box-type, two-dimensional, linear re-795

sponse models, expert assumptions, or component models applied in many earlier probabilistic as-

sessments (e.g. Wigley and Raper, 2001; Knutti et al., 2002, 2003, 2005; Schleussner et al., 2014;

Bodman et al., 2013; Little et al., 2013; Harris et al., 2013; Holden et al., 2013; Bhat et al., 2012),

the Bern3D-LPJ features a dynamic three-dimensional ocean with physically consistent formula-
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tions for the transport of heat, carbon, and other biogeochemical tracers, similar to work by Holden800

et al. (2010) and Olson et al. (2012), and includes a state-of-the-art dynamic global vegetation model,

peat carbon, and anthropogenic land use dynamics. The model is applied directly without using an

emulator (Holden et al., 2010; Olson et al., 2012; Holden et al., 2015). Further, we note that no ocean

carbonate chemistry or marine biology parameters were varied in this study. Results for changes in

Atlantic Meridional Overturning (AMOC) are known to vary considerably among different models805

and our ensemble may not represent the full uncertainty in AMOC response. Important processes are

not represented in Bern3D-LPJ. Most notably, the melting of ice sheets and glacier and its impacts

on sea level and AMOC are not included. Consequently, only results for the steric component of sea

level rise are reported and results for changes in AMOC should be considered with caution. Potential

climatic "surprises" such as the massive release of methane from clathrates or permafrost are also810

not considered.

4.1 TCPREX : The emission-response relationship

A main focus of this study is on TCPREX and thus on the probabilistic relationship between cumula-

tive CO2 emissions and the transient or peak response in individual, illustrative climate parameters.

TCPREX was evaluated both by using the response and emission data for each year of a simula-815

tion and in the case of TCPREXpeak by considering only the peak (or maximum) in response over a

transient simulation. For simplicity, the term TCPREX is often used to refer to both quantities in

the following discussion. In this study, probability distributions are always determined for the cli-

mate parameter response for a fixed, given amount of emissions. For example, for 1000 Gt C of total

emissions, the peak response in global mean surface temperature change (∆SAT) is determined to820

2.31 ◦C and to be with a probability of 68 % within 1.49 and 3.81 ◦C (Table 2).

The magnitude of the response is in general non-linearly related to cumulative CO2 emissions.

This may present no fundamental problem. Yet, non-linearity in responses add to the scenario uncer-

tainty and extrapolation beyond the considered scenario space may not provide reliable results. Non-

linear relationships cannot be precisely summarized with one single number. For convenience, we825

have approximated responses for the investigated variables by linear fits (Tables 2 and A2). A close

to linear relationship is found for pH. Consistent with earlier studies, we also find an approximately

linear relation between transient surface temperature increase and cumulative CO2 emissions of

about 1–3 ◦C (Tt C)−1 over our set of multi-agent scenarios. There are some non-linear tempera-

ture responses in strong mitigation scenarios (particularly those with negative emissions).830

Within Bern3D-LPJ, TCPRE∆SAT is higher when evaluated at 1000 Gt C than when evaluated at

2000 or 3000 Gt C (see Table 2). This may be related to non-CO2 forcing as it has potentially a rela-

tively smaller role in high-emission scenarios. It may also be model specific as similar tendencies are

found not only for the other physical parameters, but also the ocean acidification parameters which

are hardly influenced by non-CO2 forcing. A tendency for the TCRE to decrease with increasing835
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cumulative emissions is noted in earlier studies (Herrington and Zickfeld, 2014; Gillett et al., 2013;

Matthews et al., 2009), while Krasting et al. (2014) find TCRE to be large for low and high emission

rates and low for modern emission rates in idealized scenarios in the GFDL model.

4.2 Climate targets, allowable emissions and TCPREX

Next we address climate targets and allowable emissions, widely discussed in the literature for global840

mean surface temperature (e.g. Siegenthaler and Oeschger, 1978; Friedlingstein et al., 2011; Rogelj

et al., 2011; Peters et al., 2013). The link between a climate target, e.g., the 2 ◦C target, and al-

lowable emissions is closely related to TCPREX and TCPREXpeak. The probabilistic, quantitative

relationship between a climate variable of choice and cumulative CO2 emissions permits one to as-

sess the ceiling in cumulative CO2 emissions if a specific individual limit is not to be exceeded with845

a given probability, P . This quantification of allowable emissions is possible irrespective of whether

the emission-parameter response relationship is linear or not. Estimates of allowable emissions may

be inferred from the full model ensemble results or approximated graphically from the Figs. 3 to

5. Even simpler, TCPREX(P ) (or TCPREXpeak(P )) is a convenient measure to link a given climate

target with allowable fossil fuel CO2 emissions, Eallowable. It holds:850

Eallowable =
Xtarget(P )

TCPREX(P )
trillion-ton-carbon, (11)

where Xtarget(P ) is a limit in parameter X not to be exceeded with probability P . TCPREX(P )

is then the numerical value determined from the probability distribution (e.g. Fig. 3d) of TCPREX

for a given cumulative probability P (or (1−P )). In case of an approximately linear emission-

response relationship, a single value of TCPREX(P ) applies for different target levels. For example,855

TCPRE∆SAT
peak is 2.85 ◦C per trillion ton-C and at the 68 % percentile (evaluated for total emissions of

1000 Gt C). Then, allowable total carbon emissions to keep global mean surface temperature warm-

ing below 2 ◦C at any time with a 68 % probability is estimated to 702 Gt C (2/2.85· trillion ton-C).

