
Responses to comments from referee #1 on the paper ''Reconstruction of super-resolution 
fields of ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the Southeastern 
Atlantic'', by I. Hernández-Carrasco  et al.

We thank Dr L. Gregor for his positive and constructive review. The original comments are shown 
in italics, and our response in normal typeface

Please note that we added two co-authors, with their approval, in our publication to be in agreement
with the SOCAT atlas rules when using SOCAT in situ data. The two authors are: 
M. Gonzalez-Davila and J. M. Santana-Casiano from the Instituto de Oceanografıa y Cambio 
Global, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain. 

GENERAL OVERVIEW

Reviewer:
The manuscript uses a combination of remotely sensed low-res air-sea CO2 flux and high-res Chl-a 
and SST to arrive at high-res air-sea CO2 fluxes. The authors present a method new to this 
application and the publication fits within the scope of BGD. The manuscript is well written and is 
relatively error-free with a few inconsistencies in abbreviations. The methodology presented to 
arrive at a high-resolution air-sea CO2 flux result is comprehensive, but tricky to follow if the 
reader is not familiar with the jargon. The authors should be aware of this and simplify wording as 
much as possible. There is no discussion this paper, but given the methodological nature of this 
study I do not think this is a critical omission. I enjoyed reviewing This manuscript and I think this 
approach has great potential for high temporal and spatial resolution CO2 surface data with some 
refinement.

Authors:
We appreciate your interest in and support for our work. We have modified the manuscript 
according to the suggestions and criticisms you have formulated making the manuscript clearer. In 
particular we have improved the description of the methodology incorporating a scheme of the 
algorithm so that the reading becomes easier for scientists not familiar with the method. 

SCIENTIFIC REMARKS

Title

Reviewer:
The title does capture the topic that the paper discusses; however, I do feel that fields of does not 
contribute to the reader's understanding of the topic. 

Authors:
We have removed ''fields of'' in order to make clearer the topic of the paper. The title is now: 
“Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in 
the Southeastern Atlantic”.

Introduction 



Reviewer:
The introduction introduces the topic well and do reference the appropriate work in most part. 
However, I feel that the authors should mention statistical learning methods in their introduction. 
While the approach is quite different it is also a data based approach to derive pCO2  . Some 
noteworthy mentions are Landschutzer et al. (2014) and Telszewski et al., (2009). Though none of 
these methods have focused specifically on coastal regions.

Authors :
We have quoted in the introduction (Page 2, lines 77-81) the works by Landschutzer et al, 2014 and 
Telszewski et al, 2009 on the empirical relationships between ocean variables by using neural 
networks to estimate maps of pCO2 . 

Data

Reviewer:
It is good that the authors use and compare the different datasets.

Authors :
We thank the reviewer for this positive comment.

Methods

Reviewer:
I like the approach used in this study; however, it is fairly involved and may be confusing for some 
readers. It is noted that the authors do provide an overview of the methods on page 1415 L21, but it
would be useful to have simple overview of the methodology such as that shown below.

1. CarbonTracker provides surface CO2 fluxes

2. Flux is used to calculate pCO2
sea at low resolution (pCO2

sea(LR))

3. Use satellite SST, SSS and CCMP for winds

4. F = K(pCO2
air -pCO2

sea)  ==>   pCO2
sea = pCO2

air – F/K

5. Use MMF to extract the dimensionless singularity exponents of SST, Chla, CO2
LR  CO2

HR from 
ROMS-BIOEBUS (various resolutions) output

6. Calculate the linear relationship between SST, Chl-a,  CO2
LR  and  CO2

HR singularity exponents 
from ROMS-BIOBUS

7. Find singularity exponents of satellite SST, Chl-a and  CO2
LR

8. Use coefficients from ROMS-BIOEBUS (step 4) and apply to the singularities from the satellite 
data (step 5) to infer the singularity exponent  CO2

HR

9. Reconstruct pCO2
HR from the cross-scale inference of pCO2

LR

10. Calculate air-sea CO2 fluxes from pCO2
HR  temperature and wind.



Authors :
According with the reviewer suggestion, we have included the following scheme of the algorithm, 
step by step, at the end of Sect. 3 in order to clarify the methodology used in this study.

i) After selecting a given area of study, compute the singularity exponents of SST, Chl and pCO2 at 
low and high resolution from ROMS-BIOEBUS outputs. This is done once and then they can be 
used for every computation performed over the same area. 

ii) Using Eq. 2 estimate ocean pCO2 at low resolution :  pCO2
sea = pCO2

air – F/K  , where :

                                                     - F is the surface CO2 fluxes provided by CarbonTracker product.  
                                                     - K is the gas transfer velocity obtained by the parametrization
                                                           developed by Sweeney et al, 2007, as a function of  wind.
                                                     -   is the gas solubility derived according to Weiss 1974.
                                                     -  pCO2

air  is provided by Globalview-CO2 product.

iii) Obtain the regression coefficients a, b, c and d of Eq. 3 for the singularity exponents obtained in 
step i).

iv) Calculate the singularity exponents of available satellite SST, Chl at high resolution and pCO2
sea 

at low resolution (step ii).

v)  Use coefficients obtained in step iii) and apply Eq. 3 to the singularity exponents from satellite 
data (step iv) to estimate a proxy of singularity exponents of high resolution ocean pCO2 , S(pCO2 ). 

vi) Using Eq. 4 reconstruct p CO2 at high resolution from the multiresolution analysis computed on 
signal S(pCO2 ) and cross-scale inference on p CO2 at low resolution.

vii) Use Eq. 2 to calculate air-sea CO2 fluxes from the inferred high-resolution pCO2 obtained in 
step vi).

Reviewer:
I like the use of model data (ROMS-BIOEBUS) to estimate the MLR coefficients and estimating the 
accuracy of the method. This does make the assumption that dynamics of SST, Chl-a and pCO2 in 
the model and satellite data operate on the same scale. The authors do allude to this and justify the 
adequacy of ROMS-BIOEBUS. It would be good if this inference were stated a bit more explicitly. 
Perhaps a figure showing the PDFs of the ROMS-BIOEBUS data would address this concern?

Authors:
The use of ROMS-BIOEBUS outputs to obtain the regression coefficients does not make the 
assumption that dynamics of physical and biogeochemical variables of the model and satellite data 
operate at the same scale. However the singularity exponents (dimensionless values) of these 
variables (pCO2, SST, Chl) do present a functional relationship between them, whether we look at 
model outputs or satellite data. The ROMS-BIOEBUS capability to represent SST, SSS and density 
fields in the Benguela has been evaluated comparing the outputs of the model with annual and 
seasonal CARS climatologies (see Gutknecht et al., 2013 for more details).

Reviewer:
The authors mention an error of 2.4 atm when the method is applied to ROMS data. A relative 
error of 0.6% is given - relative to the pCO2 range? This is a small error relative to the range of 
pCO2 . What is this average difference/error between the ROMS high-res and the ROMS low-res 
data? An error relative to the (high-res/low-res) may be more telling.



Authors:
We have recomputed the mean absolute error over the 10 years climatology for the dual ROMS 
simulations and found 3.02 µatm and a relative error of 0.89%. These values are slightly higher than
those mentionned in the original manuscript since we had only considered the last year of 
simulations. We have included these new results in the corrected manuscript (lines 582, 583).
As suggested by the reviewer, we have computed the absolute and relative errors between High-
Resolution/Low-resolution ROMS to compare with the result obtained by our method. First, we 
resize the low resolution to the high resolution grid without any interpolation (1 pixel of low 
resolution is resized in 4x4 pixels of the new grid). After this, we compute absolute error = 
ABS(ROMShr – ROMSlr resized) and the relative error = absolute error / ABS(ROMShr) in each 
pixel, and finally we compute the mean of absolute and relative error for all pixels of the 360 
images corresponding to the ROMS outputs.
In doing so, we obtain for the absolute error 12.1 atm and for the relative one 3.6%. In conclusion,
our method allows to decrease the relative error from 3.6 to 0.89% when going from ROMS low 
resolution to reconstructed ROMS high resolution. 

Reviewer:
The authors also mention a paper by in review Sudre et al. (2015) on several occasions. I do not 
feel that this will be a problem once this paper has been published; otherwise I do not feel the 
authors should cite this work.

Authors:
The paper by Sudre et al. (2015) was with minor revision and the present status on line in the 
journal is “with Editorial decision”, so we think we can leave it and quote this work.

Results

Reviewer:
The use of mean error (ME) here is unusual. For their purpose of use, the use of ME seems OK, but
it is essentially the difference of the means of the two datasets (the inference bias). Given its 
similarity in nomenclature to Mean Squared Error (MSE analogous to AE), I think that the authors 
should consider a different name for this error. This is especially true, as they do not use it for the 
same purpose as one would use MSE.

Authors:
To avoid misunderstanding, we have modified the nomenclature and in the new manuscript we use 
mean differences (MD) instead of mean error (ME) for the average of the difference point by point 
of the different data sources.

Reviewer:
It would be good to see (pCO2

insitu  vs. pCO2
ctrack ) and (pCO2

insitu  vs. pCO2
infer ) plots for more data. 

Points could be coloured by longitude.

Authors: As suggested by the reviewer we have plotted (pCO2
insitu  vs. pCO2

ctrack ) and (pCO2
insitu  vs. 

pCO2
infer ) using all the CarbonTracker and inferred pCO2 values in the intersections with in-situ 

pCO2 for 2006 and 2008.  In Fig. 1 (not included in the manuscript) we show the case for 
Globcolour OC and OSTIA SST data product combinations. This figure shows that correlation is 
not entirely satisfactory for both pCO2

ctrack  and pCO2
infer , even if there are more points of pCO2

insitu  - 
pCO2

infer   closer to the diagonal straight line (in black), for instance the cloud of points around 360-
370atm. Fig. 2 shows the same as plotted in Fig. 1 but points colored as a function of longitude. 



