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Abstract  1 

We investigate the utility of satellite measurements of solar induced chlorophyll fluorescence 2 

(SIF) in constraining gross primary productivity (GPP). We ingest SIF measurements at the 3 

frequency 755 nm into the Carbon-Cycle Data Assimilation System (CCDAS) which has been 4 

augmented by the fluorescence component of the Soil Canopy Observation, Photochemistry 5 

and Energy fluxes (SCOPE) model. The usefulness of SIF to constrain GPP is then 6 

investigated along with the assessment of the sensitivity of both SIF and GPP to the 7 

carboxylation capacity (Vcmax) and the chlorophyll content (Cab) for different plant functional 8 

types (PFTs) subjected to various environmental conditions. Since the relationships between 9 

Vcmax and both SIF and GPP are subtle, we first perform sensitivity tests through idealized 10 

experiments by using the SCOPE model alone. Then, we investigate the ability of the built 11 

CCDAS to reproduce SIF measurements obtained over 2009-2010 period. 12 

 13 

Idealized sensitivity tests of SCOPE show that GPP is strongly sensitive to Vcmax and the 14 

incoming radiation, while SIF exhibits a strong sensitivity to Cab and incoming radiation. The 15 

sensitivity of SIF to Vcmax is low, but does show a slight increase with increasing radiation and 16 

within the range of Vcmax expected during the growing season where a rapid increase 17 

productivity from low Vcmax values can occur.  18 

 19 

CCDAS simulates well the patterns of satellite measured SIF suggesting the combined model 20 

is capable of ingesting the data. CCDAS supports the idealized sensitivity tests of SCOPE, 21 

with SIF exhibiting sensitivity to Cab and incoming radiation, both of which are treated as 22 

perfectly known in previous CCDAS versions. Effective use of SIF measurements in future 23 

will require careful consideration of these factors, as well as development of the link between 24 

SIF and GPP within SCOPE. 25 

 26 
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1. Introduction 1 

 The natural terrestrial carbon flux has been identified as the most uncertain term in the global 2 

carbon budget (Le Quere et al., 2013). The gross primary productivity (GPP), which is the 3 

flux of CO2 assimilated by plants during photosynthesis, is the input to theis system used to 4 

characterize carbon flux so its variation can significantly contribute to the uncertainties in 5 

terrestrial CO2 fluxes.  6 

 7 

Complex systems have been built to reduce the uncertainties in GPP. These 8 

algorithmssystems are either based on up-scaling or atmospheric inverse modeling methods. 9 

Up-scaling methods estimate GPP at global scale by establishing relationships between local 10 

GPP measurements and environmental variables then using these variables to calculate GPP 11 

globally (e.g., Jung et al., 2011; Beer et al., 2010 and references therein). The inverse 12 

modeling approach uses CO2 concentration observations at global scale to constrain the 13 

process parameters of carbon models that compute the terrestrial fluxes. This inverse method 14 

is an example of Carbon Cycle Data Assimilation Systems (CCDAS). The CCDAS 15 

considered in the present study has two main components: 16 

 A deterministic dynamical model that computes the evolution of both the biosphere 17 

and soil carbon stores  given an initial condition, forcing and a set of the model 18 

process parameters  19 

 An assimilation algorithmsystem that allows the adjustment of a subset of the state 20 

variables, initial conditions and/or process parameters to reduce the mismatch between 21 

the model simulations and observations. Usually any prior information on the 22 

variables which are adjusted are also taken into account (see e.g., Kaminski et al., 23 

2002, 2003; Rayner et al., 2005, and references therein for the underlying 24 

methodology) 25 
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Rayner et al. (2005) built such a CCDASsystem around the biosphere model BETHY 1 

(Biosphere Energy-Transfer Hydrology; Knorr, 2000) coupled to an atmospheric transport 2 

models together with together with CO2 fluxes representing ocean flux, land use change, and 3 

fossil fuel emission, see also Scholze at al. (2007) and Kaminski et al. (2013) for an overview 4 

on further developments and applications. Koffi et al. (2012) used this CCDAS to investigate 5 

the sensitivity of estimates of GPP to transport models and observational networks of CO2 6 

concentrations. Large differences in GPP in the tropics were found between Koffi et al. 7 

(2012) their GPP estimates and those from either satellite based products or up-scaling 8 

methods (e.g., Jung et al., 2011; Beer et al., 2010). Koffi et al. (2012) found significantly 9 

larger GPP in the tropics compared to the other GPP products. In fact, where the parameters 10 

of BETHY are weakly constrained  due to few CO2 concentration observations available in 11 

the tropics, the parameters of BETHY are mainly constrained by observations from other 12 

regions. Consequently, the optimized parameters can be uncertain.is region.  13 

 14 

Recent work hasve inferred plant fluorescence (hereafter Fs) from the Greenhouse gas 15 

Observing Satellite (GOSAT; e.g., Frankenberg et al., 2011, 2012; Joiner et al., 2011; Guanter 16 

et al., 2012), ENVISAT/SCIAMACHY (Joiner et al., 2012), and MetOp-A/GOME-2 (Joiner 17 

et al., 2013). They showed that Fs SIF data at global scale isare promising for inferring GPP. 18 

They found a strong linear correlation between satellite-based Fs SIF and GPP estimated from 19 

either up-scaling methods (Jung et al., 2011) or satellite products (MODIS data). The satellite-20 

based Fs SIF data cover large areas of the globe including tropical zones where estimates from 21 

a CCDAS are found to be uncertain. It is worth asking whether such fluorescence data is 22 

useful to constrain GPP in the CCDAS framework.  23 

 24 
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The relationship between fluorescence and photochemistry at leaf level is reasonably well 1 

understood. Light energy absorbed by chlorophyll molecules has one of three fates: 2 

photosynthesis, dissipation as heat (non-photochemical quenching) or chlorophyll 3 

fluorescence. The total amount of chlorophyll fluorescence is only 1 to 2% of total light 4 

absorbed. The spectrum of fluorescence is different to that of absorbed light. The peak of the 5 

fluorescence spectrum lies between 650 and 850 nm. Under low light conditions, a negative 6 

correlation has been found between fluorescence and photosynthesis light use efficiencies 7 

(e.g., Genty et al., 1989; Rosema et al., 1998; Seaton and Walker, 1990; Maxwell and 8 

Johnson, 2000; van der Tol et al., 2009). At high light conditions (i.e., high irradiance and 9 

moisture stress), a positive correlation has been observed between fluorescence and 10 

photosynthesis light use efficiencies (Gilmore and Yamamoto, 1992; Gilmore et al., 1994; 11 

Maxwell and Johnson, 2000; Van der Tol et al., 2009). Regarding the water stress, more 12 

recently, Jung-See Lee et al. (20132) showed a negative correlation between vapour pressure 13 

deficit and Fs.  14 

 15 

The cited works show that the link between fluorescence and photosynthesis is complex. 16 

Thus, before using fluorescence observations to constrain gross primary productivity in the 17 

framework of CCDAS, we need first to ensure that there is a common parameter or set of 18 

parameters relevant to both the fluorescence and photosynthesis process models of the 19 

CCDAS. So, if there are common parameters, we can assess the sensitivities of GPP and Fs 20 

SIF to them. This requires implementing in CCDAS a model that allows computing both 21 

fluorescence and photosynthesis. We build such a CCDAS by using the SCOPE (Soil Canopy 22 

Observation, Photochemistry and Energy fluxes) model (Van der Tol et al., 2009a, 2014). 23 

SCOPE is based on the existing theory of chlorophyll fluorescence and photosynthesis. The 24 

photosynthesis scheme of C3 plants uses the formulations of Collatz  et al. (1991),  while for 25 
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the C4 photosynthesis pathway, the formulations of Collatz et al. (1992) are considered. In 1 

these formulations of the photosynthesis, the maximum carboxylation rate Vcmax is a key 2 

process parameter. The fluorescence model is based on the work of Genty et al. (1989), 3 

Rosema et al. (1998), and van der Tol et al. (2014). The model is formulated such that the 4 

sum of the probabilities of an absorbed photon to result in fluorescence, photochemistry, and 5 

heat is unity. Hence, the fluorescence model also utilizes Vcmax as a process parameter.   6 

 7 

CCDAS operates in two modes (Scholze et al., 2007). The calibration mode that derives an 8 

optimal parameter set including posterior uncertainties of the dynamical carbon model (here 9 

the biosphere model) by constraining the process parameters of the model with observations. 10 

