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Abstract. The scattering properties of oceanic particles have many practical applications in oceanic

optics. In particular, several methods have been proposed to estimate important features of the parti-

cles by inversion from optical measurements, such as their size distribution or their refractive index.

Most of the proposed methods are based on the Lorenz-Mie theory to solve Maxwell’s equations,

in which particles are considered homogeneous spheres. A generalization that allows considering5

more complex shaped particles is the T -matrix method. Although this approach imposes some ge-

ometrical restrictions -particles must be rotationally symmetric-, it is applicable to many life forms

of phytoplankton. In this paper, the performance of several inversion methods for the retrieval of the

refractive indices are compared considering three different synthetic scenarios. The error associated

with each method is discussed and analyzed. The obtained results suggest that inverse methods us-10

ing the T -matrix approach are useful to retrieve the refractive indices of complex shapes (i.e., many

phytoplankton species) accurately.

1 Introduction

Light interactions with oceanic particles are the processes by which changes on the composition of

small particles suspended in the water column (such as phytoplankton, sediment or microplastics),15

cause optical observable phenomena that usually are wavelength dependent (for example, changes on

the ocean color or the light extinction with depth) (Andrady, 2011; Cole et al., 2011). Understanding

the interaction of light with particles is the central topic in many bio-optical studies in which the

water particle composition is inferred from in-situ or remote sensing optical observations.

Maxwell’s equations are the basis of theoretical and computational methods describing light inter-20

action with particles. However, exact solutions to Maxwell’s equations are only known for selected

geometries. Scattering from any homogeneous spherical particle with arbitrary size parameter is

explained analytically by the Lorenz–Mie (also known as Mie) theory (Lorenz, 1898; Mie, 1908).

For more complex shaped particles, scattering can be computed using the T -Matrix theory (Water-

man, 1965). At present, the T -Matrix method is the fastest exact technique for the computation of25

nonspherical scattering based on a direct solution of Maxwell’s equations (Mischenko et al., 1996).
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a) Lorenz-Mie

b) T-Matrix

Figure 1. Lorenz-Mie (a) can be used to model spherical shapes, while T -Matrix (b) can be applied to model

more complex shapes such as spheroids, cylinders or Chebyshev particles. As shown by Clavano et al. (2007),

aspect ratios of phytoplankton (ratio of the principal axes of a particle) span between 0.4 and 72.

Although there are some geometrical restrictions, such as axial symmetry, it is applicable to many

life forms of phytoplankton (Quirantes and Bernard, 2006; Stramski et al., 2001) and suspended

mineral particles (Twardowski et al., 2001), as shown in Fig. 1.

Both approximations to solve Maxwell’s equations share one important requirement: the inner30

complex refractive index of the particles must be known. Although new promising techniques such

as Tomographic Phase Microscopy (Choi et al., 2007) may provide in the future measurements of

the refractive index in live cells, at present current ocean instrumentation do not directly provide it,

so it must be estimated somehow (Aas, 1996).

Several inverse models to retrieve the refractive index from optical measurements can be found in35

the literature. For instance, a single equation based on the Lorenz-Mie theory is used by Twardowski

et al. (2001), to estimate the refractive index of a bulk oceanic distribution. It is indeed a fast method

if optical backscattering measurements are available. Stramski et al. (1988) presented an extension of

a model from Bricaud and Morel (1986), designed for isolated phytoplankton cultures (or dominance

of one particular phytoplankton species). It is based on the anomalous diffraction approximation40

(ADA), which allows the computation of the real and imaginary parts of the complex refractive index

as separate variables using only the absorption and attenuation efficiency factors and the concurrent

measurement of the particle size distribution (PSD). And Bernard et al. (2001) simplified this model

by replacing the Lorentzian oscillators with a simple Hilbert transform. All these methods share

one thing in common, they approximate the shape of the particles as homogeneous spheres. Meyer45

(1979) first and Bernard et al. (2009) later suggested that two-layered spherical geometry models

reproduce more accurately the measured algal angular scattering properties. Finally, a combination
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Figure 2. Procedure to analyze the accuracy of the inverse models.

of a genetic algorithm with the Lorenz-Mie and T -Matrix approaches was used by Sánchez et al.

(2014), thereby allowing more complex structures than simple homogeneous or coated spheres. A

genetic algorithm is a search heuristic for optimization problems that simulates the process of natural50

selection using inheritance, mutation, selection, and crossover between different possible solutions.

Again, this method only requires the measured attenuation and scattering coefficients, and the PSD

to find the complex refractive index. This later method is much slower than the previous ones (in

particular, for non-spherical particles), but it can provide very accurate estimations.

In this paper, the refractive index retrieval models mentioned above are reviewed and tested against55

simulated data in order to analyze their accuracy when modeling real (and usually complex-shaped)

particles suspended in water such as phytoplankton. The comparison has been done following the

three steps presented in Fig. 2. First, the forward models (basically, Lorenz-Mie and T -Matrix) are

used to obtain the inherent optical properties (IOPs) of a selected configuration (using as inputs the

assumed wavelength-dependent refractive index, m(λ), the PSD and the particle shape). Then, the60

inverse models (described above) are used to estimate the refractive index using the IOPs obtained

in the first step along with the PSD and particle shape. Finally, the estimated refractive index is

compared with the assumed one to obtain the accuracy of the inverse model.

The simulated examples are implemented using complex refractive indices and PSDs similar to

those found in nature for phytoplankton species. Since phytoplankton particles exhibit a wide variety65

of shapes, each example has been provided with a different outline, accounting for a homogeneous

sphere, a coated sphere and a homogeneous cylinder. None of these idealized models is an exact

representation of a real algae presenting cell walls, chloroplasts, vacuole, nucleus and other internal

organelles, each with its own optical properties. However, they can be considered a first approxima-

tion suitable for the purposes of the tests presented in this contribution.70

It must also be noted that the models are fundamentally different. The model developed by Twar-

dowski et al. (2001) is intended to be used for entire particle populations that are assumed to follow

a power-law size distribution while the other models are developed for single phytoplankton cultures

(or dominance of one particular phytoplankton species) and require the concurrent measurement of
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the size distribution. And, besides, such bio-optical models are compared with a numeric method75

(i.e., the genetic algorithm) in the same conditions. On the other hand, the methodology applied in

this contribution allows to obtain an objective comparison of the results of the different methods in

those occasions where it is not clear which methodology is most suitable, and therefore, interesting

for the ocean optics community.