Numerical values of TCPREX vary with the magnitude of emissions (Tables 2 and A2) as men-

tioned above. Cumulative fossil and land use emissions up to year 2100 are typically lower than860

1500 Gt C for the mitigation scenarios of the Energy Modeling Forum Project 21 (Van Vuuren et al.,

2008). Thus, in the context of emission mitigation, the numerical values (median and confidence

interval) determined at 1000 Gt C cumulative fossil fuel emissions appear best suited (Tables 2 and

A2). For convenience, we provide the inverse values of TCPREX and TCPREXpeak for the different

climate parameters for the 68 % and 90 % percentiles of the cumulative, integrated probability dis-865

tribution in table 3. Multiplying the appropriate value with the climate target of choice yields the

allowable emissions to meet this target with 68 % and 90 % probability, respectively.

Some aspects are not explicitly considered here. First, meeting a set of multiple targets requires

lower cumulative CO2 emissions than required to meet the most stringent target within the set in
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probabilistic assessments (Steinacher et al., 2013). Thus, the evaluation of allowable cumulative870

emissions to meet multiple climate targets requires their joint evaluation. In practical terms, the joint

evaluation of the 2 ◦C target and the Southern Ocean saturation target would yield lower allowable

emissions than indicated in the above paragraph.

Second, inertia in the socio-economic system limits the rate of carbon emission reduction. In other

words, carbon emissions are committed for the future through existing infrastructure. The committed875

peak change in a climate parameter X (relative to preindustrial) under a limited, constant rate of

emission reduction s is easily evaluated using the tabulated values of TCPREX (Allen and Stocker,

2014):

Xpeak = TCPREX
(
e(t)

s
+E(t)

)
(12)

Here, e(t) denotes the CO2 emissions at time t, e.g., today, e(t)/s is the cumulative sum of880

future emissions (given exponentially decreasing emissions with rate s), and E(t) the cumulative

emissions over the historical period up to time t. Economically feasible emission reduction rates

are considered to be in the range of a few percent. In 2015, total CO2 emissions are about 10 GtC

per year and realized emissions from fossil fuel burning, land use, and cement production are about

600 GtC. This yields a committed (median) change in SAT of 2.5 (2.31 ◦C per trillion ton-C ×885

(10/0.02+600) GtC) and 1.8 ◦C when assuming immediate emission reduction with a rate of 2% and

5% , respectively. The corresponding commitments in pH decrease are 0.22 and 0.16.

Climate targets may become out of reach when the transition to a decarbonized economy is de-

layed. This is quantitatively illustrated by the Mitigation Delay Sensitivity (MDS; Stocker, 2013;

Pfister and Stocker, submitted), a metric that captures the additional, committed increase in a climate890

parameter due to a delay in emission reduction. Again, the values of TCPREX given in Tables 2 and

A2 allow one to compute the median and the 68% confidence interval for the MDS following Allen

and Stocker (2014).

4.3 Impulse Response Functions

The response to a pulse-like input of carbon into the atmosphere for atmospheric CO2, ocean and895

land carbon, surface air temperature, and steric sea level rise are discussed elsewhere (e.g. Archer

et al., 1998; Frölicher et al., 2014; Joos et al., 2013; Shine et al., 2005). Here we provide in addition

impulse response functions for surface ocean pH and calcium carbonate saturation states, and soil

carbon. A substantial fraction of carbon emitted today will remain airborne for centuries and mil-

lennia. The impact of today’s carbon emissions on surface air temperature will accrue within about900

20 years only, but persists for many centuries. In the Bern3D-LPJ as in many other models, surface

air temperature remains approximately constant after the first ~20 years after the pulse input. As

found in earlier studies, the normalized IRF in SAT depends relatively weakly on the magnitude of

the emission pulse. However, the peak warming is realized later for larger than for smaller emission
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pulses in the Bern3D and in a range of other models (Joos et al., 2013; Zickfeld and Herrington,905

2015). Interestingly, Frölicher et al. (2014) find that surface air temperature increases for several

centuries in their CO2 pulse experiment with the GFDL model. Steric sea level rise accrues slowly

on multi-decadal to century time scales. Similar as for atmospheric CO2, peak impacts in surface

ocean pH and saturation states occur almost immediately after emissions and these changes will

persist for centuries and millennia. Thus, the environment and the socio-economic system will ex-910

perience the impact of our current carbon emissions more or less immediately and these impacts are

irreversible on human time scales.