The diagnostic/prognostic (referred hereafter as forward) mode allows deriving the various 11 

quantities of interest (e.g., terrestrial carbon fluxes or atmospheric CO2 concentrations) and 12 

their uncertainties. These quantities are calculated from the optimized parameter vector 13 

obtained from the calibration step. CCDAS has been widely applied to investigate terrestrial 14 

carbon cycling (e.g., Rayner et al., 2005; Scholze et al., 2007) and in particular more recently 15 

to i) estimate the GPP at global scale (Koffi et al., 2012) and ii) to quantify the uncertainty in 16 

the parameters of BETHY by using both CO2 concentration and flux observational networks 17 

(Kaminski et al., 2012; Koffi et al., 2013). To assess the usefulness of satellite based 18 

fluorescence data (Fs) to constrain GPP within CCDAS, we first build the forward mode of 19 

the CCDAS around the model SCOPE, which is used to investigate the sensitivities of both 20 

GPP and Fs SIF to the biochemical parameters as well as environmental conditions.   21 

 22 

The work is organized as follows: 23 

In Section 2, we describe both the model SCOPE and its coupling with CCDAS and the 24 

fluorescence data retrieved from the satellite GOSAT. In Section 3, we perform various 25 
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idealized sensitivity tests to investigate the strength of the relationships between Fs SIF and 1 

GPP by using the SCOPE model alone. These tests are performed by studying the sensitivity 2 

of GPP and Fs SIF to the biochemical parameters (i.e., Vcmax and the chlorophyll content Cab) 3 

and the environmental conditions (e.g., short wave radiation Rin). In the idealized tests, tThe 4 

vegetation is characterized by different values of the leaf area index (LAI). In Section 4, by 5 

using the forward mode of the CCDAS coupled to SCOPE, we compute both Fs SIF and GPP 6 

at global scale and results are compared to the GOSAT Fs SIF from June 2009 until December 7 

2010. The simulations are based on the different settings of LAI, Rin, Vcmax, and Cab values. In 8 

Section 5, results are discussed. Finally, conclusions are presented in Section 6. 9 

 10 

2. Models and Data 11 

2.1. Models 12 

 13 

2.1.1. SCOPE model  14 

The model SCOPE is a 1D model based on radiative transfer, micrometeorology, and plant 15 

physiology (van der Tol et al., 2009a). Version 1.53 of SCOPE is used in this study with the 16 

default version of the biochemical code (referred as fluorescence model choice “0”; van der 17 

Tol et al., 2014). SCOPE treats canopy radiative transfer in the visible and infrared and 18 

chlorophyll fluorescence, as well as the energy balance. The modules of SCOPE are executed 19 

in the following order: 20 

 21 

1. A semi-empirical radiative transfer model for incident sun and sky radiation, based on 22 

the SAIL model (Verhoef and Bach, 2007). This module calculates the outgoing 23 

radiation spectrum (0.4 to 50 µm) at the top of the canopy (hereafter TOC), as well as 24 
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the net radiation and absorbed photosynthetically active radiation (aPAR) per surface 1 

element 2 

 3 

2. A numerical radiative transfer model for thermal radiation generated internally by soil 4 

and vegetation, based on Verhoef et al. (2007). This module computes the TOC 5 

outgoing thermal radiation and net radiation per surface element, but for 6 

heterogeneous leaf and soil temperatures   7 

 8 

3. A biochemistry model for C3 and C4 plants, which allows the computation of 9 

quantities relevant for photosynthesis and chlorophyll fluorescence at leaf level. At 10 

leaf level, the model calculates a fluorescence scaling factor relative to that of a leaf in 11 

low-light, unstressed conditions from absorbed radiative fluxes, canopy and ambient 12 

environmental conditions (radiation, temperature, water vapour, CO2, and O2 13 

concentrations)  14 

 15 

4. A radiative transfer model for chlorophyll fluorescence based on the FluorSAIL model 16 

(Miller et al., 2005) that calculates the TOC radiance spectrum of fluorescence over 17 

640-850 nm from the geometry of the canopy and a calculated fluorescence spectrum 18 

that is linearly scaled by the leaf level chlorophyll fluorescence scaling factor 19 

 20 

SCOPE uses a canopy structure characterized by a spherical leaf angle distribution as a 21 

function of LAI with 60 distributed elementary layers. The geometry of the vegetation is 22 

treated stochastically. SCOPE calculates the illumination of leaves with respect to their 23 

position and orientation in the canopy. The spectra of reflected and emitted radiation as 24 

observed above the canopy in the satellite observation direction are computed. It is worth 25 
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noting that SCOPE permits variation only in the vertical dimension. Thus, it is valid for 1 

vegetation in which variations in the horizontal are smaller than in the vertical dimension. 2 

This is maybe a limitation for some natural canopies, especially when coupling to the CCDAS 3 

as performed in Section 2.1.2. However, the sensitivity of this limitation to the CCDAS 4 

results is beyond the scope of this study.   5 

 6 

We briefly describe the fluorescence model at leaf level (more detail is given in van der Tol et 7 

al., 2009b and van der Tol et al., 2014) with focus on the variables and parameters relevant for 8 

the photosynthesis. The model of Faquahar et al., (1980) divides photosynthesis into two main 9 

processes: (1) regeneration of the ribulose bisphosphate (RuP2), which depends on the light 10 

and (2) the maximum carboxylation rate at RuP2 saturated conditions in the presence of 11 

sufficient light. The regeneration of RuP2 for two photosystems (PSII and PSI) gives the link 12 

between photosynthesis and fluorescence.  13 

 14 

As already mentioned above, the fluorescence model in SCOPE is formulated such that the 15 

sum of the probabilities of an absorbed photon to result in fluorescence, photochemistry, and 16 

heat is unity. Following this, the fluorescence ΦFt from a single leaf is calculated over the 17 

spectrum window of 640-850 nm as follows: 18 

Φ𝐹𝑡 = Φ𝐹𝑚(1 − Φ𝑝)                                    (1) 19 

 20 

Where ΦFm is the fluorescence yield and computed as follows:  21 

 22 

Φ𝐹𝑚 =
𝐾𝑓

(𝐾𝑓+𝐾𝑑+𝐾𝑛)
    (2) 23 

       24 

With  25 
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𝐾𝑛 = (6.2473𝑥 − 0.5944)𝑥    (3) 1 

 2 

Where x stands for the degree of light saturation and defined as:  3 

 4 

𝑥 = 1 −
Φ𝑝

Φ𝑝0
       (4) 5 

        6 

Φp and Φp0 (given by the following expressions) stand for the fractions of actual and dark 7 

photochemistry yields, respectively:  8 

 9 

Φ𝑝0 =
𝐾𝑝

(𝐾𝑓+𝐾𝑑+𝐾𝑝)
        (5) 10 

Kf is the rate constant for fluorescence and sets to 0.05        11 

Kp is the rate constant for photochemistry with a value of 4.0                          12 

Kd, with a value of 0.95, is the rate constant for thermal deactivation at ΦFm 13 

 14 

Φ𝑝 = Φ𝑝0
𝐽𝑎

𝐽𝑒
      (6) 15 

Ja and Je stand for the actual and potential electron transport rates, respectively. Ja is the 16 

electron transport rate used for gross primary productivity (GPP). van der Tol et al. (2014) 17 

used Pulse-Amplitude fluorescence measurements to derive an empirical relation between the 18 

efficiencies of photochemistry and fluorescence. This relationship was derived after analysing 19 

the response of non-photochemical quenching (NPQ) in plants to light saturation. The 20 

formulations of GPP in SCOPE follow that of Collatz et al. (1991) and Collatz et al. (1992) 21 

for C3 and C4 plants, respectively.  The potential electron transport rate Je is related to the 22 

rate of absorbed photons (or photosynthetically active radiation, i.e., aPAR), hence to the 23 

visible radiation. The fluorescence is linearly related to the short wave (visible) radiation, 24 
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while it is related to Vcmax mainly when the gross primary productivity GPP is limited by the 1 

carboxylation enzyme Rubisco and the capacity for the export or the utilization of the 2 

products of photosynthesis.  3 

 4 

The total top-of-canopy fluorescent radiance is obtained by a summation of the fluorescence 5 

flux obtained from ΦFt (Equation 1) from each of the leaves over all layers and orientations, 6 

taking into account the probabilities of viewing sunlit and shaded components. The model 7 

then calculates radiation transport in a multilayer canopy as a function of the solar zenith 8 

angle and leaf orientation to simulate fluorescence in the direction of satellite observation 9 

