1	Impact of earthworm Lumbricus terrestris living sites on the
2	greenhouse gas balance of no-tillage arable soil
3	
4	
5	M. Nieminen ¹ , T. Hurme ¹ , J. Mikola ² , K. Regina ¹ , and V. Nuutinen ¹
6	
7 8	[1] Natural Resources Institute Finland (Luke), Natural Resources and Bioproduction, FI-31600 Jokioinen, Finland
9	[2] Department of Environmental Sciences, University of Helsinki, FI-15140 Lahti, Finland
10	Correspondence to: V. Nuutinen (visa.nuutinen@luke.fi)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1 Abstract

We studied the effect of the deep-burrowing earthworm Lumbricus terrestris on the greenhouse gas (GHG) fluxes and global warming potential (GWP) of arable no-till soil using both field measurements and a controlled 15-week laboratory experiment. In the field, the emissions of nitrous oxide (N₂O) and carbon dioxide (CO₂) were on average 43 and 32% higher in areas occupied by L. terrestris (the presence judged by the surface midden) than in adjacent, unoccupied areas (with no midden). The fluxes of methane (CH₄) were variable and had no consistent difference between the midden and non-midden areas. Removing the midden did not affect soil N₂O and CO₂ emissions. The laboratory results were consistent with the field observations in that the emissions of N₂O and CO₂ were on average 27 and 13% higher in mesocosms with than without L. terrestris. Higher emissions of N₂O were most likely due to the higher content of mineral nitrogen and soil moisture under the middens, whereas L. terrestris respiration fully explained the observed increase of CO₂ emissions in the laboratory. In the field, the significantly elevated macrofaunal densities in the vicinity of middens likely contributed to the higher emissions from areas occupied by L. terrestris. The activity of L. terrestris increased the GWP of field and laboratory soil by 50 and 18%, but only 6 and 2% of this increase was due to the enhanced N₂O emission. Our results suggest that high N₂O emissions commonly observed in no-tillage soils can partly be explained by the abundance of L. terrestris under no-till management and that L. terrestris can markedly regulate the climatic effects of different cultivation practises.

1 1 Introduction

2 Agricultural soils can significantly contribute to the global greenhouse gas (GHG) exchange, but the 3 contribution varies among the gases. For nitrous oxide (N₂O), the emissions from agricultural soils 4 account for 60% of the anthropogenic emissions (Smith et al., 2007), whereas for methane (CH₄), 5 mineral agricultural soils are usually sinks as the aerobic top soil favours methanotrophic bacteria 6 (Hütsch, 2001). For carbon dioxide (CO₂), soils can be either sinks or sources depending on the 7 balance of carbon input and output (Stockmann et al., 2013). N₂O emissions are mainly regulated 8 by soil oxygen status, but also by the availability of nitrogen and organic carbon (Granli and 9 Bøckman, 1994). The oxygen availability varies with soil structure and moisture and the potential 10 for N₂O emissions is greatest when the water filled pore space (WFPS) is 60-70% (Davidson, 1991) as this enables both nitrification and denitrification. When the WFPS is above 70%, only 11 12 denitrification takes place due to the shortage of oxygen and the dominating end product is the N₂ 13 gas.

14 The application of no-tillage practice has recently increased in the agriculture (Derpsch et al., 15 2010). No-tillage often increases carbon sequestration to soils and is therefore considered as a useful cultivation technique in climate change mitigation (Lal, 1997). Elevated N₂O emissions may, 16 17 however, decrease the atmospheric benefits of no-till (Li et al., 2005; Sheehy et al., 2013; Palm et 18 al., 2014) as the denser physical structure (Tebrügge and Düring, 1999; Schjønning and Rasmussen, 19 2000) and higher moisture content (e.g. Sharratt, 1996; Gregorich et al., 2008) of no-tilled soils lead 20 to higher N₂O emissions. The abundance and diversity of earthworms can also be markedly higher 21 under no-till than conventional tillage (Edwards and Lofty, 1982; Chan, 2001; Rothwell et al., 22 2011) and the role of earthworms in the regulation and enhancement of GHG emissions has recently 23 gained increasing attention. Field results are still scarce, but a recent meta-analysis of laboratory 24 studies suggests that the presence of earthworms can increase N₂O and CO₂ emissions by 42 and 25 33%, respectively (Lubbers et al., 2013a). A number of factors potentially contribute to this 26 phenomenon. For instance, by burrowing, casting and mixing crop residues into the soil, the 27 earthworms change soil organic carbon cycling, porosity, aggregation and gas diffusivity, enhance 28 decomposition and increase the amount of mineral nitrogen in the soil (e.g. Subler and Kirsch, 29 1998; Lubbers et al., 2011). Earthworm casts and burrow linings also have higher microbial activity 30 and more denitrifying bacteria than the bulk soil (Svensson et al., 1986; Brown et al., 2000; Elliott 31 et al., 1990) and the moist anaerobic environment in the earthworm gut can stimulate microbial N₂O 32 production (Karsten and Drake, 1997; Drake and Horn, 2006). On the other hand, earthworms can increase microaggregate formation and the stability of soil carbon (Fonte et al., 2007; Six and
 Paustian, 2014), and it is still unclear whether earthworms increase or decrease soil organic carbon
 stocks in the long term (Lubbers et al., 2013a; Blouin et al., 2013; Zhang et al., 2013).

4 Reduced tillage and no-till increase the densities of anecic, deep-burrowing earthworms in arable 5 fields (Whalen and Fox, 2007). In the temperate and boreal fields, this group is mainly represented 6 by the dew-worm, Lumbricus terrestris L. (Chan, 2001; Kladivko, 2001). In Finland, L. terrestris is 7 the second most common earthworm species in arable fields, lagging only behind Aporrectodea 8 caliginosa Sav. (Nieminen et al., 2011), and has the typical positive association with non-inversion 9 cultivation (Nuutinen, 1992; Nuutinen et al., 2011). It is a large earthworm, which efficiently 10 forages on crop residues (Subler and Kirsch, 1998; Shuster et al., 2000) and builds middens (i.e. 11 small mounds of collected litter and surface castings) at the openings of its permanent burrows, 12 often penetrating deeper than 1 m (e.g. Nuutinen and Butt, 2003). The middens are biological 13 hotspots with high microbial activity (Schrader and Seibel, 2001; Aira et al. 2009), diverse 14 invertebrate populations (Hamilton and Sillman, 1989; Maraun et al., 1999; Butt and Lowe, 2007) 15 and higher nutrient and organic carbon contents than the surrounding soil (Subler and Kirsch, 1998; 16 Wilcox et al., 2002; Aira et al., 2009). By transferring plant litter into the subsoil, L. terrestris may 17 also increase the subsoil carbon stocks; e.g. Don et al. (2008) estimated that L. terrestris sequestrates carbon in the burrow linings at the rate of 22 g C m⁻² yr⁻¹. On the other hand, the 18 19 turnover time of burrow wall carbon can be only 3-5 years (Don et al. 2008). This is because the 20 well aerated burrow walls allow the expansion of high microbial activity down the soil profile (Loquet et al., 1977 in Devliegher and Verstraete, 1997) and the interactions among microbes and 21 22 their feeders in the burrow walls are intense and accelerate carbon and nutrient mineralization 23 (Tiunov and Scheu, 1999; Görres et al., 1999; Görres et al., 2001). The burrows of L. terrestris are 24 also bypass flow routes for percolating water, and depending on arable soil management they may 25 increase leaching of topsoil nitrogen to the subsoil (Shuster et al., 2003).