4.4 Transient and Equilibrium Climate Sensitivity

Another focus of this study is to provide observation-constrained estimates of the Transient Climate

Response (TCR), the Equilibrium Climate Sensitivity (ECS), and the Transient Climate Response915

to cumulative CO2 Emissions (TCRE) as determined from CO2-only scenarios. The recent slow-

down in global surface air-temperature warming (Hartmann et al., 2013; Roberts et al., 2015; Nieves

et al., 2015; Karl et al., 2015; Marotzke and Forster, 2015), termed hiatus, has provoked discussions

whether climate models react too sensitive to radiative forcing. Here, the observation-constrained

TCR and ECS are quantified to 1.7 and 2.9 ◦C (ensemble mean) with 68 % uncertainty ranges of 1.3920

to 2.2 and 2.0 to 4.2 ◦C, respectively. TCRE is estimated to 1.7 ◦C (Tt C)−1. Our results for ECS,

TCR, and TCRE are consistent with the CMIP5 estimates in terms of multi-model mean and un-

certainty ranges (Flato et al., 2013) and there is no apparent discrepancies between our observation-

constrained TCR and CMIP5 models. On the other hand, our results do not confirm some recent

studies (Otto et al., 2013; Schwartz, 2012; Collins et al., 2013) that suggest the possibility of a TCR925

below 1 ◦C. Such low values for TCR are outside the very likely range given in the Fourth Assess-

ment Report of IPCC (discussed by Collins et al., 2013) and of this study.

The choice and record length of observational constraints may bias results for TCR and ECS.

In particular, internal climate variability, e.g., associated with the Atlantic Multi-decadal Oscilla-

tion, may obscure the link between anthropogenic forcing and response (van der Werf and Dolman,930

2014). Ocean heat content data provide the strongest constraint on ECS and TCR in our analysis.

The influence of the applied long-term hemispheric surface air temperature (SAT) records is smaller.

This is not surprising as ocean heat content represents the time-integrated anthropogenic forcing

signal both in the observations and in our model. Roemmich et al. (2015) analyzed a large set of

ocean temperature measurements from floats covering the top 2000 m of the water column and con-935

cluded that ocean heat uptake continues steadily and unabated over the recent period 2006 and 2013.

The significant variability in surface temperature and upper 100 m heat content was offset by op-

posing variability from 100–500 m. The high variability of the SAT and SST records as evidenced

by the hiatus serves to emphasize that these records are poor indicator of the steadier subsurface-

ocean and climate warming signal on the decadal timescale. These findings appear to support our940
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approach where ocean heat data provide the strongest constraint on TCR and ECS, complemented by

hemispheric century-scale (1850 to 2010) SAT records. Studies that rely on decadal-scale SAT (or

SST) changes as included in the most recent assessment by the Intergovernmental Panel on Climate

Change (IPCC) may be affected by large and unavoidable uncertainties due to the chaotic nature

of natural, internal variability (van der Werf and Dolman, 2014). These findings suggest that the945

downward revision of the ECS range from the IPCC Assessment Report Four to Report Five may, in

hindsight, appear perhaps somewhat cautious and that the AR4 range may be more reliable.

5 Summary and conclusions

We have quantified the Transient Climate Parameter Response to cumulative CO2 Emissions,

TCPREX , for multiple Earth system variables, the responses to a CO2 emission pulse defining the950

Impulse Response Function (IRF), and three other important climate metrics, the Equilibrium Cli-

mate Sensitivity (ECS), the Transient Climate Response (TCR), and the Transient Climate Response

to cumulative CO2 Emissions (TCRE). Our results are based on (i) a large number of simulations

carried out in a probabilistic framework for the industrial period and for the future using 55 different

greenhouse gas scenarios, different emission pulses, and a ~1000-member model ensemble and (ii)955

a diverse and large set of observational data as constraints. The observation-constrained probabil-

ity density functions provide both best estimates and uncertainties ranges for risk analyses and for

determining allowable emissions to meet a climate target.

The 68% confidence intervals for TCR and ECS are constrained to 1.3 to 2.2 ◦C and 2.0 to 4.2 ◦C,

respectively. This is fully consistent with the range found by the CMIMP5 models, but in conflict960

with suggestions of the possibility of a TCR below 1 ◦C. Ocean heat content data provide the most

stringent constraint on these estimates, while observation-based records of surface air temperature

and of the atmospheric CO2 budget are of secondary importance in our analysis.

TCPREX and IRF are evaluated for changes in physical variables including surface air and ocean

temperature, sea level, and Atlantic Meridional Overturning Circulation and changes in ocean acid-965

ification parameters and terrestrial soil carbon stocks. Path-dependency in responses and scenario

uncertainties as well as model response uncertainties are quantified.