(Van der Tol et al., 2009a). 10 

 11 

 Leaf biochemistry affects reflectance, transmittance, transpiration, photosynthesis, stomatal 12 

resistance, and chlorophyll fluorescence. Reflectance and transmittance coefficients, which 13 

are a function of Cab are calculated by following the PROSPECT model (Jacquemoud and 14 

Baret, 1990). Two excitation fluorescence matrices (EF-matrices) representing fluorescence 15 

from both sides of the leaf are computed. The matrices convert a spectrum of aPAR into a 16 

spectrum of fluorescence. Details on the radiative transfer model of the fluorescence at the 17 

TOC level are given in Van der Tol et al., (2009a).  18 

 19 

2.1.2. Coupling SCOPE to CCDAS  20 

Within CCDAS we replace the canopy radiative transfer and photosynthesis schemes of 21 

BETHY with their corresponding schemes from SCOPE and add the fluorescence model of 22 

SCOPE. The spatial resolution, vegetation characteristics as well as the meteorological and 23 

phenological data of BETHY are used to force SCOPE. The spatial resolution is 2
o
 x 2

o
 with 24 

3462 land grid points for the globe. CCDAS uses 13 plant functional types (PFT; see Table 1) 25 
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based on Wilson and Henderson-Sellers (1985). A grid cell can contain up to three different 1 

PFTs, with the amount specified by their fractional coverage.  2 

 3 

2.2. Data 4 

2.2.1. GOSAT fluorescence data  5 

Frankenberg et al. (2011, 2012), Joiner et al. (2011), and Guanter et al., (2012) have published 6 

maps of Fs SIF from GOSAT (Kuze et al, 2009). The retrieval measures terrestrial emission at 7 

the frequencies of solar Fraunhofer lines (gaps in the solar spectrum). Chlorophyll 8 

fluorescence is the main contributor to emissions at these frequencies. GOSAT carries a 9 

Fourier Transform Spectrometer (FTS) measuring with high spectral resolution in the 755–10 

775 nm range, which allows resolving individual Fraunhofer lines overlapping the 11 

fluorescence emission. The method described in Frankenberg et al. (2011) makes use of two 12 

spectral windows centered at 755 and 770 nm to derive Fs. Results from the line centered 13 

around 755 nm for the period June 2009 to December 2010 are used in this study. The 14 

fluorescence data we are using are monthly means mapped onto 2°x°2 spatial resolution at 15 

global scale. The fluorescence product includes uncertainties.  16 

 17 

2.2.2. Data relevant for models  18 

The input data for the models we are using are of four main kinds: i) the data for the radiative 19 

transfer modules of SCOPE, ii) the data characterizing the environmental conditions (i.e., 20 

meteorological and short and long wave radiation) relevant for both the radiative transfer and 21 

biochemistry models, iii) the leaf area index (LAI) for the radiative transfer and biochemistry 22 

models, and iv) the process parameters of the biochemistry models.  23 

 24 
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The model SCOPE requires incident radiation at the top-of-canopy as input. To take into 1 

account the atmospheric absorption bands properly, this data is needed at high resolution.  2 

The spectra of sun and sky fluxes at the top of the canopy are obtained from the atmospheric 3 

radiative transfer model MODTRAN (Berk et al., 2000). MODTRAN was run for 16 4 

atmospheric situations representative of different regions (Verhoef et al., 2014). We use 4 5 

types of these generated atmospheres. They are tropical atmosphere for the tropical zones, 6 

winter and summer atmospheres for high and middle latitudes. In addition, we have at our 7 

disposal data for an atmosphere which is representative of the whole globe (hereafter 8 

“standard atmosphere”). We have tested the sensitivity of Fs SIF and GPP to these four types 9 

of atmospheres. Results show only residual differences between the inferred Fs SIF and GPP. 10 

We consider the standard atmosphere for the idealized tests (Sections 4.1) and the seasonal 11 

atmosphere for the simulations at global scale by using the CCDAS (Section 4.2).  12 

 13 

The system needs forcing data to drive SCOPE within the CCDAS framework. Monthly 14 

observed climate, incident radiation, and fractional soil moisture for the period 2009-2010 are 15 

used (Weedon et al., 2011). The LAIs are obtained from BETHY simulation. 16 

 17 

The main parameters that affect both the photosynthesis and fluorescence schemes are given 18 

in Table 1. The parameters are of two kinds: parameters that are PFT-specific (e.g., Vcmax and 19 

Cab) and global parameters. Prior and optimized values of Vcmax obtained by Koffi et al. 20 

(2012) are shown. The chlorophyll content Cab is related to the nitrogen content of the leaf 21 

which itself is linked to the maximum rate of carboxylation through the proteins of the Calvin 22 

Cycle and the thylakoids. Some investigators have related the photosynthetic capacity of 23 

leaves of some specific plants to their nitrogen content (e.g., Evans, 1989; Kattge et al., 2009; 24 

Houborg et al., 2013). Other investigatorsworkers have derived some empirical relationships 25 

between the nitrogen content and the chlorophyll content (e.g., Shaahan et al., 1999; Van den 26 



14 
 

Berg and Perkins, 2004; Ghasemi et al., 2011). Since the current version of the model SCOPE 1 

does not include the nitrogen scheme of a leaf, we first use the same value of chlorophyll 2 

content Cab for all 13 PFTs. As a second step, Cab values for each of the 13 PFTs are 3 

optimized so that the simulated Fs SIF reproduces the main spatial characteristics of observed 4 

SIFFs.   5 

  6 

3. Experimental set ups  7 

3.1. Idealized tests  8 

We carry out some idealized sensitivity tests by using the SCOPE model alone. We 9 

investigate the sensitivity of Fs SIF and GPP to biochemical parameters Vcmax and Cab, 10 

environmental variables (temperature, vapour pressure, etc), visible radiation, and LAI. We 11 

assume throughout the following sections the concentrations of both CO2 and O2 at the 12 

interface of the canopy to be constant. We will focus our discussions on the assessment of the 13 

sensitivity of the simulated Fs SIF and GPP to Vcmax, Cab, and the short wave radiation. All the 14 

simulations in these tests are performed at noon.  15 

 16 

We present a spectrum of simulated fluorescence for C3 and C4 plants in Figure 1. Two peaks 17 

in the simulated fluorescence spectrum are shown at 680 and 725 nm. In agreement with van 18 

der Tol et al. (2009a), C4 plants exhibit larger Fs SIF than C3 plants over the wavelength 19 

range 625 nm to 755 nm. These differences are amplified around the two peaks. We are using 20 

as observations the GOSAT satellite derived Fs, which retrieved Fs SIF around 755 nm. 21 

Therefore, the simulated fluorescence in this study corresponds to the Fs SIF value at this 22 

wavelength. In Figure 1, this is around 1.2 Wm
-2

µm
-1

sr
-1

.   23 

 24 
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For all the idealized tests presented hereafter, we use 8 values of LAI: 0.1, 0.5, 1, 2, 3, 4, 5, 1 

and 6.  We select these values to be able to characterize different types of canopy from sparse 2 

to dense vegetation.  Also, the pressure, the temperature, and the airwater vapour pressure at 3 

leaf level used to compute the internal CO2 concentration of the leaf are set to 1000 hPa, 4 

25
o
C, and 10 hPa, respectively. The carbon dioxide (CO2) and the oxygen (O2) concentrations 5 

are set to 355 ppm and 210x10
3
 ppm, respectively.  We consider the value of the simulated 6 

fluorescence Fs SIF from SCOPE at 755 nm. The other settings of SCOPE relevant for this 7 

study are given in Table 2.  8 

   9 

 To investigate the sensitivity of Fs SIF and GPP to the maximum carboxylation 10 

capacity Vcmax, we choose Vcmax values ranging from 10 to 250 μmol(CO2) m
-2

s
-1

 11 

every 10 μmol m
-2

s
-1

. In addition, two small Vcmax values of 0.5 and 5 μmol m
-2

s
-1

 are 12 

considered.  13 

 14 

 To study the sensitivity of Fs SIF and GPP o the chlorophyll content AB (Cab) we 15 

select Cab values that span 10 μg cm
-2

 to 80 μg cm
-2

 range every 5 μg cm
-2

. 16 

Additionally, a small Cab value of 1 μg cm
-2 

is considered 17 

 18 

 To assess the sensitivity of the Fs SIF and GPP to the short wave radiation (Rin) at the 19 

top of the canopy, we select Rin values that range from 100 W m
-2

 to 1300 W m
-2 

every 20 

100 W m
-2

. We add small values of 1, 5, 10, 25, 50, and 75 W m
-2

.  21 

 22 

 Finally, to investigate the diurnal variations, we simulate Fs SIF and GPP by using the 23 

short time series of half hourly data over 15-2016-20 Julyne 20046 over a canopy 24 

located at the Hyytiala research site in Finnland (61.8552.25 deg. latitude and 25 
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24.295.69 deg. Longitude), which is  in Finland, one of the sitetations of the 1 

