
Reviewer #2

We thank the reviewer for his useful comments and positive assessment about our work. We addressed
all the points raised by the reviewer. Please see below. 

1. I think the most interesting part of this manuscript is the discussion of the
heteroscedastic  measurement  errors  (Section  4.2).  More  discussions  on  why  the
current linear heteroscedastic model doesn’t work well would be plausible. I think
your winter-summer discussion is a good start. (page 1815, line 10-14). 

We  are  totally  in  line  with  the  point  that  the  most  interesting  and  innovative  part  is  about  the
comparison of the way eddy covariance data uncertainties are treated, including the homoscedastic
versus heteroscedastic residual error models. As pointed out by the first reviewer, the former version of
the paper did lack of clear focus. The current revised version now deeper discusses the differences
between  the  inversion  scenarios  and  provides  a  more  comprehensive  analysis  of  the  validation
experiment.

Furthermore, we would like to highlight that it should not be concluded from our study that using a
heteroscedastic residual error model is not worth it. Since eddy covariance measurement errors show
heteroscedasticity, using a heteroscedastic residual error model is arguably more statistically sound.
More important, a closer look at our results revealed that parameter estimation using a heteroscedastic
error model rather than a homoscedastic error model actually leads to a better modelling performance
in validation. This new finding provides support for the use of a heteroscedastic error model. This is
detailed in the current version of the paper. 

Below are the modifications that we made to address this issue:
 The section “4.2.1 Homoscedastic and heteroscedastic eddy covariance residual errors” in the

discussion was largely modified. Please look at the answer of the 1st comment of reviewer #1 or
in the manuscript. 

 A sentence was modified in section 4.2.2 for stressing one advantage of the scenarios HO2 and
HE2 (L561): “The benefit of these values is that they inform about... ” instead of “These values
inform about...”

 The  following  sentence  in  section  4.2.2  was  deleted:  “Overall,  while  the  HE2  inversion
framework  is  arguably more conceptually  sound,  we found that  it  does  not  permit  to  fully
remove  heteroscedasticity  from the  residuals  (Figure  5)  while  simultaneously  leading  to  a
poorer modelling performance in terms of fitting the large observed values (such as the summer
GPP).” 

 The  abstract,  objectives  and  conclusions  were  modified  according  to  the  above-mentioned
changes in the interpretation of results. 

2. A general outline of how the inversion works at the four sites is suggested to
include at the start of Section 2.4, which should help on a clear technical road
map of the paper.

A paragraph was modified at the end of former section 2.4.4 (now section 2.3.4) that summarizes the
four inversion scenarios used in this study. We believe that the whole section 2.3.4 provides enough

6/8



details for the reader to understand what is done exactly.

The new paragraph reads (L311-320): “This treatment of multi-objective Bayesian inference is in line
with the work of Reichert and Schuwirth (2012), who further considered different statistical models for
model  and  observation  errors.  Overall,  this  resulted  in  four  different  ways  of  treating  the  eddy
covariance data uncertainties: fixed homoscedastic (HO1) and heteroscedastic (HE1) error models,
and jointly inferred homoscedastic (HO2) and heteroscedastic (HE2) error models. Using the HO1 and
HE1 models led to a total of 10 inferred parameters, whereas using the HO2 and HE2 models resulted
into a total of 13 and 16 inferred parameters, respectively. Table 2 lists the marginal prior distributions
used for all sampled parameters. The upper and lower bounds of the prior parameter distributions
were set using boundary values that correspond at least to the lower and upper physically-possible
bounds of the parameters, or to narrower bounds using expert-knowledge.”

3. Section 4.4 could be merged into section 4.3 but should be more concise. For
example, the length of discussion on the difference of the parameter values across
sites could be reduced. Discussions on how you learn from your multi-site bayesian
inversion study to design a common parameter set across sites and the advantages
and disadvantages of the two options you gave at the end of section 4.4 should be
extended. Otherwise they should be removed as they looks too thin. Your choice. 

Kuppel et al., 2012 could be a potential reference. 

Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and Richardson, A.
D.:Constraining  a  global  ecosystem  model  with  multi-site  eddy-covariance  data,
Biogeosciences, 9, 3757-3776, doi:10.5194/bg-9-3757-2012, 2012. 

Reviewer #1 also suggested shortening section 4.4. We decide to summarize section 4.4 in ~10 lines
and merge it in section 4.3. Please look at L591-600 in the revised manuscript. We thank the reviewer
for pointing out the Kuppel et al. (2012) study which is really relevant to our discussion about multi-
site versus single site inversion. 

The section 4.3 was also shortened while keeping its key points. Abstract, objectives and conclusions
were also modified accordingly. Overall, the paper pays now less attention to the cross-site comparison
and focus more on the treatment of eddy covariance data uncertainties. 

4. Typo error: H02 should be HO2 in the title of Table 5.
OK

5. The unit of ET should be mm day-1 throughout the manuscript.
OK

Other changes:
 As we moved some part of the “Materials & Methods” to the introduction, some part of the

introduction  that  were  too  wordy  were  shortened,  i.e.,  the  paragraph  about  the
representativeness of the data used for inversion (L50-55). 

 The objectives of the paper presented in the introduction were modified to stress the scope of
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the paper that is on the comparison of different ways of treating eddy covariance data errors
(L86-95). 

 Abstract and conclusions were modified to reflect the refined scope of the paper. 
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Abstract. Eddy covariance data from four European grassland sites are used to probabilistically

invert the CARAIB dynamic vegetation model (DVM) with ten unknown parameters, using the

DREAM(ZS) Markov chain Monte Carlo (MCMC) sampler. We especially compare model inver-

sions considering both homoscedastic and heteroscedastic eddy covariance residual errors, with

variances either fixed a priori or jointly inferred with the model parameters. Agreements between5

measured and simulated data during calibration are comparable with previous studies, with root-

mean-square error (RMSE) of simulated daily gross primary productivity (GPP), ecosystem respi-

ration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 gC m−2 day−1, 1.04 to 1.56

gC m−2 day−1, and 0.50 to 1.28 mm day−1, respectively. For the calibration period, using a ho-

moscedastic eddy covariance residual error model resulted in a better agreement between measured10

and modelled data than using a heteroscedastic residual error model. However, a model validation

experiment showed that CARAIB models calibrated considering heteroscedastic residual errors per-

form better. Posterior parameter distributions derived from using a heteroscedastic model of the

residuals thus appear to be more robust. This even though the classical linear heteroscedastic error

model assumed herein did not fully removed heteroscedasticity of the GPP residuals. Despite the15

fact that the calibrated model is generally capable of fitting the data within measurement errors, sys-

tematic bias in the model simulations are observed. These are likely due to model inadequacies such

as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences

between model parameter posterior distributions among the four grassland sites are also investigated.

It is shown that the marginal distributions of the specific leaf area and characteristic mortality time20

parameters can be explained by site-specific ecophysiological characteristics.
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1 Introduction

Covering about 38% of the European agricultural area and 8% of the land surface (FAO, 2011),

grassland is an important land cover class in Europe which shows a wide range of different ecological

characteristics. By stocking carbon, temperate grassland might play an important role in climate25

change mitigation in Europe (Soussana et al., 2004) and at the world-scale (O’Mara, 2012). Large

uncertainties however remain in the estimation of the (source or sink) carbon fluxes since those

largely depend on farming management options.

In environmental modelling, grassland growth models have received less attention than the long-

standing and highly-developed crop models. Since grasslands are agro-ecosystems that can be con-30

sidered either as agricultural or semi-natural lands, grassland models were designed for two main

purposes: the simulation of forage and dairy or meat production, and the simulation of the carbon

fluxes at the land-atmosphere interface. Several crop models were adapted for grassland growth

modelling (e.g., STICS (Ruget, 2009; Dumont et al., 2014), EPIC (Williams et al., 2008)) especially

when the management of the grassland remains similar to crop management, i.e., when the grass-35

land is a temporary forage production that is cut rather than grazed by animals. Some other models

were specifically developed for grasslands (e.g., SPACSYS (Wu et al., 2007)), sometimes coupled

with animal production models (e.g., PASIM (Graux et al., 2013)), whereas grassland models were

also developed from dynamic vegetation models (DVM) such as LPJmL (Bondeau et al., 2007),

adapted from the LPJ model (Sitch et al., 2003). Being process-based models, DVM are well suited40

for large-scale spatial simulations and can account for a wide range of current and projected climatic

conditions.