The IRF analysis provides a theoretical framework to discuss path-dependency and linearity in

response without the need to run many independent scenarios. It reveals that a perfect linearity

between cumulative CO2 emissions and Earth system variables is not to be expected. Nevertheless,970

the median values of the (normalized) IRFs vary within a limited range for an emission age range

between 30 and 500 years and for pulse sizes between 100 and 3000 Gt C for global mean surface

air temperature, surface ocean pH, Atlantic Meridional Overturning (AMOC), and to a somewhat

lesser degree for steric sea level rise (SSLR). This implies a a close-to-linear relationship between

these variables and cumulative CO2 emissions and relatively little influence of the CO2-emission975
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scenario-choice for these variables. On the other hand, the IRFs for atmospheric CO2, global soil

carbon inventory and aragonite saturation in the tropics and Southern Ocean show to vary with the

size of the emission pulse, implying some non-linearity in the emission-response relationship.

TCPREX provides a convenient metric to characterize (i) responses of different climate parame-

ters to CO2 emissions and (ii) to estimate the link between an individual climate target and allowable980

emissions. A close to linear relationship between cumulative CO2 emissions and modeled change

is found for the Earth System parameters investigated here and when considering both scenario

and response uncertainty and total emissions of up to 3000 Gt C. These findings suggests that the

emission-response and emission-climate target relationships described by TCPREX should be fur-

ther evaluated and quantified for additional impact-relevant climate parameters and using the full985

Earth System Model hierarchy.

Appendix A: Total versus fossil-fuel only CO2 emissions

Many studies report TCRE with respect to “cumulative total anthropogenic CO2 emissions” (e.g.

IPCC, 2013; Allen et al., 2009; Meinshausen et al., 2009), not distinguishing between fossil-fuel

emissions and emissions from land-use changes. Here, we use a model that explicitly simulates990

terrestrial carbon fluxes, including those from land-use changes. Thus the diagnosed CO2 emissions

obtained by closing the global carbon budget to match the prescribed atmospheric concentration in

the scenarios correspond to fossil-fuel emissions only. In order to estimate total emissions in our

simulations, direct land-use emissions (i.e. carbon from vegetation that is removed due to land-use

changes) are instantaneously added to the diagnosed fossil-fuel emissions. The delayed emission of995

carbon from deforestation via product and litter pools as well as indirect land-use change effects

such as the losses of terrestrial sink capacity (Strassmann et al., 2008) or from the abandonment

of land-use areas are simulated by the model, but they are not included in the estimate of total

carbon emissions because this would require additional simulations. Shifting cultivation (Stocker

et al., 2014) has not been considered in this study. Results in the present study are mostly given as1000

a function of total (fossil-fuel plus deforestation) and, where indicated, additionally as a function of

fossil-fuel emissions. Results for fossil-fuel emissions only are provided in the appendix (Fig. A3

and Table A2).
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Table 1. Response to a 100 Gt C CO2 emission pulse on different time scales as simulated by the Bern3D-LPJ

model (cf. Fig. 2). The values (ensemble median and 90 % range) indicate the difference to a baseline simulation

without emission pulse after 20, 50, 100, and 500 years for the atmospheric CO2 concentration (∆pCO2),

global annual mean surface temperature (∆SAT), steric sea level rise (SSLR), Atlantic meridional overturning

circulation (∆AMOC), global annual mean surface ocean pH (∆pH), annual mean surface aragonite saturation

in the Southern Ocean (∆Ωarag,S.O.) and in the tropics (∆Ωarag, trop.), and global soil carbon stocks (∆Csoil).

Variable Units 20 years 50 years 100 years 500 years

∆pCO2 ppm 30.6 [26.9–33.8] 25.6 [21.0–29.6] 22.0 [17.3–26.6] 15.0 [11.2–21.9]

∆SAT ◦C 0.18 [0.10–0.27] 0.17 [0.10–0.30] 0.17 [0.09–0.32] 0.14 [0.06–0.35]

SSLR cm 0.82 [0.51–1.15] 1.26 [0.68–1.99] 1.65 [0.80–2.81] 2.44 [1.03–5.82]

∆AMOC % −2.4 [−4.0 to −0.8] −2.1 [−4.5 to −0.3] −1.8 [−4.5–0.0] −0.8 [−3.9–0.7]

∆pH 10−2 −2.6 [−2.8 to −2.2] −2.3 [−2.6 to −1.9] −2.0 [−2.4 to −1.6] −1.4 [−2.0 to −1.0]

∆Ωarag,S.O. 10−2 −7.7 [−9.0 to −5.8] −6.8 [−7.9 to −5.4] −5.9 [−6.9 to −4.7] −4.1 [−5.3 to −3.1]

∆Ωarag,trop. 10−2 −12.7 [−13.9 to −11.4] −10.8 [−12.2 to −9.2] −9.3 [−10.8 to −7.7] −6.5 [−8.5 to −5.2]

∆Csoil Gt C 1.11 [−1.03–5.22] 1.38 [−3.05–8.92] 1.42 [−6.82–12.01] 1.73 [−21.65–13.32]
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Table 2. Transient (TCPREX ) and peak (TCPREXpeak) response per 1000 Gt C total CO2 emissions estimated

with different methods. Ensemble medians and 68 %-ranges (i.e. the 16% and 84% percentiles) are taken from

the relative probability maps derived from all model configurations and scenarios at 1000, 2000, and 3000 Gt C

total emissions as well as from the linear regression slope (see Methods). The correlation coefficient (r, median

and 68 %-range) and the median standard error as percentage of the median regression slope (σ̂) are given for

the linear fit of the peak response.