Most of the investigations of earthworm effects on GHG emissions have been carried out in the laboratory (Bertora et al., 2007; Rizhiya et al., 2007; Giannopoulos et al., 2010; Lubbers et al., 2011; Augustenborg et al., 2012) and to our knowledge, only three field experiments have been conducted (Borken et al., 2000; Amador and Avizinis, 2013; Lubbers et al., 2013b). Recent reviews have underlined the need for field studies with all major gases (N₂O, CO₂ and CH₄) to provide a more comprehensive picture of earthworm contribution to soil GHG emissions (Lubbers et al., 2013a; Blouin et al., 2013). In this study, we aimed at filling this research gap by measuring the

1 small-scale spatial variation of soil biological and chemical properties and N₂O, CO₂ and CH₄ 2 fluxes caused by L. terrestris in a northern, arable no-till field. We hypothesised that: (1) the N_2O and CO₂ emissions are greater on *L. terrestris* midden areas (higher earthworm activity) compared 3 to adjacent non-midden areas (lower earthworm activity) while CH₄ emissions remain unaffected; 4 5 (2) the middens contribute to gas production and their removal from soil surface decreases instant 6 gas emissions; and (3) the biological and chemical soil properties essential for gas balance differ 7 between the midden and non-midden areas. Moreover, to test how well the earthworm effects on 8 GHG emissions in the field can be predicted by laboratory experiments, we established a controlled 9 laboratory study with a L. terrestris treatment and measurements of response variables identical to 10 those in the field. Our aim was not to establish a laboratory experiment that would perfectly mimic 11 our field situation, but to establish a typical laboratory experiment to test whether laboratory studies 12 in general can produce results that resemble the field results. This is an important aspect as most 13 earlier experiments have been carried out in the laboratory and e.g. the review by Lubbers et al. 14 (2013a) is entirely based on laboratory studies.

15

16 2 Methods

17 2.1 Field measurements

18 Field measurements of N₂O, CO₂ and CH₄ emissions were conducted in a long-term, no-till field 19 (11 years of no-till cultivation) in Säkylä (60°58'N, 22°31'E), south-west Finland in October 2008. 20 The soil at the site (depth 0-20 cm) is fine sand with 15% clay, 29% silt and 56% sand. Soil pH (H₂O) is 6.1 and the N and C concentrations 0.1 and 2.1%, respectively. The topsoil (0-5 cm) bulk 21 density is 1.37 g cm⁻³. The annual crops cultivated in the field in 2007 and 2008 were turnip rape 22 23 and barley, respectively. Ten large middens and their adjacent non-midden areas were randomly chosen within two 20 m² areas (called sites A and B; five pairs in both) one month after crop 24 25 harvest, which according to our experience is a time of high L. terrestris activity. The two sites, 30 26 m apart, were needed to obtain a sufficient number of treatment pairs, but they also provide data for 27 testing whether the treatment effect varies in space at the field scale. For this purpose, the site was 28 included in the statistical models as an explaining factor. In order to minimize the environmental 29 variation within treatment pairs, the distance between the midden and non-midden areas within a 30 pair was kept short; the average distance between the outer rims of measurement chambers within a 31 pair was 13 cm (min 3 cm, max 34 cm), while the average distance between a pair and its closest 32 counterpart was 1.35 m (min 0.37 m, max 3.00 m).

1 The gas measurements were accomplished using round PVC chambers (diameter 15 cm, height 10 2 cm). Five gas measurements were carried out at varying intervals over a period of two weeks. 3 Chambers were pressed into the soil to the depth of approximately 2 cm and the soil was compressed by hand around the chambers. Permanent installations were not established in order to 4 5 avoid the disturbance of earthworms, and since the experiment was conducted after harvest, it was 6 not necessary to take into account the decrease of CO₂ flux that may follow when live roots are cut 7 by the chamber (see Heinemeyer et al. 2011). In each measurement, 20 ml of chamber air was 8 sampled through a rubber septum using a polypropylene syringe (BD Plastipak, Becton, Dickinson 9 and Company, Franklin Lakes, NJ, USA) immediately and 60 min after the placement of the chamber. The air was then transferred into pre-evacuated 12 ml glass vials (Exetainer, Labco Ltd., 10 11 High Wycombe, UK). Before each gas sample, the air in the chamber was mixed by one syringe 12 flush.

The air temperature, which was measured using a Fluke 52 II thermometer (Fluke Corp., USA), 13 14 fluctuated between 7.2 and 11.8 °C during the gas measurements. Air temperature, instead of the 15 chamber temperature, was used to define the gas volume for flux calculation as chamber warming 16 due to radiation is minimal in October. Soil moisture was measured next to each 'midden - non-17 midden' pair at the depth of 0-15 cm during each gas measurement using a TRASE system I 18 moisture meter and Time Domain Reflectometry (TDR) (Soil Moisture Equipment Corp., Goleta, 19 CA, USA). The changes in soil temperature were followed using thermologgers (ElcoLog, 20 Elcoplast Oy, Finland), which were installed at the depth of 5 cm outside the gas sampling areas (this data is missing for the two first gas measurements). 21

22 At the last measurement, gas samples were first taken as described above. The middens (surface 23 cast mounds and the associated residues) and the straw litter of the non-midden areas were then 24 removed and the gas measurements were repeated to evaluate the effect of midden and straw 25 material on gas emissions. After these measurements, soil cores (diameter 5 cm, depth 5 cm) were 26 collected from the entrance of L. terrestris burrows and the adjacent non-midden-areas. The 27 removed midden and straw material and the soil samples were stored at -18°C for 7.5 months before 28 analysed for gravimetric moisture content, potential denitrification and mineral N concentrations. 29 To estimate earthworm abundances at the area of the gas measurement, the measurement chamber 30 was pushed deeper to the soil and the earthworms were hand-sorted out of the obtained soil sample 31 (diameter 15 cm, depth 15 cm). Deep-residing earthworms were extracted from the bottom of the 32 pit by pouring 0.5-0.75 l formalin solution (0.5%) to the pit and collecting individuals that emerged within 30 min. Slugs, which were abundant in the middens, were hand-sorted from the midden and
non-midden area samples and together with the earthworms stored in 85% ethanol, weighted and
identified into the species or genus level (Sims and Gerard, 1999; Kerney and Cameron, 1979).

4 2.2 Laboratory experiment

5 The soil, barley stubble straw and L. terrestris individuals were collected for the laboratory 6 mesocosms in the beginning of November 2008 from the same no-till field that was used for field 7 measurements. The 15-week experiment was designed to simulate the post-harvest autumn 8 conditions of a no-till field and during the set-up, all unnecessary manipulation of soil, straw and 9 earthworms was avoided to preserve the natural communities of microbes and soil micro- and mesofauna. The moist soil (moisture content 27% of fresh mass) was first sieved (6 mm) and mixed 10 11 to ensure soil homogeneity. Any earthworms found were removed. Thirty PVC-tubes (diameter 15 12 cm, height 45 cm, bottoms enclosed with plastic lids) were then filled with the soil to the height of 43 cm. During filling, the soil was compacted to achieve even bulk density among the tubes (mean 13 1.43 g cm⁻³, min 1.40 and max 1.46 g cm⁻³, n=30). The tubes were weighted (before and after 14 15 filling) and placed in an incubation room at 15-17°C, chosen as favourable temperature for L. terrestris activity (Butt, 1991), with a rhythm of 10 h day (fluorescent lamps providing on average 16 17 1102 lx) and 14 h night (no illumination). Air humidity was maintained using a moistener, but 18 varied from 26 to 81% during the experiment. Soil moisture content was adjusted to 28% and kept 19 approximately constant by adding deionized water once a week (always 2 d before gas samplings) 20 and spraying the soil surface with water after gas measurements.

21 The L. terrestris individuals used in the experiment were extracted from the field using a mustard 22 mixture (Gunn, 1992) and immediately washed in tap water. Individuals were kept in moist soil for 23 9 d (dark, 4°C) before one large individual was added to each of the 15 randomly chosen 24 mesocosms. Each individual was weighted (mean fresh mass 4.5 g, min 3.7 g, max 5.5 g) and the 25 settling into the soil was facilitated by creating an artificial burrow (depth 8.5 cm, diameter 0.5 cm) 26 in the centre of the soil column. The remaining 15 mesocosms were left without worms and served 27 as controls. The L. terrestris and control mesocosms were randomly placed in the incubation room 28 as treatment pairs. An even layer of chopped straw was added on the top of the soil in each 29 mesocosm (straw length 2 cm, total fresh mass 5 g), and to prevent animal escape, the mesocosms 30 were covered by a mesh. Emerging plant seedlings were removed from the mesocosms during the 31 experiment, whereas juvenile earthworms, noticed to hatch from the cocoons, were not as the 32 removal would have disturbed the experiment.