For longitudes greater than 10 degrees East (closer to the coast)  pCO2
ctrack  and pCO2

infer  values are 
overestimated with more points closer to the diagonal for longitudes smaller than 10 degrees (open 
ocean region). This can be a sign that near the coast the available input CarbonTracker data are 
possibly not good enough to capture the variability, whereas the more open ocean areas are better 
represented in this product. 

Fig 1. Scatter plot showing pCO2 values from CarbonTracker vs in-situ (in blue) and inferred vs in-situ (in 
red) at the intersections.



Fig 2. The same as Fig. 1 but coloured as a function of  longitude.

Reviewer:
The comparison of in-situ, inferred and CarbonTracker data shows the potential of the method 
presented in this manuscript as well as the shortcomings of using Carbon-Tracker data for the 
estimation of air-sea CO2 fluxes. I think that the authors should briefly state that the output will 
only be as good as the input.
 
Authors:
As suggested by the reviewer we have added the following sentence in the conclusions (Page 18 
and lines 977-983): “The statistical comparison of inferred and CarbonTracker pCO2 values with in-
situ data shows the potential of our method as well as the shortcomings of using CarbonTracker 
data for the estimation of air-sea CO2 fluxes.  From these results it can be said that the outputs of 
our algorithm will only be as good as the inputs.” 

Figures

Reviewer:
General comment on line figures: as a colour-blind reader, I struggle to see yellow lines on white 
background. It is not imperative that this changed, but would be better in a darker shade.

Authors:
We have changed the background of the figures with gray colour as suggested by the reviewer.



SPECIFIC COMMENTS

Page and line Phrase or topic Correction or comment

P1406 L26

P1407 L19

P1407 L17-L25

P1409 L7

P1409 L16 

P1410 L4 

P1411 L12 

interacts 

Let’s cite here the work
of. . .

Possible missing citations

has been proved to be innovative.
. .

relates closely the

Section 3

sea-state

interact

Response:  This has been corrected

This sentence seems a little clumsy

Response: We have reworded the sentence
and now it reads :  “Among others,  we can
find the work by….” (Page 2, lines 63-64)

The  authors  fail  to  mention  statistical
learning  methods  and  associate  literature
(Lachkar  and  Gruber, 2012;  Landschutzer
et  al.,  2014;  Telszewski  et  al  2009  and
several others)

Response: We have  added  new references
on statistical  neural networks (Page 2, line
77-81).

has been proven innovative . . .

Response: Corrected

relates closely the - a bit clumsy otherwise

Response: The sentence has been improved

Inconsistent abbreviation

Response: Corrected

Sea state should not be included here as this
is  part  of  the  parameterisation  wind
accounts for this.

Response: We  wrote  K,  the  gas  transfer
velocity,  is  a  function  of  wind,  salinity,
temperature,  sea  state,  which  can  be
obtained  from  satellite  data.  
Here we meant K is a function of all these
parameters in a general sense. Since bubble
mediated  gas  transfer  depends  on  wave
breaking,  whitecapping  and  dispersion  by
mixing  processes  in  the  upper  ocean,  its
environmental dependence (on wind speed,
sea state, water temperature..) is a function



P1411 L24 

P1411 L26 

P1412 L5

P1415 L21

pCO2 -air

Garbe and Vihharev (2012)
approach

retain very well the structure
of the CarbonTracker fluxes

The idea

of  the  environmental  dependence  of  these
processes. 

Authors use Ascension Island as a reference.
Would  Cape  Point,  South  Africa  not  be  a
closer reference? 
http://www.esrl.noaa.gov/gmd/ccgg/obspack
/labinfo.html

Response: Reviewer  is  right  and  the
Ascension  Island  station  is  not  the  closest
one. The Ascension Island station is located
at 7.97°S and 14.4°W with an elevation of
54m  above  the  sea  level,  closer  to  the
equator  than  our  area  of  study.  Another
station  is  located  at  Gobabed  (23.58°S,
15.03°E) but at 456m above sea level. The
station  at  Cape  Point  in  South  Africa  is
closer  but  at  300m  above  sea  level.  We
chose to use the Ascension Island because it
is closer to sea level. We have clarified this
point in Page 4, line 239.

Briefly  mention  what  their  approach  is
reader does not know what this approach is.

Response: We have  replaced the  sentence
“For  this  reason,  an  approach  similar  to
Garbe  and  Vihharev  (2012)  has  been
developed and applied to the CarbonTracker
data  set.”  by  “Garbe  and  Vihharev  (2012)
have developed an optimal control approach
to invert interfacial fluxes using a simplified
inverse  problem  of  atmospheric  transport.
The  inverse  problem  is  solved  using  the
Galerkin finite element method and the Dual
Weighted Residual (DWR) method for goal-
oriented  mesh  optimization.  An  adaptation
of  this  approach  has  been  applied  to  the
CarbonTracker data set.” (lines 250-256)

retain  the  structure  of  the  CarbonTracker
fluxes very well

Response : The sentence has been corrected

Be a little more specific about which idea

Response : The  idea  refers  to  the  idea
behind the methodology. We have clarified
this in the manuscript (see line 391).

http://www.esrl.noaa.gov/gmd/ccgg/obspack/labinfo.html
http://www.esrl.noaa.gov/gmd/ccgg/obspack/labinfo.html


P1415 L26

P1416 L1

P1420 L11 

P1424 L18 

P1426 L28

P1427 L24

P1428 L8

P1440 Tab4

P1444 Fig3

Partial pressure pCO2

good characteristics

relative error

how different can be the coverage
of  the  pCO2  field  can  be
depending. . .

Abbreviations

Showing  that  have  of  the
measurements  is  geographically
in the coastal region of Benguela,
outside the. . .

study qualitatively

No valid intersections

a, b

Partial pressure (pCO2 )

Response : Corrected

What  are good  characteristics  of  a  linear
regression in this case?

Response : We have  removed  “with  good
characteristics”.

Relative  to  total  pCO2.  See  scientific
remarks section for more on this.

Response : We refer reviewer to the detailed
response described in the section methods of
the scientific remarks. 

how different coverage of pCO2 can be in
the field depending. . .

Response : The  sentence  has  been
reworded.

Why  not  apply  these  from  the  start.  They
make  it  much  easier  to  follow  the
discussion.

Response :  As  recommended,  in  the  new
manuscript we use these abbreviations from
the beginning of Sect. Results.

Showing that half of the measurements fall
within  the  coastal  region  of  the  Benguela
(land masked by CarbonTracker)

Response : The sentence has been modified
as suggested by the reviewer.

qualitatively study

Response : Corrected : quantitatively study

Should this be number? If so add No.

Response : 'No'  is  number.  We  have
replaced  'No'  with  'Nb'  in  order  to  avoid
typing errors in the production process.

Make colour scales the same



P1446 Fig5 c, d, e, f

Response:  In  the  new Fig.  3a  and 3b  we
have used the same colour scale.

Ensure that scales are the same for pCO2
and FCO2 for inter-comparison.

Response:  We have  used the same colour
scale pCO2 plots and the same colour scale
for maps of CO2 fluxes.
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Abstract. An accurate quantification of the role of the ocean
as source/sink of Green House Gases (GHGs) requires to ac-
cess the high-resolution of the GHG air-sea flux at the inter-
face. In this paper we present a novel method to reconstruct
maps of surface ocean partial pressure of CO2, pCO2, and5

air-sea CO2 fluxes at super resolution (4 km) using Sea Sur-
face Temperature (SST) and Ocean Colour (OC) data at this
resolution, and CarbonTracker CO2 fluxes data at low reso-
lution (110 km). Inference of super-resolution of pCO2, and
air-sea CO2 fluxes is performed using novel nonlinear signal10

processing methodologies that prove efficient in the context
of oceanography. The theoretical background comes from the
Microcanonical Multifractal Formalism which unlocks the
geometrical determination of cascading properties of phys-
ical intensive variables. As a consequence, a multiresolution15

analysis performed on the signal of the so-called singularity
exponents allows the correct and near optimal cross-scale in-
ference of GHGs fluxes, as the inference suits the geometric
realization of the cascade. We apply such a methodology to
the study offshore of the Benguela area. The inferred rep-20

resentation of oceanic partial pressure of CO2 improves and
enhances the description provided by CarbonTracker, captur-
ing the small scale variability. We examine different combi-
nations of Ocean Colour and Sea Surface Temperature prod-
ucts in order to increase the number of valid points and the25

quality of the inferred pCO2 field. The methodology is vali-
dated using in-situ measurements by means of statistical er-
rors. We obtain that mean absolute and relative errors in the
inferred values of pCO2 with respect to in-situ measurements

are smaller than for CarbonTracker.30

1 Introduction

The ocean can be thought of as a complex system in which a
large number of different processes (e.g. physical, chemical,
biological, atmosphere-ocean interactions) interact with each35

other at different spatial and temporal scales (Rind, 1999).
These scales extend from millimeters to thousands of kilo-
meters and from seconds to centuries (Dickey, 2003). In par-
ticular, recently there is a growing body of evidence that the
upper few hundred meters of the oceans are dominated by40

submesoscale activity, covering the range 1-10 km, and that
this activity is important to understand global ocean prop-
erties (Klein and Lapeyre, 2009). Accurately estimating the
sources and sinks of GHGs at the air-sea interface requires
to resolve these small scales (Mahadevan et al., 2004). How-45

ever, the scarcity of oceanographic cruises and the lack of
available satellite products for GHG concentrations at high
resolution prevent us from obtaining a global assessment of
their spatial variability at small scales. For example, from
the in-situ ocean measurements the uncertainty of the net50

global ocean-atmosphere CO2 fluxes is between 20 and 30%
(IOCCP, 2007), and could be higher in the Oxygen Minimum
Zones (OMZ) of the Eastern Boundary Upwelling Systems
(EBUS) due to the extreme regional variability in these areas
(Paulmier et al., 2008; Franco et al., 2014). This indeed sug-55

gests the design of proper methodologies to infer the fluxes
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at high resolution from presently available satellite images
data, in order to improve current estimates of gas exchanges
between the ocean and the atmosphere.