To be used for simulation-based decision making, a DVM must be properly parametrised. Model

parameter values can be derived from (1) laboratory experiments as, e.g., the stomatal conductance

described by the Ball-Berry model (Ball et al., 1987), (2) in-situ field measurements, and (3) model45

inversion using calibration data measurements or (4) spatialized databases (e.g., from remote sens-

ing). Model inversion (also referred to as calibration) consists of automatically finding those model

parameters that allow the model to adequately reproduce the available observed data. The collec-

tion of representative and high-quality data is thus of paramount importance for inversion, as DVMs

require an adequate parametrization that is sufficiently representative of the range of conditions50

over the spatial extent of the simulation. Typically, DVMs use different set of parameters that are

assigned to specific vegetation classes that grow together over the same area or in geographically

distinct biomes. Dynamic vegetation model inversion needs a sufficient number of sites with vary-

ing ecophysiological conditions that are supposed to be representative of the considered vegetation

classes or biomes, but still well-delimited (Knorr and Kattge, 2005). Model inversion using continu-55

ous, gridded data (e.g., from remote sensing (Patenaude et al., 2008)) could also help in determining

optimal parameters for large areas, but computation time can be a limiting factor for such application.
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Given the high number of eddy covariance experimental sites across the world, eddy covariance

measurements are particularly appealing for inversion of DVM models (Friend et al., 2007). Further-

more, the long-standing rise in computational resources not only increased modelling capabilities in60

terms of temporal and spatial resolution, but also opened new avenues for quantifying the uncertainty

associated with the estimated model parameters and its effect on model simulations. In particular,

the Bayesian framework for inverse modelling is increasingly used in the DVM community (e.g.,

Hartig et al., 2012). Bayesian methods such as Markov chain Monte Carlo (MCMC) sampling aim

to derive a representative set of all parameter combinations that are consistent with the observed data65

and available prior information. This set of parameters is referred to as the posterior distribution.

Nevertheless, eddy covariance data are known to be associated with relatively large measurement

uncertainties, implying both systematic and random errors (see Aubinet et al. (2012), chapter 7, for

a comprehensive description of all sources of eddy covariance uncertainties). As eddy covariance

data are the result of a long process chain, they can be affected by instrumental measurement error70

(e.g., calibration and design errors), sampling errors due to the variability of the fluxes in time and

space and data treatment error (e.g., due to the gap-filling of missing data). Uncertainties in eddy

covariance data is also strongly dependent on the time resolution of the fluxes, tending to diminish

with time aggregation (Richardson and Hollinger, 2005). It is crucial to account for these random

data uncertainties in the inversion since an improper statistical treatment can cause the parameter75

posterior distribution to be strongly biased (e.g., Fox et al., 2009). Quantifying random eddy covari-

ance data errors is not straight-forward (Hollinger and Richardson, 2005; Lasslop et al., 2008), but

these errors are typically characterized by a variance that is proportional to the magnitude of the

data, i.e., they show heteroscedasticity (e.g., Lasslop et al., 2008). Therefore, it has been suggested

(Richardson et al., 2008) that the measurement error variance can be modelled as a linear function80

of the magnitude of the flux with a non-null intercept, as random errors are non-null even when the

flux equals zero. Yet, while the random error can be taken into account in the inversion, systematic

measurement errors can only be removed by instrument calibration.

In this study, data from eddy covariance stations over four grassland sites are inverted for the

CARAIB dynamic vegetation model parameters within a Bayesian framework. This is both the first85

automatic calibration of the CARAIB model and its first application to managed grassland mod-

elling, which required adaptations of the model to grass cutting and grazing. The main objective is

to compare the modelling of the carbon and water fluxes over the four grassland sites using four

different ways of treating the eddy covariance data errors during the inversion. Both homoscedastic

and heteroscedastic residual error models are considered, either fixed beforehand or sampled along90

with the model parameters. A second objective is then to compare the site-specific posterior param-

eter distributions obtained for the four grasslands, given their climatic, ecological and management

characteristics.
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2 Materials and Methods

2.1 Experimental sites and data95

In this study, we focus on four long-term experimental sites (see table 1) that are semi-natural perma-

nent grasslands: Grillenburg, Germany, (Prescher et al., 2010); Oensingen (intensive), Switzerland

(Ammann et al., 2007); Monte-Bondone, Italy, (Wohlfahrt et al., 2008) and Laqueuille (extensive),

France, (Klumpp et al., 2011). The four sites pertain to the global FLUXNET network and, as such, a

large number of studies were conducted using eddy covariance data from these sites. The FLUXNET100

website (http://fluxnet.ornl.gov/) provides lists of references per site.

The four sites are located in western and central Europe and experience different climate, altitude,

soil and management conditions. They can be classified according to the De Martonne-Gottman arid-

ity index, which is inversely related with the site aridity. Oensingen is the most intensively managed

site and the only one that is fertilized (about 200 kg N ha−1 yr−1). The other three sites are exten-105

sively managed, with no organic nor mineral fertilization. The last two sites are mid-mountainous

grassland, while the first two sites are situated at a lower altitude. Only the grassland in Laqueuille

is grazed by animals during the growing season, while the other three are hay meadows that are cut

once or several times a year. Note that, although grass cutting should have occurred on the 13 June

2005 in Grillenburg according to the given management data, it was not observed in the measured110

eddy covariance fluxes because of gap-filling of missing data. As a result, this cut was neglected in

the modelling.

The four grasslands are equipped with eddy covariance stations for measuring ecosystem fluxes.

Data of flux measurement and field datasets were made available through a coordinated task of

the FACCE/MACSUR knowledge hub, which aims at performing an intercomparison of grassland115

models (Ma et al., 2014) by running several grassland model with the same field datasets collected

under various climatic and management conditions. Field datasets hold the necessary information

for feeding the grassland model: hourly meteorological records of climatic variables, soil physical

parameters, management information such as cutting dates or grazing charges, and initial condi-

tions. Daily eddy covariance data included net ecosystem exchange (NEE) [gC m−2 day−1], gross120

primary productivity (GPP) [gC m−2 day−1], ecosystem respiration (RECO) [gC m−2 day−1] and

evapotranspiration (ET) [mm day−1]. It is worth noting that only the NEE and ET are directly mea-

sured by the eddy covariance station (i.e., fluxes of CO2 and H2O, respectively) and that GPP and

RECO are derived from these measurements.

In this study, only GPP, RECO and ET measurements were used in the inverse modelling. Adding125

NEE measurements would be useless as they are directly dependent on GPP and RECO. The GPP

and RECO were used since they are directly linked with the photosynthesis and respiration pro-

cesses, respectively, while the influence of these two processes is mixed in the NEE measurements.

Other combinations including the NEE were first tested but it resulted in poorer agreements between
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measured and modelled data. The full data range including gap-filled data was inverted, since these130

data are gap-filled according specific protocols that are standards in the eddy covariance community.

2.2 The CARAIB model

2.2.1 Description of the model

CARAIB is a physically-based dynamic vegetation model that was developed for the simulation of

the carbon cycle at the global scale (Warnant et al., 1994; Nemry et al., 1996; Otto et al., 2002). It135

calculates the carbon fluxes through the soil-vegetation-atmosphere continuum by simulating eco-

physiological processes: photosynthesis, carbon allocation to plant pools and autotrophic and het-

erotrophic respiration. The CARAIB model has been used in numerous paleoclimatology, vegetation

and crop modelling studies. The reader is referred to the aforementioned references for full model

description.140

For C3 plants, photosynthesis is computed according the model of Farquhar et al. (1980). The

stomatal conductance governing the flux of CO2 through the stomata is described at the leaf scale

with the Ball-Berry approach (Ball et al., 1987), using the model of Leuning (1995) with further

adaptations from Van Wijk et al. (2000) for accounting for soil water stress affecting the stomatal

conductance. Photosynthesis and respiration processes are computed at a two-hour time step on a145

half-day basis and the model assumes a symmetry with respect to solar noon time, that is, computa-

tion of these processes are made for half the day and further aggregated at a daily time step. Other

processes, e.g., related to soil hydrology or carbon allocation, are computed on a daily basis.