1 The gas measurements were started one month after mesocosm establishment and were repeated 2 twelve times, at one week intervals, from December 2008 to February 2009. The sampling was always carried out within one day. For the measurements, airproof plastic lids (diameter 15 cm, 3 4 height 10 cm) were first placed on the tubes air-tightly. The incubation lasted for 60 min and the 5 samples were collected according to the field protocol described above. At the final date, gas fluxes 6 were measured before and after removing L. terrestris midden and straw residues. The soil samples 7 for soil moisture, potential denitrification and mineral N measurements were taken as in the field. 8 The tubes were emptied and the L. terrestris individuals and earthworm juveniles, hatched from the 9 cocoons during the experiment, were hand sorted out of the soil. A 100 g subsample was taken from 10 the mixed soil to estimate the mineral N content of the entire soil column. At the end of the 11 experiment, three of the L. terrestris mesocosms had 1-3 and seven of the control mesocosms 1-2 12 small earthworm juveniles (both dark and light pigmented unidentified species) having a maximum 13 individual fresh mass of 0.16 g. All earthworms were washed in deionized water and weighted and 14 in order to determine their GHG production, incubated in 210 ml flasks for 60 min (separately for 15 experimental L. terrestris and the group of juveniles). The GHG production was estimated using 10 16 ml gas samples taken in the beginning and at the end of the incubation. Three incubations of L. 17 terrestris produced deviant fluxes of N₂O, CO₂ and CH₄ and the results were excluded from the data 18 set.

19 **2.3** Analyses of gases, potential denitrification and mineral nitrogen

20 The gas samples were always analysed within 48 h after sampling using a gas chromatograph (GC) 21 equipped with a flame ionizer (FID), an electron capture detector (ECD) and a nickel catalyst for 22 converting CO₂ to CH₄. The precolumn and analytical columns consisted of 1.8 and 3 m long steel 23 columns, respectively, packed with 80/100 mesh Hayesep Q (Supelco Inc., Bellefonte, PA, USA). 24 The GC (HP 6890 Series, GC System, Hewlett Packard, USA) had a 10-way valve with a 2 ml 25 sample loop and a backflush system for separating water from the sample and for flushing the 26 precolumn between the runs. A six-way valve was used to lead the flow to either the FID or ECD. The temperature of the GC oven, FID and ECD was 70 °C, 300 °C and 350 °C, respectively. 27 28 Nitrogen was used as the carrier gas and a mixture of argon and methane (5%) as a make-up gas 29 (1.4 ml min⁻¹) to increase the ECD sensitivity. A standard gas mixture (AGA Gas AB, Lidingö, 30 Sweden) of known N₂O, CH₄ and CO₂ concentrations was used for the calibration curve. The flux 31 rate of each gas was calculated using the gas accumulation rate during the 60 min enclosure period. 32 Cumulative fluxes were calculated by assuming linear changes between subsequent measurement dates. The net gas balance as a global warming potential (GWP) was determined using the factor
298 for N₂O and 25 for CH₄ (Myhre et al., 2013).

3 The denitrification potentials of the midden soil and the straw of the L. terrestris middens and the 4 adjacent non-midden areas was determined as in Klemedtsson et al. (1988) and Henault et al. 5 (1998) with some modifications. In brief, the defrosted and sieved 10 g (d.m.) soil samples 6 (moisture was on average 26% in the field and 21% in the laboratory samples) were placed in 120 7 ml bottles and 4 ml of distilled water was added. The straw samples were combined within 8 treatments (midden vs. non-midden, separately for areas A and B), because the amount of material 9 in one sample was not enough for the analysis, and then divided to 2.5-5.5 g (d.m.) subsamples. 10 After one night at 6 °C, the samples were transferred to 25°C and treated with 5 ml of potassium nitrate (KNO₃) solution and 5 ml of glucose solution (corresponding to amendments of 200 mg N 11 and 500 mg C kg⁻¹ soil). The bottles were then sealed using butyl rubber septa and crimp seals, 12 evacuated and flushed three times with dinitrogen gas. The overpressure in the bottles was released 13 14 through a 0.5 mm needle, pierced through the septum, and to prevent the entry of oxygen into the bottle, the needle was mounted on a 1 ml plastic syringe (without piston) filled with 0.1 ml distilled 15 16 water. The bottles were then amended with 12 ml of acetylene (C₂H₂) to block the N₂O reduction 17 step of denitrification, which was regarded as the start of the incubation (t=0). Three-ml gas 18 samples were then taken after 15 and 45 minutes, followed by one-ml samples after 75, 105, 135, 19 165, 195, 225 and 255 minutes and these were injected into 12-ml evacuated vials. All samples 20 were diluted with N₂ to a volume of 18 ml to ensure that the concentrations were in the range of the 21 calibration curve. Samples were analyzed using the Hewlett Packard GC as described above.

22 For the analyses of soil ammonium and nitrate concentrations, samples were first homogenized 23 manually using a steel spatula, and from each sample 50 g of fresh soil was mixed with 125 ml of 2 24 M KCl and shaken for 2 hours on an orbital shaker. The amount of straw material in one sample 25 was too small for the analysis, so straw samples were combined within treatments. The combined 26 samples were then divided to 6-21 g (fw) subsamples and treated similarly as the soil samples. The extracts of soil and straw samples were filtered through filter paper (130 g m⁻², Tervakoski Oy, 27 Tervakoski, Finland) and analysed for nitrate and ammonium the next day after storage at 6 °C. A 28 29 colorimetric autoanalyser (QuikChem AE, Lachat Instruments, Loveland, Colo., USA) was used for 30 the simultaneous analysis of nitrate and ammonium.

31

1 **2.4 Statistical analyses**

The field data of N_2O , CO_2 and CH_4 emissions were obtained from a randomized complete block design with repeated measurements. Altogether, there were ten pairs (blocking factor) of midden non-midden areas (treatment factor) from the two sites (A and B). The measurements at the same experimental site were correlated, which was taken into account in the statistical models through appropriate covariance structures. The statistical model thus became:

$$7 y_{ijkl} = \mu + s_i + \beta_{j(i)} + t_k + (st)_{ik} + \varepsilon_{ijk} + d_l + (sd)_{il} + (\beta d)_{jl(i)} + (td)_{kl} + (std)_{ikl} + \gamma_{ijkl} (1)$$

8 where μ is constant intercept, s_i , t_k , $(st)_{ik}$, d_l , $(sd)_{il}$, $(td)_{kl}$ and $(std)_{ikl}$ are fixed main and interaction 9 effects for site (s), treatment (t) and date (d). The $\beta_{j(i)}$ is the random effect for block j within site i 10 and ε_{ijk} is random plot to plot variation, all mutually independent with variances var $(\beta_{j(i)})=\sigma 2_{\beta}$, and 11 $\operatorname{var}(\varepsilon_{ijk}) = \sigma 2_{\varepsilon}$. The $(\beta d)_{jl(i)}$ represents the random date-specific contribution for block *i* within site *j*, 12 and γ_{ijkl} represents random error effect for observations on the same plot (Gumpertz and Brownie, 1993). This model was used for CH₄. For N₂O and CO₂, a simplified model was used as the site had 13 no effect on the fluxes of either gas. The effect of removing middens and straw litter from the soil 14 15 surface on N₂O, CO₂ and CH₄ emissions was analysed using similar model as for the repeated gas 16 measurements, except that the repeated measurement effect of date was replaced with the repeated 17 measurement effect of before and after removal. Analogously to the earlier models, the site effect 18 was included in the model for CH₄, but not for N₂O and CO₂. In the case of N₂O, log-19 transformation was used to meet the normality assumption.

20 The background variables were measured at the last measurement date (Table 4). Since these 21 measurements were not repeated, the statistical models used were simplified analogues of the model 22 presented above, except for the number of slugs, which was analysed using the non-parametric 23 Wilcoxon Sign Rank test as the assumptions of the parametric methods were not met. The 24 cumulative emissions of N₂O, CO₂ and CH₄ were analysed using a simplified non-repeated 25 analogue of the model presented above. The analysis of laboratory data followed the analysis of 26 field data, except that the site effect and interactions were not included in the models. Log-27 transformations were used for N₂O and mineral nitrogen (top 5 cm soil samples) and in addition, 28 two outliers were excluded from the mineral nitrogen data due to exceptionally high values in 29 comparison to the other 13 observations in the control mesocosms.

For all the parametric models, REML was used as the estimation method, degrees of freedom were
 calculated by the Kenward-Roger method (Kenward and Roger, 1997) and model assumptions were

checked using appropriate graphs. The models were fitted using the MIXED procedure of SAS 9.2
 (SAS Institute Inc., Cary, NC, USA) and pairwise comparisons were performed using two-sided *t* type tests.