The most commonly used methods to estimate air-sea CO260

fluxes are based either on statistical methods, inverse mod-
eling with atmospheric transport models or global coupled
physical-biogeochemical models. Among others we can find
the work by Takahashi et al. (2002, 2009) where they inter-
polate sea surface pCO2 measurements with advanced sta-65

tistical methods to provide climatological monthly maps of
air-sea fluxes of CO2 in the global surface waters at a spatial
resolution of 4◦ × 5◦. Global maps at the same spatial res-
olution but at higher temporal resolution (daily) have been
estimated by Rödenbeck et al. (2014) by fitting the mixed-70

layer carbon budget equation to ocean pCO2 observations.
Beside the Takahashi’s works an international effort to com-
pile global surface CO2 fugacity (fCO2) measurements has
been recently performed and reported in Pfeil et al. (2013);
Bakker et al. (2014), and later interpolated by Sabine et al.75

(2013) generating a monthly gridded product with fCO2 val-
ues in a 1◦x1◦ grid cell. Other statistical approach based on
the neural-network statistical method has been shown to be
useful to estimate climatological and monthly 1◦x1◦ maps of
pCO2 by Landschützer et al. (2014) and Telszewski et al.80

(2009) respectively. Gruber et al. (2009) used an inverse
modeling of sources and sinks from the network of atmo-
spheric CO2 concentrations jointly with transport models.
The third type of methods is based on the direct computations
of the air-sea CO2 fluxes in coupled physical-biogeochemical85

models incorporating the biogeochemical processes of the
carbon dioxide system. In the latter, simulated surface ocean
pCO2 can be constrained with available ship observations as
shown by Valsala and Maksyutov (2010).

Another new avenue to infer air-sea GHG fluxes is90

through inverse modeling applied to vertical column densi-
ties (VCD) extracted from satellite spectrometers, i.e. Green-
house gases Observing SATellite (GOSAT) and SCanning
Imaging Absorption SpectroMeter for Atmospheric CHar-
tographY (SCIAMACHY), at low spatial resolution (Garbe95

and Vihharev, 2012). A global estimation of CO2 fluxes in the
ocean has been derived at 1◦ × 1◦ of spatial resolution from
global atmosphere observations used into a data assimilation
system for CO2 called CarbonTracker (Peters et al., 2007). In
all these datasets the rather coarse spatial resolution leads to100

uncertainties in the actual estimate of the sources and sinks
of CO2, calling for an improvement of the resolution of CO2

flux estimates.
In this regard, the last few years have seen the appear-

ance of interesting new developments on multiscale process-105

ing techniques for complex signals coming from Earth Ob-
servations (Yahia et al., 2010). These methods make use of
phenomenological descriptions of Fully Developed Turbu-
lence (FDT) in nonlinear physics, motivated by the values
taken on by Reynolds number in ocean dynamics. As pre-110

dicted from the theory and also observed in the ocean, in

a turbulent flow the coherent vortices (eddies) interact with
each other stretching and folding the flow generating smaller
eddies or small scale filaments and transition fronts charac-
terized by strong tracer gradients (Frisch, 1995). This results115

in a cascade of energy from large to smaller scales. There-
fore the inherent cascade of tracer variance under the turbu-
lent flow dominates the variability of the geometrical distri-
bution of tracers such as temperature or dissolved inorganic
carbon, as shown by Abraham et al. (2000), Abraham and120

Bowen (2002), Turiel et al. (2005). Geometrical organization
of the flow linked to the energy cascade allows to study its
properties from the geometrical properties of any tracer for
which the advection is the dominant process. The relation-
ships between the cascade and the multifractal organization125

of FDT has been set up either in a canonical (Arneodo et al.,
1995; Frisch, 1995) or microcanonical (Turiel et al., 2005;
Bouchet and Venaille, 2012) descriptions. Within the micro-
canonical framework (MMF) the singularity exponents un-
lock the geometrical realization of the multifractal hierarchy.130

Setting up a multiresolution analysis on the singularity ex-
ponents computed in the microcanonical framework allows
near optimal cross scale inference of physical variables (Su-
dre et al., 2015).

These advances open a wide field of theoretical and experi-135

mental research and their use in the analysis of complex data
coming from satellite imagery has been proven innovative
and efficient, showing a particular ability to perform fusion
of satellite data acquired at different spatial resolutions (Pot-
tier et al., 2008) or to reconstruct from satellite data currents140

maps at submesoscale resolution (Sudre et al., 2015). In this
paper we apply these novel techniques emerging from non-
linear physics and nonlinear signal processing for inferring
submesoscale resolution maps of the air-sea CO2 fluxes and
associated sinks and sources from available remotely sensed145

data. We use this methodology to derive cross scale infer-
ence according to the effective cascade description of an in-
tensive variable, through a fusion process between appropri-
ate physical variables which account for the fluxes exchanges
between the ocean and the atmosphere. This approach is not150

only very novel in signal processing, but also connects the
statistical description of acquired data with their physical
content. This makes the approach useful to reconstruct all
GHGs.

Unlike the Lagrangian approach to reconstruct tracer maps155

at high resolution (Berti and Lapeyre, 2014), our methodol-
ogy works in the Eulerian framework and we do not need
to know the trajectories of oceanic tracer particles but only
high resolution instantaneous maps of tracers which can be
directly obtained from remote sensing.160

The Eastern Boundary Upwelling Systems (EBUS) and
Oxygen Minimum Zones (OMZs) are likely to contribute
significantly to the gas exchange between the ocean and the
atmosphere (Hales et al., 2005; Waldron et al., 2009; Paul-
mier et al., 2011). The Benguela upwelling system, the re-165

gion of interest in this study, is one of the highest produc-
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Fig. 1. Estimated fluxes from CarbonTracker data. Shown are the results on the Benguela upwelling system on March 23, 2006. Left are the
CarbonTracker fluxes, right are our results.

tivity areas in the world ocean and may contribute signifi-
cantly to the global air-sea CO2 flux. More precisely, some
studies using data from in-situ samples have found the re-
gion of Benguela to be an annual sink of CO2 with -1.70170

(in 1995 and 1996) and -2.02Mt C/year in 2005 (Santana-
Casiano et al., 2009; Monteiro, 2010), with a strong variabil-
ity between 2005 and 2006 from -1.17 to -3.24 mol C/m2 per
year, respectively (González-Dávila et al., 2009).

The paper is organized as follows: Sect. 2 describes the175

datasets used as input in our algorithm. Sect. 3 is devoted
to describe the methodology used through the study. Statis-
tical description of the input datasets is presented in Sect.
4. Results of the inference method are given in Sect. 5 by
providing outputs of our algorithm, then evaluating the var-180

ious satellite products and assessing the performance of the
method using in situ measurements.

2 Data

The input data combines air-sea CO2 fluxes at low resolution
and satellite ocean data at high resolution. To validate the185

method we use in-situ measurements of oceanic pCO2.

2.1 Input data: Air-sea CO2 fluxes at low resolution

It is known that the evolution of a concentration, c, in the at-
mosphere is given by the advection-reaction-diffusion equa-
tion:190

∂c

∂t
=−u∇c+ 1

ρ
∇(ρTd∇c)+

1

ρ
g+F, (1)

with the wind field u, the density of the air ρ, the tur-
bulent diffusivity tensor Td, the chemical reaction rate g
and the net flux at the air-sea interface F (Garbe et al.,
2007, 2014). Using optimal control and inverse problem195

modeling, a map of F can be derived using Earth Obser-
vation data (Garbe and Vihharev, 2012). It would be ideal
if we could use data of atmospheric CO2 concentrations
from space measured by satellite sensors such as SCIA-
MACHY (SCanning Imaging Absorption SpectroMeter for200

Atmospheric CHartographY) aboard ENVISAT (Environ-
mental Satellite), in orbit since 2002, and GOSAT (Green-
house gases Observing SATellite), in orbit since January
2009, to derive the air-sea flux. However SCIAMACHY
and GOSAT sampling is not dense enough with very sub-205

optimal sampling of the Benguela upwelling system. This
led us to use data of CO2 fluxes from CarbonTracker
(http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) at spa-
tial resolution of 1◦ x 1◦ (∼100 km x∼100 km) (Peters et al.,
2007). CarbonTracker system assimilates and integrates a di-210

versity of atmospheric CO2 data into a computation of sur-
face CO2 fluxes, using a state-of-the-art atmospheric trans-
port model and an ensemble Kalman filter.