In order to establish the foundations of the work presented in this paper, Section 2 reviews the80

formulation to obtain the IOPs from Lorenz-Mie and T -Matrix characterizations (that perform the

forward calculations) for polydispersed algal assemblages. In Section 3, a review of the different

inverse approximations to retrieve the refractive index is described. In Section 4, all the models are

used to retrieve the refractive index of three assumed particles in polydisperse assemblages. Section

5 discusses the results and finally, the conclusions are outlined in Section 6.85

2 Model Theory

2.1 Size Distributions and Polydispersions

Algal assemblages are typically polydispersed with regard to size, and can be described by a PSD

F (D), whereD is the particle diameter, and F (D)d(D) is the number of particles per unit volume in

the size range D±1/2d(D) (Bricaud and Morel, 1986). Using absorption as an example (analogous90

expressions may be used for the other IOPs), the absorption efficiency factor representing the mean

of a size distribution can be described as (Bricaud and Morel, 1986):

Q̄a =

∫∞
0
Qa(D)F (D)D2d(D)∫∞
0
F (D)D2d(D)

. (1)

The relationship between the absorption efficiency factor and the absorption cross section is:

Qa =
Ca
G
, (2)95

being G the geometric cross section of the particle. And the resultant volume absorption coefficient

is given by either:

a=
π

4

∞∫
0

Qa(D)F (D)D2d(D)
[
m−1

]
, (3)

or, if the result of Eq. (1) is used:

a=
π

4
Q̄a

∞∫
0

F (D)D2d(D)
[
m−1

]
. (4)100
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2.2 Inherent Optical Properties

Lorenz-Mie and T -Matrix theories are powerful methods to formulate an analytical solution to elec-

tromagnetic scattering by spherical and non-spherical particles. Both rely on the expansion of the

incoming light into spherical harmonics and use an intensive formulation to compute the coeffi-

cients that link the incident field with the scattered and transmitted ones. The complete Lorenz-Mie105

derivation is reviewed by Bohren and Huffman (1998), and the T -Matrix approach is described

by Mischenko et al. (1996). Both theories provide the particle specific optical properties, i.e., the

extinction, scattering and absorption cross sections (which describe the area of the incident-beam

intensity converted to extincted, scattered or absorbed light), CEXT , CSCA and CABS respectively.

Using the obtained cross sections (size-averaged in polydisperse concentrations), the wavelength-110

dependent extinction, scattering and absorption coefficients (c(λ), b(λ) and a(λ) respectively) can

be computed as (Quirantes and Bernard, 2006):

c(λ) =N · 〈CEXT (λ)〉
[
m−1

]
, (5)

b(λ) =N · 〈CSCA(λ)〉
[
m−1

]
, (6)115

a(λ) =N · 〈CABS(λ)〉
[
m−1

]
, (7)

where N denotes the number of particles per unit volume and λ the wavelength. The relationship

between the three parameters is:

c(λ) = a(λ) + b(λ)
[
m−1

]
. (8)120

Scattering can be further characterized in terms of the angular distribution of the scattered light

using the volume scattering function (β) as (Mobley, 1994):

β(Ψ,λ) = β̃(Ψ,λ) · b(λ)
[
m−1sr−1

]
. (9)

Ψ is the scattering angle (i.e., the angle between the incident and scattered beams) and β̃(Ψ,λ)

is the scattering phase function and the first parameter of the Stokes scattering matrix (or Mueller125

matrix). This matrix transforms the Stokes parameters of the incident light into those of the scattered

light and it is obtained with the Lorenz-Mie and T -Matrix formulation when the physical charac-
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teristics of the particles are known. The integral scattering in all directions, assuming azimuthal

symmetry, retrieves the total scattering coefficient b:

b(λ) = 2π

π∫
0

β(Ψ,λ)sin(Ψ)dΨ
[
m−1

]
, (10)130

which can be partitioned into its forward and backward components (bf and bb respectively) by

limiting the integration bounds from 0 to π/2 and from π/2 to π respectively. The backscatter

fraction, defined by:

Bb(λ) =
bb(λ)

b(λ)
. (11)

gives the fraction of scattered light that is deflected through the scattering angles beyond π/2. Given135

Eq. (9) and Eq. (10), the normalization condition for the volume scattering phase function is:

2π

π∫
0

β̃(Ψ,λ)sin(Ψ)dΨ = 1. (12)

This normalization implies that the backscatter fraction can be computed using the volume scat-

tering phase function as:

Bb(Ψ,λ) = 2π

π∫
π
2

β̃(Ψ,λ)sin(Ψ)dΨ. (13)140

The 2π factor used in Eq. (10), Eq. (12) and Eq. (13) (which comes naturally from integration

with respect to the azimuth angle) is different from the 1/2 factor used by Mischenko et al. (1996);

Mischenko and Travis (1998); Wiscombe and Grams (1976); Mugnai and Wiscombe (1986) (where

the integration of phase function is normalized to 4π, representing the total solid angle over entire

sphere), but used by Twardowski et al. (2001), Bohren and Huffman (1998), and most of the literature145

in Ocean Optics (Mobley, 1994), and therefore, applied here.

3 Review of Refractive Index Retrieval Models

In this section, a review of the different approximations to retrieve the refractive index (inverse

models) is presented. Each method is named using the surname of the lead author of the publication.

In order to make the understanding of this section easier, Table 1 shows, for each model, their inputs150

and outputs, type of particles, as well as the assumptions of the model and the equations used.
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Table 1. Summary of the refractive index retrieval models

Inverse models Inputs Outputs Type of par-

ticles

Assumptions Equations

Twardowski

Model

Bb, ξ n Homogeneous

spheres

k = 0.005,

Power-law PSD,

gamma= χ−3

(9), (15)

Stramski

Model

PSD, a and

c (or Qa

and Qc)

n, k Homogeneous

spheres

α� 1, n−1�

1, k� 1

(13), (16),

(17), (18),

(19)

Bernard

Model

a, PSD nchlor ,

kchlor

Coated

spheres

ncyto, kcyto,

VV , 1+ ε

(16), (17),

(20), (21)

Genetic Algo-

rithm Model

a, c, PSD n, k Homogeneous

and coated

spheres,

spheroids,

cylinders and

Txebixev

particles

Particles with

axial symmetry

(2), (3), (22)

The complex refractive index m(λ) is defined as:

m(λ) = n(λ) + ik (λ) , (14)

where the real part n(λ) determines the phase velocity of the propagating wave, and the imaginary

part k (λ) determines the flux decay. The sign of the complex part is a matter of convention (it can155

also be defined with the negative sign). The notation above corresponds to waves with time evolu-

tion given by e−iωt. Note that this paper assumes effective refractive indices relative to seawater,

which has a constant value of mwater = 1.334 + i0 (Hale and Querry, 1973). Absolute values can

be recovered using ma =m×mwater.