FLUXNET network ((e.g., Baldocchi, 2003 and Papale et al., 2006; see the dedicated 2 

website: http://www.fluxnet.ornl.gov)the Netherlands described in Su et al. (2009). 3 

SCOPE GPP are compared to the observationally derived GPPed data.  Unfortunately, 4 

we do not have observed Fs SIF and GPP for this period. 5 

 6 

 7 

3.2. CCDAS simulations  8 

Since the idealized tests may give a partial picture of the relationship between Fs SIFand GPP, 9 

we use the CCDAS built around SCOPE to perform additional sensitivity tests by using actual 10 

meteorological, radiation, and phenological data over 2009-2010. Overall, the values of the 11 

short wave radiation Rin used in the CCDAS are mostly under moderate light conditions 12 

(around 400-600 W/m
2 

; see Section S3 in the Supplementary material), but at some pixels Rin 13 

values can be larger than 800 W/m
2
.  The relationship between Fs SIF and GPP is then 14 

investigated along with Vcmax and Cab. We make simulations of Fs SIF and GPP by using prior 15 

values of Vcmax and their optimized values from Koffi et al. (2012). We also carry out 16 

simulations by using a constant value of Cab for all the 13 PFTs and a set of Cab values for 17 

each of them. We perform 4 experiments (i.e., S1 to S4), which are summarized in Table 18 

2Table 3.  The experiments S1 and S3 use a constant value of Cab for all the 13 PFTs, while 19 

simulations S2 and S4 consider Cab to be PFT dependent (Cab values are reported in Table 1). 20 

The experiments S1 and S2 consider the prior values of Vcmax, while S3 and S4 their 21 

optimized values. The differences between S1 and S3 or between S2 and S4 give the 22 

sensitivity of Fs SIF and GPP to Vcmax. The differences between S1 and S2 or between S3 and 23 

S4 mainly give the sensitivity of Fs SIF to Cab.  24 

 25 

http://www.fluxnet.ornl.gov/
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The CCDAS simulates hourly Fs SIF and GPP for one representative day in a month. Since 1 

the computation of fluorescence is time consuming, we compute both Fs SIF and GPP only at 2 

12 h local time, i.e., around the time of their peaks during a sunny day. For the simulated Fs, 3 

the computations are assigned to the 15
th

 day of the month. We also neglect the energy 4 

balance scheme in SCOPE which weakly affects Fs.  5 

 6 

4. Results  7 

4.1. Idealized sensitivity tests using SCOPE  8 

The results of these idealized sensitivity tests for the various LAI values are summarized in 9 

Figures 2 and 3. For clarity, results from C3 plant are discussed. Then, some conclusions are 10 

given for C4 plant.   11 

 12 

4.1.1 Sensitivity of Fs SIF and GPP to biochemistry parameters 13 

As expected, both the fluorescence Fs SIF and GPP increase with the increase of LAI (Figure 14 

2). However, a weak sensitivity is found for LAI values greater than 4. As an illustration for 15 

the increase, for Vcmax = 50 μmolm
-2

s
-1

, Fs SIF values of 0.5 and 1.25 Wm
-2

μm
-1

sr
-1

 are found 16 

for LAI of 0.5 and 2, respectively (Figure 2a). The fluorescence slightly increases with an 17 

increase of Vcmax. The sensitivity is relatively large for Vcmax less than 70 μmolm
-2

s
-1

. Then, Fs 18 

SIF remains almost constant for Vcmax higher than 125 μmolm
-2

s
-1

 (Figure 2a). As an 19 

illustration, for LAI =2, the largest increase is of only 50% of Fs SIF for Vcmax between 10 and 20 

70 μmolm
-2

s
-1

.
  
Under the studied configurations Fs SIFincreases with Vcmax when the GPP is 21 

controlled by the carboxylation enzyme Rubisco, and remains almost constant when the 22 

electron transport rate is activated.  23 

 24 
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GPP monotonically increases as Vcmax increases with large sensitivity for small Vcmax (less 1 

than 75 μmolm
-2

s
-1

), then it becomes weakly sensitive for large values of Vcmax (Figure 2b). A 2 

moderate positive correlation is found between Fs SIF and GPP for Vcmax less than 125 μmol 3 

m
-2

s
-1

. Then, for larger Vcmax (i.e., 125 μmolm
-2

s
-1

), a very weak negative correlation between 4 

Fs SIF and GPP is obtained. The reason for this weak negative correlation is that Fs SIF 5 

slightly decreases for large Vcmax, while  GPP even limited  by the carboxylation enzyme 6 

Rubisco still slightly increases (Figures 2a and 2b). In fact, the value of irradiance at which 7 

the fluorescence at leaf level ΦFt (Eq.1) or Fs SIF peaks increases with the increase of Vcmax. 8 

Thus, for the case presented in Figure 2a with the short wave radiation Rin of 500 W.m
-2

, the 9 

peak of Fs SIF occurs at about Vcmax= 200 μmolm
-2

s
-1

.  10 

 11 

In the current version of the fluorescence model in SCOPE, the concentration of chlorophyll 12 

Cab is set as a parameter and it is linked to Fs SIF through the transmittance and reflectance of 13 

the leaves. Figure 2c portrays the variations of Fs SIF as a function of Cab and for various 14 

LAIs. For a given LAI, Fs SIF increases with Cab with large sensitivity for Cab less than 20 μg 15 

cm
-2

. For larger Cab values (i.e., >50 μg cm
-2

), Fs SIF remains almost constant with a tendency 16 

to slightly decrease as Cab increases. For a given Cab, the variance in Fs SIF due to the LAI can 17 

be significant. This lack of sensitivity of GPP to Cab contradicts the established positive 18 

relationship between the two variables as reported in Fleischer (1935) and more recently in 19 

Gitelson et al. (2006) 20 

 21 

Figure 2d displays GPP as a function of Cab (Figure 2d). Except for small values of Cab (less 22 

than 5 μg cm
-2

), GPP is not sensitive to Cab. The very weak sensitivity of GPP to Cab comes 23 

from the impact of the chlorophyll content on the transmittance and reflectance at the top of 24 

the canopy when computing the aPAR.  25 
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 1 

4.1.2. Sensitivity of Fs SIF and GPP to short wave radiation  2 

For a given LAI, both Fs SIF and GPP increase with the top of canopy short wave radiation 3 

(Rin) (Figures 2e and 2f). Thus, a strong positive linear correlation is obtained between Fs SIF 4 

and Rin (Figure 2e), while a non-linear (i.e., curvilinear) relationship is obtained between GPP 5 

and Rin (Figure 2f). For large Rin, GPP increases with a slower rate indicating that the 6 

photosynthesis is limited by the carboxylation enzyme Rubisco. For the selected values of 7 

LAI, large variance is found between Fs SIF and Rin (Figure 2f). We also investigate the 8 

relationship between the simulated aPAR and both computed Fs SIF and GPP (not shown). A 9 

very strong linear relationship between Fs SIF and aPAR is obtained. This relationship is less 10 

sensitive to the LAI as it is for the relation between Fs SIF and Rin (as shown in Figure 2e). 11 

GPP shows similar variations with aPAR as it does with the short wave radiation in Figure 2f. 12 