We obtain the partial pressure of ocean CO2 by using the
equation of the net flux in the air-sea interface:215
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F = αK(pairCO2
− poceanCO2

), (2)

where α is the gas solubility, which depends on SST and
Sea Surface Salinity SSS, and K, the gas transfer velocity,
is a function of wind, salinity, temperature, sea state, which
can be obtained from satellite data. To estimate the gas trans-220

fer velocity we use the well accepted relationships for the
transfer velocity in air-sea gas exchange from wind speed,
the parametrization developed by Sweeney et al. (2007). The
CO2 gas solubility is derived according to Weiss (1974).
Input data for SST are derived from OSTIA (Operational225

SST and Sea Ice Analysis system) product, SSS are de-
rived from LEGOS (Laboratoire d’Etudes en Géophysique
et Océanographie Spatiales) product compiled by Delcroix
et al. (2011) and winds from Cross Calibrated Multi-Platform
Ocean surface winds from JPL (Jet Propulsion Labora-230

tory) PO.DAAC (Physical Oceanography Distributed Active
Archive Center, http://podaac.jpl.nasa.gov/). We assume a
pairCO2

to be constant in the domain of study and it is de-
rived from the Globalview-CO2 product of the Cooperative
Atmospheric Data Integration Project coordinated by Car-235

bon Cycle Greenhouse Gases Group (GLOBALVIEW, 2013)
(www.esrl.noaa.gov/gmd/ccgg/globalview/). We use values
taken at the closest station off Benguela and closest to sea
level, located at Ascension Island (7.97◦S and 14.40◦W) as
our reference atmospheric CO2.240

The raw data of CarbonTracker fluxes of CO2 in the
area of interest are strongly binned and exhibit strong gra-
dients across those bins. This turns out to be suboptimal for
our super-resolution approach. Garbe and Vihharev (2012)
have developed an optimal control approach to invert in-245

terfacial fluxes using a simplified inverse problem of at-
mospheric transport. The inverse problem is solved using
the Galerkin finite element method and the Dual Weighted
Residual (DWR) method for goal-oriented mesh optimiza-
tion. An adaptation of this approach has been applied to the250

CarbonTracker data set. However, the estimations are expen-
sive and computing results for all the time frames of inter-
est was infeasible. Therefore, an anisotropic diffusion-based
approach has been applied to the raw fluxes of the Carbon-
Tracker data set. The diffusion is steered by the direction of255

the low-altitude wind field. The results thus retain the struc-
ture of the CarbonTracker fluxes very well while suppressing
artifacts. Results are comparable to the physically more ac-
curate approach of Garbe and Vihharev (2012). Examples of
this process are shown in Fig. 1.260

2.2 Input data: Satellite Ocean data at high resolution

Oceanic pCO2 is a complex signal depending, at any spa-
tial resolution, on sea surface temperature, salinity, chloro-
phyll concentration, dissolved inorganic carbon, alkalinity
and nutrients concentrations. Both the biological pump, with265

chlorophyll a as a proxy, and the physical pump, driven by

the temperature and salinity (e.g. solubility, water mass),
govern the evolution of pCO2, when dealing with CO2 for
instance, in the surface ocean.

We use here the high resolution satellite ocean data for270

chlorophyll a, as a proxy for the biological carbon pump and
for Sea Surface Temperature (SST), as a proxy for the ther-
modynamical pump, (see Section 3.2 for more details on the
connection of these oceanic variables).

2.2.1 Chlorophyll-a (Chl-a) from Ocean Colour (OC)275

In this study we use Chl-a concentrations from two differ-
ent Ocean Colour products: MERIS and GLOBCOLOUR.
MERIS (MEdium Resolution Imaging Spectrometer Instru-
ment) is on board the ENVISAT satellite and provides daily
maps of ocean colour at 1/24◦ (∼4 km). Ocean colour from280

GLOBCOLOUR product is obtained by merging data pro-
vided by MODIS (MODerate Resolution Imaging Spectro-
radiometer), MERIS and SeaWiFS instruments. The Chl-
a concentration is provided daily and at the spatial reso-
lution equal to 1/24◦ (∼4 km). Ocean Colour data have285

been regridded at 1/32◦ by linear interpolation. GLOB-
COLOUR products are generated using different merg-
ing methods (see the GLOBCOLOUR Product User Guide
document in http : //www.globcolour.info/CDR Docs
/GlobCOLOUR PUG.pdf ):290

– Averaging from single-instrument chl-a concentra-
tion. In this case CHL1 daily level 3 (L3) products
are generated for each instrument using the correspond-
ing L2 data. At the beginning of the averaging process,
an inter-calibration correction is applied to the MODIS295

and SeaWiFS (Sea-Viewing Wide Field-of-View Sen-
sor) CHL1 daily L3 products in order to get compatible
concentrations with respect to the MERIS sensor. The
merged CHL1 concentration is then computed as the av-
erage of the MERIS, MODIS and SeaWiFS quantities,300

both as: an arithmetic mean or a weighted average
value (AVW). In the AVW method, values of CHL1 are
weighted by the relative error for each sensor on the re-
sults of the simple averaging.

– Garver-Siegel-Maritorena model (GSM). In this305

method single-instrument daily L3 fully normalized wa-
ter leaving radiances (individually computed for each
band) and their associated error bars are used by the
GSM model. These radiances are not inter-calibrated
before incorporation in the model (see Maritorena and310

Siegel (2005) for more details).

Snapshots of both Chl-a fields derived from MERIS and
GSM GLOBCOLOUR corresponding to September 21, 2006
are displayed in Fig. 2 a) and b), respectively. This example
shows the clear difference in the remote sensing coverage be-315

tween the two products. The merged GLOBCOLOUR prod-
uct yields a more covered Chl field than the one obtained
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from MERIS. The merging algorithm in GLOBCOLOUR
product tends to decrease the missing points induced by
clouds for each individual instrument.320

2.2.2 Sea Surface Temperature (SST)

We use SST derived from OSTIA and MODIS products.
OSTIA (Operational SST and Sea Ice Analysis system) is
a new analysis of SST that uses satellite data provided by
the GHRSST (Group for High Resolution SST) project, to-325

gether with in situ observations to determine the SST with a
global coverage and without missing data. The datasets are
produced daily and at spatial resolution of 1/20◦ (∼6km)
performing a multi-scale optimal interpolation using corre-
lation length scales from 10 km to 100 km (more details in330

Donlon et al. (2012)). The other SST product used in this
study is derived from MODIS (MODerate Resolution Imag-
ing Spectroradiometer) sensors carried on board the Aqua
satellite since December 2002. This SST product is derived
from the MODIS mid-infrared (IR) and thermal IR channels335

and is available in various spatial and temporal resolutions.
We use Level-3 daily maps of SST at the spatial resolution
of 1/24◦ (∼4 km) (Savtchenko et al., 2004). In Fig. 3 a) and
b), we show one snapshot of SST from OSTIA and MODIS
respectively corresponding to the same day on September 21,340

2006. In the case of OSTIA products, the SST field is fully
covered of points while for MODIS products there are gaps
due to cloudiness. On other hand, MODIS product offers a
more detailed visualization of the small structures. All SST
data have been regridded at 1/32◦ by bilinear interpolation.345

2.3 Validation data: in-situ measurements

Among the available data in SOCAT version 2 (Bakker et al.,
2014) (Surface Ocean CO2 Atlas, http://www.socat.info)
over the 2000-2010 period in our region of interest we find
the following cruises with pCO2 measurements:350

– 2000, one cruise: ANT-18-1

– 2004, one cruise: 0404SFC-PRT

– 2005, five cruises: QUIMA2005-0804, QUIMA2005-
0821, QUIMA2005-0922, QUIMA2005-1202,355

QUIMA2005-1220

– 2006, nine cruises: GALATHEA, QUIMA2006-0326,
QUIMA2006-0426, QUIMA2006-0514, QUIMA2006-
0803, QUIMA2006-0821, QUIMA2006-0921,
QUIMA2006-1013, QUIMA2006-1124360

– 2008, seven VOS cruises: QUIMA2008-1,
QUIMA2008-2, QUIMA2008-3, QUIMA2008-4,
QUIMA2008-5, QUIMA2008-6, QUIMA2008-7

– 2010, one cruise: ANT27-1
365

The small number of cruises found in one decade (24
cruises) shows that the scarcity of cruises in the Benguela
region is a fact. This indeed demonstrates the crucial need
of developing a robust method to infer high resolution pCO2

from space. Moreover for some of these cruises, for instance,370

the track of GALATHEA cruise is too close to the coast and
is out of the original CarbonTracker domain. Due to this re-
striction we only document the offshore conditions of this
upwelling system. Owing to the relatively large number of
cruises during 2005, 2006 and 2008 (a total of 20 cruises,375

representing 83% of all available cruise data from 2000
through 2010), in this validation, we focus the analysis on
the set of QUIMA-cruises during 2005 (QUIMA2005), 2006
(QUIMA2006) and 2008 (QUIMA2008) and we present the
global analysis using all available cruises during these three380

years. Santana-Casiano et al. (2009) analyzed this data to
study the sea surface pCO2, fCO2 and CO2 air-sea fluxes
offshore of the Benguela upwelling system between 2005
and 2006 (for each month from July 2005 up to November
2006) and González-Dávila et al. (2009) extended the study385

including cruises data from 2007 to 2008. The QUIMA line
crosses the region between 5◦S and 35◦S, with all the cruises
following the same track.

3 Method

The idea behind the methodology hinges on the fundamen-390

tal discovery of a simple functional dependency between
the transitions - those being measured by the dimension-
less values of the singularity exponents computed within the
framework of the Microcanonical Multifractal Formalism -
of the respective physical variables under study : SST, Ocean395

Colour and oceanic partial pressure (pCO2). That functional
dependency being adequately fitted into a linear regression
model, it becomes possible to compute, at any given time, a
precise evaluation of pCO2 singularity exponents using SST,
Ocean Colour and low resolution acquired pCO2. Once these400

singularity exponents are computed, they generate a mul-
tiresolution analysis from which low resolution pCO2 can
be cross-scale inferred to generate a high resolution pCO2

product.