3.1 The Twardowski Model160

The Twardowski model, presented by (Twardowski et al., 2001), is based on Volz (1954) as cited

in van de Hulst (1957). It is derived using the Lorenz-Mie theory and the relationship between

the particulate spectral attenuation (cP (λ)) and the size distribution to retrieve the bulk particulate

refractive index from in situ optical measurements. In particular, assumes that γ = ξ− 3 (γ is the

hyperbolic slope of the attenuation coefficient and ξ is the power-law slope of the PSD). It only165
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considers power-law distributions that fulfill the conditions 2.5≤ ξ ≤ 4.5 and 0≤Bb ≤ 0.03. The

bulk refractive index is obtained using a polynomial fit to the output of Lorenz-Mie calculations as:

n̂(Bb,γ) = 1 +B0.5377+0.4867γ2

b

(
1.4676 + 2.2950γ2 + 2.3113γ4

)
. (15)

This formulation is only exact for particles which size spans from 0 to infinity with a constant

absorption along wavelength (k is held constant at 0.005) and are homogeneous spheres. It was first170

tested by Boss et al. (2001a) and refined in Boss et al. (2001b). It must be noted that the model is

consistent with the measurements obtained from an AC9 with the scattering coefficient b serving as

integrated scattering from 0.93 to 180 degrees, which must be considered in Eq. (13). Even though

this was not firstly considered in the calculations in Twardowski et al. (2001), it was taken into

account in Boss et al. (2004), but the regression was not recomputed.175

3.2 The Stramski Model

This model is based on the methods presented by Stramski et al. (1988), which is an extension

of that developed by Bricaud and Morel (1986). It is based on the ADA, first described in van de

Hulst (1957). The ADA offers approximations to the absorption and attenuation optical efficiency

factors using relatively simple algebraic formulae, based on the assumptions that the particle is large180

relative to wavelength (α= πD
λ � 1) and the refractive index is small (n− 1� 1 and k� 1). This

method allows the effects of the real and imaginary refractive indices on absorption and scattering to

be decoupled. Assuming homogeneous geometry, the ADA expression for the absorption efficiency

factor is given by:

Qa (ρ′) = 1 +
2e−ρ

′

ρ′
+ 2

e−ρ
′ − 1

ρ′2
, (16)185

where ρ′ = 4αk is the absorption optical thickness. Eq. (4) and Eq. (16) are then used iteratively

to determine the homogeneous imaginary part of the refractive index (k(λ)) in conjunction with

measured algal absorption and PSD data. According to the Ketteler-Helmholtz theory of anomalous

dispersion (van de Hulst, 1957), a variation in k induces variations in n, quantified with a series of

oscillators (representing discrete absorption bands) based on the Lorentz-Lorentz equations (Stram-190

ski et al., 1988; Bricaud and Morel, 1986). These spectral variations (denoted as ∆n(λ)) vary around

a central part of the real refractive index 1 + ε. Thus:

n(λ) = 1 + ε+ ∆n(λ). (17)
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The central value 1+ε is estimated by computing the nonabsorbing equivalent population attenua-

tion efficiency factor (Q̄NAEc ) at those wavelengths where ∆n(λε) = 0. Considering polydispersion,195

this is done according to:

Q̄NAEc (ρ̄) =

∫∞
0
Qc(ρ)F (ρ)ρ2d(ρ)∫∞
0
F (ρ)ρ2d(ρ)

, (18)

where ρ= 2α(n− 1), F (ρ) is obtained from the experimental size distribution by the replacement

of D by ρ and Qc (ρ) from the van de Hulst’s formula assuming ξ = 0 (van de Hulst, 1957):

Qc (ρ) = 2− 4

ρ
sinρ+

4

ρ2
(1− cosρ). (19)200

The exact value of ε is indicated by such Q̄NAEc (ρ̄) that it equals Q̄c (λε).

This methodology was latterly simplified by Bernard et al. (2001, 2009) by using the Kramers-

Kronig relations to compute the spectral variations in the real part of the refractive index instead the

Lorentzian oscillators. The Kramers-Kronig relations describe the mutual dependence of the real and

imaginary parts of the refractive index through dispersion, as does Ketteler-Helmholtz theory, but205

they are more simply applied than the tedious and sometimes inaccurate use of summed oscillators

(the real part is the Hilbert transform of the imaginary part, van de Hulst, 1957).

3.3 The Bernard Model

Meyer (1979) and Bernard et al. (2009) suggested that two-layered spherical geometry models re-

produce more accurately the measured algal angular scattering properties. In Bernard et al. (2009),210

the outer layer accounts for the chloroplast and the inner layer for the cytoplasm. Refractive index

values are assumed for the cytoplasm, with a spectral imaginary part modelled as:

kcyto(λ) = kcyto(400)e[−0.01(λ−400)], (20)

where kcyto(400) = 0.0005. The real refractive index spectra for the cytoplasm, ncyto(λ), is obtained

using the Hilbert transform (absorption has an influence on scattering and attenuation, expressed215

through the Kramers-Kronig relations) and Eq. (17) with 1 + ε= 1.02. Using the kcyto(λ) of Eq.

(20), volume equivalent kchlor(λ) are determined using the Gladstone-Dale formulation given by:

kchlor(λ) =
kh(λ)− kcyto(λ)VV

1−VV
, (21)

where kh(λ) is the imaginary part of the refractive index considering homogeneous cells and ob-

tained using Eq. (16), and VV is the relative chloroplast volume. According to Bernard et al. (2009),220

a VV value of 20% can be considered as a first approximation for a spherical algal geometry, although

9



higher values should be considered for the large celled dinoflagellate and cryptophyte samples. Other

previous studies have employed relative chloroplast volumes of VV = 41% (Zaneveld and Kitchen,

1995), VV = 58% (Latimer, 1984), and VV = 27% to 66% (Bricaud et al., 1992). The real refractive

index spectra for the chloroplast nchlor(λ) is then similarly generated with a Hilbert transform and225

Eq. (17) with assumed 1 + ε values between 1.044 and 1.14 depending upon the sample.