4

5 3 Results

6 **3.1** Field measurements

7 In the field, the N₂O and CO₂ emissions were significantly higher in the midden than non-midden 8 areas (Table 1; Fig. 1a, b). The overall (all repeated measurements included) model-based mean 9 estimates of N₂O fluxes were 0.23 (95% CI 0.18-0.27) and 0.13 (0.09-0.17) μ g N chamber area⁻¹ h⁻¹ for the midden and non-midden areas, respectively. The corresponding figures for CO₂ were 1754 10 (1568-1941) and 1201 (1015-1388) μ g CO₂ chamber area⁻¹ h⁻¹, respectively. Based on these 11 estimates, the chamber area with one midden produced on average 43% more N₂O and 32% more 12 CO₂ than an equivalent non-midden area. N₂O and CO₂ emissions varied among the dates (Fig. 1a, 13 b; Table 1), but this variation was apparently not explained by soil moisture or temperature, which 14 fluctuated little among the dates (min-max 37.2-38.3% and 6.5-8.5 °C, respectively). The CH₄ 15 16 fluxes differed between the midden and non-midden areas at two measurement dates, but the effects 17 were specific to the measurement site (Table 1): i.e. the flux was higher in the midden than nonmidden areas in site B at the first measurement ($t_{14,1}$ =-4.02, p=0.001), but lower in site A at the 18 fourth measurement ($t_{12,4}=2.44$, p=0.031) (Fig. 1c, d). The model-based mean estimates of 19 20 cumulative emissions were significantly higher in the midden than non-midden areas for N₂O and 21 CO₂ (F_{1,7.34}=16.91, p=0.004; F_{1,7.66}=43.80, p<0.001, respectively), but not for CH₄ (F_{1,7.74}=3.24, 22 p=0.111) (Table 2). The removal of middens and other residues from the soil surface had no effect 23 on N₂O and CO₂ emissions in either the midden or non-midden areas (Table 3; Fig. 1a, b). For CH₄, 24 the removal decreased the flux in site A ($t_{9,1}$ = 2.86, p=0.019), but not in site B ($t_{7,87}$ = -0.65, 25 p=0.532) and no difference was found between the responses of midden and non-midden areas 26 (Table 3, Fig. 1c, d).

The number of earthworms was 125% and their biomass 150% higher in the midden than nonmidden areas (Table 4). However, only in four midden and two non-midden areas, a large (> 0.8 g) *L. terrestris* was found and the majority of earthworms were juveniles. In the midden areas, 18% of individuals belonged to *Lumbricus*, 51% to *Aporrectodea* and 31% remained unidentified. In the non-midden areas, the corresponding figures were 16%, 58% and 26%, respectively. The soil

1 surrounding the burrow entrance (within 5 cm diameter) was on average 1% unit moister, contained 2 23% more mineral N and had 20% higher potential denitrification than the top soil of the non-3 midden areas (Table 4), but the denitrification potential of the midden and non-midden straw did not differ (2.7 vs. 2.8 µg N₂O-N g⁻¹ straw d.m. h⁻¹, respectively). The mineral N content of the straw 4 was 28 and 69 mg kg⁻¹ straw d.m. in the midden and non-midden areas, respectively, while the 5 6 midden areas had more straw litter on the soil surface (visual observation). In total, 31 slugs (Arion 7 fasciatus N.) were found from the midden areas after the final gas measurement, while only three 8 were found from the non-midden areas (Table 4). In the midden areas, 77% of the slugs were found 9 in the midden, 23% in the soil beneath the midden.

10 **3.2** Laboratory experiment

11 In the laboratory, N₂O and CO₂ emissions were significantly higher with than without *L. terrestris* 12 (Table 1; Fig. 2a, b). The model-based mean estimates (with all repeated measurements included) of 13 N₂O emissions with and without L. terrestris were 0.060 (95% CI 0.053-0.067) and 0.044 (0.039-0.049) μ g N chamber base area⁻¹ h⁻¹. The corresponding figures for CO₂ flux were 1769 (1600-14 1937) and 1536 (1367-1704) μ g CO₂ chamber base area⁻¹ h⁻¹, respectively. Based on these values, 15 one L. terrestris individual increased the mesocosm emission of N₂O and CO₂ by 27 and 13%, 16 17 respectively. On average, the fluxes of N₂O and CO₂ decreased in the course of the experiment (Fig. 18 2a, b). The CH_4 flux fluctuated during the experiment without a clear trend (Table 1b, Fig. 2c) and 19 only at day 98, the emission rate differed between the treatments, being then higher with than 20 without L. terrestris (t_{171} = -2.12, p=0.035). The model-based mean estimates of the cumulative 21 emissions were significantly higher with than without L. terrestris for N₂O and CO₂ ($F_{1,12,9}$ =5.09, p=0.042; F_{1.9.65}=29.21, p<0.001, respectively), but not for CH₄ (F_{1.11.5}=0.33, p=0.579) (Table 2). 22

The removal of middens and straw residues from the soil surface affected the N₂O and CO₂ emissions, but not the CH₄ emissions (Table 3; Fig. 2a-c). The N₂O emissions increased after the removal in all mesocosms, whereas the response of CO₂ flux depended on the treatment: the removal increased CO₂ emissions in the presence (t_{26} = -3.36, p=0.002), but had no effect in the absence of *L. terrestris* (t_{26} = -0.64, p=0.525).

At the end of the experiment, mesocosms with *L. terrestris* had less straw litter on the soil surface (visual observation) and 4% more mineral N in the 0-43 cm soil column (excluding the soil core collected around the burrow) than the mesocosms without *L. terrestris* (Table 5). In all except two mesocosms the resident worm had created a burrow that reached the bottom of the soil column. The soil that surrounded the *L. terrestris* burrow entrance (diameter 5 cm) was 0.3% unit moister, contained 16% more mineral N and had 17% greater potential denitrification rate than the top soil of the control treatment (Table 5). The potential denitrification of the straw collected from *L. terrestris* and control mesocosms was 0.24 and 0.19 μ g N₂O-N g⁻¹ straw d.m. h⁻¹ and its mineral N content 664 and 122 mg kg⁻¹ d.m., respectively.

6 Two of the 15 L. terrestris individuals had died and the rest 13 had lost on average 1.0 g or 22% 7 weight during the 15-week experiment. When incubated in glass flasks at the end of the experiment, the mean emission rate of one L. terrestris individual (mean fresh mass 3.6 g, min 3.1 g and max 8 9 4.2 g) was 0.006 (SE 0.001) μ g N₂O-N, 425 (41) μ g CO₂ and -0.001 (0.002) μ g CH₄ h⁻¹. Mean emissions per unit fresh mass (min, max) for the three gases were 0.06 (0.03, 0.12), 2678 (1501, 10 4197) and -0.03 (-0.19, 0.12) nmol gas g⁻¹ f.w. h⁻¹, respectively. Based on these values, the 11 proportion emitted by L. terrestris of the total N₂O, CO₂ and CH₄ fluxes at the last gas measurement 12 13 was 16, 36 and 0.7%, respectively.

14

15 4 Discussion

In agreement with our first hypothesis, field N₂O and CO₂ emissions were greater in *L. terrestris* 16 17 midden than non-midden areas. CH₄ fluxes were variable without a clear effect, but there was a slight indication that the presence of L. terrestris decreased the CH₄ oxidation rate of the soil. 18 19 Against our second hypothesis, the removal of middens and residues from the soil surface did not 20 decrease N₂O and CO₂ emissions. This indicates that the effect of L. terrestris on GHG emissions 21 results from changes in soil conditions at its living site, not from the surface midden. Following our 22 third hypothesis, most of the investigated biological, chemical and physical soil variables differed 23 between the midden and non-midden areas, telling of the significance of L. terrestris as an 24 ecosystem engineer in arable fields. The fact that we found equally positive effect of L. terrestris on 25 N₂O and CO₂ emissions in the laboratory further indicates that the observed effects in the field 26 cannot be purely explained by confounding factors such as the burrows acting as a chimney for gas 27 emissions from a larger area than the chamber, the worms selecting sites of high microbial activity, 28 or L. terrestris affecting the emissions of the adjacent control area by collecting straw from it. 29 However, the magnitude of the effect was significantly smaller in the laboratory than in the field, i.e. 27% vs. 43% increase for N₂O and 13% vs. 32% increase for CO₂. It also appeared that the 30 31 laboratory test could not fully simulate the role of L. terrestris middens in gas emissions as the removal of middens increased the emissions. These results underline the value of comparing the
 measurements in laboratory to those in natural field sites with established earthworm populations.