(See Section S1 in the Supplementary material).   13 

 14 

Finally, the sensitivities of Fs SIF and GPP to both Rin and aPAR for various Vcmax are also 15 

investigated (Figure 3). A strong linear relationship between Fs SIF and both Rin and  aPAR is 16 

obtained with slopes which are less sensitive to the values of Vcmax (Figure 3a). Also, results 17 

clearly show that the sensitivity of Fs SIF to Vcmax increases with the increase of aPAR, with 18 

almost no sensitivity for low values of aPAR (<250 W.m
-2

). However, even with large values 19 

of aPAR, the sensitivity of Fs SIF to Vcmax remains small.  As expected, a curvilinear 20 

relationship is found between GPP and both Rin and aPAR with large variance in this relation 21 

for the selected Vcmax (Figure 3b).  22 

 23 

The conclusions found from C3 plant relevant for the sensitivity of both Fs SIF and GPP to 24 

the input variables (Vcmax, Cab, and Rin) are valid for C4 plant (See Section 1 in the 25 
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Supplementary materialnot shown). However, the amplitude of these sensitivities is slightly 1 

larger for C4 plant. 2 

 3 

4.1.3. Simulations of in situ measurements  4 

The time series of both simulated Fs SIF and GPP for 1516-20 Julyne 20046 are presented in 5 

Figure 4. As expected, there is a strong correlation between aPAR and the short wave 6 

radiation Rin (Figure 4b), hence we discuss the results as a function of the observed Rin. The 7 

temporal variations of Fs SIF and GPP mainly follow that of Rin. Particularly, the variations of 8 

Fs SIF mirror that of Rin, showing that the variance in Fs SIF due to the temperature is low in 9 

this case study (Figure 4a). At high irradiance GPP shows limitation by the carboxylation 10 

enzyme Rubisco, peaking early in the day whereas Fs SIF follows Rin throughout the day. The 11 

small variations in GPP at certain episodes can be explained by the temporal variations of 12 

both the temperature and the vapour pressure  (Figure 4a). Note that Vcmax, Cab, and LAI are 13 

set constant during this period. Consequently, for this case study, the short wave radiation 14 

(hence aPAR) is the main driver of the relationship between Fs simulated SIF and GPP. A 15 

curvilinear relation is obtained between GPP and Fs. However, a relatively strong linear 16 

correlation coefficient of 0.95 is derived. This suggests that Fs SIF is a good constraint of GPP 17 

even if it does not directly constrain Vcmax. The SCOPE model can nicely reproduces the 18 

observed diurnal observed GPP quite well with meaningful choices of both LAI and Vcmax 19 

values (Figure 4d). Again, the simulated SIF is senstive to Cab, while GPP is insensitive to 20 

Vcmax (Figures 4c and 4d) 21 

 22 

In summary, these idealized tests clearly show that the fluorescence Fs SIF is more sensitive 23 

to Cab, while GPP is more sensitive to Vcmax and both quantities are strongly sensitive to the 24 

short wave radiation (or aPAR). However, GPP is limited by the carboxylation enzyme 25 
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Rubisco for large values of short wave radiation (or aPAR). Consequently, in this case the 1 

relationship between Fs SIF and GPP mainly driven by the short wave radiation (or aPAR) is 2 

curvelinear. The part of the variance in this relationship due to the GPP can be explained by 3 

Vcmax and environment conditions, while the variance in Fs SIF is mainly due to Cab and 4 

possibly to the geometrical parameters (i.e., solar zenith angle and observation zenith angle) 5 

used in the retrieval of Fs.  6 

 7 

4.2. CCDAS sSimulations   8 

To assess the relationship between Fs SIF and GPP at global scale, we perform the four 9 

experiments described in Table 2Table 3. The observed and modelled quantities are generated 10 

at monthly time resolutionscale as described in Sections 2.2.1 and 3.1, respectively. The 11 

results of these simulations are discussed along with the satellite-based Fs. We first analyze 12 

the correlations between the simulated quantities and also the correlations between these 13 

simulations and the satellite based Fs. Second, their mean spatial patterns are discussed and 14 

finally, the time series of their global and regional means as well as their zonal averages are 15 

discussed.   16 

 17 

4.2.1. Correlations between Fs SIF and GPP  18 

For the discussion of the time series of modeled Fs SIF and GPP at each CCDAS land pixel 19 

and the corresponding observed Fs SIF we analyze only pixels for which we have at least one 20 

year satellite-based Fs SIF data. Moreover, we consider only the time series of these quantities 21 

for which the satellite-based Fs SIF data show consecutive values equal or greater than zero. 22 

Indeed, the SCOPE model does not allow simulating negative SIF values. Overall, ththe 23 

simulated Fs SIF and GPP agree reasonably well with the satellite-based Fs SIFfor most 24 

pixels. Tthe seasonality of the satellite derived Fs SIF is reasonably well reproduced by both 25 
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the simulated Fs SIF and GPP as illustrated in Figure 5. In accordance with the idealized tests, 1 

the amplitudes of the satellite derived Fs SIF can be better fitted by appropriate values of Cab 2 

(Figure 5a), while the simulated GPP is only weakly sensitive to small Cab values as discussed 3 

in Section 4.1. As expected, the amplitudes of the simulated GPP are strongly sensitive to 4 

Vcmax (Figure 5b).  5 

 6 

We have computed the Pearson correlation coefficient between the time series of satellite-7 

based Fs SIF and modelled Fs SIF and GPP at each pixel. For each pixel, we consider only the 8 

pair of data for which the satellite-based Fs SIF is greater than or equal to zero. At most, 18 9 

pairs of data are available for each pixel. We treat only pixels with at least 14 data points for 10 

which. Thus, thea linear correlation is significant at least 10% of level of significance for 11 

Pearson coefficient R greater than 0.43. For about half of the 3462 land pixels of CCDAS, the 12 

linear correlation coefficient R between the satellite-based Fs SIF and either simulated Fs SIF 13 

or GPP is less than 0.43small. For these latter pixels, we have analyzed the time series of the 14 

satellite-based Fs SIF (with their uncertainty) jointly with the simulated Fs SIF and GPP 15 

together with the aPAR as representative of the short wave radiation. For brevity sake, we 16 

only enumerate the different cases with low correlation (i.e., R< 0.43) without quantification 17 

since this does not add anything valuable to our demonstration in the current study. We have 18 

cases for which: 19 

  The peaks in simulated quantities (i.e., Fs SIF and GPP) lag the satellite-based Fs SIF 20 

peak by at least one month. Other cases show opposite behavior 21 

 The simulated Fs SIF remain almost constant, while the satellite-based Fs SIF show a 22 

weak seasonality. Such cases predominantly occur in the tropics 23 
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 The satellite-based Fs SIF are larger  (>2 Wm
-2

μm
-1

sr
-1

) than modeled Fs SIF (around 1 

1.2 Wm
-2

μm
-1

sr
-1

). Such cases are mainly obtained in the tropics and for the PFT 1 2 

(i.e., tropical broadleaved evergreen tree) 3 

 The simulated Fs SIF are larger than satellite based Fs. Such cases are mainly obtained 4 

from the PFT 9 (i.e., C3 grass) 5 

 The satellite-based Fs SIF show some unexpected peaks during period where they are 6 

not expected and hence not modeled 7 

 8 

Second, we investigate the correlations between the simulated quantities (Fs, GPP, and aPAR) 9 

at regional scales by using our best set up (i.e., experiment S4 in Table 2Table 3). We then 10 

assess the correlations between the simulated quantities (Fs, GPP, and aPAR) and between 11 

simulated quantities and the satellite-based Fs. We select data at each pixel such that the 12 

satellite-based Fs SIF is greater or equal to zero and CCDAS land pixel (i.e., the maximum 13 

fraction of coverage of the dominant PFT of the pixel) is greater than zero. Data from June 14 

2009 to end of 2010 are analyzed. We also give information about the dominant PFT of the 15 

pixels over the studied time period. To sample only over grid cells which are dominated by 16 

only one PFT, we consider only pixels for which the dominant PFT has a fraction of coverage 17 

greater than 50%. Correlations are computed atfor the global and regional (southern 18 

hemisphere, tropics, and southern hemisphere) scales regions and over the studied period. The 19 

results at global scale are shown in Figure 6. A strong linear correlation is found between the 20 

computed Fs SIF and aPAR. This relation is weakly sensitive to the PFTs (Figure 6a). In 21 

contrast, the relationship between GPP and aPAR is PFT dependent (Figure 6b). A good 22 

linear relationship between computed GPP and simulated Fs SIF is obtained and again the 23 

slopes of this relationship are PFT dependent (Figure 6c). The correlation coefficient R 24 

derived from GPP as a function of Fs SIF value is around 0.8.  25 
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 1 