3.4 The Genetic Algorithm Model

The model presented by Sánchez et al. (2014) uses a genetic algorithm to find the refractive index that

produces the desired scattering and absorption coefficients (a and b) when using the Lorenz-Mie or

T -Matrix approaches with the measured PSD. The methodology of the algorithm can be summarized230

as follows (see Fig. 3). First, a random vector of solutions is generated for a specific wavelength

([m1(λi), m2(λi), ..., mn(λi)], where λi denotes the selected wavelength and m1,m2, ...,mn the

complex refractive indices). If possible, the search space can be bounded in order to maximize the

algorithm success. Then, the complete vector is evaluated by the fitness function. This is done by

computing the a and b coefficients corresponding to each refractive index (using the Lorenz-Mie or235

T -Matrix formulation and Eq. (6) – Eq. (7)) and evaluating the weighted euclidean distance between

the calculated and desired coefficients. This can be obtained, for instance, as:

ea(λi) = |20log(âk(λi))− 20log(am(λi))|, (22)

where ak is the calculated absorption coefficient of the nk refractive index, am is the desired (or

measured) attenuation coefficient, and ea is the committed error for the absorption coefficient. Using240

logarithmic values allows a suitable weighting factor when dealing with small errors over small

coefficients. The same equation can be used for the scattering coefficient. Both results are finally

combined using the quadratic mean, obtaining a single evaluation value that the algorithm tries to

minimize.

After the evaluation, the algorithm may stop if either a maximum number of generations (each245

generation is a new vector of solutions) or a satisfactory fitness level have been reached. If the

convergence condition is not fulfilled, the best solutions are selected and separated. Part of this elite

is then recombined (crossover) and randomly mutated to provide genetic diversity and broaden the

search space (crossover and mutation introduce the diversity needed to ensure that the entire sample

space is reachable and avoid becoming stuck at suboptimal solutions, Greenhalgh and Marshall,250

2000). The new set of solutions is re-evaluated and inserted again into the solutions’ vector, which

completes the cycle. After convergence is achieved, the algorithm presents the best solution it has

been able to find.

Since Lorenz-Mie and T -Matrix algorithms can only be executed for single wavelengths, and the

refractive index is also wavelength dependent (with different values at different wavelengths), the255
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Figure 3. Flow chart of the genetic algorithm.

genetic algorithm performs the search procedure at a single wavelength each time. After each con-

vergence, the process starts again with the next wavelength-dependent values, eventually obtaining

the complete complex-refractive-index signature.

The main advantage of this model is that it can be easily adapted to different Lorenz-Mie or T -

Matrix codes, as for instance those developed for homogeneous spheres, coated spheres, cylinders,260

etc. Besides it can also be easily combined with other models to improve the results. On the other

hand, it must be noted, that some inversions could be ill-posed. A constrained optimization problem

is considered to be well-posed in the sense of Haddamard if (a) a solution exists, (b) the solution is

unique and (c) the solution is well-behaved, i.e. varies continuously with the problem parameters.

An ill-posed problem fails to satisfy one or more of the aforementioned criteria (Bhandarkar et al.,265

1994). In that case, techniques such as regularization methods can be applied to improve the results

(Mera et al., 2004).

4 Experimental Simulations

The models described in the previous section are used here to retrieve the refractive index of well-

known particles in order to determine their accuracy by means of the averaged relative error defined270

as

erx (%) =
1

N

N∑
n=1

∣∣∣∣x′(λn)

x(λn)
− 1

∣∣∣∣× 100, (23)

where x′ accounts for the estimated real part of the refractive index as n′(λ)− 1 (the unity is

subtracted to only consider the decimals) or the estimated imaginary part of the refractive index as

k′(λ), and x accounts for the assumed real part of the refractive index as n(λ)− 1 or the assumed275

imaginary part of the refractive index as k(λ). For the volume scattering function, error is also

averaged with respect to its angular contribution as:

erV SF (%) =
1

N ·M

N∑
n=1

M∑
m=1

∣∣∣∣V SF ′(λn,θm)

V SF (λn,θm)
− 1

∣∣∣∣× 100, (24)
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To this end, Subsection 4.1 deals with a simple spherical and homogeneous particle and presents

the results provided by the Twardowski, Stramski and Genetic Algorithm models. Such particles,280

however, are not a fair representation of phytoplankton particles. First, because eukaryotic phyto-

plankton cells are heterogeneous particles with membrane systems and intracellular organelles, and

second, because most of the phytoplankton species are not spherical. As stated by Bernard et al.

(2009), the spherical structure mainly fails in the description of the backward scattering and sug-

gests a two-layered spherical geometry as the simplest possible heterogeneous structure capable of285

reproducing measured algal angular scattering properties. In consequence, Subsection 4.2 presents a

coated sphere as the assumed particle and presents the estimated refractive indices provided by the

genetic algorithm model, the Bernard model and a combination of both. Finally, Subsection 4.3 uses

a cylindrical shape particle with a homogeneous refractive index. This shape was selected to be dif-

ferent from a sphere and similar to that of some species of phytoplankton (as for instance, the diatom290

Thalassiosira pseudonana). Although this assumed model does not exactly reproduce the same

optical behavior as the actual phytoplankton particle (the micro-details of the cells are neglected), it

can serve as a first approximation. Refractive index estimations provided by the combination of the

Genetic Algorithm with the Bernard model for coated spheres and the Genetic Algorithm alone are

shown.295

4.1 Spherical-Shaped Homogeneous Particles

A concentration of 100 spherical particles per mm3 presenting the PSD of Fig. 4a (based on a

power-law distribution -or Junge-type- with 51 points, Rmin = 0.7 um, Rmax = 12.1 um, a slope

parameter ξ = 3, effective radius reff = 4 µm and effective variance veff = 0.6), along with the

assumed complex refractive index of Fig. 4b, was simulated using the Lorenz-Mie scattering theory300

(Bohren and Huffman, 1998). In particular, the BHMIE code, originally from Bohren and Huffman

and modified by B.T. Draine, was used as a Forward Model (additional features were added, such as

polydispersion and the computation of the Stokes scattering matrix). The computed IOPs from this

forward model, i.e. the a(λ), b(λ) and c(λ) coefficients are shown in Fig. 5a. As can be observed, the

concentration was selected in order to obtain IOP coefficients similar to those measured by (Twar-305

dowski et al., 2001) and (Stramski et al., 2001). Although the power-law distribution is not a realistic

distribution for single phytoplankton species, it is a fairly good approximation of natural-water com-

position (even with anomalous natural conditions such as a phytoplankton bloom), as there is always

a strong background contribution to the PSD (Twardowski et al., 2001). Besides, it is the only distri-

bution that can be used in the Twardowski model, and therefore, used here. The complex refractive310

index of Fig. 4b was synthetically generated using imaginary values similar to those presented in

Bernard et al. (2009) for phytoplankton species (derived from sample algal assemblages and con-

sidering homogeneous spheres). The dependence of the real on the imaginary part of the refractive

index can be found in the Kramers-Kronig relations (Bernard et al., 2001, 2009; Bricaud and Morel,
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Figure 4. (a) PSD of the test run with spherical-shaped homogeneous particles. (b) Assumed complex

refractive-index signature of the example with spherical-shaped homogeneous particles.
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Figure 5. (a) Absorption (a), scattering (b) and extinction (c) coefficients of the example with spherical-shaped

homogeneous particles, and (b) the volume scattering function.