3 Our results show that *L. terrestris* can create sites of elevated N₂O emissions in arable no-till soils: 4 in the field, the cumulative N_2O emissions were 36% higher in the midden than non-midden areas 5 and in the laboratory, 19% higher in mesocosms with than without L. terrestris. These results are in 6 good agreement with earlier laboratory studies (e.g. Matthies et al. 1999; Giannopoulos et al., 7 2010), but also with field studies, such as the study by Borken et al. (2000), which reported a 57% 8 increase in N₂O emissions in beech forest mesocosms due to L. terrestris. The recent meta-analysis 9 of laboratory studies by Lubbers et al. (2013a) also suggested a 42% increase in soil N₂O emissions 10 in the presence of earthworms. Few opposite findings exist (e.g. Speratti and Whalen, 2008) although some studies suggest that the contribution of earthworms to N₂O emissions could be 11 12 transient (Amador and Avizinis, 2013; Lubbers et al., 2013b). In general, the contribution of earthworms to GHG emissions is composed of direct and indirect emissions. Direct emissions 13 14 originate from earthworm metabolism and indirect from those changes the earthworms induce in 15 their environment. Living earthworms have been found to emit N₂O (Drake et al., 2006; Karsten 16 and Drake, 1997) and our incubation measurements support these findings (Table 6). The reported values of direct N₂O emissions emitted by *L. terrestris* vary from 0.05 to 0.95 nmol N₂O-N g^{-1} f.w. 17 h⁻¹ (Matthies et al., 1999; Horn et al., 2006; Wüst et al., 2009), so our value, 0.06 nmol of N₂O-N g⁻¹ 18 ¹ f.w. h⁻¹ is at the lower end of this range. 19

20 Although the direct N₂O emissions have been quantified in many studies, there are few estimations 21 of their proportion of total emissions. In our laboratory experiment, the proportion emitted by L. 22 terrestris of the total N₂O flux was on average 16%, which is in good agreement with that reported 23 by Karsten and Drake (1997) for beech forest soil (16%), but significantly higher than their value 24 for oak-beech forest soil (0.25%). Our estimate is high and it may overestimate the proportion in 25 the field because the time interval L. terrestris was able to shape the soil was short in our laboratory 26 trial. In the field, the soil is subjected to a long-term earthworm impact and it is likely that this leads 27 to a greater contribution of indirect emissions from the environment. It should also be noted that 28 part of the N₂O produced by the earthworms may be reduced to N₂ while diffusing from the soil to 29 the atmosphere and the significance of direct emissions may also for this reason in the field be 30 lower than estimated based on laboratory measurements. Consequently, it is likely that the 31 enhanced N₂O emissions in the presence of L. terrestris are also due to the changes in topsoil 32 conditions and creation of hot spots of high biological activity, including the elevated macrofaunal

1 densities, in the vicinity of the middens. For instance, the higher content of mineral nitrogen and 2 soil moisture favour denitrification, which was manifested as elevated values of potential denitrification in our measurements. In our field site, soil moisture was nearly 40%, corresponding 3 to 80% WFPS, which is suitable for earthworm N₂O contribution (Evers et al., 2010). Another 4 5 potential mechanism for increased N₂O emissions in the field are the burrows that may act as large 6 pores that ease the diffusion of N₂O from the bottom soil and allow more of the N₂O ending up in 7 the atmosphere without being reduced to N₂. The laboratory soil was dryer than the field soil, which 8 could be one reason for the less noteworthy earthworm effect as soil moisture can significantly 9 modify the earthworm-induced N₂O emissions (Chen et al. 2014).

10 The increase in soil cumulative CO₂ emissions due to the presence of L. terrestris was 33% and 11 15% in our field and laboratory measurements, respectively. These results echo the meta-analysis 12 by Lubbers et al. (2013a), which suggests a 33% increase in soil CO₂ emissions in the presence of earthworms. When we estimated the respiration of individual earthworms in the laboratory, the 13 mean CO₂ emission (425 μ g h⁻¹) was almost double to the mean difference between the mesocosms 14 with and without *L. terrestris* (230 μ g chamber area h⁻¹) and the proportion of the total CO₂ flux 15 16 explained by earthworm respiration was 36%. These values suggest that the increased emissions of 17 CO₂ from the soils occupied by *L. terrestris* were fully explainable by the respiration of the animal 18 itself. If this is true in general, the discrepancy between the observations of increased CO₂ 19 emissions vs. increased carbon stability (Lubbers et al. 2013a) would be explained by earthworm 20 respiration counteracting the enhanced carbon sequestration. However, this conclusion has to be 21 treated cautiously as we do not know how well the measurements of earthworm respiration in the 22 laboratory represent the respiration in the field. In the field, the elevated slug densities of the 23 middens also likely contributed to increased CO₂ emissions as snail castings and mucus have been 24 observed to increase the efflux from leaf litter (Theenhaus and Scheu, 1996). Snail activity 25 accelerates N cycling, too (Theenhaus and Scheu, 1996), but we are not aware of any studies of 26 snail impacts on N₂O emissions.

Unlike the effects on N₂O and CO₂ fluxes, the effects of *L. terrestris* on CH₄ flux were variable and mostly inconsequential and there was only a slight indication in the cumulative field fluxes that the presence of *L. terrestris* might decrease soil CH₄ oxidation rate. Such a decrease could be a consequence of increased moisture and N content in the vicinity of middens (Hütsch, 2001). Small and varying earthworm effects on net CH₄ fluxes have also been reported earlier (Borken et al., 2000; Aira et al., 2009; Bradley et al., 2012), and our estimate of 0.7% *L. terrestris* contribution to the total CH_4 flux is in good agreement with the earlier statement that *L. terrestris* is not a source of CH₄ (Šustr and Šimek 2009). As CH₄ fluxes are also in general non-significant in the context of carbon cycling in boreal arable soils (Regina et al., 2007), it appears that the effects of earthworms on the GWP of these soils are driven by their effects on N₂O and CO₂ emissions.

5 Recent studies suggest that Finnish no-till fields are characterised by both high population densities 6 of L. terrestris (Nuutinen et al., 2011) and elevated N₂O emissions (Sheehy et al. 2013). Higher 7 N₂O emissions are usually explained by denser soil structure and higher soil moisture compared to 8 tilled soils. Our results suggest that increased population densities of L. terrestris can also 9 contribute to the elevated N₂O emissions. We found on average 20 L. terrestris middens per m^2 in 10 our no-till field and when compared to a square meter of equal field with no middens, such a 11 density would increase the N₂O emissions by 27% (estimated using mean values of midden and 12 non-midden areas). Although this estimate has to be treated with caution as the non-midden areas 13 were not completely out of the reach of L. terrestris activity, it appears that enhanced earthworm 14 activity may explain a substantial part of the 60-150% increase in N₂O emissions observed in Finnish no-till fields (Sheehy et al. 2013). Moreover, when all three gases were considered together, 15 16 L. terrestris increased the GWP of the soil by 50% and 18% in our field and laboratory 17 investigations, respectively. These values, and particularly the field estimate, exceed the 16% mean 18 increase in the net GWP of laboratory soils reported by Lubbers et al. (2013a) in their meta-analysis 19 based on 33 observations from individual earthworm studies that reported the cumulative emissions 20 of both N₂O and CO₂. However, the temporal variation in emissions is probably high, mainly due to 21 soil moisture variation. For example, in a field study by Lubbers et al. (2013b), earthworms 22 increased N₂O emissions of managed grassland in the autumn when the WFPS of soil was 61-65%, 23 but had no effect in the dry spring when the WFPS was 16-25%. Our field experiment represents 24 the conditions that prevail for approximately three months in the autumn when L. terrestris is 25 highly active and it is possible that during other seasons, the gas emissions are less affected by the 26 species. Moreover, the field estimate may exaggerate the earthworm effect as part of the straw in the non-midden areas was likely transferred and consumed in the midden area. In contrast to what 27 28 we expected, the contributions of earthworm-induced N₂O and CO₂ emissions to the net increase in 29 GWP were 6% and 94% in the field and 2% and 98% in the laboratory, respectively. This indicates 30 that the elevated N₂O actually has a minor significance in the total balance despite its high GWP 31 value.