Variable X Method TCPREX TCPREXpeak Goodness of linear fit

∆SAT 1000 Gt C 1.95 [1.12–3.38] 2.31 [1.49–3.81]

(◦C) 2000 Gt C 1.96 [1.23–3.12] 2.12 [1.37–3.30]

3000 Gt C 1.90 [1.27–2.66] 1.92 [1.29–2.68]

Lin. reg. 1.75 [1.18–2.48] 1.76 [1.14–2.56] r = 0.92± 0.04, σ̂ = 36%

∆SST 1000 Gt C 1.47 [0.89–2.45] 1.68 [1.11–2.68]

(◦C) 2000 Gt C 1.40 [0.91–2.08] 1.49 [0.99–2.15]

3000 Gt C 1.30 [0.91–1.70] 1.32 [0.91–1.72]

Lin. reg. 1.30 [0.87–1.78] 1.31 [0.85–1.86] r = 0.92± 0.04, σ̂ = 35%

SSLR 1000 Gt C 25 [14–44] 29 [18–48]

(cm) 2000 Gt C 23 [14–38] 27 [17–42]

3000 Gt C 21 [13–32] 25 [17–36]

Lin. reg. 19 [12–25] 23 [15–33] r = 0.91± 0.04, σ̂ = 39%

∆AMOC 1000 Gt C −16 [−29 to −7] −24 [−35 to −15]

(%) 2000 Gt C −15 [−23 to −9] −18 [−26 to −12]

3000 Gt C −14 [−19 to −9] −15 [−20 to −10]

Lin. reg. −15 [−22 to −9] −15 [−22 to −10] r = 0.8± 0.1, σ̂ = 40%

∆ pH 1000 Gt C −0.19 [−0.22 to −0.15] −0.20 [−0.23 to −0.18]

(1) 2000 Gt C −0.18 [−0.21 to −0.16] −0.18 [−0.21 to −0.15]

3000 Gt C −0.17 [−0.19 to −0.15] −0.17 [−0.19 to −0.15]

Lin. reg. −0.18 [−0.20 to −0.16] −0.17 [−0.19 to −0.15] r = 0.98± 0.01, σ̂ = 12%

∆Ωarag,S.O. 1000 Gt C −0.55 [−0.66 to −0.45] −0.61 [−0.68 to −0.55]

(1) 2000 Gt C −0.46 [−0.53 to −0.39] −0.46 [−0.51 to −0.41]

3000 Gt C −0.40 [−0.45 to −0.35] −0.40 [−0.43 to −0.35]

Lin. reg. −0.48 [−0.53 to −0.42] −0.43 [−0.48 to −0.38] r = 0.87± 0.05, σ̂ = 30%

∆Ωarag, trop. 1000 Gt C −0.87 [−1.04 to −0.71] −0.96 [−1.04 to −0.89]

(1) 2000 Gt C −0.76 [−0.86 to −0.65] −0.74 [−0.82 to −0.68]

3000 Gt C −0.67 [−0.73 to −0.61] −0.66 [−0.70 to −0.61]

Lin. reg. −0.78 [−0.85 to −0.71] −0.71 [−0.79 to −0.65] r = 0.93± 0.03, σ̂ = 24%

∆Csoil 1000 Gt C −59 [−234 to +22] −77 [−268 to −17]

(Gt C) 2000 Gt C −73 [−201 to −5] −82 [−217 to −4]

3000 Gt C −75 [−162 to −17] −80 [−170 to −15]

Lin. reg. −26 [−85 to +24] −39 [−122 to +25] r = 0.7+0.1
−0.7, σ̂ = 165%
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Table 3. Inverse values of TCPREX and TCPREXpeak for the different climate parameters. The values are de-

termined at 1000 Gt C total and fossil-fuel CO2 emissions, respectively, and are given for the 68% and 90%

percentiles of the cumulative probability distribution. Under the assumption of linearity, the allowable emissions

to meet a given target with 68% or 90% probability can be estimated by multiplying the corresponding value

in the table with the target value of the climate parameter. ∆Csoil is omitted in this table due to its non-linear

response and large uncertainty.