In this study, a single plant functional type (PFT) is considered (BAG 22 as defined in Laurent

et al. (2004, 2008)) corresponding to the flora that can be encountered in European grasslands, i.e.,150

species of Poaceae and Asteraceae. The model was adapted for simulating the grassland sites by

adding management functions for grass cutting and grazing. Grass cutting is modelled by the removal

of a part of the plant carbon mass so that the model matches given values of leaf area index after

cutting. Grazing is modelled such as a given fraction of the plant carbon mass is removed every day

according to the grazing charge. The dates of the grass cutting and the duration of the grazing periods155

were known and fixed in the simulations. Daily meteorological data recorded at the experimental

sites were used in the model, i.e., minimal and maximal temperature, precipitation, solar radiation,

relative air humidity and wind velocity. Although they can affect vegetation modelling (Gottschalk

et al., 2007; Rivington et al., 2006; Zhao et al., 2012), uncertainties in the meteorological data were

not considered in this study.160

Thirty-three parameters per PFT are set in CARAIB. These parameters govern photosynthesis,

plant physiology process (e.g., specific leaf area, carbon-to-nitrogen ratio), allocation of carbon

and residence times in the different pools of carbon including plants and soil pools, land surface-

atmosphere interactions (albedo, roughness length) and tolerance to extreme conditions (thresholds

5



and response times). During the model development, parameter values in CARAIB were mainly165

found in the literature (Warnant, 1999) and further compared with observed values (remote sensing,

field data and paleorecords). So far, no model inversions were performed with the CARAIB model.

2.2.2 Choice of parameters

In this study, ten model parameters were sampled (Table 2). They were chosen according to their

presupposed importance, that is, the model sensitivity to these parameters, and because some pa-170

rameters values were already known in the measured data from the experimental sites. Default val-

ues that were defined during the model development and used in previous researches are given in

Table 2. These parameters governs the main processes of the model, namely, the photosynthesis, the

respiration and carbon transfer between carbon pools:

– The slope g1 and the intercept g0 [µmol.m−2.s−1] of the stomatal conductance as described175

in Leuning (1995) are directly related to the photosynthesis since they govern the stomatal

conductance. They are thus related to the gross primary productivity (GPP) and evapotran-

spiration (ET) with respect to the meteorological conditions. While most of ecological mod-

els, including CARAIB, use an empirical approach for stomatal conductance derived from

the Ball-Berry model, Medlyn et al. (2011) recently reconcile the empirical approach with the180

theoretical background based on the optimal stomatal behaviour (Farquhar et al., 1980), which

states that there is a trade-off for stomata between maximizing carbon gain (photosynthesis)

and minimizing water loss (transpiration). These new developments in the theoretical under-

standing of the empirical relationship push forward the necessity to measure or calibrate the

stomatal conductance parameters under different environmental conditions. Although single185

values of these parameters are used for regional or global modelling of C3 plants photosynthe-

sis (e.g., Sitch et al., 2008), it is actually known that stomatal conductance parameters should

vary through time and space according to the environmental conditions and plant species.

– The specific leaf area (SLA) [m2gC−1] is defined in CARAIB as the leaf area per unit of car-

bon mass of the plants. It is used in the model to convert the assimilated mass of carbon into190

leaf area index. Besides its role in the model, SLA is often studied as a plant trait that is used

for predicting the plant resource use strategy or for clustering plants species into functional

groups. Maximizing the photosynthesis while minimizing leaf respiration, high SLA leaves

(thin leaves) are productive, but also more vulnerable and short-lived (Wilson et al., 1999).

They are thus better adapted to resource-rich environment, where leaves can be quickly re-195

constructed (Poorter and De Jong, 1999). At the other side, low SLA leaves (thick leaves) are

often encountered in drought-adapted (Marcelis et al., 1998) or shade-tolerant species (Evans

and Poorter, 2001) and for the lower, self-shaded leaves of a plant. SLA is also known to vary

along the season and according to the leaf age (Wilson et al., 1999). Nevertheless, the concept
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of SLA is sometimes problematic for some plant species with complex plant geometry (Vile200

et al., 2005), e.g., highly folded leaves, or with a non-negligible part of the photosynthetic

tissues standing on the stem, as encountered among the Poaceae species. In these simulations,

SLA is defined for the PFT that is supposed to represent European grasslands and therefore, it

should be actually considered as an effective parameter among the grassland species and for

the whole plant body.205

– The characteristic mortality time [year] of the plant in normal τ and in stress conditions τs

are, respectively, the characteristic time for the renewal of the plant (τ ) and the time it takes to

the plant to die in stress conditions (τs). The stress conditions occur when temperatures reach

either low or high extreme values, for soil water content below a certain threshold or for low

irradiance values. The default values were 0.667 year for τ , meaning a renewal of the plant by210

8 months, and 0.083 year for τs, meaning a characteristic mortality time in stress conditions

of one month.

– Two carbon-to-nitrogen ratio are defined for the photosynthetic active carbon pool of the plant

(C/N1) and for the remainder of the plant (C/N2). The nitrogen content of the leaves play

a crucial role in the photosynthesis and increasing nitrogen content (decreasing C/N) fosters215

photosynthetic activity. Low C/N ratio in plant usually comes together with high nitrogen

content in soils, that is, a resource-rich environment.

– Three parameters govern the rates of the soil heterotrophic respiration: γ1 for the respiration

of the “green litter“, γ2 for the respiration of the ”not-green litter” and γ3 for the respiration

of the soil organic carbon.220

Table 1. Grassland sites and periods of simulations

Coordinates Altitude Management Fertili- De Martonne- Calibration Validation

sation Gottman index years years

Grillenburg, DE 13.50 °E 50.95 °N 380 m cutting (1-3 yr−1) no 32 2004-2006 2007-2008

Oensingen, CH 7.73 °E 47.28 °N 450 m cutting (3-5 yr−1) yes 38 2002-2005 2006-2008

Monte-Bondone, IT 11.03 °E 46.00 °N 1500 m cutting (1 yr−1) no 35 2003-2005 2006-2007

Laqueuille, FR 2.73 °E 45.63 °N 1040 m grazing no 41 2004-2007 2008-2010

2.3 Probabilistic inversion methodology

2.3.1 Inverse problem

To acknowledge that measurements and modelling errors are inevitable, the inverse problem is com-

monly represented by the stochastic relationship

F (z) = d + e, (1)225
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whereF is a deterministic, error-free forward model that expresses the relation between the uncertain

parameters z and the measurement data d, and the noise term e lumps measurement and model errors.

Inversions were performed within a Bayesian framework, which treats the unknown model pa-

rameters z as random variables with posterior probability density function (pdf) p(z|d) given by

230

p(z|d) =
p(z)p(d|z)

p(d)
∝ p(z)L(z|d) , (2)

where p(z) denotes the prior distribution of z and L(z|d)≡ p(d|z) signifies the likelihood function

of z. The normalization factor p(d) =
∫
p(z)p(d|z)dz is obtained from numerical integration over

the parameter space so that p(z|d) scales to unity. The quantity p(d) is generally difficult to estimate

in practice but is not required for parameter inference. In the remainder of this study, we will focus235

on the unnormalized posterior p(z|d)∝ p(z)L(z|d). For numerical stability, it is often preferable

to work with the log-likelihood function, `(z|d), instead of L(z|d). If we assume the error e to

be normally distributed, uncorrelated and with unknown constant variance, σ2, the log-likelihood

function can be written as

`(z|d) =−N
2

log(2π)− N

2
log
(
σ2
)
− 1

2σ2

N∑
i=1

[di−Fi (z)]
2
, (3)240

where σ can be fixed beforehand or sampled jointly with the other model parameters z.

The homoscedasticity (i.e., constant variance) assumption for e may be excessively strong in many

cases. Considering the residual errors, e, to be heteroscedastic, Eq. (3) becomes

`(z|d) =−N
2

log(2π)−
N∑
i=1

log(σi)−
1

2

N∑
i=1

[di−Fi (z)]
2

σ2
i

, (4)

where the σi are the individual residual error standard deviations, that can be gathered into a vector245

σ. Here also, σ can either be fixed beforehand or sampled along with z (see further).