3.1 Singularity exponents and the multifractal hierar-405

chy of turbulence

In the ocean, the turbulence causes the formation of unsteady
eddies on many scales which interact with each other (Frisch,
1995). Most of the kinetic energy of the turbulent motion is
contained in the large scale structures. The energy cascades410

from the large scale structures to smaller scale structures by
an inertial and essentially inviscid mechanism. This process
continues, creating smaller and smaller structures which pro-
duces a hierarchy of eddies. Moreover, the ocean is a system
displaying scale invariant behavior, that is, the correlations of415
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a) b)

c) d)

Fig. 2. Snapshot of Chl-a fields corresponding to September 21, 2006, regridded at 1/32◦ of spatial resolution from MERIS (a) and GSM
GLOBCOLOUR (b). c) and d) are the spatial distribution of Singularity Exponents of the Chl-a plotted in a) and b) respectively

variables do not change when we zoom in or we zoom out the
system, and can be represented by power-laws in particular,
with the scaling exponents h.

It can be shown that the scaling exponents are the values
taken on by localized singularity exponents, which can be420

computed at high precision in the acquired data using the
Microcanonical Multifractal Formalism. Hence, within that
framework, the multifractal hierarchy of turbulence, defined
by a continuum of sets Fh indexed by scaling exponents h,
is obtained as the level sets of the geometrically localized425

singularity exponents.
We will not review here the details in the computation of

the singularity exponents h(x), leaving the reader to consult
references (Turiel et al., 2005, 2008; Pont et al., 2011b; Maji
and Yahia, 2014; Sudre et al., 2015) for an effective descrip-430

tion of an algorithm able to compute the h(x) at every point
x in a signal’s domain.

Some examples of the singularity exponents of Chl and
SST images for the different products described in Section
2.2 are shown in Fig. 2 c) and 2 d) and Fig. 3 c) and 3 d), re-435

spectively. As compared to the corresponding images of Chl
and SST showed in Fig. 2 a) and 2 b) and Fig. 3 a) and 3
b), one can see the ability of the singularity exponents to un-
veil the cascade structures arisen by tracer-gradient variances
hidden in satellite images.440



Hernández-Carrasco et al.: Super-resolution CO2 fluxes from Earth Observations 7

a)

c) d)

b)

Fig. 3. Snapshot of SST fields corresponding to September 21, 2006 regridded at 1/32◦ of spatial resolution from OSTIA (a) and MODIS
(b). c) and d) are the spatial distribution of Singularity Exponents of the SST plotted in a) and b) respectively.

3.2 Functional dependencies between the singularity
exponents of intensive physical variables

Another important idea implemented in the methodology is
the coupling of the physical information contained in SST
and OC images with the ocean pCO2. For instance, it is445

known, that marine primary production is a key process in
the oceanic carbon cycling, and variations in the concentra-
tion of phytoplankton biomass can be related to variations
in the carbon concentrations. Surface temperature is also re-
lated with the gas solubility in the ocean, and areas with high450

temperatures are more suitable for releasing CO2 to the at-

mosphere. We have studied the relationship of SST and Chl-
a variables with pCO2 using the outputs of a coupled Re-
gional Ocean Modeling System (ROMS) with the BIOgeo-
chemical model of the Eastern Boundary Upwelling System455

(BIOEBUS) (Gutknecht et al., 2013). The ROMS includes
several levels of nesting and composed grids, which makes
it an ideal model for the basis of our methodology in work-
ing in two spatial resolutions. BIOEBUS has been developed
for the Benguela to simulate the first trophic levels of the460

Benguela ecosystem functioning and also to include a more
detailed description of the complete nitrogen cycle, includ-
ing denitrification and anammox processes as well as the
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oxygen cycle and the carbonates system. This model cou-
pled to ROMS has been also shown to be skillful in simu-465

lating many aspects of the biogeochemical environment in
the Peru upwelling system (Montes et al., 2014). When one
compares SST and Chl with pCO2 one finds undetermined
functional dependency. However, when comparing their cor-
responding singularity exponents one obtains a clear simpler470

dependency. This is due to the fact that SST, Chl and pCO2

are variables of different dimensions while singularity expo-
nents are dimensionless quantities.

These results show that there is a good correlation be-
tween the turbulent transitions given by the singularity expo-475

nents and that singularity exponents are good candidates for a
multiresolution analysis performed on the three signals SST,
Chl and pCO2. Furthermore, they studied the log-histograms
and singularity spectrum to show that singularity exponents
of pCO2 images possess a multifractal character. Therefore,480

such signals are expected to feature cascading, multiscale
and other characteristic properties found in turbulent signals
as described in Turiel et al. (2008) and Arneodo et al. (1995).
Consequently the use of non-linear and multiscale signal pro-
cessing techniques is justified to assess the properties of the485

pCO2 signal along the scales.
Therefore, in our methodology, the local connection be-

tween different tracer concentrations, i.e., SST, Chl-a with
pCO2, in order to obtain a proxy for pCO2 at high resolu-
tion, is performed by using the following linear combination490

of multiple linear regressions:

S(pCO2)(x) =a(x)S(SST )(x)+ b(x)S(Chl a)(x)+
c(x)S(pCO2

LR)(x)+ d(x),
(3)

where S(pCO2)(x) refers to the singularity exponent of
pCO2 at x, S(SST )(x) to singularity exponent of SST at x,
S(Chl− a)(x) to singularity exponent of Chl-a signal at x.495

In order to propagate the pCO2 signal itself along the scales
in the multiresolution analysis we introduce S(pCO2

LR) to
refer to the singularity exponent from pCO2 at low resolution
interpolated on the high resolution grid. a(x), b(x) and c(x)
are the regression coefficients associated to singularity expo-500

nents, and d(x) is the error associated to the multiple-linear
regression. These regression coefficients are estimated using
simulated data from the ROMS-BIOEBUS model developed
for the Benguela upwelling system and described above.

Once we have introduced these coefficients in the linear505

combination on satellite data, we obtain a proxy for singular-
ity exponents of pCO2 at high resolution and we can perform
the multiresolution analysis to infer the information across
the scales.

3.3 Cross-scale inference of pCO2 data510

Among the functional that are most commonly used to ana-
lyze the scaling properties of multifractal systems, wavelets

occupy a prominent position. Wavelets projections are inte-
gral transforms that separate the relevant details of a signal at
different scale levels, and since they are scale-tunable, they515

are appropriate to analyze the multiscale behavior of cascade
processes and to represent them. However, as shown in Pot-
tier et al. (2008),Yahia et al. (2010) and Pont et al. (2011a)
not all multiresolution analyses are equivalent but the most
interesting are those which are optimal with respect to in-520

ferring information along scales, in particular, in a context
where information is to be propagated along the scales from
low resolution to high resolution.

The effective determination of an optimal wavelet for a
given category of turbulent signals is, in general, a very dif-525

ficult open problem. This difficulty can be contoured by con-
sidering multiresolution analysis performed on the signal of
the singularity exponents h(x) themselves. Indeed, since the
most singular manifold (the set Fh associated to the low-
est singularity exponents) is associated with the highest fre-530

quencies in a turbulent signal, and since the multifractal hi-
erarchy Fh converges to this set, it is physically evident that
the multifractal hierarchy corresponds to a description of the
detail spaces of a multiresolution analysis performed on a
turbulent signal. Consequently, designing by Vj and Wj re-535

spectively the approximation and detail spaces computed on
S(pCO2)(x) signal, and by Aj and Pj their corresponding
orthogonal projections from space L2(R2), the following re-
construction formula:

Aj−1pCO2 =AjpCO2 +Pjh (4)540

consists in reconstructing a signal across the scales using
the detail spaces of the singularity exponents, hence re-
generating a physical variable according to its cascade de-
composition. From these ideas, which are described more
fully in the paper by Sudre et al. (2015), we can deduce545

the following algorithm for reconstructing a super-resolution
pCO2 signal from available high-resolution SST, Chl-a, and
low-resolution pCO2:

i) After selecting a given area of study, compute the singu-
larity exponents of SST, Chl and pCO2 at low and high550

resolution from ROMS-BIOEBUS output. This is done
once and then they can be used for every computation
performed over the same area.

ii) Using Eq. 2 estimate ocean pCO2 at low resolution:
poceanCO2

= pairCO2
−F/αK , where:555

- F : air-sea surface CO2 fluxes provided by Carbon-
Tracker product.

- K: gas transfer velocity obtained by the
parametrization developed by Sweeney et al,
2007, as a function of the wind.560

- α: gas solubility derived according to Weiss 1974.

- pairCO2
: provided by Globalview-CO2 product.
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iii) Obtain the regression coefficients a,b,c and d of Eq. 3
for the singularity exponents obtained in step ii)

iv) Calculate the singularity exponents of available satellite565

SST, Chl at high resolution and ocean pCO2 at low res-
olution (step i).

v) Use coefficients obtained in step iii) and apply Eq. 3 to
the singularity exponents from satellite data (step iv) to
estimate a proxy of singularity exponents of high reso-570

lution ocean pCO2, S(pCO2).

vi) Using Eq. 4 reconstruct pCO2 at high resolution
from the multiresolution analysis computed on signal
S(pCO2) and cross-scale inference on pCO2 at low res-
olution.575

vii) Use Eq. 2 to calculate air-sea CO2 fluxes from the in-
ferred pCO2 obtained in step vi)

The methodology has been successfully applied to dual
ROMS simulation data at two resolutions, obtaining a mean
absolute error of pCO2 reconstructed values with respect580

to ROMS simulated high-resolution pCO2 equal to 3.2µatm
(0.89% of relative error) (V. Garçon 2014, pers. comm.).