1 One of our aims was to test whether the earthworm effects on GHG emissions that are found in 2 laboratory trials can be generalized to field conditions. For this purpose, we established a mesocosm 3 experiment using soil and L. terrestris individuals collected from the field site. The mesocosms had generally higher CO₂ and lower N₂O emission rates than the field soil, which probably was due to 4 5 soil sieving increasing the availability of microbial resources and microbial respiration (Hartley et 6 al. 2007) and drier mesocosm soil supporting lower N₂O production. Unlike in the field, the flux 7 rates also steadily decreased in the laboratory, which probably tells of diminishing resource 8 availability after the initial resource pulse (Hartley et al. 2007). Despite these differences in the 9 level and dynamics of the flux rates, a clear, positive effect of L. terrestris on N₂O and CO₂ 10 emissions was found in both systems. The magnitude of L. terrestris effect was smaller in the 11 laboratory, which could be related to soil moisture and the loss of earthworm weight over the 12 experiment, but also to the significantly elevated faunal abundance and activity in the long-lived L. 13 terrestris living sites in the field. The size of the effect on CO₂ emissions also decreased in the 14 laboratory as the experiment proceeded. Such a decrease is common in laboratory studies (Borken 15 et al., 2000; Lubbers et al., 2013a) and is most probably related to the lack of fresh plant input to the 16 soil, which has a negative impact on L. terrestris metabolism. The distinct difference between the 17 field and laboratory emissions in their response to the removal of middens and residues from the soil surface is possibly to be explained by the lack of air current in laboratory conditions, which 18 19 may have led to GHG accumulation in the soil pores and release of gases when the midden and 20 straw were removed. All these findings suggest that while the general influence of L. terrestris on 21 GHG emissions can be approximated in laboratory conditions, field measurements are needed for 22 more accurate estimates and proper mechanistic understanding.

23 To conclude, our study contributes to filling the gap of field studies of the effects of earthworms on 24 GHG emissions, particularly in soils long occupied by earthworms (Lubbers et al., 2013a). Our 25 results emphasize the significance of L. terrestris in the gas balance of agricultural soils, and 26 especially in no-till fields. We showed that L. terrestris respiration can explain the observed 27 increase in CO₂ emissions in the presence of earthworms and that a substantial part of the increase 28 of N₂O emissions in no-till arable lands can be explained by earthworm contribution. The gap of 29 knowledge that still remains after our study is that the effects of earthworms have almost solely 30 been studied in the absence of plants and without considering plant growth. As the effects of 31 earthworms on plant growth are generally positive (van Groenigen et al., 2014), the dis-service of 32 increased N₂O emissions may be counteracted by enhanced plant growth to the degree that no 33 increase in yield-scaled emissions results (Wu et al., 2015). Extrapolation from our results to field

1 scale may neither be simple as the effect of midden density on GHG production is not necessarily 2 linear due to resource competition among earthworm individuals. However, considering that field soils with active L. terrestris middens had 50% higher global warming potential than non-midden 3 4 areas, it is clear that L. terrestris, and potentially other earthworm species as well, are among the 5 key players that need to be taken into consideration when the role of agricultural soils and 6 cultivation practises are evaluated for climate change mitigation. All in all, our study points out how 7 studies on the effects of conservation practices are necessary to fully understand their effects on the 8 environment.

9

10 Acknowledgements

We thank Mirva Céder, Leena Seppänen, Kirsikka Sillanpää, Ari Seppänen and Taisto Sirén for their help in field and laboratory work, Timo Rouhiainen for the kind permission to carry out the field work on his land and two anonymous referees for helpful comments. MN gratefully acknowledges a personal grant from Kone Foundation. The study was conducted as a part of VILMA and ZERO-TILMA projects of MTT Agrifood Research Finland.

16

17 **References**

Aira, M., McNamara N.P., Piearce, T.G., and Domínguez, J.: Microbial communities of *Lumbricus terrestris* L. middens: structure, activity and changes through time in relation to earthworm
 presence, J. Soil. Sediment., 9, 54-61, 2009.

Amador, J.A. and Avizinis, E.J.: Response of nitrous oxide flux to addition of anecic earthworms to
an agricultural field, Open J. Soil Sci., 3, 100-106, 2013.

Augustenborg, C.A., Hepp, S., Kammann, C., Hagan, D., Schmidt, O., and Müller, C.: Biochar and
earthworm effects on soil nitrous oxide and carbon dioxide emissions, J. Environ. Qual., 41, 12031209, 2012.

Bertora, C., van Vliet, P.C.J., Hummelink, E.W.J., and van Groenigen, J.W.: Do earthworms
increase N₂O emissions in ploughed grassland? Soil Biol.Biochem., 39, 632-640, 2007.

- 1 Blouin, M., Hodson, M.E., Delgado, E.A., Baker, G., Brussaard, L., Butt, K.R., Dai, J., Dendooven,
- L., Peres, G., Tondoh, J.E., Cluzeau, D., and Brun J.-J.: A review of earthworm impact on soil
 function and ecosystem services, Eur. J. Soil Sci., 64, 161-182, 2013.
- Borken, W., Grundel, S., and Beese, F.: Potential contribution of *Lumbricus terrestris* L. to carbon
 dioxide, methane and nitrous oxide fluxes from a forest soil, Biol.Fert. Soils, 32, 142-148, 2000.
- Bradley, R.L., Chroňáková, A., Elhottová, D., and Šimek, M.: Interactions between land-use history
 and earthworms control gross rates of soil methane production in an overwintering pasture, Soil
 Biol. Biochem., 53, 64-71, 2012.
- Brown, G.G., Barois, I., and Lavelle, P.: Regulation of soil organic matter dynamics and microbial
 activity in the drilosphere and the role of interactions with other edaphic functional domains, Eur.
 J. Soil Biol., 36, 177-198, 2000.
- Butt, K.R.: The effects of temperature on the intensive production of *Lumbricus terrestris* L.
 (Oligochaeta, Lumbricidae). Pedobiol., 35, 257-264, 1991.
- Butt, K.R. and Lowe, C.N.: Presence of earthworm species within and beneath *Lumbricus terrestris*L. middens, Eur. J. Soil Biol., 43, S57-S60, 2007.
- 16 Chan, K.Y.: An overview of some tillage impacts on earthworm population abundance and diversity
 17 implications for functioning in soil, Soil Till. Res., 57, 179-191, 2001.
- Chen, C., Whalen, J.K., and Guo, X.: Earthworms reduce soil nitrous oxide emissions during drying
 and rewetting cycles, Soil Biol. Biochem., 68, 117-124, 2014.
- 20 Davidson, E.A.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Microbial
- 21 Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes,
- eds. Rogers, J.E. and Whitman, W.B., American Society for Microbiology, Washington D.C., US,
- 23 219-235, 1991.
- Derpsch, R., Friedrich, T., Kassam, A., and Li, H.: Current status of adoption of no-till farming in
 the world and some of its main benefits, Int. J. Agric. Biol. Eng., 3, 1-25, 2010
- 26 Devliegher, W. and Verstraete, W.: Microorganims and soil physic-chemical conditions in the 27 drilosphere of *Lumbricus terrestris*, Soil Biol. Biochem., 29, 1721-1729, 1997.

Don, A., Steinberg, B., Schöning, I., Pritsch, K., Joschko, M., Gleixner, G., and Schultze, E.D.:
 Organic carbon sequestration in earthworm burrows, Soil Biol. Biochem., 40, 1803-1812, 2008.

3 Drake, H.L. and Horn, M.A.: Earthworms as a transient heaven for terrestrial denitrifying microbes:
4 a review, Eng. Life Sci., 6, 261–265, 2006.

Drake, H.L., Schramm, A., and Horn, M.A.: Earthworm gut microbial biomes: their importance to
soil microorganisms, denitrification, and the terrestrial production of the greenhouse gas N₂O, in:
Intestinal Microorganisms of Termites and Other Invertebrates, eds. König, H. and Varma, A.,
Springer, Berlin, 65-87, 2006.