Total emissions Fossil-fuel emissions

Variable Units P = 68% P = 90% P = 68% P = 90%

[TCPRE∆SAT]−1

Gt C/◦C
402 245 360 219

[TCPRE∆SAT
peak ]−1 351 215 315 194

[TCPRE∆SST]−1

Gt C/◦C
532 329 479 296

[TCPRE∆SST
peak ]−1 479 294 426 262

[TCPRESSLR]−1

Gt C/cm
31.2 19.6 27.8 17.2

[TCPRESSLR
peak ]−1 27.8 17.9 25.6 16.1

[TCPRE∆AMOC]−1

Gt C/%
-46.6 -30.3 -42.3 -27.9

[TCPRE∆AMOC
peak ]−1 -35.3 -25.1 -33.4 -23.8

[TCPRE∆pH]−1

Gt C
-5000 -4348 -4348 -3846

[TCPRE∆pH
peak ]−1 -4545 -4000 -4348 -3704

[TCPRE∆Ωarag,S.O. ]−1

Gt C
-1667 -1449 -1515 -1316

[TCPRE
∆Ωarag,S.O.
peak ]−1 -1563 -1429 -1471 -1333

[TCPRE∆Ωarag, trop. ]−1

Gt C
-1042 -926 -935 -840

[TCPRE∆Ωarag, trop.
peak ]−1 -1010 -926 -943 -870
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Figure 1. Flowchart illustrating the applied methodology. First, an ensemble of model configurations is gener-

ated from prior distributions of model parameters. Then the ensemble is constrained by 26 observational data

sets by calculating a skill score (Sm) for each ensemble member (m). In the next step, the constrained model

ensemble is run into the future under multiple greenhouse gas scenarios (s) as well as for idealized 2xCO2

and CO2 emission pulse simulations. Finally, probability distributions are calculated from these simulations

for TCR, ECS, and TCRE as well as for TCPREX and IRFX and different climate parameters, X .
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Figure 2. Response to an emission pulse of 100 Gt C added to an atmospheric concentration of 389 ppm. En-

semble median (solid red line) and 68/90 % ranges (dark/light orange) of changes in (a) atmospheric CO2, (b)

surface air temperature, (d) steric sea level rise, (e) Atlantic meridional overturning circulation, (f) global soil

carbon stocks, (g) global mean surface ocean pH, (h) southern and (i) tropical ocean surface aragonite satura-

tion are shown. The dashed lines show the response (per 100 Gt C) for median parameters and pulse sizes of

100 (red), 1000 (black), 3000 (blue), and 5000 Gt C (green). (c) shows the mean age of past emissions over the

historical period and for the four RCP scenarios (left axis), and the fraction of the emissions older than 30 years

(right axis) versus calendar years. More than half of the emissions are older than ~30 years. The bulk of the

emissions at any calendar year is thus in the age range (x-axis in the other panels) where the pulse response

function varies within a limited range for surface air temperature (b), surface pH (g) steric sea level rise (d)

and Atlantic meridional overturning (e). This implies an approximately linear relationship between cumulative

emissions and responses in these variables.
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Figure 3. Transient and peak warming as function of cumulative emissions: (a) relative probability of transient

surface air temperature change (∆SAT) for given cumulative CO2 emissions (fossil fuel and deforestation),

derived from annual values from ensemble model simulations for 55 greenhouse-gas emission scenarios. Black

dashed lines show the median and 68 %-range of the linear regression slope. The red line indicates the coverage

of the emission range by the model ensemble. High and low emission ranges with a coverage of less than 90 %

are shaded and considered not robust. (b) Transient ∆SAT response (ensemble median) for the 55 different

scenarios. The dashed/dotted lines show the 68/90 %-range of the ensemble for the RCP8.5 scenario, to indicate

the model-spread. Please note that our extensions of the RCP scenarios beyond 2100 are not identical to the

Extended Concentration Pathways (ECP, see Methods). (c) Same as (a) but for the peak warming for given

total cumulative emissions. (d) PDFs of the peak warming for 1000 (blue), 2000 (green), and 3000 Gt C (red)

cumulative emissions, and for the linear regression (black). The dashed lines indicate the unscaled PDFs and

solid lines the normalized response per 1000 Gt C. (e, f) Same as (a, b) but for transient sea surface temperature

change (∆SST). 44



Figure 4. Response of SSLR, AMOC, and pH to cumulative CO2 emissions (including deforestation), similar

to Fig. 3a and b.
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Figure 5. Same as Fig. 4 but for the transient response in surface aragonite saturation state in the Southern

Ocean and in the tropics, and in global soil carbon stocks.
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Figure 6. PDFs of transient climate response (a, b) and equilibrium climate sensitivity (c, d) derived from the

model ensemble and for different observation-based constraints. In (a and c) the PDFs are shown for the en-

semble without constraints (prior, black line), for the case when each of the constraint groups “heat” (magenta),

“CO2” (cyan), “ocean” (blue), and “land” (green) is applied alone with equal weights, and for all constraints