2.3.2 Multi-objective likelihood function

In this work, we chose three types of eddy covariance data for the calibration: d1 (GPP), d2 (RECO)

and d3 (ET). We further assume that the corresponding residual errors, e1, e2 and e3, are uncorre-

lated, leading to the following multi-objective log-likelihood function250

`(z|d1,2,3) = `(z|d1) + `(z|d2) + `(z|d3) . (5)

The weighting between the three components of `(z|d1,2,3) is an important issue. The constant (σ)

and non-constant (σi) standard deviations in equations (3) and (4), respectively, basically weight the

respective influences of e1, e2 and e3 on the log-likelihood defined by Eq. (5). Distinct homoscedas-

tic or heteroscedastic residual error models must be specified for e1, e2 and e3. This was done for255

both the homoscedastic and heteroscedastic cases either by specifying the residual error standard

deviations beforehand, or by jointly inferring these standard deviations along with the model param-

eters.
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2.3.3 Homoscedastic and heteroscedastic error models

Based on prior knowledge of the measurement errors, the homoscedasticity assumption simply re-260

duces to assigning values to σ1, σ2 and σ3 in Eqs. (3) and (5). These values were fixed to 3 gC

m−2 day−1 for the GPP measurements, 1.5 gC m−2 day−1 for the RECO measurements and 1 mm

day−1 for the ET measurements. As stated earlier, measurement errors associated with eddy covari-

ance fluxes are however typically found to be heteroscedastic, with a variance that is assumed to be

linearly related to the magnitude of the measured data (Richardson et al., 2008)265

σd,i =
1

2
σ0,d

(
di

d
+ 1

)
, (6)

where the variable d denotes either GPP, RECO or ET measurements, i= 1, · · · ,N are measurement

times, and σ0,d is equivalent to σ1, σ2, or σ3 in the homoscedastic case. We refer to the inversions

based on these homoscedastic and heteroscedastic error models as HO1 and HE1, respectively. It is

worth noting that by fixing the standard deviations to known measurement errors, one implicitly as-270

sumes that the model is able to describe the observed system up to the observation errors. This might

not be realistic in environmental modelling where models are always fairly simplified descriptions

of a much more complex reality.

2.3.4 Joint inference of the homoscedastic and heteroscedastic error model parameters

Still under the Gaussianity assumption, a more advanced treatment of the residual error models con-275

siders simultaneous inference of the standard deviations with the model parameters, i.e., considering

the standard deviation of the residual errors as unknowns. Doing so assumes that residual errors

are expected to be a mixture of both model (equations and inputs) and observational errors. For the

homoscedastic case, this simply consists of jointly sampling σ1, σ2 and σ3 along with the model

parameters, z.280

The heteroscedastic error model then becomes

σd,i = adi + b, (7)

where the a and b coefficients are to be jointly inferred with z from the measurement data. Using

Eq. (7) thus leads to the addition of 6 variables to the sampling problem: a1, a2, a3, b1, b2 and b3.

We refer to the joint inversions of these homoscedastic and heteroscedastic error models as HO2 and285

HE2, respectively. In these inversions, a total predictive uncertainty around the model output can be

computed by adding to the modelled data a random noise drawn from a normal distribution with

mean zero and standard deviation σ sampled from its posterior distribution (HO2) or computed by

Eq.(7) (HE2).

Simultaneous inference of model parameters with homoscedastic or heteroscedastic error model290

parameters requires the definition of their prior probability distributions. Based on the available prior

information, uniform (flat) priors are used for the 10 model parameters contained in z (see Table 2).
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We follow two guidelines for specifying the prior densities of the error model parameters. First, we

would like to obtain posterior standard deviations as small as possible within the range permitted

by the model and measurement data errors in order to get the lowest possible data misfits. Second,295

the magnitudes of the different prior distributions should reflect the desired weights of the different

data types within the multi-objective inference. These weights translate the modeller’s relative pref-

erences among the three modelling objectives in Eq. (5). We therefore use normal distributions with

mean zero truncated at zero to avoid negative values. The prescribed weights then correspond to the

different standard deviations of these normal distributions300

p(X) =
1

σXB
φ

(
X −µX

σX

)
∝ φ

(
X −µX

σX

)
, (8)

where the X variable is either σj , aj or bj for j = 1,2,3, the value of σX expresses the modeller’s

preference for objective j compared to the other objectives (the smaller σX , the larger the relative

weight of objective j), φ(·) signifies the probability density function of the standard normal distribu-

tion, µX is set to zero for maximizing the prior density of X towards small values, and the constant305

B depends on the lower, v, and upper, w, limits of the truncation interval

B = Φ

(
w−µX

σX

)
−Φ

(
v−µX

σX

)
, (9)

in which Φ(·) denotes the cumulative distribution function of the standard normal distribution.

This treatment of multi-objective Bayesian inference is in line with the work of Reichert and

Schuwirth (2012), who further considered different statistical models for model and observation310

errors. Overall, this resulted in four different ways of treating the eddy covariance data uncertain-

ties: fixed homoscedastic (HO1) and heteroscedastic (HE1) error models, and jointly inferred ho-

moscedastic (HO2) and heteroscedastic (HE2) error models. Using the HO1 and HE1 models led to

a total of 10 inferred parameters, whereas using the HO2 and HE2 models resulted into a total of

13 and 16 inferred parameters, respectively. Table 2 lists the marginal prior distributions used for all315

sampled parameters. The upper and lower bounds of the prior parameter distributions were set using

boundary values that correspond at least to the lower and upper physically-possible bounds of the

parameters, or to narrower bounds using expert-knowledge.

2.3.5 Markov chain Monte Carlo sampling

The goal of the inference is to estimate the posterior distribution p(z|d) where the 10, 13 or 16-320

dimensional z vector contains all sampled parameters, and d signifies the conditioning data: d =

{d1,2,3} herein. As an exact analytical solution of p(z|d) is not available, we resort to Markov

chain Monte Carlo (MCMC) simulation to generate samples from this distribution. The basis of this

technique is a Markov chain that generates a random walk through the search space and iteratively

finds parameter sets with stable frequencies stemming from the posterior pdf of the model parameters325

(see, e.g., Roberts, 2004, for a comprehensive overview of MCMC simulation).
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Table 2. Default values and prior distributions of the 10 model parameters, and prior distributions of the statisti-

cal parameters of the homoscedastic and heteroscedastic error models. The label U means an uniform distribu-

tion, TG signifies a zero-mean Gaussian distribution truncated at zero to avoid negative values, and SD denotes

the prescribed standard deviation of a TG distribution.

Parameter Units Default value Prior type Range SD

Model parameters

g1 9 U [1− 20] N/A*

g0 mol m−2 s−1 0.01 U [0.005− 0.03] N/A

SLA m2gC−1 0.025 U [0.01− 0.08] N/A

τ year 0.667 U [0.5− 2] N/A

τs year 0.0833 U [0.01− 0.5] N/A

C/N1 16 U [5− 40] N/A

C/N2 32 U [10− 80] N/A

γ1 20 U [5− 40] N/A

γ2 10 U [5− 40] N/A

γ3 0.2 U [0− 1] N/A

Homoscedastic error model parameters (for HO2 inversions only)

σGPP gC m−2 day−1 N/A TG [0,54] 9

σRECO gC m−2 day−1 N/A TG [0,27] 4.5

σET mm day−1 N/A TG [0,18] 3

Heteroscedastic error model parameters (for HE2 inversions only)

aGPP N/A TG
[
0,27 ∗YGPP

]
4.5*YGPP

aRECO N/A TG
[
0,13.5 ∗YRECO

]
2.25*YRECO

aET N/A TG
[
0,9 ∗YET

]
1.5*YET

bGPP gC m−2 day−1 N/A TG [0,27] 4.5

bRECO gC m−2 day−1 N/A TG [0,13.5] 2.25

bET mm day−1 N/A TG [0,9] 1.5

*Not applicable

The MCMC sampling efficiency strongly depends on the assumed proposal distribution used to

generate transitions in the Markov chain. In this work, the state-of-the-art DREAM(ZS) (ter Braak

and Vrugt, 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012) algorithm is used to generate posterior

samples. A detailed description of this sampling scheme including convergence proof can be found330

in the cited literature and is thus not reproduced herein.

Convergence of the MCMC sampling to the posterior distribution is monitored by means of the

potential scale reduction factor of Gelman and Rubin (1992), R̂. This statistic compares for each pa-

rameter of interest the average within-chain variance to the variance of all the chains mixed together.