The model SCOPE simulates quite well the observed Fs SIF (Figure 6d). However, large 2 

observed Fs SIF (> 2 Wm
-2

μm
-1

sr
-1

) are not simulated. Such large observed Fs SIF mainly 3 

occur in the tropics. This result points out that short wave radiation used in the CCDAS 4 

simulations may be smaller than actual values. The contribution of chlorophyll content Cab is 5 

low since the assigned value in tropics is already large (40 μg cm
-2

) and as shown by the 6 

idealized tests, the simulated fluorescence Fs SIF remains almost constant for Cab value larger 7 

or equal to 40 μg cm
-2

 (Figure 2c). The correlation coefficient between modelled GPP and Fs 8 

SIF is 0.70. This rises to 0.8 when we aggregate both quantities to 4x4 degrees in agreement 9 

with Frankenberg et al. (2011). Finally, as expected, a relatively good correlation is found 10 

between aPAR and satellite based Fs SIF (Figure 6f).  11 

 12 

Correlations are found to be larger between simulated quantities and satellite-derived Fs SIF 13 

in the northern hemisphere and moderate in the tropics and lower in the southern hemisphere 14 

(not shown).   15 

 16 

4.2.2. Mean spatial patterns of Fs SIF and GPP 17 

We compute the mean annual patterns of the satellite-based Fs SIF and simulated Fs SIF and 18 

GPP for 2010. We discuss the simulated quantities by using the experiments S3 (i.e., 19 

optimized Vcmax and constant Cab for all the 13 PFTs) and S4 (optimized Vcmax and Cab PTF-20 

specific) (See Table 2Table 3).  21 

 22 

Figure 7 displays the annual mean observed and simulated Fs, as well as simulated GPP. 23 

Figure 7a shows the satellite based Fs. Figure 7b displays the modelled Fs SIF by using 24 

constant Cab for the 13 PFTs (experiment S3; Table 2Table 3), while Figure 7c presents model 25 
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results of Fs SIF for Cab PTF-specific (experiment S4). Figure 7d exhibits the simulated GPP 1 

by using both Cab PFT-specific and optimized Vcmax (experiment S4). The model can 2 

reasonably reproduce the mean spatial patterns of the satellite-based Fs SIF with an 3 

appropriate choice of Cab values for each of the 13 PFTs (Figures 7a and 7c). The model with 4 

constant Cab cannot reproduce the locations of maximum observed Fs SIF (Figures 7a and 7b). 5 

Despite the good correlation, the computed Fs SIF with PFT-specific Cab (Table 2Table 3) 6 

underestimates the satellite-based data (Figures 7a and 7c). Some of this mismatch 7 

corresponds to unlikely locations for satellite-derived Fs, e.g. central Australia.  8 

 9 

A good agreement between the spatial patterns of GPP and satellite-based Fs SIF is found 10 

(Figures 7a and 7d). Overall, we have a co-occurrence of hot spots of observed Fs SIF and 11 

simulated Fs SIF and GPP. Moreover, maximum simulated Fs SIF coincides with maximum 12 

APAR (See Section S3 in the Supplementary materialnot shown). 13 

The small sensitivity of simulated Fs SIF to Vcmax suggests it may be difficult to use 14 

observations of Fs SIF to constrain it. We can test this in a more realistic context by 15 

comparing the differences between simulated Fs SIF for prior and optimized values of Vcmax. 16 

If differences are large compared to uncertainties in the observation then Fs SIF observations 17 

would allow constraining Vcmax. We compute the differences between simulated Fs SIF by 18 

using prior Vcmax (experiment S2 in Table 2Table 3) and optimized Vcmax (experiment S4). 19 

Then, we normalize these differences by the uncertainties in satellite based Fs. The derived 20 

root mean square over year 2010 at pixel level can reach up to 67% of the observed 21 

uncertainties, but the global average is only 6%. This suggests that Fs SIF measurements can 22 

only weakly constrain Vcmax within the current CCDAS. 23 

 24 

4.2.3. Global and regional means of Fs SIF and GPP 25 
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We compute the global and regional (i.e., Northern hemisphere [30
o
N-90

o
N], Tropics [30

o
S-1 

30
o
N] and Southern hemisphere [90

o
S-30

o
S]) means at each month of the year and over June 2 

2009 to December 2010 over land pixels. Results of both simulated Fs SIF and GPP from our 3 

best experimental set up (i.e., optimized Vcmax with Cab PTF-specific; experiment S4 in Table 4 

2Table 3) are discussed. The results show a reasonably good agreement between satellite-5 

based Fs SIF and both simulated Fs SIF and GPP in terms of seasonality (Figure 8). However, 6 

on average, the simulated quantities peak one month earlier than the peak of the satellite-7 

based Fs SIF (Figure 8a). In the Northern hemisphere, satellite-based Fs SIF peaks in July, 8 

while simulated Fs SIF reaches its maximum in June (Figure 8b). The seasonality at global 9 

scale is dominated by the North hemisphere (Figures 8a and 8b). In the tropics, there is no 10 

significant seasonality in the satellite-based Fs, which is also reproduced by the model (Figure 11 

9c). In the Southern hemisphere, the satellite-based Fs SIF peaks in January, while modeled 12 

peaks in December (Figure 8d). This weak seasonality shift in the CCDAS simulations is 13 

driven by the visible radiation at the top of the canopy (or aPAR) and LAI.  14 

 15 

Quantitatively, the mean values of the simulated Fs SIF are slightly smaller than that of 16 

satellite-based (about 93%) in the North hemisphere and the tropics. Since the above-17 

mentioned regions dominated the amplitude of Fs, a good agreement between simulated and 18 

satellite-based Fs SIF is consequently found at global scale. The simulated Fs SIFi n the 19 

Southern hemisphere is about 1.47 times the value of satellite-based Fs. The main differences 20 

occur in Australia where the relatively large values of modeled Fs are SIF re not shown in the 21 

satellite-based Fs SIF data (See Figures 7a and 7c).  22 

 23 

The zonal averages over the CCDAS land pixels of the satellite-based Fs SIF and the 24 

simulated quantities (Fs SIF and GPP) are shown in Figure 9. A good agreement is found 25 
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between the latitudinal variations of the satellite-based Fs SIF and the simulated Fs SIF by 1 

using the Cab PFT-specific (Figure 9). Also, a good agreement is obtained between the 2 

satellite-based Fs SIF and the GPP (Figure 9). All three quantities show maxima in the tropics 3 

and around 45
o
N. Simulated Fs SIF values are smaller than the satellite-based Fs SIF in the 4 

tropics. Between -15
o
 and -45

o
, the differences are mainly due to C4 grass for which both the 5 

model's Vcmax and Cab are apparently small. Around -35° latitude, the differences are mainly 6 

due to the fact that the model simulates a large Fs SIF signal over Australia, while the 7 

satellite-based Fs SIF shows only a small Fs SIF signal. This discrepancy might be explained 8 

by the uncertainty in the LAIs set to the evergreen shrub in the CCDAS in this area. 9 

Apparently, the LAIs in the CCDAS seem larger than expected values that give satellite based 10 

Fs SIF measurements.  11 

 12 

In summary, the agreement between simulated and observed Fs SIF is better as we move to 13 

larger and larger scales.  14 

 15 

5. Discussions and concluding remarks     16 

The first global maps of Fs SIF retrieved from GOSAT measurements show promise in 17 

estimating the terrestrial gross photosynthetic uptake flux of CO2 (GPP) (Frankenberg et al., 18 

2011; Joiner et al., 2011). We have investigated the usefulness of these data in constraining 19 

GPP in the framework of CCDAS. We have augmented CCDAS with SCOPE, which allows 20 

the calculation of GPP and Fs SIF at leaf and canopy level. In CCDAS, the relationship 21 

between Fs SIF and GPP is mediated by process parameters, principally the maximum 22 

carboxylation capacity (Vcmax). Parameters not currently included in CCDAS such as the 23 

chlorophyll content (Cab) of the leaves also affects the observed fluorescence and so 24 

constitutes a nuisance variable in an assimilation of Fs SIF into CCDAS. We first calculate the 25 
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sensitivity of Fs SIF and GPP in the standalone SCOPE model to a series of parameters, inputs 1 

or nuisance variables. Fs SIF and GPP both respond strongly to incoming radiation suggesting 2 

that, insofar as this input is uncertain, Fs SIF can provide a useful constraint. This uncertainty 3 

is currently not considered in the CCDAS under study.  4 

 5 

The relationship between Vcmax and Fs SIF more complicated and weaker suggesting that the 6 