(red). The group “heat” is split up further into SAT anomaly (dashed magenta) and ocean heat uptake observa-

tions (dotted magenta). In (b and d) the constraints are added sequentially with their corresponding weights in

the full constraint in the following order: SAT anomaly (magenta dashed), ocean heat uptake (magenta solid),

CO2 (cyan), ocean (blue), and land (red, corresponding to the full constraint).
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Table A1. Sampled model parameters with plausible ranges based based on literature and/or expert judgment

(pmin, pmax). Normal prior distributions N(x;pstd,σ) = 1

(
√

2πσ)
exp(− (x−pstd)2

2σ2 ) with σ = pmax−pmin
4

are chosen

for ranges that are basically symmetric with respect to the standard parameter value (pstd). Log-normal priors

L(x;pstd,s, l) = 1

(
√

2πs(x−l)) exp(− (ln(x−l)−ln(pstd−l))2
2s2

) are used for asymmetric ranges, with s and l chosen

such that the median of the distribution matches pstd and the standard-deviation σ is 1
4

of the parameter range,

as for the normal distribution.

Parameter Description pstd pmin pmax Prior Refs.

αa Photosynthesis scaling parameter (leaf to canopy) 0.5 0.3 0.7 N(pstd,σ) Zaehle et al. (2005); Haxeltine and Prentice (1996)

αC3 Intrinsic quantum efficiency of CO2 uptake (C3 plants) 0.08 0.02 0.125 N(pstd,σ) Zaehle et al. (2005); Farquhar et al. (1980); Hallgren and Pitman (2000)

θ? = 1− θ Co-limitation shape parameter (light vs. Rubisco act.) 0.3 0.004 0.8 L(pstd,0.54,0) Zaehle et al. (2005); Collaty et al. (1990); Leverenz (1988)

gm Max. canopy conductance 3.26 2.5 18.5 L(pstd,1.05,1.5) Zaehle et al. (2005); Magnani et al. (1998)

τsapwood Sapwood to heartwood turnover (yr) 20 5 100 L(pstd,0.76,0) Zaehle et al. (2005); Bartelink (1998)

mortmax Asymptotic maximum mortality rate (yr−1) 0.01 0.005 0.1 L(pstd,1.19,0) Zaehle et al. (2005)

respQ10 ,eq Temp. sensitivity of respiration and soil decomp. 2.4 1.3 3.3 N(pstd,σ) Lloyd and Taylor (1994); Raich and Schlesinger (1992)

ksoil,scale Scaling factor for SOM decomp. rates at 10 ◦C 1.0 0.5 2.0 L(pstd,0.41,0.2) Trumbore (2000)

fsoil Fraction of decomp. litter entering soil pools (%) 40 20 60 N(pstd,σ) Zaehle et al. (2005); Jenkinson (1990)

fslow Fraction of soil-bound litter entering slow soil pool (%) 1.5 1.0 15 L(pstd,1.05,0) Zaehle et al. (2005); Kergoat (1998)

Cpeat,scale Initial soil carbon in NH peatlands (Gt C) 420 190 650 N(pstd,σ) Tarnocai et al. (2009)

CS Nominal equilibrium climate sensitivity (◦C) 3 1 10 L(pstd,0.58,0) Knutti et al. (2003); Meinshausen et al. (2009)

diffzonal Zonal atmospheric eddy-diffusivity (106 m2 s−1) 1.0 0.1 10 L(pstd,1.06,0) Ritz et al. (2011a)

diffmerid,scale Scaling factor for meridional atm. eddy-diffusivity 1.0 0.5 2.0 L(pstd,0.34,0) Ritz et al. (2011a)

diffdia Ocean diapycnal diffusivity (10−5 m2 s−1) 1.0 0.2 20 L(pstd,1.35,0) Edwards and Marsh (2005); Meinshausen et al. (2009)

diffiso Ocean isopycnal diffusivity (m2 s−1) 1,000 300 9,000 L(pstd,1.01,0) Edwards and Marsh (2005); Huang et al. (2003)

kgas,scale Scaling factor for standard OCMIP gas transfer velocity 0.81 0.65 0.97 N(pstd,σ) Müller et al. (2008)

RFGHG,scale Scaling factor for total RF from well mixed GHG 1.0 0.92 1.12 L(pstd,0.17,0.7) Forster et al. (2007)

RFaerosol,scale Scaling factor for total aerosol RF 1.0 0.5 2.0 L(pstd,0.35,0) Forster et al. (2007)

Figure A1. Observation-based data sets used to constrain the model ensemble. The data sets are organized in

a hierarchical structure to balance the weight of individual data sets and model skill scores are aggregated by

averaging over the group of constraints at the same level in the hierarchy (Steinacher et al., 2013).
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Table A2. Same as Table 2, but for fossil-fuel CO2 emissions only. I.e. the gross emissions from deforestation

are not included when regressing the responses against cumulative CO2 emissions (see Methods).