The smaller the difference between these two variances, the closer to 1 the value of the R̂ diagnostic.335

Values of R̂ smaller than 1.2 are commonly deemed to indicate convergence to a stationary distri-

bution. In this study, posterior distributions of the parameters were drawn from the point where all

parameters achieved R̂ < 1.2. This is more conservative than conventional practice of stopping the

inference when R̂ < 1.2 for every parameter. The mean acceptance rate of the proposed samples,

11



AR (%), is an important sampling property and is thus also reported. An excessively small fraction340

of accepted candidate points indicates poor mixing of the chains due to a too wide proposal distribu-

tion. In contrast, a very large acceptance rate signals a too narrow proposal distribution causing the

chains to remain in close vicinity of their current locations. The optimal value for AR depends on

the proposal and target distributions, but a range of 10-30% generally indicates good performance

of DREAM(ZS).345

3 Results

3.1 Parameter estimation

3.1.1 Parameter samplings and convergence of the algorithm

0 5000 10000 15000 20000 25000
0

0.02

0.04

0.06

0.08

S
L

A
 [

m
2
g

C
−

1
]

Model evaluations

Figure 1. Sampled values of the specific leaf area (SLA) by DREAM(ZS) parametrised with 4 chains, for the

Oensingen site and the fixed homoscedastic error model (inversion HO1). The vertical dashed line indicates

when convergence has been reached according to the R̂ statistic.

The DREAM(ZS) algorithm was run with four parallel chains, initialized by sampling the prior

parameter distribution (Table 2). As an example, Fig. 1 shows sampling trajectories of DREAM(ZS)350

parametrised with four chains, for the SLA parameter and inversion HO1 at the Oensingen site. The

R̂ convergence statistic becomes < 1.2 for each parameter after about 20,000 forward model runs

and the AR over the last 50 % model evaluations is about 18 %. Overall, convergence was achieved

for all MCMC trials after some 15,000-30,000 forward runs with AR values in the range 10%-30%,

except for the inversions associated with the Laqueuille site that showed AR values as low as 5%.355

3.1.2 Posterior parameter distributions

Figure 2 presents marginal posterior histograms of the 10 model parameters for all experimental

sites, considering the inferred homoscedastic error model (inversion HO2). In the remainder of this
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Figure 2. Posterior distributions of the CARAIB model parameters sampled by the DREAM(ZS) algorithm,

inferred homoscedastic error model (HO2 inversions), for all sites. The default values (see Table 2) are depicted

with a cross and the most likely values with a star. The X-axes cover the whole prior ranges.
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document, results are mainly detailed for this inversion scenario, since it generally led to the lowest

data misfit statistics in calibration. For some parameters (e.g., SLA and C/N1), the marginal poste-360

rior distributions are narrow compared to the prior parameter range. This indicates a large sensitivity

of the model to the considered parameter. In contrast, some other parameters such as γ2 are poorly

resolved, demonstrating a relative insensitivity. Asymmetric edge-hitting distributions are also ob-

served such as for C/N1 and C/N2 in Monte-Bondone. In a Bayesian inversion of eddy covariance

data obtained from a forest site, Braswell et al. (2005) found that 7 out of 26 marginal parameter dis-365

tributions were edge-hitting. Extending the prior parameter ranges would lead herein to unphysical

or unplausible parameter values. Edge-hitting distributions reveal model inadequacies and/or large

systematic measurements errors. For some parameters, posterior distributions were rather distinct

from the default values that were used in previous studies (Table 2), such as high g1 values. Values

of the characteristic mortality time τ also generally increased compared to the default value.370

Table 3 shows for the four experimental sites the most likely parameter values, which resulted

in the highest values of the log-likelihood function. Some of the parameters present contrasting

values between inversion scenarios and/or experimental sites, which may be related to the different

ecological characteristics of the sites as discussed in section 4.3. Depending on the width of the

posterior distributions, the most likely parameter values are well resolved or largely uncertain. As a375

result, comparison between the experimental sites must account for the posterior distributions of the

parameters.

3.2 Measured and modelled carbon and water fluxes with calibration data

3.2.1 Measured and modelled data in Monte-Bondone

As the parameters sampling resulted in posterior distributions of the parameters instead of single380

values, ensembles of posterior modelled signals can be represented. In Fig. 3, measured and mod-

elled eddy covariance data are depicted for the experimental site of Monte-Bondone, for inversions

with the inferred homoscedastic error model (inversion HO2). The posterior ranges of the modelled

signals are represented by the dark grey shaded areas for the prediction uncertainty due to parameter

uncertainties and by the light grey shaded areas for the total predictive uncertainty (at 95% con-385

fidence interval). This total prediction uncertainty is computed using the standard deviation of the

residual errors σ as sampled by the inversions and, therefore, cannot be computed for the NEE. The

site of Monte-Bondone was chosen here since there is one single cut a year (indicated by the verti-

cal arrows) that is clearly identifiable, which facilitates the interpretation of the fluxes. The dates of

cutting corresponded to a sudden drop in the GPP in the middle of the year, that was followed by a390

gradual increase. They were also observed in the NEE graphs with a sudden increase in the NEE.

There were overall good agreements between measured and modelled signals. It is worth noting

that the posterior ranges of modelled data were not constant over time and were not related to the
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Table 3. Most likely CARAIB model parameters values for all inversion scenarios

Grillenburg Oensingen Monte-Bondone Laqueuille

Fixed homoscedastic error model inversions (HO1)

g1 16.8 7.3 18.8 18.6

g0 [mol m−2 s−1] 0.0265 0.00507 0.00637 0.0248

SLA [m2gC−1] 0.0126 0.0234 0.0155 0.0197

τ [year] 1.99 1.27 1.98 1.49

τs [year] 0.0861 0.0526 0.0212 0.023

C/N1 5 6.69 5.02 5.43

C/N2 78.6 19.9 10.6 11

γ1 5.07 39.1 38.2 26.1

γ2 5.1 39.9 38.8 36.9

γ3 0.73 0.507 0.421 1.49e-05

Fixed heteroscedastic error model inversions (HE1)

g1 3.45 8 19.8 20

g0 [mol m−2 s−1] 0.027 0.00544 0.0297 0.0299

SLA [m2gC−1] 0.0161 0.0151 0.0142 0.0191

τ [year] 1.96 1.7 1.96 0.746

τs [year] 0.0202 0.0687 0.0153 0.0234

C/N1 5.11 5.1 5 5

C/N2 77.9 20.3 10.2 10

γ1 8.09 39.5 31.4 38.8

γ2 5.96 37.4 30.9 24.8

γ3 0.358 0.806 0.981 0.688

Inferred homoscedastic error model inversions (HO2)

g1 15.6 7.46 16.8 14.5

g0 [mol m−2 s−1] 0.00945 0.00549 0.0258 0.0104

SLA [m2gC−1] 0.0133 0.0193 0.0142 0.0483

τ [year] 1.98 1.65 1.99 0.65

τs [year] 0.0682 0.0583 0.0735 0.0102

C/N1 5.57 5.43 5 15.6

C/N2 77 20.2 10 52.7

γ1 6.25 37.2 20.8 39.6

γ2 5.26 35.5 27.3 5.58

γ3 0.257 0.471 0.361 0.000272

Inferred heteroscedastic error model inversions (HE2)

g1 11.3 9.4 19.8 12.7

g0 [mol m−2 s−1] 0.0276 0.00635 0.0298 0.0234

SLA [m2gC−1] 0.018 0.0158 0.0142 0.0797

τ [year] 1.69 1.8 1.27 0.822

τs [year] 0.01 0.0892 0.0141 0.0104

C/N1 6.67 5.4 5.1 20.6

C/N2 22.9 15.5 14.9 10.1

γ1 7.83 21.7 20.6 38.5

γ2 6.14 21.9 19.1 9.79

γ3 0.503 0.896 0.145 0.505
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Figure 3. Measured and modelled GPP [gC m−2 day−1] (a), RECO [gC m−2 day−1] (b), ET [mm day−1] (c)

and NEE [gC m−2 day−1] (d) at the Monte-Bondone site for the inferred homoscedastic error model (inversion

HO2). The ranges of the prediction uncertainty due to parameter uncertainties and the 95% total predictive

uncertainty (only for GPP, RECO and ET) are depicted by the dark and light grey shaded areas, respectively.

Vertical arrows indicate the dates of the grass cutting.

16



magnitude of the signals. The ranges due to parameter uncertainties were relatively small and did

not encompass the measured data. Overall, it could be observed that measured eddy covariance data395

have a stronger kinetic than the modelled signals, meaning that the CARAIB model cannot follow

the fast fluctuations of the GPP (and other signals) over time. In particular, the model could not well

simulate the highest peaks of GPP.

3.2.2 Measured and modelled data across sites

Considering the other three experimental sites (Fig. 4), there were similar agreements between mea-400

sured and modelled signals, although the sites displayed different behaviour in terms of GPP as their

management is varying: there are several cuts per year in Grillenburg and Oensingen, while Laque-

uille is a grazed meadow. In general, the peaks of GPP cannot be well simulated by the model. The

modelled GPP seemed averaged out as compared to the measured signals, as observed before in

Monte-Bondone (Fig. 3(a)).405

Table 4. Comparison between measured and modelled signals using most likely parameter values. ml is the

maximum value of the log-likelihood function.