CCDAS approach of using model parameters to mediate information from Fs SIF to GPP is 7 

unlikely to work within the CCDAS. Cab also controls Fs SIF while it has little impact on the 8 

desired GPP making it a classical nuisance variable. Hence, in the relationship between 9 

simulated SIF and GPP, part of the variance is due to Cab.  This study also shows that theAny 10 

model seeking to use of Fs SIF measurements in the model should therefore account for 11 

chlorophyll concentration. 12 

 13 

The simulations of CCDAS confirm the results from the idealized tests. Thus, the relationship 14 

between the simulated GPP and computed Fs SIF is again found to be mainly controlled by 15 

the short wave radiation or aPAR. The analyses also show that a robust linear relationship 16 

between Fs SIF and GPP can be inferred for each PFT. This result is in agreement with the 17 

finding of Guanter et al. (2012) and Parazoo et al (2014).  18 

 19 

We compared observed Fs SIF with simulated Fs SIF and GPP. The analyses showed a need to 20 

select meaningful values for the chlorophyll content Cab for each of the 13 PFTs to better 21 

reproduce the satellite-based Fs. The use of PFT-specific Cab allows a better reproduction of 22 

the satellite-based Fs, with good co-location of the hot spots. Timing of large-scale means is 23 

also good but this breaks down at pixel level. The global and regional as well as the zonal 24 

averages of the simulated quantities (Fs SIF and GPP) are in good agreement with the 25 
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satellite-based Fs. On average, the peaks in simulated Fs SIF and GPP lag by one month the 1 

peaks in satellite-derived Fs SIF in both southern and northern hemispheres. The simulated 2 

quantities are found to be better correlated to the satellite based Fs SIF when integrating the 3 

data at regional scales. More particularly, we found a significant linear correlation between 4 

simulated GPP and observed Fs, but a large scatter within the data is obtained. Such a 5 

variance can be attributed partly to the type of vegetation (Guanter et al., 2012;  Parazoo et al., 6 

2014).    7 

 8 

The study suggests some prospects for the use of satellite-based Fs SIF to constrain GPP. 9 

While we found a good correlation between the global and regional and zonal averages of 10 

simulated quantities and satellite-based Fs, we do not find a common process parameter that 11 

propagates the information from the fluorescence to the GPP.  Indeed, the relationship 12 

between GPP and satellite based Fs SIF is mainly driven by the short wave radiation or aPAR. 13 

Consequently, the mechanistic formulations of both Fs SIF and GPP under study do not allow 14 

us to constrain GPP through Vcmax.  15 

 16 

Recent investigations by Zhang et al. (2014) show a very strong sensitivity of Fs SIF to Vcmax 17 

at in situ level at light saturation state for cropland using SCOPE version 1.52. Zhang et al. 18 

(2014) found about 4 times our sensitivity of Fs SIF to Vcmax in the range of 20-200 μmolm
-2

s
-19 

1
 as shown in our Figures 2 and 3. We have modified our experiments to bring them closer to 20 

those of Zhang et al. (2014). First, Zhang et al. (2014) calculate Fs SIF at 740 nm versus 755 21 

nm in this study. Second Zhang et al. (2014) average their calculations from 9:00-12:00 local 22 

time, while we sample at 12:00.  Results show that: 23 
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 The sensitivity of Fs SIF to Vcmax is slightly larger at 740 nm than 755 nm and the 1 

difference increases with aPAR.  However, as an example, for a relatively large aPAR 2 

(1400 W m
-2

), Fs SIF at 740 nm is only 25% higher than Fs SIF at 755 nm 3 

 The averaging period makes little difference to the sensitivity  4 

 Optimal choices of temperature and LAI produce a sensitivity about 2/3 that shown in 5 

Zhang et al. (2014). We would expect to reproduce their results so these differences 6 

remain under investigation. Details on these comparisons are given in the 7 

Supplementary material (Section S4) 8 

 9 

On the other hand, the results clearly show the good correlation between aPAR and both the 10 

fluorescence Fs SIF and GPP, which support previous investigations. This both points to a 11 

simpler application of Fs SIF in constraining GPP and a problem with the foregoing study. 12 

aPAR is an external forcing for BETHY which is taken to be well-known. Errors in forcing 13 

(like other nonparametric errors) are added to the observational error in CCDAS (Rayner et 14 

al., 2005), but the observations are unable to improve estimates of forcing. The parametric 15 

studies above hence miss a potential role of the Fs SIF measurements in constraining GPP 16 

even if they cannot constrain process parameters. 17 

 18 

Monteith (1972) proposed an empirical linear relation between GPP and aPAR which has 19 

been widely used by the satellite community to derive the GPP. The slope of this relationship 20 

is the efficiency (εp) with which the absorbed radiation is converted to fixed carbon. εp varies 21 

with physiological stress.  We have seen a goodstrong linear relationship between the 22 

fluorescence Fs SIF and aPAR.  Thus, the GPP is directly linked to Fs SIF by the ratio εp/εf. 23 

Such an approach is described in a recent report of Berry et al.  (2013). This approach would 24 

be easier to implement. It could be combined with other pertinent data for GPP (e.g., CO2 or 25 
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Carbonyl sulfide (COS) concentration) within a simplified CCDAS. This approach will be 1 

applied in a future study. 2 

 3 

This study also shows a very weak sensitivity of GPP to the chlorophyll content (Cab) present 4 

only for small Cab. This probably does not reflect reality. This contradicts the established 5 

positive relationship between the two variables as reported in Fleischer (1935) and more 6 

recently in Gitelson et al. (2006). In the current version the SCOPE model, Cab and Vcmax are 7 

independent parameters, but in reality they are correlated. In fact, Cab is related to the nitrogen 8 

content of the leaf which itself is linked to Vcmax (e.g., Kattge et al., 2009; Houborg et al., 9 

2013). In addition, the nitrogen content of the leaf affects both the leaf transmittance and 10 

reflectance which influences the aPAR and then the GPP. Thus, through the inclusion of a 11 

nitrogen scheme a more apparent link between Cab and GPP and greater sensitivity could be 12 

achieved. . Moreover, as stated in van der Tol et al. (2014), the computation of the 13 

fluorescence yield ΦFm (Eq.2 in this paper) depend on the parameter Kn, which is unknown 14 

and there is no theoretical basis to constrain it. Thus, an empirical relationship of Kn is used to 15 

change ΦFm. In the current version of the model SCOPE, there are two parameterizations of 16 

Kn. In this paper, we use the parameterization of Kn from a Flexas’ dataset that includes 17 

drought stress, as noted within the model. Nevertheless, we have tested the other 18 

parameterization and large differences are found from their SIF output. Consequently, more 19 

research is needed to consolidate SIF modeling in SCOPE biochemistry model as there can be 20 

a notable effect of different models for Kn on the photosystem yields and subsequent 21 

sensitivity of SIF. 22 

 23 

Finally, in this study we have investigated the sensitivity of SIF to Vcmax at the frequency of 24 

755 nm. Other frequencies in the fluorescence spectrum need to be checked. 25 
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6. Conclusions  1 

We have investigated the usefulness of satellite derived fluorescence data to constrain GPP 2 

within CCDAS. We have coupled the SCOPE model to CCDAS to allow computing both 3 

fluorescence Fs SIF and GPP. We have assessed the sensitivity of both Fs SIF and GPP to the 4 

environmental conditions at the interface of the canopy (short wave radiation and 5 

meteorological variables) and the biophysical parameters (Vcmax and Cab) by using idealized 6 

and CCDAS simulations.  Our results show: 7 

 As expected, GPP is strongly sensitive to Vcmax, while Fs SIF is more sensitive to Cab and 8 

only weakly sensitive to Vcmax 9 

 The relationship between simulated Fs SIF and GPP is mainly driven by aPAR. The 10 

variance in this relationship is mostly explained by the Vcmax and the chlorophyll content. 11 

This highlights the need for better treatment of chlorophyll content in biosphere models 12 

 The global and regional means as well as the zonal averages of both simulated Fs SIF and 13 

GPP are in good agreement with the satellite-based Fs 14 

 The seasonality of the satellite-based Fs SIF is quite well reproduced by the simulated Fs 15 

SIF and GPP. However, the peaks of the simulated quantities lag by one month that of the 16 

satellite-based Fs SIF in the Northern and Southern hemispheres  17 

 A good agreement is found between the simulated Fs SIF and computed GPP. The 18 

relationship is PFT dependent  19 

 A good agreement is found between the satellite-based Fs SIF and the simulated quantities 20 