- 9 Edwards, C.A. and Lofty, J.R.: The effects of direct drilling and minimal cultivation on earthworm
 10 populations, J. Appl. Ecol., 19, 723-734, 1982.
- Elliott, P.W., Knight, D., and Anderson, J.M.: Denitrification in earthworm casts and soil from
 pastures under different fertilizer and drainage regimes, Soil Biol. Biochem., 22, 601-605, 1990.
- 13 Evers, A.K., Bambrick, A., Lacombe, S., Dougherty, M.C., Peichl, M., Gordon, A.M., Thevathasan,
- N.V., Whalen, J., and Bradley. R.L.: Potential greenhouse gas mitigation through temperate treebased intercropping systems, Open Agric. J., 4, 49-57, 2010.
- Fonte, S.J., Kong A.Y.Y., van Kessel, C., Hendrix, P.F., and Six, J.: Influence of earthworm
 activity on aggregate carbon and nitrogen dynamics differs with agroecosystem management, Soil
 Biol. Biochem., 39, 1014-1022, 2007.
- Giannopoulos, G., Pulleman, M.M., and van Groenigen, J.W.: Interactions between residue
 placement and earthworm ecological strategy affect aggregate turnover and N₂O dynamics in
 agricultural soils, Soil Biol. Biochem., 42, 618–625, 2010.
- Görres, J.H., Savin, M.C., Nher, D.A., Weicht, T.R., and Amador, J.A.: Grazing in a porous
 environment: 1. The effect of soil pore structure on C and N mineralization, Plant Soil, 212, 73-85,
 1999.
- Görres, J.H., Savin, M.C., and Amador, J.A.: Soil micropore structure and carbon mineralization in
 burrows and casts of an anecic earthworm (*Lumbricus terrestris*), Soil Biol. Biochem., 33, 18811887, 2001.

- Granli, T. and Bøckman, O.C.: Nitrous oxide from agriculture, Norw. J. Agric. Sci., Supplement 12,
 128 p., 1994.
- Gregorich, E.G., Rochette, P., St-Georges, P., McKim, U.F., and Chan, C.: Tillage effects on N₂O
 emission from soils under corn and soybeans in Eastern Canada, Can. J. Soil Sci., 88, 153–161,
 2008.
- 6 Gumpertz, M.L. and Brownie, C.: Repeated measures in randomized block and split-plot
 7 experiments, Can. J. Forest Res., 23, 625-639, 1993.
- 8 Gunn, A.: The use of mustard to estimate earthworm populations, Pedobiologia, 36, 65-67, 1992.

9 Hamilton, W.E. and Sillman, D.Y.: Influence of earthworm middens on the distribution of soil
10 microarthropods, Biol. Fert. Soils, 8, 279-284, 1989.

11 Hartley, I.P., Heinemeyer, A., and Ineson, P.: Effects of three years of soil warming and shading on

12 the rate of soil respiration: substrate availability and not thermal acclimation mediates observed

- 13 response, Glob. Chang. Biol., 13, 1761-1770, 2007.
- 14 Heinemeyer, A., Di Bene, C., Lloyd, A.R., Tortorella, D., Baxter, R., Huntley, B., Gelsomino, A.,
- 15 and Ineson, P.: Soil respiration: implications of the plant-soil continuum and respiration chamber
- 16 collar-insertion depth on measurement and modelling of soil CO₂ efflux rates in three ecosystems.
- 17 Eur. J. Soil Sci., 62, 82-94, 2011.
- Henault, C., Devis, X., Page, S., Justes, E., Reau, R., and Germon, J.C.: Nitrous oxide emissions
 under different soil and land management conditions, Biol. Fert. Soils, 26, 199-207, 1998.
- Horn, M.A., Mertel, R., Gehrem, M., Kastner, M., and Drake, H.L.: *In vivo* emission of dinitrogen
 by earthworms via denitrifying bacteria in the gut, Appl. Environ. Microbiol., 72, 1013-1018, 2006.
- Hütsch, B.W.: Methane oxidation in non-flooded soils as affected by crop production, Eur. J.
 Agron., 14, 237-260, 2001.
- Karsten, G.R. and Drake, H.L.: Denitrifying bacteria in the earthworm gastrointestinal tract and *in vivo* emission of nitrous oxide (N₂O) by earthworms, Appl. Environ. Microbiol., 63, 1878-1882, 1997.

- Kenward, M.G. and Roger, J.H.: Small sample inference for fixed effects from restricted maximum
 likelihood, Biometrics 53, 983-997, 1997.
- Kerney, M.P. and Cameron, R.A.D.: A Field Guide to Land Snails of Britain and North-West
 Europe, Collins, London, 1979.
- 5 Kladivko, E.: Tillage systems and soil ecology, Soil Till. Res., 61, 61-76, 2001.
- Klemedtsson, L., Svensson, B.H., and Rosswall, T.: Relationships between soil moisture content
 and nitrous oxide production during nitrification and denitrification, Biol. Fert. Soils, 6, 106-111,
 1988.
- 9 Lal, R.: Residue management, conservation tillage and soil restoration for mitigating greenhouse
 10 effect by CO₂-enrichment, Soil Till. Res., 43, 81–107, 1997.
- Li, C., Frolking, S., and Butterbach-Bahl, K.: Carbon sequestration in arable soils is likely to
 increase nitrous oxide emissions, offsetting reductions in climate radiative forcing, Climatic
 Change, 72, 321–338, 2005.
- Loquet, M., Bhatnagar, T., Bouché, M.B., and Rouelle, J.: Essai d'estimation de l'influence
 écologique des lombriciens sur les microorganisms, Pedobiologia, 17, 400-417, 1977.
- Lubbers, I.M., Brussaard, L., Otten, W., and van Groenigen, J.W.: Earthworm-induced N
 mineralization in fertilized grassland increases both N₂O emissions and crop-N uptake, Eur. J.Soil
 Sci., 62, 152–161, 2011.
- Lubbers, I.M., van Groenigen, K.J., Fonte, S.J., Six, J., Brussaard, L., and van Groenigen, J.W.:
 Greenhouse-gas emissions from soils increased by earthworms, Nat. Clim. Change, 3, 187-194,
 2013a.
- Lubbers, I.M., López Gonzalez, E., Hummelink, E.W.J., and van Groenigen, J.W.: Earthworms can
 increase nitrous oxide emissions from managed grassland: a field study, Agr. Ecosyst. Environ.,
 174, 40-48, 2013b.
- Maraun, M., Alphei, J., Bonkowski, M., Buryn, R., Migge, S., Maren, P., Schaefer, M., and Scheu,
 S.: Middens of earthworm *Lumbricus terrestris* (Lumbricidae): microhabitats for micro- and
 mesofauna in forest soil, Pedobiologia, 43, 276-287, 1999.

- 1 Matthies, C., Griesshammer, A., Schmittroth, M., and Drake, H.L.: Evidence for involvement of 2 gut-associated denitrifying bacteria in emission of nitrous oxide (N₂O) by earthworms obtained 3 from garden and forest soils, Appl. Environ. Biol., 65, 3599-3604, 1999.
- Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque,
 J.F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.:
 Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
 Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
 Panel on Climate Change, eds. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K.,
 Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Cambridge University Press,
 Cambridge, 659-740, 2013.
- Nieminen, M., Ketoja, E., Mikola, J., Terhivuo, J., Sirén, T., and Nuutinen, V.: Local land use
 effects and regional environmental limits on earthworm communities in Finnish arable landscapes,
 Ecol. Appl., 21, 3162–3177, 2011.
- Nuutinen, V.: Earthworm community response to tillage and residue management on different soil
 types in southern Finland, Soil Till. Res., 23, 221-239, 1992.
- Nuutinen, V. and Butt, K.R.: Interaction of *Lumbricus terrestris* L. burrows with field subdrains,
 Pedobiologia, 47, 578-581, 2003.
- Nuutinen, V., Butt, K.R., and Jauhiainen, L.: Field margins and management affect settlement and
 spread of an introduced dew-worm (*Lumbricus terrestris* L.) population, Pedobiologia, 54, S167S172, 2011.
- Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., and Grace, P.: Conservation agriculture and
 ecosystem sevices: An overview, Agr. Ecosyst. Environ., 187, 87-105, 2014.
- Regina, K., Pihlatie, M., Esala, M., and Alakukku, L.: Methane fluxes on boreal arable soils. Agr.
 Ecosyst. Environ., 119, 346-352, 2007.
- Rizhiya, E., Bertora, C., van Vliet, P.C.J., Kuikman, P.J., Faber, J.H., and van Groenigen, J.W.:
 Earthworm activity as a determinant of N₂O emission from crop residue, Soil Biol. Biochem., 39,
 2058-2069, 2007.