4 Preliminary analysis of Sea Surface Temperature
(SST) and Chlorophyll images

Since the key element for the application of our inferring al-585

gorithm relies on the ability in obtaining the singularity ex-
ponents and their quality, the success of our methodology
applied to satellite data depends on the quality and the prop-
erties of the input data. In order to assess such properties
we perform a statistical analysis of the different datasets.590

First, we analyze the Chl and SST Probability Distribution
Functions (PDFs). In Fig. 4a) we present the PDFs for Chl
from MERIS, GLOBCOLOUR-GSM and GLOBCOLOUR-
AVW; the required histograms are built using daily Chl val-
ues over 2006 and 2008 at each point of the spatial grid in595

the area of Benguela. Each one of these PDFs is broad and
asymmetric, with a small mode (i.e. the value of Chl at which
the probability reaches its maximum) between 0.1 and 0.2
mg/m3 and a heavy tail. The heavy tail (i.e. non-gaussianity)
means that the extreme values can not be neglected. In this600

case Chl values are mostly low (small mode) but there is a
significant number of isolated and dispersed patches with
very high Chl values producing intermittency (long tails in
the PDF). Intermittency in the context of turbulence is the
tendency of the probability distributions of some quantities to605

develop long tails, i.e. the occurrence of very extreme events.
Further information can be obtained by computing statisti-

cal quantities such as standard deviation, skewness and kur-
tosis. Table 1 shows that standard deviation is rather the same
for the three OC products while skewness and kurtosis val-610

ues hugely differ. The degree of intermittency is measured

by the kurtosis, the higher the kurtosis, the higher the inter-
mittency. We found that kurtosis is almost ten times higher
in GLOBCOLOUR products than in MERIS.

We have repeated the same analysis for SST datasets. The615

PDFs of the SST values for OSTIA and MODIS products
are shown in Fig. 4b). In this case both PDFs possess similar
shape, broad with the mode around 18◦C with a much less
deviation from gaussianity as compared to Chl values. This
is confirmed with the computation of the statistical moments620

showed in Table 1. We obtain small values of the standard
deviation and kurtosis in both cases, although slightly higher
in the case of MODIS. The kurtosis is less than 3, meaning
that there is not an important number of atypical values of
SST and therefore weak and short tails in the PDFs.625

PRODUCT Standard Deviation Skewness Kurtosis

MERIS 0.116 mg/m3 2.6 21.9
GLOBCOLOUR-AVW 0.122 mg/m3 4.7 204.6
GLOBCOLOUR-GSM 0.123 mg/m3 5.3 215.4
OSTIA 1.97◦C -0.05 1.9
MODIS 2.11◦C -0.17 2.6

Table 1. Values of the standard deviation, skewness and kurtosis for
the different products.

If turbulence is dominated by coherent structures localized
in space and time, then PDFs are not Gaussian, and the kur-
tosis will be higher than 3. To analyze this feature we turn
to the statistical analysis of the singularity exponents, which,
as explained before, have the ability to unveil the cascade630

structures given by the tracer gradients. In Fig. 4c), it can
be seen that the PDFs of the singularity exponents of the
Chl for the three products are rather similar with almost the
same standard deviation and with a slightly higher value of
the kurtosis in the GLOBCOLOUR-GSM product, 4.3, than635

for MERIS, 3.1, and GLOBCOLOUR-AVW, 3.1, (see Table
2). This shows that Chl from GLOBCOLOUR-GSM prod-
uct contains more extreme values which produce intermit-
tency likely given by the strongest structures. The PDFs of
the singularity exponents of the SST for OSTIA is narrower640

and with a highest peak than for MODIS SST. However, sur-
prisingly the kurtosis is larger for singularity exponents of
OSTIA SST, 5.1, than for MODIS SST, 3.2.

PRODUCT Standard Deviation Skewness Kurtosis

MERIS 0.32 mg/m3 0.59 3.1
GLOBCOLOUR-AVW 0.36 mg/m3 0.40 3.1
GLOBCOLOUR-GSM 0.35 mg/m3 0.63 4.3
OSTIA 0.29◦C 1.0 5.1
MODIS 0.32◦C 0.5 3.2

Table 2. Values of the standard deviation, skewness and kurtosis of
the singularity exponents for the different products.
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Fig. 4. a) Probability distribution functions (PDF) of Chl-a values derived from the three products: MERIS, GLOBCOLOUR-AVW and
GLOBCOLOUR-GSM. (b) PDF of SST values for OSTIA and MODIS products. c) PDFs for the singularity exponents of Chl for the different
Ocean Colour products. d) PDFs for the singularity exponents of Chl for the different SST products. e) Singularity spectra corresponding to
c). f) Singularity spectra corresponding to d).

Finally, we obtain the singularity spectra from the em-
pirical distributions of singularity exponents shown in Fig.645

4c) and d). One can see in Fig. 4e) that for the two GLOB-
COLOUR products the shape of the spectrum is closer to bi-
nomial cascade of multiplicative processes than for MERIS

(we will come back to this discussion in more depth in next
sections).650
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5 Results

5.1 Inference of super-resolution pCO2 and air-sea
fluxes of CO2 offshore of the Benguela upwelling
system

We now apply the methodology to infer ocean pCO2 maps at655

super-resolution from pCO2 at low resolution derived from
CarbonTracker data (see Section 2) in the offshore area of
the Benguela region.

From now on we are going to use the following notation
for the three different sources of pCO2: we refer to the values660

of ocean pCO2 derived from CarbonTracker as pCOCtrack
2 ,

values of inferred pCO2 at higher resolution from pCO2 at
low resolution together with computation of the cascade onto
SST and chlorophyll-a concentration as pCOinfer

2 , and finally
pCOinsitu

2 refers to the values of the in-situ measurements of665

pCO2.
For the inference we use the following three combinations

of Chl and SST products described in Section 2.1: MERIS-
OSTIA, GLOBCOLOUR-OSTIA, GLOBCOLOUR-
MODIS. We do not include the MERIS-MODIS combi-670

nation in the analysis due to the fact that the use of such
satellite data results in a too drastic reduction of the coverage
of the resulting pCOinfer

2 field, but using merged products
offers wider coverage instead. The inferred pCO2 obtained
from two merged products for Chl-a, GLOBCOLOUR675

GSM and GLOBCOLOUR AVW is rather the same, with a
slightly improvement when GSM is used. Thus for the sake
of clarity, we only show Figures for GLOBCOLOUR-GSM
and some statistical results making comparisons with AVW.
Therefore from now on we refer GLOBCOLOUR to the680

Chl-a obtained by the GSM merged method.
Figure 5d shows one example of pCOinfer

2 field corre-
sponding to March 22, 2006 when we use SST data from
OSTIA (Fig. 5a), Ocean Colour from GLOBCOLOUR (Fig.
5b) at high resolution and pCO2 at low resolution (Fig. 5c)685

derived from CarbonTracker air-sea flux of CO2 (Fig. 5e) and
using the Eq. 2. The air-sea flux of CO2 at super-resolution
(Fig. 5f) is obtained from the pCOinfer

2 field and a constant
value of atmospheric pCO2 equal to 385.6µatm. On this day
the images of the pCOinfer

2 and fluxes of CO2 combine a good690

coverage and a clear identification of small scale structures
and gradients, as described below. Note that the air-sea CO2

flux from CarbonTracker presents a large land mask close
to the coast and consequently, we will rather study the off-
shore area of the Benguela upwelling. Comparing the figures695

one can see that values of pCO2 and CO2 flux over the do-
main (from 4.5◦E to coast (taking out the mask of the Car-
bonTracker domain and from 20.5◦S to 35◦S) vary between
360 and 380µatm and between -4x10−8 and 0.5x10−8 mol C
m−2 s−1, respectively. The resultant flux of CO2 is positive700

(towards the atmosphere) in the region 25◦-28◦S and from
7◦E eastward to the coast and is negative (into the ocean)
south of 30◦S and east of 6◦E. Thus, we see that in the south-

ern part of the Benguela area there is a strong CO2 sink and
the northern part behaves as a weak CO2 source.705

What is new in the reconstructed pCO2 is, for instance,
that the cascade of information across the scales enhances
gradients in the field of pCO2. It is striking that the high-
resolution map provides the position of the North-South
dipole ”front” located at 30◦S (i.e. -1.5x10−8 isoline in710

green) which could not be inferred accurately from the low
resolution map. The low resolution map would provide an
estimate of the location of the ”front” that is ∼1.5◦ north-
ern of the location inferred from the high-resolution map.
Moreover one can see small structures in the pCOinfer

2 field715

between 33-35◦S and 9-12◦E in the pCOinfer
2 field (Fig. 5d)

. The small spatial scale variability is captured in the super-
resolution pCO2 field and not in pCOCtrack

2 as shown in the
longitudinal profile of the images plotted in Fig. 5 at lati-
tude 33.5◦S (see Fig. 6). The same high spatial variability720

given by the small scale structures of the SST and OC im-
ages can be appreciated in their corresponding longitudinal
profiles displayed in the panel a) and b) of Fig. 6. It is wor-
thy to note the change in the shape of the profiles between
the pCOinfer

2 and pCOCtrack
2 and fluxes of CO2 at large scale,725

from 5.5◦E to 10.5◦E, showing that the method not only in-
troduces small scale features but also modifies the large scale
spatial variability.