Variable X Method TCPREX TCPREXpeak Goodness of linear fit

∆SAT 1000 Gt C 2.17 [1.25–3.79] 2.56 [1.64–4.25]

(◦C) 2000 Gt C 2.12 [1.36–3.32] 2.26 [1.47–3.47]

3000 Gt C 1.94 [1.33–2.68] 1.96 [1.34–2.70]

Lin. reg. 1.88 [1.28–2.69] 1.87 [1.22–2.78] r = 0.91± 0.04, σ̂ = 35%

∆SST 1000 Gt C 1.62 [0.98–2.70] 1.86 [1.22–3.01]

(◦C) 2000 Gt C 1.50 [1.00–2.19] 1.58 [1.06–2.25]

3000 Gt C 1.33 [0.95–1.72] 1.35 [0.94–1.73]

Lin. reg. 1.38 [0.95–1.93] 1.39 [0.91–2.00] r = 0.91± 0.04, σ̂ = 35%

SSLR 1000 Gt C 29 [16–49] 32 [19–52]

(cm) 2000 Gt C 24 [15–40] 29 [19–45]

3000 Gt C 22 [14–33] 26 [18–37]

Lin. reg. 20 [13–27] 25 [16–35] r = 0.90± 0.04, σ̂ = 36%

∆AMOC 1000 Gt C −18 [−31 to −8] −25 [−37 to −16]

(%) 2000 Gt C −16 [−24 to −10] −19 [−27 to −12]

3000 Gt C −14 [−20 to −9] −15 [−20 to −11]

Lin. reg. −16 [−23 to −10] −16 [−24 to −10] r = 0.8+0.1
−0.2, σ̂ = 41%

∆pH 1000 Gt C −0.21 [−0.25 to −0.18] −0.22 [−0.25 to −0.20]

(1) 2000 Gt C −0.19 [−0.22 to −0.17] −0.19 [−0.22 to −0.17]

3000 Gt C −0.18 [−0.19 to −0.16] −0.17 [−0.19 to −0.16]

Lin. reg. −0.19 [−0.22 to −0.18] −0.18 [−0.20 to −0.16] r = 0.97± 0.01, σ̂ = 17%

∆Ωarag,S.O. 1000 Gt C −0.61 [−0.73 to −0.50] −0.65 [−0.73 to −0.59]

(1) 2000 Gt C −0.48 [−0.56 to −0.41] −0.48 [−0.53 to −0.43]

3000 Gt C −0.41 [−0.46 to −0.36] −0.41 [−0.45 to −0.37]

Lin. reg. −0.51 [−0.56 to −0.46] −0.46 [−0.52 to −0.41] r = 0.80± 0.04, σ̂ = 35%

∆Ωarag, trop. 1000 Gt C −0.98 [−1.15 to −0.81] −1.02 [−1.11 to −0.94]

(1) 2000 Gt C −0.80 [−0.90 to −0.70] −0.78 [−0.85 to −0.72]

3000 Gt C −0.70 [−0.74 to −0.64] −0.68 [−0.72 to −0.64]

Lin. reg. −0.84 [−0.91 to −0.77] −0.76 [−0.84 to −0.69] r = 0.89± 0.03, σ̂ = 28%

∆Csoil 1000 Gt C −66 [−260 to +25] −81 [−288 to +24]

(Gt C) 2000 Gt C −80 [−212 to −9] −89 [−228 to −9]

3000 Gt C −74 [−154 to −17] −80 [−163 to −16]

Lin. reg. −28 [−91 to +26] −42 [−132 to +27] r = 0.7+0.1
−0.7, σ̂ = 158%
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Figure A2. Time series of (a) atmospheric CO2 and (b) total non-CO2 radiative forcing prescribed in the

scenario simulations. The forcings are derived from 22 EMF-21 (black), 4 RCPs (red), 6 GGI (green), and

23 AME (blue) scenarios. After 2100 the scenarios are extended to 2300 by stabilizing CO2 concentrations

and non-CO2 radiative forcing by 2150. The total non-CO2 radiative forcing is the sum of the forcing from

(d) non-CO2 greenhouse gases and (f) aerosols. Please note that for the AME scenarios the aerosol forcing

is kept constant after 2005 because no aerosol emission paths are available for this scenarios. (c) Annual and

(e) cumulative fossil-fuel CO2 emissions diagnosed with the standard model parameter settings are shown for

reference. The annual emissions are smoothed with a 10-year moving average filter. The cumulative emissions

are given relative to the year 2000.

50



Figure A3. Response as function of fossil-fuel CO2 emissions: (a) same as Fig. 3a but for cumulative fossil-

fuel emissions only, i.e. CO2 emissions from deforestation are not included in this figure (see methods). (b–d)

Same as (a) but for the transient steric sea level rise (SSLR), sea surface temperature change (∆SST), and

global annual mean surface ocean pH (∆ pHsurf). The response of the remaining variables to fossil-fuel only

CO2 emissions are given in Table A2.
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