Grillenburg Oensingen Monte-Bondone Laqueuille

RMSE E R2 RMSE E R2 RMSE E R2 RMSE E R2

Fixed homoscedastic error model inversions (HO1)

ml -5560 -7402 -5248 -8284

GPP [gC m−2 day−1] 1.797 0.726 0.791 2.231 0.600 0.757 1.742 0.755 0.831 2.151 0.521 0.751

RECO [gC m−2 day−1] 1.498 0.502 0.695 1.269 0.772 0.803 1.036 0.832 0.878 1.529 0.688 0.743

ET [mm day−1] 0.623 0.309 0.565 0.670 0.612 0.758 0.500 0.784 0.849 1.128 0.144 0.474

NEE [gC m−2 day−1] 1.774 -0.185 0.335 2.044 -0.115 0.449 1.424 -0.018 0.463 2.153 -0.382 0.219

Fixed heteroscedastic error model inversions (HE1)

ml -5324 -5961 -4879 -8078

GPP [gC m−2 day−1] 2.394 -0.018 0.706 2.405 0.353 0.767 1.932 0.585 0.814 2.679 0.001 0.695

RECO [gC m−2 day−1] 1.977 -0.802 0.634 1.346 0.709 0.791 1.281 0.641 0.869 1.638 0.503 0.727

ET [mm day−1] 0.597 0.329 0.597 0.665 0.582 0.784 0.488 0.781 0.854 1.122 0.031 0.498

NEE [gC m−2 day−1] 1.854 -1.491 0.198 2.086 -0.908 0.443 1.450 -0.501 0.429 2.138 -1.414 0.201

Inferred homoscedastic error model inversions (HO2)

ml -5161 -7074 -4550 -8321

GPP [gC m−2 day−1] 1.733 0.728 0.799 2.194 0.606 0.767 1.746 0.718 0.841 2.123 0.635 0.740

RECO [gC m−2 day−1] 1.560 0.393 0.673 1.300 0.773 0.796 1.037 0.837 0.876 1.561 0.523 0.739

ET [mm day−1] 0.616 0.316 0.573 0.664 0.608 0.767 0.498 0.784 0.850 1.282 0.222 0.394

NEE [gC m−2 day−1] 1.713 -0.139 0.367 2.034 -0.191 0.453 1.399 -0.332 0.478 2.052 -0.174 0.263

Inferred heteroscedastic error model inversions (HE2)

ml -4110 -6284 -3820 -7927

GPP [gC m−2 day−1] 1.929 0.669 0.744 2.306 0.467 0.762 1.875 0.645 0.811 2.225 0.475 0.737

RECO [gC m−2 day−1] 1.751 0.344 0.582 1.350 0.758 0.781 1.244 0.661 0.869 1.674 0.621 0.702

ET [mm day−1] 0.574 0.403 0.629 0.663 0.589 0.781 0.492 0.784 0.852 1.283 0.221 0.393

NEE [gC m−2 day−1] 1.652 0.002 0.384 2.071 -0.595 0.443 1.452 -0.246 0.433 2.217 -0.749 0.200

All the graphical comparisons between measured and modelled signals could not be shown, but

are summarized in Table 4 for the homoscedastic and heteroscedastic cases, and with fixed and in-

ferred error model, using the root mean square error (RMSE), the R2 and the Nash and Sutcliffe
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Figure 4. Measured and modelled GPP [gC m−2 day−1] for the Grillenburg (a), Oensingen (b) and Laqueuille

(c) experimental sites. See Fig.3(a) for Monte-Bondone. The ranges of the prediction uncertainty due to param-

eter uncertainties and the 95% total predictive uncertainty are depicted by the dark and light grey shaded areas,

respectively. Vertical arrows indicate the dates of the grass cutting (Grillenburg and Oensingen) and horizontal

arrows the periods of grazing (Laqueuille).
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(1970) model efficiency criterion (E) between measured and modelled signals. The latter criterion

takes values from -∞ to 1. A value of 1 means a perfect match between measurements and model410

simulations, a value of 0 indicates that the mean of the observed data is as accurate as the modelled

values, and an efficiency less than 0 occurs when occurs when the mean of the observed data repro-

duces the observations better than the modelled values. The maximum log-likelihood value ml that

was obtained by the algorithm is also indicated. Note that performance criteria were also computed

for the NEE, although these data were not used in the model inversions. Overall, the best agreements415

were found for the Monte-Bondone site, and the worst for the Laqueuille site. The lowest model

efficiencies E were found for the NEE, which is not surprising since these data were not accounted

for in the model inversions. While the ml values were generally the highest for the heteroscedastic

inversions HE2, RMSE appeared larger for these inversions.

3.2.3 Homoscedastic and heteroscedastic eddy covariance residual errors420

Considering homoscedastic or heteroscedastic residual eddy covariance residual errors resulted in

different sampling of posterior distributions of parameters, and therefore, different posterior mod-

elled signals of the model. As an example, Fig. 5 shows the measured and modelled GPP with

their posterior ranges for the site of Monte-Bondone in 2004, for both homoscedastic (a,c) and het-

eroscedastic (b,d) cases. For the HO2 and HE2 inversions, the 95 % total predictive uncertainty is425

depicted using the light grey shaded areas. The measurement uncertainty is depicted only for fixed

eddy covariance residual errors inversions (a,b) for clarity. The measurement uncertainty is thus

constant for the homoscedastic case (namely, ±3 gC m−2 day−1 for HO1) while it varies linearly

according to the GPP for the heteroscedastic case (HE1). This two options led to different behaviours

of the modelled GPP using the posterior distributions, which better approached the high values of430

the measured data (in summer) in the homoscedastic cases and better fit the low values (in winter) in

the heteroscedastic cases. Overall, in calibration, modelled signals with parameters values from the

homoscedastic inversions were in a better agreement with the measured data than with the param-

eters from the heteroscedastic inversions. The same observation was also made for the other sites

(not shown), as it could also be observed in Table 4. However, the total predictive uncertainty range435

derived from the HE2 inversions was more consistent, as, e.g., it avoids unrealistic negative values of

GPP. The standardised residuals, that were computed as the difference between measured and mod-

elled data divided by the standard deviation of the residual error, are depicted in Fig. 5 at the right

of the GPP graphs. Heteroscedasticity of the GPP residual errors was fairly reduced but not fully

removed by using the HE1 and HE2 heteroscedastic residual error models. Indeed, the standardised440

residuals still showed some small but complex heteroscedastic patterns. Partial autocorrelation of

the residuals of the GPP were also depicted and independence between the days of simulation was

reached after a few days.
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Figure 5. Measured and modelled GPP [gC m−2 day−1] at the Monte-Bondone site in 2004 for the fixed

homoscedastic HO1 (a) and heteroscedastic HE1 (b), inferred homoscedastic HO2 (c) and heteroscedastic HE2

(d) inversions. The measured GPP is depicted with a constant (a) and variable (b) uncertainty range. For the

HO2 and HE2 inversions, the 95% confidence interval total predictive uncertainty is depicted using the light

grey shaded areas. Standardised residuals and partial autocorrelation of residuals of GPP over the full simulation

period are depicted at the right of each graph.
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3.2.4 Sampling of the standard deviation of the residual errors

Table 5. Most likely standard deviation of the residual errors (HO2) and parameters of Eq. (7) (HE2).

Grillenburg Oensingen Monte-Bondone Laqueuille

Inferred homoscedastic inversions (HO2)

σGPP 1.81 2.29 1.79 2.22

σRECO 1.63 1.33 1.09 1.62

σET 0.632 0.682 0.519 1.31

Inferred heteroscedastic inversions (HE2)

aGPP 0.211 0.65 0.336 1.09

aRECO 0.12 0.334 0.162 0.514

aET 0.246 0.255 0.316 0.818

bGPP 0.406 0.297 0.423 0.239

bRECO 0.411 0.206 0.283 0.233

bET 0.273 0.255 0.12 0.175

Inversions with the sampling of the standard deviations of the residual errors resulted in poste-445

rior distributions of the standard deviation of the residual errors (HO2) and parameters of Eq. (7)

(HE2). Most likely values of these distributions (Table 5) were depending on the experimental sites,

being larger for Laqueuille and Oensingen, which can be related to the poorer agreements between

measured and modelled data in these sites. Although the sampled standard deviations of the residual

errors were lower than in the fixed inversions, there were no large differences between the inversions450

with fixed model errors (HO1 & HE1) and inversions with inferred model errors (HO2 & HE2)

in terms of agreement between measured and modelled signals (see Fig. 5 and Table 4) or in the

posterior distributions of parameters (Table 3).