1986; van de Hulst, 1957), which allow the spectral variations in the real refractive index to be calcu-315

lated as a Hilbert transform of the imaginary refractive index. The central part of the real refractive

index was selected as 1 + ε= 1.05 (for phytoplankton it typically ranges from 1.02 to 1.15, relative

to water, as stated in Morel, 1973, Carder et al., 1974, Aas, 1996, Bernard et al., 2001). The effects

due to normal dispersion, as described in Aas (1996), have not been considered. As can be seen, the

imaginary part presents three peak values, at 440, 500 and 680 nm (corresponding to the chlorophyll320

absorption wavelengths), and, as expected, a similar shape is propagated to the absorption coefficient

spectra, a(λ), of Fig. 5a. The volume scattering function is shown in Fig. 5b. Only three wavelengths

(300, 500 and 700 nm) are plotted using intense colors, while the rest of wavelengths between 300

and 700 nm in steps of 10 nm are plotted in light grey. As expected (since particles are relatively

large regarding to wavelength), the scattering is mainly focused in the forward direction (between 0325

and 10 degrees) and smoothly decreases in the backward direction.
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Figure 6. (a) Assumed and estimated refractive indices using the model of Twardowski et al. (2001). (b) As-

sumed and estimated refractive indices using the Bernard model.

4.1.1 The Twardowski Model

Eq. (15) was applied to this example obtaining the results shown in Fig. 6a. To this end, γ = 0 since

the slope parameter of the PSD ξ = 3, and the backscatter fraction was computed with Eq. (13) using

the volume scattering phase function values given by the modified BHMIE code. As can be seen,330

for the real part, this model obtains a curve shape similar to the assumed complex refractive index,

but with a slight negative offset, presenting an averaged relative error of 42%. Since this model

assumes a constant imaginary refractive index value of 0.005, the averaged relative error with the

assumed imaginary part of the refractive index is 44%. It must be noted that the Twardowski model

was designed for a bulk oceanic distribution presenting different physical properties than those of335

isolated species of phytoplankton (e.g. index of refraction, shape, etc.), and therefore, it is used here

in a different scenario than it was designed to.

4.1.2 The Stramski Model

The results obtained with this model are shown in Fig. 6b. As can be seen, this model overestimates

both real and imaginary parts on all the analysed spectra, showing an averaged relative error of 0.4%340

for the real part and a 15% for the imaginary part. It should be remembered that the imaginary part of

the refractive index, kh, is calculated with the ADA, known to give errors of∼10% in comparison to

Lorenz-Mie theory (Bernard et al., 2009), and some discrepancies can therefore be expected between

ADA and Aden-Kerker derived values (Aden and Kerker, 1951).

4.1.3 Genetic Algorithm345

In order to implement the genetic algorithm described in Section 3.4, the tools provided by the DEAP

(Distributed Evolutionary Algorithms in Python) and SCOOP (Scalable COncurrent Operations in

Python) frameworks to develop evolutionary algorithms and parallel task distribution respectively,

were used (Fortin et al., 2012; Hold-Geoffroy et al., 2014). The fitness function was implemented
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using the fast subroutines of BHMIE to compute the absorption and scattering properties of homo-350

geneous spheres. The coefficients a and b of Fig. 5a were used as inputs of the genetic algorithm

model to estimate the assumed complex refractive index and bounding conditions were applied to

facilitate the convergence (typical values for the real part of the phytoplankton refractive indices fall

within 1.02 and 1.15 relative to water, and the bulk value of the imaginary part is always below

0.02). The genetic algorithm was configured with a vector of 2000 solutions over 10 generations and355

50% and 20% of probability of crossover and mutation respectively, obtaining the estimated values

shown in Fig. 7a. The good agreement between the assumed complex-refractive-index values and the

estimated ones (an averaged relative error of 0.004% for the real part and 0.24% for the imaginary

part is obtained, presenting thus the best results in this first example) shows that it is possible to per-

form accurate estimations with a genetic algorithm. It must be noted that the number of generations360

needed to have a suitable convergence strongly depends on the length of the initial-solution vector

and the cross-over and mutation percentages, among other parameters of the Genetic Algorithm. In

this particular case, using the described parameters, any significant improvement is generally found

beyond the tenth generation.

One disadvantage of the genetic algorithms is that they are relatively slow and require more com-365

putation time than other optimization algorithms, since they need to execute the fitness function

many more times. Other optimization algorithms were also applied to determine if similar results

can be obtained with a significant reduction of the computation time. However, since none of them

led to any meaningful improvement, they are not introduced here. As an example, Fig. 7b shows the

results obtained with the much faster Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (BFGS370

is an iterative method for solving unconstrained nonlinear optimization problems, Zhu et al., 1997),

executed using the same bounding conditions as in the genetic algorithm case. In this case, only 224

seconds (less than 4 minutes) were needed in front of the 97 minutes used by the genetic algorithm,

both in a PC with an Intel Core i7 processor at 3.2 GHz, a 16-GB RAM and running a Windows 8.1.

However, although the results are quite satisfactory in general, some of the wavelengths present a375

significant error in the real part (mainly, between 550 and 600 nm, and above 680 nm). The averaged

relative error is 0.073% for the real part and 0.72% for the imaginary part. Other optimization algo-

rithms, such as the conjugated gradient algorithm (Nocedal and Wright, 1999), were also tested. The

results (not shown), exhibited a worse accuracy than the BFGS, showing that the genetic algorithm

is probably the optimal method to solve this problem in terms of accuracy (but not in terms of time).380

4.2 Spherical-Shaped Coated Particles

In order to use the IOPs of a two-layered spherical particle that emulates actual phytoplankton prop-

erties, its complex refractive index was generated using the description presented in Bernard et al.