5.2 Evaluation of using different satellite products

Since the underlying aim of this work is to develop a method-730

ology to infer super-resolution pCO2 from space using re-
mote observations, we perform a validation study of the dif-
ferent data used in the inferring computations. This provides
us an evaluation of which satellite products are more suit-
able for our methodology and thus a gain in confidence in735

our method as well as a better understanding of its limita-
tions. The evaluation analysis is addressed taking into ac-
count two main concerns: one related to the number of valid
points yielded in the pCOinfer

2 field, and another with regard
to the degradation of the information contained in the tran-740

sition fronts. A valid point is a pixel where we have simul-
taneously Chl, SST and pCO2 values from CarbonTracker,
from which we can obtain a value of pCOinfer

2 , in other words
without missing information. One example comparing the re-
constructed pCO2 field obtained from the mentioned above745

three products combinations is plotted in Fig. 7. The general
pattern is quite similar in all of them with some differences in
the details of the small scales and in the missing points due to
cloudiness (white patches). This example clearly shows how
different coverage of the pCO2 can be in the field depending750

on the products combination.
Similar results are found when one compares the spa-

tial distribution of time average over 2006 and 2008 of the
pCOinfer

2 values for the three product combinations (Fig 8).
The same pattern with an area of higher pCO2 between 24◦S755

and 30◦S and lower pCO2 values outside this region is pro-
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a)

d)

f)e)

c)

b)

Fig. 5. Maps of a) SST from OSTIA at 1/32◦ of spatial resolution, b) Chl at 1/32◦ of spatial resolution from GSM GLOBCOLOUR products,
c) ocean pCO2 from CarbonTracker at the spatial resolution of 1◦, d) inferred pCO2 at super-resolution (1/32◦) derived from OSTIA SST
and GLOBCOLOUR-GSM Chl-a shown in a) and b) respectively, e) Air-sea CO2 flux as derived from CarbonTracker and f) Air-sea CO2

flux computed from super-resolution pCO2 shown in d) at 1/32◦. All images correspond to March 22, 2006. White color corresponds to
invalid pixels due to cloudiness and points inside of the CarbonTracker land mask
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Fig. 6. Longitudinal profiles of a) SST from OSTIA products in
units of ◦C, b) Chl from GLOBCOLOUR-GSM ocean in mg/m3, c)
pCOCtrack

2 (black line) and pCOinfer
2 (red line) in µatm, and d) air-

sea CO2 fluxes from CarbonTracker (black line) and inferred air-
sea CO2 fluxes (red line) in mol C m−2 s−1. All these longitudinal
profiles correspond to the fixed latitude equal to 33.5◦S of the plots
shown in Fig. 5 for March 22, 2006.

duced with the three combinations. The most noticeable dif-
ferences are located in the most northern region and in the
south-eastern region off Benguela. This can be quantified by
computing the standard deviation of the reconstructed pCO2760

values among the different combination of datasets. Fig. 8 d)
shows the spatial distribution of the time average over 2006
and 2008 of the standard deviation computed in each pixel
among the pCOinfer

2 values obtained from the three products
combinations. The larger values of the dispersion (not greater765

than 5µatm) are found in the northern region from 23◦S to
the north and and in the southern region, in particular, in the
area from 31.5 ◦S to the south and from 11◦E to the east.
The low value of the dispersion indicates that the method is
robust when different datasets are used in the inference.770

First, we compute the number of valid points in the
pCOinfer

2 field for each product combination. Table 3 sum-
marizes the total number of valid points for each prod-
ucts combination for both years 2006 and 2008. As ex-
pected, the number of valid points is found to be the high-775

est for the combination of merged products OSTIA SST
and GLOBCOLOUR-GSM with NGO=27313043 points,
followed by the combination MODIS SST and GLOB-
COLOUR Chl with NMG=20397047 points and finally
by the OSTIA SST and MERIS Chl combination with780

Valid Points in the inferred pCO2 fields: 2006/2008

Nb total pixels domain 55711378
Nb Points OSTIA-MERIS 9800776
Nb Points OSTIA-GLOBCOLOUR(AVW) 26382072
Nb Points OSTIA-GLOBCOLOUR(GSM) 27313043
Nb Points MODIS-GLOBCOLOUR(GSM) 20397047
Proportion OSTIA-GSM/OSTIA-MERIS 2.78
Proportion OSTIA-GSM/MODIS-GSM 1.33
Proportion MODIS-GSM-/OSTIA-MERIS 1.08
LPOM 82%
LPOG(AVW) 53%
LPOG(GSM) 51%
LPMG 63%

Table 3. Number of valid points in the pCO2 fields and their differ-
ence between the three combinations of MERIS or GLOBCOLOUR
CHL with OSTIA or MODIS SST in the area of Benguela.

NOM=9800776 points. Looking at the different propor-
tions, we find that the number of valid points is 2.78
times larger when using the merged products OSTIA and
GLOBCOLOUR-GSM than using OSTIA and MERIS, 1.33
times larger than using MODIS and GLOBCOLOUR-GSM785

and 1.08 times larger using OSTIA SST and GSM Chl-
a than using MODIS SST and GSM Chl a. Further, if
we know that the total number of pixels in the domain
taking out the points of the CarbonTracker mask and for
the two years is Np=55711378, one can estimate the loss790

of valid points for each combination, LPx. LPx is com-
puted by dividing the relative difference between the num-
ber of total available pixels in the domain Np and the
number of points in the inferred pCO2 field obtained for
each product combination,Nx, with respect to the total795

number of pixels Np, LPx =
Np−Nx

Np
100%. Here the sub-

script x refers to the product combination (e.g. LPx =
LPOM , LPOG and LPMG for the loss of valid points with
the OSTIA-MERIS, OSTIA-GLOBCOLOUR and MODIS-
GLOBCOLOUR products combination, respectively). The800

loss of valid points due to cloudiness in the ocean colour and
SST images is less severe for the OSTIA-GLOBCOLOUR
combination with a loss of 51% and being the more affected
by the cloudiness the OSTIA-MERIS combination with a
loss of 82%.805

Next we explore the quality of the information contained
in the transition fronts, in particular, in the non-merged
products such as MERIS OC and MODIS SST as compared
to the merged products: GLOBCOLOUR OC and OSTIA
SST. The PDFs of pCO2 values from CarbonTracker and810

pCOinfer
2 values for the three combinations of OC and SST

products, i.e. MERIS-OSTIA, GLOBCOLOUR-OSTIA,
MODIS-GLOBCOLOUR (see Fig. 9) show that there is
a good correspondence of all pCOinfer

2 values with those
from pCOCtrack

2 . Indeed the histograms show also a better815
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a) b)

d)c)

Fig. 7. a) Map of pCO2 field at low resolution from CarbonTracker. Reconstructed pCO2 field at super-resolution using: b) OSTIA SST and
MERIS Chl-a, c) OSTIA SST and GSM-GLOBCOLOUR Chl-a and d) MODIS SST and GSM-GLOBCOLOUR Chl-a. All maps correspond
to September 21 2006.

agreement between merged products and CarbonTracker:
the peak of the PDF for pCOinfer

2 is closer to CarbonTracker
peak in the case of OSTIA and GLOBCOLOUR than when
using MERIS and MODIS products.

820

Furthermore, to analyze the realism of the transitions
fronts for the different products we compute the singularity
spectra for the three product combinations (see Figure 10).
One can see that at low values of h (singularity exponent),
related to the most singular manifolds, the shape of singular-825

ity spectrum for inferred data from merged products better
matches a binomial cascade, with an improved description
of the dimension of the sharpest transition fronts. We know
from the theory, that tracers advected by the flow in the
turbulent regime, as it happens in the ocean, shows a mul-830

tifractal behavior with a characteristic singularity spectrum
D(h) similar, for some types of turbulence, to D(h) for the

binomial multiplicative process.

5.3 Validation with in-situ measurements835

Next, we perform a validation analysis of the results of our
algorithm to infer pCO2 at super-resolution with field obser-
vations of oceanic pCO2. In particular we perform the val-
idation using pCO2 ocean data from in-situ measurements
(pCOinsitu

2 ) taken in the Benguela region (see Section 2.3).840

We decided to carry out directly the validation on pCO2

rather than on the air-sea CO2 flux since the field measure-
ments do provide oceanic pCO2 data.

An example of the qualitative comparison of values of
pCOCtrack

2 , pCOinfer
2 for all the products combinations and845

pCOinsitu
2 at the intersections of the QUIMA cruise during

July 4-7th, 2008, as a function of the longitudinal coordinate
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a) b)

c) d)

Fig. 8. Spatial distribution of the time average over both 2006 and 2008 years of the pCOinfer
2 values using: a) OSTIA SST and MERIS Chl-a,

b) OSTIA SST and GSM-GLOBCOLOUR Chl-a and c) MODIS SST and GSM-GLOBCOLOUR Chl-a. d) Map with spatial distribution of
the standard deviation for the pCOinfer

2 among the different combination of the datasets.

of the intersections, is shown in Figure 11. While there are
visible differences between various pCO2 values, the values
of pCOinfer

2 approximate better pCOinsitu
2 values than those850

of pCOCtrack
2 . The small scale patterns are well reproduced

in the inferred pCO2 field. Values of pCOinfer
2 exhibit gradi-

ents and small scale fluctuations, likely induced by the pres-
ence of fronts, which can be also detected on the profile of
the in situ measurements of pCO2. Most of days pCOinfer

2 and855

pCOCtrack
2 values overestimate pCOinsitu

2 values. In some
days, pCOinfer

2 values follow the same trend, with the same
small scale fluctuations than pCOinsitu

2 .
First, we analyze the number of valid intersections for each

product combination. A valid intersection is a placement in860

space and time common to the inferred, CarbonTracker and
in-situ pCO2, without missing values. On one hand, among
the 20 available cruises in the Benguela through 2005, 2006

and 2008 we find that the total number of in-situ measure-
ments in the Benguela region under study is Ninsitu=17355865

and within the CarbonTracker domain this number is reduced
toNCtrack= 8377 measurements. To estimate the loss of valid
intersections due to the land mask of of the CarbonTracker
we compute the relative difference of the number of intersec-
tions between the cruise trajectories and the CarbonTracker870

domain with respect to the number of the in-situ measure-

ments, LCtrack =
Ninsitu−NCtrack

Ninsitu
100% = 52%, showing

that half of the measurements fall within the coastal region
of the Benguela (land masked by CarbonTracker).