3.3 Model validation

Parameter values from the posterior distributions were tested for validation using eddy covariance455

data over different periods (validation datasets, see Table 1). Figure 6 shows measured and modelled

GPP values over the periods of calibration and validation in Monte-Bondone. Not surprisingly, worse

agreements between measured and modelled data are observed as compared to the calibration period.

However, it is observed that the modelled GPP in validation in the HE2 inversions follows better the

measured signal than in the HO2 inversions. Strikingly, in all the sites, the posterior parameter dis-460

tributions derived from using the HE1 and HE2 heteroscedastic models are found to induce a better

model performance in validation compared to the posterior distributions associated with the use of

the homoscedastic models (Table 6). The difference between calibration and validation appeared

thus smaller when using most likely parameter values from heteroscedastic inversions as compared

to homoscedastic inversions. Among the different grassland sites, a similar performance pattern as465

for the calibration experiment is observed. Indeed, the Laqueuille site shows for each type of mea-
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surement data the worst performance statistics whereas the Monte-Bondone site overall presents the

best fits to the data (Table 6).

Table 6. Validation of the calibrated model using most likely parameter values from the inversions

Grillenburg Oensingen Monte-Bondone Laqueuille

RMSE E R2 RMSE E R2 RMSE E R2 RMSE E R2

Fixed homoscedastic error model inversions (HO1)

GPP [gC m−2 day−1] 2.467 0.581 0.694 3.000 0.523 0.576 2.234 0.711 0.803 4.160 -0.307 0.690

RECO [gC m−2 day−1] 1.284 0.768 0.799 1.560 0.732 0.747 1.389 0.733 0.871 4.444 -2.363 0.607

ET [mm day−1] 0.642 0.520 0.602 0.732 0.662 0.700 0.504 0.839 0.848 1.198 0.226 0.382

NEE [gC m−2 day−1] 1.880 0.197 0.453 2.332 0.049 0.217 1.526 0.446 0.475 2.481 -0.176 0.171

Fixed heteroscedastic error model inversions (HE1)

GPP [gC m−2 day−1] 2.030 0.716 0.748 2.803 0.584 0.585 1.812 0.810 0.832 2.707 0.446 0.679

RECO [gC m−2 day−1] 1.221 0.790 0.871 1.535 0.740 0.747 0.960 0.873 0.881 3.101 -0.638 0.595

ET [mm day−1] 0.610 0.567 0.613 0.678 0.709 0.714 0.502 0.840 0.851 1.142 0.296 0.393

NEE [gC m−2 day−1] 1.972 0.117 0.281 2.206 0.149 0.194 1.415 0.524 0.536 2.339 -0.045 0.180

Inferred homoscedastic error model inversions (HO2)

GPP [gC m−2 day−1] 2.651 0.516 0.663 3.008 0.520 0.571 2.315 0.690 0.765 2.730 0.437 0.705

RECO [gC m−2 day−1] 1.335 0.749 0.777 1.614 0.713 0.735 1.398 0.730 0.849 2.050 0.284 0.646

ET [mm day−1] 0.639 0.525 0.603 0.710 0.682 0.705 0.502 0.841 0.850 1.364 -0.003 0.353

NEE [gC m−2 day−1] 2.010 0.082 0.451 2.337 0.045 0.203 1.598 0.393 0.414 2.047 0.200 0.309

Inferred heteroscedastic error model inversions (HE2)

GPP [gC m−2 day−1] 2.361 0.617 0.699 2.825 0.577 0.588 1.805 0.811 0.830 2.294 0.603 0.701

RECO [gC m−2 day−1] 1.220 0.790 0.815 1.549 0.735 0.749 0.974 0.869 0.883 2.472 -0.041 0.625

ET [mm day−1] 0.617 0.557 0.614 0.683 0.705 0.713 0.501 0.841 0.850 1.370 -0.013 0.351

NEE [gC m−2 day−1] 1.837 0.233 0.364 2.227 0.132 0.199 1.398 0.535 0.547 2.240 0.042 0.179

4 Discussions

4.1 Measured and modelled signals470

Bayesian inversions over the four grassland sites resulted in posterior distributions of parameters

and posterior ranges of modelled signals (GPP, RECO, ET and NEE). Considering the inversion

scenario HO2, there were in general good agreements between measured and modelled signals, with

RMSE ranging from 1.73 to 2.19 gC m−2day−1 and R2 between 0.74 and 0.84 in terms of GPP.

Using a dedicated model for soil organic carbon dynamics, De Bruijn et al. (2012) found a R2 of475

0.68 for the modelling of the NEE at the Oensingen site over the same years. Comparing three large-

scale lands surface models in simulating carbon fluxes over different ecosystems, Balzarolo et al.

(2014) noticed that grassland and crop sites were more difficult to model compared to forest sites.

Using data from 13 grassland sites over Europe including Laqueuille and Grillenburg, they found

average RMSE between measured and modelled GPP ranging from 2.45 to 3.57 gC m−2day−1 and480

R2 from 0.37 to 0.56. These larger discrepancies compared to our study are mainly to be related to

the fact that the large-scale models were used without site-calibrations. Modelling of carbon fluxes

was also performed at the Oensingen site over the same years in Calanca et al. (2007) using a
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Figure 6. Measured and modelled GPP [gC m−2 day−1] at the Monte-Bondone site in calibration (2003-2005)

and validation (2006-2007) for the inferred homoscedastic HO2 (a) and heteroscedastic HE2 (b) inversions.

The 95% confidence interval total predictive uncertainty is depicted using the light grey shaded areas.

dedicated grassland model, PaSim. In that study, no numerical comparison between measured and

modelled data were computed at a daily resolution, but the relative departures between measured485

(eddy covariance) and modelled data were given by year of simulation and were ranging from -11

to -21 % in terms of annual sum of GPP. In our study, the annual relative departures in the annual

sum of GPP in Oensingen ranged from 0.7 to 9 % with the calibration dataset and up to 63 % with

the validation dataset. In a similar experiment of inversion of eddy covariance data from forest sites,

Fox et al. (2009) found RMSE between measured and modelled NEE of 0.7 and 1.3 gC m−2day−1490

for two different sites in calibration and of 1.5 gC m−2day−1 in validation. These values are lower

than in our study but the measured NEE data was not used in the model inversion here, contrarily to

the inversions in Fox et al. (2009).

It could be observed that measured eddy covariance data have a stronger kinetic than the modelled

signals, that is, modelled signals could not follow the fast fluctuations of the measured signals and, in495

particular, simulate high GPP values. This could be related to the different time resolutions between

the model and data. The CARAIB model is based on daily-averaged meteorological data. However,

photosynthesis and respiration processes are computed at a two-hour time step before being aggre-

gated to a daily resolution and the model assumes a symmetry with respect to solar noon time (Otto

et al., 2002) to save computation resource. Moreover, in the CARAIB model, solar fluxes are cal-500
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culated assuming a constant cloudiness over the day and temperature is varying using a sinusoidal

function between the minimal and maximal temperature, that were fixed at midnight and noon, re-

spectively. These shortcomings were necessary for saving computation resources and in case of data

scarcity for global vegetation modelling. Eddy covariance data, however, are typically acquired at a

time frequency of 5 or 10 Hz (Aubinet et al., 2012) and can thus capture high-frequency fluxes. Even505

though eddy covariance data were aggregated over time to a daily time resolution, the high-frequency

acquisition rate ensures that effects of abrupt meteorological events are recorded. Increasing the time

resolution of the CARAIB model would help to better simulate ecophysiological processes at a high

frequency. Alternatively, a simple workaround to deal with the different time dynamics would be to

apply a filter based on a moving window of some days in order to smooth measured (and modelled)510

eddy covariance data before computing the statistical indicators, as done in Calanca et al. (2007).