(2009). The imaginary refractive index of the inner cytoplasm was obtained using Eq. (20) and its

real one using the Hilbert transform (Hahn, 1996) and Eq. (17) with 1 + ε= 1.02. The imaginary385
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Figure 7. (a)Assumed and estimated refractive indices using the Genetic Algorithm presented in this paper.

Note that assumed and estimated values are on top of each other. (b) Assumed and estimated refractive indices

using the BFGS algorithm.
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Figure 8. (a) Assumed real refractive-index signatures for the inner and outer layers. (b) Assumed imaginary

refractive-index signatures for the inner and outer layers.

refractive index of the outer chloroplast was obtained using Eq. (21), with VV = 30% (since it is a

value between that assumed by Bernard et al., 2009, and previous works), and its real one using the

Hilbert transform and Eq. (17) with 1 + ε= 1.1. Fig. 8a and Fig. 8b show the results for the real and

imaginary parts respectively. In this example, instead of using a PSD describing a power-law func-

tion (as in Fig. 4a), the PSD of an isolated culture was simulated with a concentration of 40 particles390

per mm3 (Rmin = 0.7 um, Rmax = 12.1 um and using 31 points), as seen in Fig. 9. It must be

noted that the PSD denotes the external radius (the inner one can be calculated using the VV value).

Using this PSD with the previous refractive indices in the BART code from A. Quirantes (Quirantes,

2005) (a Forward Model based on the Aden-Kerker theory to calculate light-scattering properties for

coated spherical particles), the absorption, scattering and extinction coefficients of Fig. 10a, and the395

volume scattering function of Fig. 10b were obtained.

Below, the IOPs presented above are used to estimate their complex refractive indices. First, this

is done using the genetic algorithm in order to see if a basic shape such as a homogeneous sphere

is useful when modelling more complex particles. If coated particle models better characterize the
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Figure 10. (a) Absorption (a), scattering (b) and extinction (c) coefficients of the coated-particle example, and

(b) the volume scattering function.

optical properties of general phytoplankton species, as stated in Bernard et al. (2009), this can be400

used to estimate the error committed when using spheres. Then, the inner and the outer complex

refractive indices of the original particle are retrieved using the Bernard model for coated particles.

Finally, a combination of the genetic algorithm and the Bernard model is applied to improve the

previous results. Note that the Twardowski model is not applied to avoid unfair comparisons with

the other methods (it was designed to be used with entire particle populations that are assumed to405

follow a power-law size distribution).

4.2.1 The Genetic Algorithm

The genetic algorithm model to retrieve the refractive index of spherical-shaped homogeneous par-

ticles was applied in order to measure the error committed in such approximation. The same config-

uration as in the previous example was used (an initial vector of 2000 solutions over 10 generations410

and 50% and 20% of probabilities for crossovers and mutations respectively). The estimated com-

plex refractive index is shown in Fig. 11a. Both real and imaginary parts present values between

the inner and the outer real and imaginary parts of Fig. 8a and Fig. 8b respectively. The volume

scattering function generated by the homogeneous particles, as seen in Fig. 11b (obtained by means

of a forward model, i.e., Lorenz-Mie, using the estimated complex refractive index and the PSD415
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Figure 11. (a) Complex refractive-index signature estimated using the genetic algorithm model in the spherical-

Shaped coated-particle example. (b) Volume scattering function using the estimated refractive index in the

second example.

of Fig. 9 as inputs), shows that this model presents similar values in the forward scattering but

completely underestimates the backscattering, presenting values far below those of Fig. 10b. This

example demonstrates that the common characterization using homogeneous spheres is not a suit-

able methodology when dealing with complex particles. Even though it is not a surprising result (this

is well known and has been discussed for years, by Bohren and Huffman, 1998, in the atmospheric420

literature, and by Stramski et al., 2004, Clavano et al., 2007, Dall’Olmo et al., 2009, and Bernard

et al., 2009), in the oceanic literature), a comparison between the two volume scattering functions

manifests that the backscattering can exhibit errors up to one order of magnitude.

4.2.2 The Bernard Model

The Bernard model of Section 3.3 was used to estimate the complex refractive index of the two-425

layered particle. Figure 12a shows the assumed and estimated real part of the inner and outer layers

and Figure 12b shows the assumed and estimated imaginary parts. As expected, the inner refractive

index is well estimated (since the same equation is used for both generation and retrieval), but the

outer refractive index does not present an accurate agreement. In particular, the imaginary part is

significantly underestimated, with an averaged relative error of 51%. On the other hand, the sim-430

ulation of the estimated refractive indices in coated spheres produce a volume scattering function

which is in a better agreement with that of Fig. 10b than the volume scattering function produced by

the homogeneous spherical particle (the volume scattering function figure has not been added in this

case since errors are not apparent on the graph; a more detailed analysis is done in Section 5).

4.2.3 The Bernard Model combined with Genetic Algorithm435

In order to improve the results presented by the Bernard model in the previous subsection, the ge-

netic algorithm, which showed a reasonable performance when applied to homogeneous spherical

particles, could be coupled to the BART code (instead the BHMIE code) to try to estimate the two
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Figure 12. (a) Assumed and estimated real part of the refractive indices for the inner and outer layers using

the Bernard model. (b) Assumed and estimated imaginary part of the refractive indices for the inner and outer

layers using the Bernard model.

complex refractive indices. However, results would hardly be constrained since the solution has more

degrees of freedom (the two refractive indices with real and imaginary parts each, that is, four dimen-440

sions) than the information data (the attenuation and scattering coefficients, that is, two dimensions),

i.e., this is an unconstrained (ill-posed) problem. However, there is the possibility to combine the

genetic algorithm with the Bernard model to increase the convergence probability. In this case, the

inner refractive index is firstly estimated using the Bernard model, as it was done before, and the

outer refractive index is obtained secondly with the genetic algorithm (coupled to the BART code).445

In this case, the genetic algorithm only has to find a solution with two dimensions (the real and

imaginary parts of the outer refractive index).

This method was applied on the coated particle example (using the coefficients of Fig. 10a as input

data and configured using an initial vector of 2000 solutions, 10 generations, 50% of probability

for crossovers and 20% for mutations), obtaining the assumed and estimated real part of the inner450

and outer layers shown in Figure 13a and the assumed and estimated imaginary parts shown in

Figure 13b. As it can be seen, accurate results were obtained, meaningfully improving the refractive

index estimation for the outer sphere. In this particular case, an average relative error of 0.01% was

obtained for the real part and a 0.14% for the imaginary part.