The number of valid intersections is the largest with the875

OSTIA-GLOBCOLOUR combination (Table 4). To quan-
tify the loss of valid intersections between the in-situ mea-
surements and points in the pCOinfer

2 field, likely due to
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Fig. 9. Comparison of the Probability Distribution Functions of Car-
bonTracker and inferred pCO2 values over the Benguela area for the
three different SST and OC product combinations: MERIS Chl and
OSTIA SST, GLOBCOLOUR merged Chl and OSTIA SST, and
GLOBCOLOUR merged Chl and MODIS SST

the cloudiness, we compute the relative difference between
the number of measurements into the CarbonTracker domain880

and the valid points in the inferred pCO2 field with respect
to the number of intersections measurements of each cruise
and the pCOCtrack

2 field, Linfer =
NCtrack−Ninfer

NCtrack
100%.

We repeat such a computation for the three product combi-
nations. The percentage of losses of intersections in inferred885

field Linfer becomes twice as large than in the case of the
OSTIA-SST and MERIS-Chl combination, and even higher
than with the CarbonTracker domain mask.

In order to quantitatively study the difference be-
tween values of pCOCtrack

2 and pCOinfer
2 with respect to890

pCOinsitu
2 measurements we compute the following statisti-

cal quantities:

– Mean Difference (MD): average over all the in-
tersections of the difference between pCOCtrack

2 ,
pCOinfer

2 and pCOinsitu
2 at the same intersection, i,895

MDCtrack =
1

N

N∑
i=1

(pCOCtrack
2 (i)− pCOinsitu

2 (i)) (5)

MDinfer =
1

N

N∑
i=1

(pCOinfer
2 (i)− pCOinsitu

2 (i)) ,(6)

where N is the number of intersections.

– Mean Absolute Error (AE): average over all the inter-
sections of the absolute values of the difference between900

pCOCtrack
2 or pCOinfer

2 and pCOinsitu
2 at the same inter-
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Fig. 10. a) Empirical PDFs for the singularity exponents of pCO2

fields from CarbonTracker and from the cascade of the three product
combinations. b) Associated singularity spectra. In these computa-
tions we use all the pCO2 values obtained in 2006 and 2008.

section,

AECtrack =
1

N

N∑
i=1

∣∣pCOCtrack
2 (i)− pCOinsitu

2 (i)
∣∣ (7)

AEinfer =
1

N

N∑
i=1

∣∣∣pCOinfer
2 (i)− pCOinsitu

2 (i)
∣∣∣ (8)

– Mean Relative Error (RE): average over all the inter-905

sections of the errors of the estimated values of pCO2

(CarbonTracker or inferred) with respect to the refer-
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Fig. 11. Values of pCOCtrack
2 (black points), pCOinfer

2 (MODIS-SST/GLOBCOLOUR-Chl) (red points), pCOinfer
2 (OSTIA-

SST/GLOBCOLOUR-Chl) (blue points) pCOinfer
2 (OSTIA-SST/MERIS-Chl) (yellow points) and pCOinsitu

2 (green points) in the
intersections as a function of latitude corresponding to the valid intersections during the QUIMA cruise through July 4-6th, 2008

ence pCO2 values (in-situ) at the same intersection,

RECtrack =
1

N

N∑
i=1

∣∣∣∣pCOCtrack
2 (i)− pCOinsitu

2 (i)

pCOinsitu
2 (i)

∣∣∣∣ (9)

REinfer =
1

N

N∑
i=1

∣∣∣∣∣pCOinfer
2 (i)− pCOinsitu

2 (i)

pCOinsitu
2 (i)

∣∣∣∣∣ (10)910

We started the statistical validation by analyzing each
QUIMA cruise separately (not shown) and we found that in
most of the cruises, the absolute error for inferred pCO2 is
relatively small (less than 15 µatm) except on August 21,
2006 and May 17, 2008 with an error of 44 µatm and 30915

µatm, respectively. Then we address the global validation us-
ing all available cruises during these years.

We summarize in Table 4 the results of the computations
of the errors given by Eq. 7 to Eq.10 by making averages
over all valid intersections found during 2005, 2006 and920

2008. The absolute error, AE is smaller in the three cases of
pCOinfer

2 (17.77, 16.47 and 16.62 µatm for OSTIA-MERIS,
OSTIA-GLOBCOLOUR and MODIS-GLOBCOLOUR
combinations, respectively) than for pCOCtrack

2 (21.34,

OST-MER OST-GLOB MOD-GLOB
Nb valid intersections 747 1928 1460
Linfer (%) 91 76 82
MDCtrack (µatm) 2.97 8.83 14.93
MDinfer (µatm) 0.15 3.42 8.42
AECtrack (µatm) 21.34 22.08 22.07
AEinfer (µatm) 17.77 16.47 16.62
RECtrack 0.059 0.060 0.061
REinfer 0.048 0.045 0.046

Table 4. Mean error, absolute error and relative error of pCO2

values obtained from CarbonTracker and pCO2 values inferred
at super-resolution with respect to values of pCO2 measurements
during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the
Benguela region.

22.08 and 22.07 µatm, respectively), showing the fact925

that the estimated pCO2 field at super-resolution using
our algorithm is improving the pCO2 field obtained from
CarbonTracker. The smallest AE is for the combination of
SST and Chl provided by merged products. The values of
pCOCtrack

2 are, in average, larger than pCOinsitu
2 (MDCtrack930
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= 2.97, 8.83 and 14.93 µatm) while the differences be-
tween pCOinfer

2 and pCOinsitu
2 values compensate each other

(MDinfer = 0.15, 3.42 and 8.42 µatm). In all cases the
MDCtrack andMDinfer are positive, meaning that the pCO2

values are overestimated. Finally, comparing the relative935

error of pCOCtrack
2 and pCOinfer

2 with respect to pCOinsitu
2 ,

we found that the relative error is low in all cases, being
smaller for pCOinfer

2 than for pCOCtrack
2 .

Finally, if we only compare the statistics errors at the940

common valid intersections between the pCOinfer
2 using the

three product combinations with pCOCtrack
2 and with the

in-situ measurements (see Table 5), we obtain 458 mutual
intersections. We obtain similar results that when taking into
account all the intersections. The absolute error is smaller945

in the case of pCOinfer
2 , 17.65 µatm, than with pCOCtrack

2 ,
20.24 µatm, indicating that our algorithm is improving the
estimation of ocean pCO2. The smallest AE is again for the
combination with merged products. MD is positive showing
that the most of the time pCOinfer

2 and pCOCtrack
2 values are950

overestimated (It can be appreciated in Figure 11). Again
the relative error is small, less than 0.06, for all the product
combinations.

OST-MER OST-GLOB MOD-GLOB
Nb valid intersections 458 458 458
MDCtrack (µatm) 8.01 8.01 8.01
MDinfer (µatm) 4.37 1.62 3.32
AECtrack (µatm) 23.23 23.23 23.23
AEinfer (µatm) 19.92 16.31 18.85
RECtrack 0.065 0.065 0.065
REinfer 0.055 0.045 0.051

Table 5. Mean error, absolute error and relative error of pCO2

values obtained from CarbonTracker and pCO2 values inferred
at super-resolution with respect to values of pCO2 measurements
during the QUIMA2005/QUIMA2006/QUIMA2008 cruises in the
Benguela region at the same intersections.

6 Conclusions955

In this work we have presented a method to infer high reso-
lution CO2 fluxes by propagating the small scales informa-
tion given in satellite images across the scales of a multi-
resolution analysis determined on the critical transitions giv-
ing by singularity exponents. More specifically, we have re-960

constructed maps of CO2 fluxes at high resolution (4 km)
offshore of the Benguela region using SST and ocean colour
data at this resolution, and CarbonTracker CO2 fluxes data
at low resolution (110 km). The inferred representation of
ocean surface pCO2 improves the description provided by965

CarbonTracker, enhancing the small scale variability. Spatial
fluctuations observed in latitudinal profiles of in-situ pCO2

have been also obtained in the inferred pCO2, showing that
the inferring algorithm is catching the small scales features of
the pCO2 field. The examination of different combinations of970

Ocean Colour and Sea Surface Temperature (SST) products
reveals that using merged products, i.e. GLOBCOLOUR, the
quality and the number of valid points in the pCO2 field are
increased. We have obtained that mean absolute errors of the
inferred values of pCO2 with respect to in-situ measurements975

are smaller than for CarbonTracker. The statistical compari-
son of inferred and CarbonTracker pCO2 values with in-situ
data shows the potential of our method as well as the short-
comings of using CarbonTracker data for the estimation of
air-sea CO2 fluxes. From these results it can be said that the980

outputs of our algorithm will only be as good as the inputs.
We are aware that further investigations can be performed

in order to improve the algorithm. On one hand the multi-
ple linear regression coefficients could be derived differenti-
ating the seasons (i.e. coefficients would vary as a function985

of calendar month) considering the marked seasonal cycle in
the Benguela upwelling system. Additionally, future works
will be focused in the extension of the computations towards
larger areas until being able to infer global high resolution
CO2 fluxes. This will allow us to perform an even more com-990

prehensive and robust validation from in situ measurements
since more in-situ measurements will be used to make the
comparison.
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Zone (OMZ) off Chile as intense source of CO2 and N2O, Con-
tinental Shelf Research, 28, 2746–2756, 2008.

Paulmier, A., Ruiz-Pino, D., and Garçon, V.: CO2 maximum in the1120

Oxygen Minimum Zone (OMZ), Biogeosciences, 8, 1–14, 2011.
Peters, W., Jacobson, A., C. Sweeney, A. A., Conway, T., Masarie,

K., J.B. Miller, a. L. B., Petron, G., Hirsch, A., Worthy, D.,
van der Werf, G., Randerson, J., Wennberg, P., Krol, M., and
Tans, P.: An atmospheric perspective on North American carbon1125

dioxide exchange : CarbonTracker, Proceedings of the National
Academy of Sciences of the USA, 104(48), 18 925–18 930, 2007.

Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H.,
Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L.,
Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A.,1130

Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A.,
Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M.,
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