Another modelling limitation is that model parameters are assumed as constant along the season,

although plants traits are known to evolve throughout the season and plants acclimate to specific

climate conditions. As a result, the effect of similar climatic conditions does not necessary result in

similar eddy covariance measurements.515

In general, there were poorer agreements between measured and modelled signals (GPP, RECO,

ET and NEE) in Laqueuille compared to the other experimental sites. These poorer agreements can

be probably related to the grazing instead of the cutting that occurs in Laqueuille. Grazing was more

difficult to simulate because of the expert-knowledge conversion between the given cattle charge

and the biomass removal. As a result, grass cutting is better constrained in the model compared to520

grazing, as it was already shown in the Laqueuille experimental site by Calanca et al. (2007) but

using the grassland model PaSim.

All the same, besides the average statistical indicators between measured and modelled signals,

the performance of the calibration might be also evaluated against specific scientific or operational

objectives. For instance, accurate modelling of the grass cutting or computation of annual budgets of525

carbon in the grassland (e.g., Soussana et al., 2007) might show different performances, depending

on the time scale on which the processes are analysed.

4.2 Eddy covariance residual errors

4.2.1 Homoscedastic and heteroscedastic eddy covariance residual errors

Bayesian inversions were conducted considering homoscedasticity and heteroscedasticity in the530

eddy covariance residual errors. Figure 5 showed that accounting for heteroscedasticity in eddy

covariance residual errors permitted to better simulate low-magnitude signals (winter), but at the

same time, it penalized the modelling of high-magnitude signals (summer). Actually, it is worth

remarking that inversions considering heteroscedastic measurement errors do not attempt to result

in smaller misfits between measured and modelled data since larger errors are considered for high535
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peaks of the signals. However, in validation, the posterior parameter distributions derived from us-

ing the heteroscedastic residual error models outperform their counterparts derived from using the

homoscedastic residual error models. This important finding reveals that despite inducing larger

RMSE values in calibration, the use of a heteroscedastic residual error model leads to a more robust

parameter estimation.540

Since eddy covariance data are known to show heteroscedasticity, accounting for a heteroscedastic

model of the residuals errors in the inversions is more conceptually sound for ensuring unbiased

posterior distributions of parameters. However, we showed that considering a linear heteroscedastic

model of the residual errors only partly removed heteroscedasticity in the standardised residuals

values (Fig. 5 (b) and (d)). Other kinds of heteroscedastic models (i.e., non-linear) might be tested,545

but the residual distributions did not show any clear trend for all sites.

It is also worth noting that a substantial fraction of the large residual errors is caused by the

tendency of the CARAIB model of underestimating the observed GPP summer peaks. As discussed

above, this is related to a slower temporal resolution of the model compared to that of the measured

data. To overcome this model inadequacy, further model modifications are necessary to increase550

the time resolution of the model. Another model improvement would be to simulate varying model

parameter values as a function of the time of the year, since plant traits are actually evolving along

the seasons. However, this would come at the cost of a large increase in model complexity.

4.2.2 Sampling of the standard deviation of residual errors

Sampling the standard deviation of residual errors, i.e., the inversions HO2 and HE2, did not impact555

a lot the other parameter samplings and the modelling, as compared to inversions HO1 and HE1,

respectively. Some performance criteria were better with the sampling of the residual standard de-

viations, while other not. As expected, most likely standard deviation of the residuals errors were

close to the RMSE obtained in the inversions HO2. The benefit of these values is that they inform

about the levels of the uncertainties of the eddy covariance data with respect with the model used to560

invert the data, e.g., uncertainties of GPP ranged from 1.79 to 2.29 gC m−2 day−1, of RECO from

1.09 to 1.63 gC m−2 day−1 and of ET from 0.52 to 1.31 mm day−1. They could be used to weight

different eddy covariance data in multi-objective inverse modelling.

4.3 Parameters values across sites

Posterior distributions of parameters showed contrasting values that could be linked to the charac-565

teristics of the experimental sites. For instance, the specific leaf area (SLA) is known to depend on

many factors (Marcelis et al., 1998) such as leaf age, temperature, light intensity, aridity and soil

nutrient content. Thick leaves (low SLA) are more adapted to dry ecosystems due to their greater

capacity to retain water. Although none of the 4 grassland sites are strictly characterized by a dry

climate, it is interesting to note that the posterior parameter distributions for SLA were negatively570
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Figure 7. Posterior distributions of the specific leaf area SLA (dashed line) and characteristic mortality time

in stress conditions τs (plain line) for the 4 sites (HO2 inversions values) classified as a function of increasing

aridity by the De Martonne-Gottman index (grey bars). The mean of the posterior distributions and the most

likely parameter values are depicted with a circle and a star, respectively. The errorbars stand for one standard

deviation around the mean.

correlated with the aridity, inversely expressed by the De Martonne-Gottman index (Fig. 7), that

is, SLA decreases with increasing aridity. The largest SLA (thin leaves) were found for Laqueuille,

which can be related to the permanent grazing that constantly regenerates young leaves, since young

leaves are characterised by high SLA. The large SLA values in Oensigen can be related to more

intensive management conditions (fertilisation, more frequent cuts).575

Contrarily to SLA, the characteristic mortality time in stress conditions τs appeared to be posi-

tively correlated with the site aridity (Fig. 7). Larger τs value means a larger water stress resistance

for the plants in Grillenburg and Monte-Bondone.

The values of g1 were drastically different between Oensingen and the three other sites (Table 3).

In addition, for these three sites, the values appeared much higher compared to the default values580

(g1 = 9) and other values commonly encountered in the literature (Van Wijk et al., 2000; Medlyn

et al., 2011). It is known that g1 should increase with humid conditions and temperature (Medlyn

et al., 2011), as it is positively related to the marginal water cost of carbon gain. However, the

high values of g1 here could not be really related to a warmer or wetter climate as compared to

Oensingen. A possible explanation could be related to the different dynamics of the model and the585

measurements, as already explained hereinbefore. As the model cannot simulate the high GPP values
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that are observed in the eddy covariance data, the Bayesian algorithm could have compensated by

sampling high values of g1 that increase stomatal conductance.

More broadly, ecophysiological differences between the grassland sites resulted in posterior dis-

tributions of parameters that can be either drastically different or common between the sites (Fig. 2).590

If it appears that site-specific parameter values are needed, it means that the model has to be refined

by accounting for ecophysiological dependence of the parameters. If not, generalised parameters

values could be used, meaning that they are invariant of the site on which they were determined or

even independent from the plant species, as recently claimed by Yuan et al. (2014). Determining a

common set of the parameters distributions among the four sites could be done either by (1) merging595

the four posterior distributions after independent samplings of the data of each site or (2) merging

together the eddy covariance data of the four sites in one single MCMC sampling, as explored in

Kuppel et al. (2012).

5 Conclusions

Bayesian inversions of the CARAIB dynamic vegetation model were performed using eddy covari-600

ance data (GPP, RECO, ET) at four experimental grassland sites. A specific version of the CARAIB

model was developed for this application, with functions related to the grassland management, i.e.,

grass cutting and grazing. Posterior parameter and predictive distributions were compared for dif-

ferent statistical models of the eddy covariance residual errors: (1) assuming homoscedasticity or

heteroscedasticity of the residual errors, and (2) fixing beforehand or jointly inferring the variances605

of the residual errors. There were in general good agreements between measured and modelled sig-

nals for the calibration datasets with RMSE of daily gross primary productivity (GPP), ecosystem

respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 gC m−2 day−1, 1.04 to

1.56 gC m−2 day−1, and 0.50 to 1.28 mm day−1 respectively. Since the four sites belong to a long-

standing network of eddy covariance data measurements, comparisons with previous studies could610

be made.

Although the eddy covariance measurements errors are known to be heteroscedastic, the use of

a homoscedastic error model led to a better model performance in calibration compared to using

a heteroscedastic error model. Nevertheless, a model validation experiment revealed that CARAIB

models calibrated by means of a heteroscedastic error model outperform those calibrated assuming615

homoscedastic residual errors. Posterior parameter distributions derived from using a heteroscedastic

model of the residuals are therefore more sound and robust, even though heteroscedasticity could not

be fully removed. Therefore, our results support the use of a heteroscedastic residual error model for

inverting eddy covariance data and inferring posterior parameter distributions.

Systematic model-data discrepancies were also found for the largest observed GPP values. This620

can be attributed to the low temporal resolution of the photosynthetic processes in the CARAIB
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model, among other model inadequacies. Modelling performance varied among the four sites, with

poorer performances at Laqueuille, because of the greater difficulty of modelling grazing compared

to grass-cutting. Lastly, site-specific posterior parameter distributions obtained for the four grass-

lands were compared and discussed with respect to grassland characteristics. Specific leaf area and625

characteristic mortality time parameters appeared to be related to site aridity.
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