4.3 Cylindrical-Shaped Particles455

As a final example, a cylindrical shape particle has been chosen. As commented above, phytoplank-

ton species usually present complex shapes, far from perfect homogeneous or coated spheres (as it

is the case of the diatom Thalassiosira pseudonana). In order to find which is the most accurate

model for the characterization of such complex shapes, an example considering 100 prolate cylinders

per mm3 with a diameter-to-length ratio equivalent to 0.8, the PSD of Fig. 14 (showing the radius460

of an equivalent volume sphere with a slope parameter ξ = 3, effective radius reff = 3.2 µm and

effective variance veff = 0.005 resulting in Rmin = 0.8 µm to Rmax = 3.6 µm), and the assumed
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Figure 13. (a) Assumed and estimated real part of the refractive indices for the inner and outer layers using

the Bernard model combined with the genetic algorithm. (b) Assumed and estimated imaginary part of the

refractive indices for the inner and outer layers using the Bernard model combined with the genetic algorithm.

Note that in both cases, assumed and estimated values are on top of each other.
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Figure 14. PSD of the cylindrical-shaped example.

refractive index of Fig. 4b was simulated using the T -Matrix algorithm (Mischenko et al., 1996;

Mischenko and Travis, 1998) as a Forward Model. To this end, the code from M. Mischenko Mis-

chenko and Travis (1998) for T -Matrix computations on randomly oriented, rotationally symmetric465

scatterers (cylinders, spheroids and Chebyshev particles) was used. The PSD presents a small effec-

tive variance for convergence limitations of the code. The assumed a(λ), b(λ) and c(λ) coefficients

are shown in Fig. 15a, and the volume scattering function at each wavelength is shown in Fig. 15b.

4.3.1 The Bernard Model combined with Genetic Algorithm

Even though these simulated particles are not an exact copy of an actual phytoplankton (for the470

reasons commented before), the coated sphere model is used here to model the cylindrical shape to

analyze their differences. As in previous examples, the assumed value was VV = 30% (an averaged

value between that assumed by Bernard et al., 2009, and previous works). Figure 16a shows the

estimated real part of the inner and outer layers and Figure 16b shows the estimated imaginary parts.

In this case, they cannot be compared with the assumed individual refractive index of the cylindrical475
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Figure 15. (a) Absorption (a), scattering (b) and extinction (c) coefficients of the cylindrical-shaped example.

(b) Volume scattering function of the cylindrical-shaped example.
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Figure 16. (a) Inner and outer real part of the refractive indices using the Bernard Model combined with Genetic

Algorithm in the cylindrical example. (b) Inner and outer imaginary part of the refractive indices using the

Bernard Model combined with Genetic Algorithm in the cylindrical example.

particle. Instead, the IOPs obtained from the estimated refractive indices need to be computed using

the forward model to analyze if this model is useful to emulate homogeneous cylinders. The volume

scattering function, obtained by means of the estimated complex refractive indices and the PSD of

Fig. 14 in a forward model, i.e., the T -Matrix, is shown in Fig. 17. The committed error in this last

figure is noticeable even to the naked eye, especially at longer wavelengths, achieving an averaged480

relative error of 77%. It should be noted that these differences may decrease when using real phy-

toplankton, since backscattering of heterogeneous particles is different from that of homogeneous

particles.

4.3.2 The Genetic Algorithm

The genetic algorithm can be combined with the T -matrix code in order to consider cylindrical485

shapes when estimating the inner complex refractive index. However, one simulation of cylindri-

cal shape particles with such dimensions, using the Mischenko code, needs about 67 minutes in a
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Figure 17. Volume scattering function obtained using the Bernard Model combined with Genetic Algorithm in

the cylindrical example.

computer with an i7 at 3.20 GHz and running Windows 8.1. This prevents the use of the genetic

algorithm in such circumstances, since it needs to execute this simulation several hundreds of times

at each wavelength in order to accurately estimate the complex refractive index. That means that sev-490

eral months would be required to estimate the whole refractive index spectra, even using distributed

processing. To avoid that, some kind of approximations must be considered. In order to perform fast

estimations, equal-volume homogeneous particles with spherical shape are considered instead of

the cylinders. This allows using the Lorenz-Mie theory instead the T -matrix approach, dramatically

improving the simulation time. Then, the estimated refractive index using homogeneous spheres is495

finally applied on homogeneous cylinders to obtain their IOP, since the volume scattering function

values are case sensitive to the particle shape. Although the slow T -matrix approach is needed for

this simulation, it has to be executed only once. For sure, using better computing resources (as for

instance, by means of a computer cluster), this problem disappears and the genetic algorithm can be

used with its complete potential.500

The methodology was applied on this last example using the same PSD of Fig. 12. The estimated

complex refractive index is shown in Fig. 18a. The averaged relative error of the real part is 7.75%

and 2.61% for the imaginary part. Since absorption is proportional to the volume, the inverted imag-

inary part of the refractive index agree well with the assumed values (volume equivalent spheres are

being used). However, since scattering depends strongly on the shape of particles, the inverted real505

part of the refractive index deviate from the assumed values. The major differences are obtained at

the lowest wavelengths, which is also noticeable in the volume scattering function, as seen in Fig.

18b, with some artefacts in those wavelengths where abrupt changes of the real part of the refractive

index occur (330 and 350 nm). However, the averaged relative error committed decreases from 77%

in the previous method to 16%. If homogeneous spheres are used instead of cylinders to obtain the510

IOP, the averaged relative error increases to 22%, which demonstrates that choosing a suitable shape

improves the results.
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Figure 18. (a) Assumed and estimated refractive indices using the genetic algorithm for spherical-shaped ho-

mogeneous particles, and (b) the volume scattering function.

Table 2. Averaged relative errors committed in each method

Shapes Model n relative er-

ror

k relative er-

ror

VSF relative

error

Homogeneous sphere

Twardowski model 42% 44% 68%

Stramski model 8.2% 15% 0.17%

Genetic Algorithm 0.004% 0.24% 0.17%

Coated sphere

Genetic Algorithm - - 78%

Bernard model 1.4% 51% 52%

Bernard model & GA 0.1% 0.14% 0.2%

Homogeneous cylinder
Bernard model & GA - - 77%

Genetic Algorithma 7.75% 2.61% 16% b

aThe refractive index is estimated using spheres but the IOP is obtained using that refractive index in cylinders.
bIf the cylindrical shape is not used, the error rises up to 22%.