(Fs SIF and GPP) 21 

 22 

 The study shows that the models of GPP and Fs SIF in the CCDAS built around SCOPE do 23 

not allow us to propagate observations of Fs SIF through constraint of Vcmax to improve 24 

estimates of GPP.  For this version of CCDAS, this study would rather recommend the use of 25 
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an empirical relationship between GPP and the satellite-based Fs, especially taking account of 1 

uncertainties in the radiation. Moreover, this empirical approach would be easier to 2 

implement and combined with other relevant data for the GPP would help to better estimate 3 

this quantity. However, a version of CCDAS which includes the full energy balance 4 

(including hydrological scheme) and prognostic photosynthesis (e.g., Knorr et al., 2010; 5 

Kaminski et al., 2013) and especially nitrogen scheme may give slightly different conclusion 6 

about the sensitivity of the fluorescence to Vcmax.   7 

 8 
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 1 

Tables and Figures and Tables captions  2 

 3 

Table 1: Main controlling parameters for the photosynthesis and fluorescence models are 4 

given. Vcmax stands for carboxylation maximum capacity and Cab for the chlorophyll content 5 

AB for 13 plant functional types (PFT) as used in the CCDAS 6 

 7 

Table 2: SCOPE parameters 8 

 9 

Table 3: Set ups for the CCDAS simulations based on the carboxylation maximum capacity 10 

(Vcmax) and chlorophyll content AB (Cab) are given.  The values of prior and optimized Vcmax 11 

as well as Cab PFT-specific are given in Table 1. The constant value of Cab for all the 13 PFTs 12 

is set to 40 μg cm
-2

 13 

 14 

Figure 1: The simulated fluorescence at the top of the canopy as a function of the radiation 15 

wavelength and for C3 (black solid line) and C4 (red dashed line) plants from the model 16 

SCOPE are shown, respectively. The blue solid line corresponds to wavelength value (i.e., 17 

755 nm) at which the simulated Fs SIF is calculated in this study, i.e., the equivalent of the 18 

satellite GOSAT based Fs 19 

 20 

Figure 2: The sensitivities of SCOPE fluorescence (Fs) at the top of the canopy (TOC) of C3 21 

plant to the carboxylation maximum capacity (Vcmax), chlorophyll content AB (Cab), and to 22 

TOC visible radiation (TOC VIS Rin) for several leaf area index (LAI) are shown.  Graphs a) 23 

and b) stand for Fs SIF and GPP as function of Vcmax, respectively. The graphs c) and d) give 24 
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the sensitivities of Fs SIF and GPP to Cab, respectively. The graphs e) and f) show Fs SIF and 1 

GPP as a function of short wave radiation at the TOC (Rin), respectively 2 

  3 

Figure 3:  The sensitivities of the SCOPE fluorescence SIF (a and c) and gross primary 4 

productivity (GPP) (b and d) to the short wave radiation (Rin) and absorbed phtosynthetically 5 

active radiation (aPAR) and for several Vcmax are presented.  LAI and Cab are set to 2 and 40 6 

μg.cm
-2

, respectively.  Results for a C3 plant are shown 7 

 8 

Figure 4: SCOPE simulations of fluorescence SIF, gross primary productivity (GPP), and 9 

absorbed phtosynthetically active radiation (aPAR) from in situ measurements at Hyytiala 10 

(acronym FI-Hyy and having longitude/latitude of 24.295
o
E/61.847

o
N) in Finland during 11 

2004 over 15 July to 20 July period. The graph a) presents the temporal variations of the 12 

observed temperature. Graph b) shows the temporal variations of both observed short wave 13 

radiation Rin (black) and SCOPE simulated aPAR (red). Graphs c (SIF) and d (GPP) present 14 

SCOPE simulations by using two values of both Vcmax and Cab (blue: SCOPESIM1: 
 
Vcmax/Cab = 15 

29 μmol m
-2

 s
-1

/10 μg cm
-2

; red: SCOPESIM2: 21.91/10.; green SCOPESIM3: 21.91/40). The 16 

observed GPP from is in black. The other SCOPE parameters are given in Table 2. The C3 17 

plant is considered in SCOPE model.  18 

 19 

Figure 5: Temporal variations (June 2009 to December 2010) of CCDAS simulations of the 20 

fluorescence SIF and GPP for different values of the carboxylation maximum capacity (Vcmax) 21 

and the chlorophyll AB content (Cab) and for a plant functional type (PFT 2: Tropical 22 

broadleaved evergreen tree) are show. In both graphs (a and b), the satellite GOSAT based 23 

SIF is shown in black solid line with big dot.  24 
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In the graph (a), SIF and GPP are simulated by using Vcmax value of 73.5 μmol(CO2) m
-2

s
-1

 1 

and two Cab values of 40 μg cm
-2

 (SIF in blue dashed line with triangles and GPP in red solid 2 

line with crosses) and 15 μg cm
-2

 (SIF in green dashed line with diamond and GPP in orange 3 

solid line with rectangles), respectively. For Cab value of 15 μg cm
-2

, the correlation 4 

coefficient R0 between simulated SIF and satellite based SIF is given on the top of the graph.  5 

In graph (b), SIF and GPP are simulated by using Cab value of 15 μg cm
-2

 and two Vcmax 6 

values of 90 μmol(CO2) m
-2

s
-
1 (SIF in blue dashed line with triangles and GPP in orange 7 

solid line with rectangles) and 73.5 μmol(CO2) m
-2

s
-1

 (SIF  in green dashed line with 8 

diamonds and GPP in red solid line with crosses), respectively. For Vcmax value of 73.5 9 

μmol(CO2) m
-2

s
-1

, the correlation coefficient R1 between simulated GPP and satellite based 10 

SIF is given on the top of the graph.  11 

 12 

 13 

Figure 6: Correlations between CCDAS simulated quantities and between simulated 14 

quantities and satellite GOSAT based fluorescence SIF are shown. The graph (a) presents the 15 

correlation between CCDAS simulated SIF (SIFSIM) and the simulated absorbed 16 

photosynthetically active radiation (aPAR). The graph (b) shows the gross primary 17 

productivity (GPP) as function of aPAR. The graph c) displays the correlation between GPP 18 

and simulated SIF. The graph (d) presents the correlation between simulated SIF (SIFSIM) and 19 

the satellite based SIF (SIFOBS).  The graph (e) displays GPP as function of SIFOBS. The graph 20 

(f) shows SIFOBS as a function of aPAR. The dominant plant functional types (PFT) 21 

characterizing by the PFTs having at least 50% of the spatial coverage for the pixels of the 22 

CCDAS at the spatial resolution of 2°x2° (longitude x latitude) are shown by different colors 23 

on the right hand side of the graph (b). The number of pair of data is 2857. The Pearson 24 
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coefficient of the linear correlation R is indicated. Data for June 2009 to December 2010 1 

period are considered. 2 

 3 

 4 

Figure 7: Mean spatial patterns over the year 2010 of a) satellite GOSAT based fluorescence 5 

Fs, b) CCDAS simulated Fs SIFby using constant value of the chlorophyll content AB Cab for 6 

all the 13 PFTs (setting S3 in Table 2Table 3),   c) Cab PFT specific (setting S4 in Table 7 

2Table 3) are shown. The graph d) displays the mean spatial patterns of the gross primary 8 

productivity (GPP) by using both Cab PFT specific and optimized carboxylation maximum 9 

capacity (Vcmax) (setting S4 in Table 2Table 3) 10 

     11 

Figure 8: Global (a) and regional (b to d) means of fluorescence Fs SIF and gross primary 12 

productivity GPP over June 2009 to December 2010 period are shown. The satellite GOSAT 13 

based Fs SIF (FsOBS: black solid line with big dot), simulated Fs SIF (FsSIM: green dashed line 14 

with triangles), and the simulated gross primary productivity (GPP: red solid line with 15 

crosses) are displayed. The CCDAS set up S4 (Table 2Table 3) is considered 16 

 17 

Figure 9: Latitudinal distributions of the satellite GOSAT based Fs SIF (FsOBS: black solid 18 

line with big dot), simulated Fs SIF (FsSIM: green solid line with diamonds), and gross primary 19 

productivity (GPP: red solid line with triangles) within 5° latitudinal band are shown. The 20 

CCDAS set up S4 (Table 2Table 3) is considered. The period of June 2009 and December 21 

2010 period is considered 22 
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