

Interactive
Comment

Interactive comment on “Impact of seawater carbonate chemistry on the calcification of marine bivalves” by J. Thomsen et al.

T. McConaughey (Referee)

mcconnat@gmail.com

Received and published: 27 January 2015

Thomsen et al. measured the calcification rates of mussel larvae in waters of highly modified carbonate chemistries. This is relevant to rising CO₂ levels and ocean acidification, but the chemical modifications tested here transcend simple scenarios of rising CO₂ levels. Instead, they are designed to tease out some of the chemical controls on biological calcification. In particular, Thomsen et al. hope to learn about the carbon sources for calcification. Mussel calcification does not increase monotonically with ambient pH, CO₂, or HCO₃⁻. CO₃⁼ may present a simpler situation, although the curve would be more definitive if it had more intermediate points. Ca²⁺ concentration is presumably constant in these experiments, so CO₃⁼ determines the CaCO₃ saturation state Ω . So maybe ambient Ω determines mussel calcification rate. The

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Interactive
Comment

simpler experiment of altering seawater Ca^{2+} concentrations might clarify this. Yet ambient CaCO_3 saturation is just part of the story. Inorganic (non-biological) calcification ceases in undersaturated waters ($\Omega < 1$), yet mussels continue to calcify at $\Omega = 0.15$ and pH 7.16. Inorganic calcification increases faster with Ω than does biological calcification. Biological calcification also plateaus at CO_3^{2-} levels above normal ambient, while inorganic calcification rates would increase exponentially. Mollusk calcification therefore depends on more than ambient CO_3^{2-} or Ω . Thomsen et al. note that mussels calcify within semi-isolated environments where Ω is probably elevated, but don't say how mollusks might elevate Ω . Proton removal is probably the key. Why? Because pH elevation is biologically common, can occur through many possible mechanisms, and has been observed in many calcifying organisms including the extrapallial space of mollusks. pH elevation guarantees CO_3^{2-} elevation. HCO_3^- converts to CO_3^{2-} , and CO_2 diffuses into the alkaline fluid (across biologically permeable membranes) and ionizes to produce more CO_3^{2-} . CO_3^{2-} accumulation is probably the main factor elevating Ω , even more important than Ca^{2+} pumping. Furthermore, both Ca^{2+} pumping and pH elevation likely occur through a single mechanism: $\text{Ca}^{2+}/2\text{H}^+$ exchange catalyzed by the enzyme Ca^{2+} ATPase. CO_3^{2-} accumulation is not itself an energy dependent "active" transport process, but it occurs because of active H^+ export from the calcification site, likely catalyzed by Ca^{2+} ATPase. Biological processes, ranging from ion transport to respiration, therefore control mussel calcification rates. Why does ambient carbonate chemistry matter? Perhaps carbon transport limits calcification at low carbon concentrations. Thomsen et al show that calcification rate plateaus at high carbonate levels, suggesting some degree of carbon limitation at lower carbonate levels. (Please present the same data plotted against HCO_3^- or CT.) Mollusks generally have high levels of the enzyme carbonic anhydrase. It speeds carbon transport through tissues by converting HCO_3^- to CO_2 , which permeates biological membranes more quickly. The need to accelerate CO_2 movement provides a possible reason for the carbonic anhydrase. The strong ^{18}O and ^{13}C deficiencies observed in many biological carbonates also suggest some degree of carbon limitation. Mollusks generally don't show

[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)[Discussion Paper](#)

Interactive
Comment

these isotopic disequilibria, perhaps because they use carbonic anhydrase rather than high pH at the calcification site to speed CO₂ reactions, and a have physically “thick” extrapallial space. Nevertheless, the existence of ¹⁸O and ¹³C deficiencies in various biological carbonates argues for some degree of carbon limitation. Thomsen et al. suggest that ambient HCO₃⁻ is likely the main carbon source for mussel calcification. This is likely true. McConaughey and Gillikin (2008), and papers referenced therein model how and when this might come about. So why do Thomsen’s mussels calcify most linearly when plotted against CO₃=? Probably not because the mussels preferentially bring CO₃= to the calcification site. No enzyme preferentially transports CO₃=, as far as I know. Even if some enzyme did, CO₃= would still convert to HCO₃⁻ and CO₂ before it reached the calcification site. The situation may be fairly complicated. After all, the calcification site is largely isolated from ambient water by the intervening tissue layers, whose pH and CO₂ levels may be different from both the ambient waters and the calcification site. Tissue pH is tightly regulated. So it may take some clever models and experiments to figure out why calcification rate appears to increase with CO₃=. Ted McConaughey (mcconnat@gmail.com)

Interactive comment on Biogeosciences Discuss., 12, 1543, 2015.

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