5 Discussion

Table 2 shows the averaged relative errors associated with each method when estimating the real and

imaginary parts of the refractive indices and the one committed by the respective volume scattering515

functions in the three examples of the previous section. In the real part case, the error was obtained

using n− 1 instead of n. Note that the inverse models do not compute the volume scattering func-

tion. It is obtained after introducing the estimated complex refractive indices in the suitable forward

model, i.e., the Lorenz-Mie or T -Matrix theories.

In the homogeneous sphere example, the Twardowski model presents the higher errors, especially520

when comparing the volume scattering function. It can also be seen in the table that, although the

errors of the Stramski model are considerably higher than the ones of the Genetic Algorithm, es-

pecially in the imaginary part estimation, similar estimations of the volume scattering function are

recovered in both cases. This implies that there is no need of an accurate refractive index estimation

23



300 350 400 450 500 550 600 650 700
Wavelength (nm)

10-4

10-3

10-2

10-1

bb
(m

−
1)

Spectral backscattering

bb hom sph(λ)

bb coat sph(λ)

bb hom cyl(λ)

Figure 19. Spectral backscattering of the three test cases: homogeneous sphere, coated sphere and homogeneous

cylinder.

in this particular example to obtain a suitable characterization of the scattering properties. However,525

the Genetic Algorithm performs with an excellent accuracy for the refractive-index retrieval.

In the coated sphere example, the Genetic Algorithm approximates the coated particle to a ho-

mogeneous one with a single complex refractive index. Therefore, errors for the inner and outer re-

fractive indices cannot be obtained. Besides, this method presents an important disagreement when

computing the volume scattering function. This result shows that, in case the optical behaviour of530

coated spheres were closer to that of actual phytoplankton particles, as stated in (Bernard et al.,

2009), homogeneous spheres would not be a suitable choice to accurately reproduce their optical

behaviour. The Bernard model is a fast technique to estimate the inner and outer refractive indices,

but mainly fails in estimating the imaginary part of the refractive index (with an error up to 51%).

This leads to a significant error committed by the forward model when computing the volume scat-535

tering function. However, if the Bernard model is combined with the Genetic Algorithm (the Bernard

model is used to estimate the inner refractive index, and the Genetic Algorithm to retrieve the exter-

nal one), accurate values are obtained for the complex refractive indices and, later, for the volume

scattering function in the forward model.

Finally, in the homogeneous cylinder case, it can be seen that the optical properties of this kind540

of particles are not accurately reproduced using a coated sphere the refractive indices of which are

obtained with the combination of the Bernard model and the Genetic Algorithm. From the previous

results, it could be expected that the optimal retrieval method would be the Genetic Algorithm using

cylindrical shapes to obtain an accurate estimation. However, this involves using the slow T -Matrix

code of Mischenko iteratively, which would require several months to converge (as the particle be-545

comes more aspherical, the convergence time increases considerably). In order to make the retrieval

faster, homogeneous spheres with equal volume are used instead of cylinders. The retrieved refrac-

tive index is then used to obtain the IOPs using cylinders this time. Using this method, the volume

scattering function shows an averaged relative error of 16%, improving the result obtained using
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spheres (22%). Therefore, this result confirms that selecting a suitable shape is important for an550

improvement of the modelling (at least in this ideal case).

To conclude, the results presented in Table 2 do not determine which is the best method to estimate

the phytoplankton optical properties, since none of them are a realistic representation of real algae

where there may be cell walls, chloroplasts, vacuole, nucleus and other internal organelles, each with

its own optical properties. However, the assumed particles serve as a first approximation of actual555

phytoplankton and are useful to extract some preliminary conclusions and to introduce several im-

provements as an attempt to make the approximations a bit closer to the reality. Most of the methods

shown in the paper are used for the retrieval of the refractive indices of isolated particles or bulk

oceanic distributions, and a comparison of their performance can only be done using well-known

models. As it has been shown on each example, the Genetic Algorithm is a versatile technique that560

alone or combined with other methods improve the accuracy of the estimations. However, it is not

a fast technique, and several minutes are required for each estimation (when using spherical shapes;

slower with aspherical particles) as compared to the few seconds required by the other methods, the

Twardowski model being the faster of them.

Further work must be done in order to study their performance when using the optical proper-565

ties of actual phytoplankton species and bulk oceanic measurements. New shapes may be required

to improve the results, as for instance coated cylinders to model algae with a cylindrical shape (as

stated by Bernard et al.,2009, in the spherical case, coated particles generate backscattering func-

tions closer to those produced by actual phytoplankton particles) or other outlines more similar to

the actual shape of the particle (the T -Matrix approach allows the computation of particle shapes570

exhibiting axial symmetry, Sun et al.,2016). Besides, all these approaches can also have further ap-

plicability with other type of optical measurements, as for instance with remote-sensing reflectance.

As an example, Fig. 19 shows the spectral backscattering of the three test cases. Many operational

remote-sensing inversion models for IOPs use an implicit or explicit assumption about the refractive

index, and, in combination with these methods, could be severely improved. Retrieving the index of575

refraction from space would improve the ability to distinguish sources of backscattering from each

other in the ocean. To this end, a much more complex inversion scheme should be developed. There

is, however, one important disadvantage shared by all the methods described in this paper, and it

is their strong dependence on the accuracy of the measurements. Attenuation and scattering coeffi-

cients are needed as inputs for all of the retrieval methods, and if they are not accurate, the retrieved580

refractive indices will not be as well. As stated by Ramírez-Pérez et al. (2015), the acceptance angle

of the optical instruments affect severely on the amplitude of the measurements. By comparing the

extinction coefficient of two different instruments with different acceptance angles, different mag-

nitude values were obtained, showing an averaged ratio of 0.67. This is a key issue that must be

considered and dealt in order to improve the fidelity of the whole methodology.585
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6 Conclusions

A performance analysis was carried out in order to examine the accuracy of different inverse methods

that use the optical properties of small scatterers and their particle size distribution to retrieve their

refractive indices. To this end, three different synthetic examples were constructed, each one with a

different shape and distribution. The selected shapes were homogeneous spheres, coated spheres and590

homogeneous cylinders. Results indicated that those methods using a genetic algorithm to optimize

the inversion were the most accurate ones, but also the slowest. In particular, an excellent agreement

between estimated and actual refractive indices and volume scattering functions was obtained for the

homogeneous and coated sphere cases, and a fair agreement for the homogeneous cylinders. These

results suggest that better characterizations could be obtained for the actual phytoplankton optical595

properties. Therefore, the next step is a further analysis of the performance of these methods when

applied on measurements of isolated cultures of phytoplankton.
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