- Rothwell, A., Chaney, K., and Haydock, P.: The impact of cultivation techniques on earthworm
 populations, in: Biology of Earthworms, ed. Karaca, A., Springer, Berlin, 159-172, 2011.
- Schjønning, P. and Rasmussen, K.J.: Soil strength and soil pore characteristics for direct drilled and
 ploughed soils, Soil Till. Res., 57, 69–82, 2000.
- Schrader, S. and Seibel, C.: Impact of cultivation management in an agroecosystem on hot spot
 effects of earthworm middens, Eur. J. Soil Biol., 37, 309-313, 2001.
- 7 Sharratt, B.S.: Tillage and straw management for modifying physical properties of a subarctic soil,
 8 Soil Till. Res., 38, 239–250, 1996.
- 9 Sheehy, J., Six, J., Alakukku, L., and Regina, K.: Fluxes of nitrous oxide in tilled and no-tilled
 10 boreal arable soils, Agr. Ecosyst. Environ., 164, 190–199, 2013.
- Shuster, W.D., Subler, S., and McCoy, E.L.: Foraging by deep-burrowing earthworms degrades
 surface soil structure of a fluventic Hapludoll in Ohio, Soil Till. Res., 54, 179-189, 2000.
- Shuster, W.D., Shipitalo, M.J., Subler, S., Aref, S., and McCoy, E.L.: Earthworm additions affect
 leachate production and nitrogen losses in typical midwestern agroecosystems, J. Environ. Qual, 32,
 2132-2139, 2003.
- Sims, R.W. and Gerard, B.M.: Earthworms. Synopses of the British Fauna (New Series) No. 31
 (revised), Dorsett Press, Dorchester, 1999.
- Six, J. and Paustian, K.: Aggregate-associated soil organic matter as an ecosystem property and a
 measurement tool, Soil Biol. Biochem., 68, A4-A9, 2014.
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F.,
 Rice, C., Scholes, B., and Sirotenko, O.: Agriculture, in: Climate Change 2007: Mitigation.
 Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel
 on Climate Change, eds. Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., and Meyer, L.A.,
 Cambridge University Press, Cambridge, 497-540, 2007.
- Speratti, A.B. and Whalen, J.K.: Carbon dioxide and nitrous oxide fluxes from soil as influenced by
 anecic and endogeic earthworms, Appl. Soil Ecol., 38, 27-33, 2008.

- Stockmann, U., Adams, M.A., Crawford J.W., Field, D.J., Henakaarchchi, N., Jenkins, M.,
 Minasny, B., McBratney, A.B., de Courcelles, V., Singh, K., Wheeler, I., Abbott, L., Angers, D.A.,
 Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, J., O'Donnell,
 A.G., Parton, W.J., Whitehead, D., and Zimmermann, M.: The knowns, known unknowns and
 unknowns of sequestration of soil organic carbon, Agr. Ecosyst. Environ., 164, 80-99, 2013.
- Subler, S. and Kirsch, A.S.: Spring dynamics of soil carbon, nitrogen, and microbial activity in
 earthworm middens in a no-till cornfield, Biol. Fert. Soils, 26, 243-249, 1998.
- Šustr, V. and Šimek, M.: Methane release from millipedes and other soil invertebrates in Central
 Europe, Soil Biol. Biochem., 41, 1684-1688, 2009.
- Svensson, B.H., Bostrom, U., and Klemedtsson, L.: Potential for higher rates of denitrification in
 earthworm casts than in the surrounding soil, Biol. Fert. Soils, 2, 147–149, 1986.
- Tebrügge, F. and Düring R.-A.: Reducing tillage intensity a review of results from a long-term
 study in Germany, Soil Till. Res., 53, 15–28, 1999.
- Theenhaus, A. and Scheu, S.: The influence of slug (*Arion rufus*) mucus and cast material addition
 on microbial biomass, respiration, and nutrient cycling in beech leaf litter, Biol. Fertil. Soils, 23, 8085, 1996.
- Tiunov, A.V. and Scheu, S.: Microbial respiration, biomass, biovolume and nutrient status in
 burrow walls of *Lumbricus terrestris* L. (Lumbricidae), Soil Biol. Biochem., 31, 2039-2048, 1999.
- van Groenigen, J.W., Lubbers, I.M., Vos, H.M.J., Brown, G.G., De Deyn, G.B., and van Groenigen,
 K.J.: Earthworms increase plant production: a meta-analysis, Scientific Reports, 4, 6365, 2014.
- Whalen, J.K and Fox, C.A.: Diversity of lumbricid earthworms in temperate agroecosysstem, in:
 Biodiversity in Agricultural Production Systems, eds. Benckiser, G. and Schnell, S., Taylor &
 Francis, Boca Raton, 249-261, 2007.
- Wilcox, C.S., Domínguez, J., Parmelee, R.W., and McCartney, D.A.: Soil carbon and nitrogen
 dynamics in *Lumbricus terrestris* L. middens in four arable, a pasture, and a forest ecosystems,
 Biol. Fert. Soils, 36, 26-34, 2002.

1	Wu, D., Liu, M., Song, X., Jiao, J., Li, H., and Hu, F.: Earthworm ecosystem service and dis-service
2	in a N-enriched ecosystem: Increase of plant production leads to no effects on yield-scaled N_2O
3	emissions, Soil Biol. Biochem., 82, 1-8, 2015.
4	Wüst, P.K., Horn, M.A., and Drake, H.L.: In situ hydrogen and nitrous oxide as indicators of
5	concomitant fermentation and denitrification in the alimentary canal of the earthworm Lumbricus
6	terrestris,. Appl. Environ. Microbiol., 75, 1852-1859, 2009.
7	Zhang, W., Hendrix, P.F., Dame, L.E., Burke, R.A., Wu, J., Neher, D.A., Li, J., Shao, Y., and Fu,
8	S.: Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization
9	compared with mineralization, Nat. Comm., 4, 2576, 2013.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

Table 1. Fixed effect (treatment and site) *P*-values of general linear mixed models with repeated
 measurements (date) for N₂O, CO₂ and CH₄ emissions in the field and laboratory measurements.
 Treatment is 'midden area vs. non-midden area' in the field and '*L. terrestris* vs. control' in the
 laboratory mesocosms.

6		Model term	N_2O	CO ₂	CH_4
7	Field	Site			0.008
8		Treatment	< 0.001	< 0.001	0.043
9		Treatment × Site			0.072
10		Date	0.004	< 0.001	0.029
11		Site × Date		< 0.001	
12		Treatment × Date	0.289	0.588	< 0.001
13		Treatment \times Site \times Date			0.007
14	Laboratory	Treatment	< 0.0001	< 0.0001	0.482
15		Date	< 0.0001	< 0.0001	0.144
16		Treatment × Date	0.159	0.401	0.039

3				
4		N ₂ O	CO ₂	CH ₄
5		µg N chamber area ⁻¹	mg chamber area ⁻¹	μ g chamber area ⁻¹
6	Field:			
7	Midden area	74.2 (5.1)	591.4 (28.4)	-2.6 (1.1)
8	Non-midden area	47.6 (5.1)	394.4 (28.4)	-4.8 (1.1)
9	Laboratory:			
10	L. terrestris	111.3 (7.1)	3224 (157)	-230.7 (9.2)
11	Control	90.3 (6.2)	2729 (152)	-224.7 (8.1)
12				

Table 2. The mean estimates (SE) of statistical models for cumulative N2O, CO2 and CH4 fluxes in the field (duration 2 weeks) and laboratory (15 weeks) measurements.

Table 3. Fixed effect (site and treatment) *P*-values of general linear mixed models with repeated measurements (midden and residue removal) for N_2O , CO_2 and CH_4 emissions in the field and laboratory measurements. Treatment is 'midden area vs. non-midden area' in the field and '*L. terrestris* vs. control' in the laboratory mesocosms.

6		Model term	N_2O	CO ₂	CH ₄
7	Field	Site			0.007
8		Treatment	0.012	0.009	0.015
9		Treatment × Site			0.080
10		Removal	0.401	0.980	0.139
11		Site × Removal			0.034
12		Treatment × Removal	0.845	0.338	0.176
13		Treatment × Site × Removal			0.894
14	Laboratory	Treatment	0.083	0.002	0.886
15		Removal	0.004	0.008	0.440
16		Treatment × Removal	0.449	0.054	0.317

Table 4. Characteristics of *L. terrestris* midden (n=10) and adjacent non-midden areas (n=10) at the end of the field measurements (model based mean estimates with 95% confidence intervals presented for all other variables except for the slug *Arion fasciatus*, which has medians with a minimum and maximum). *F*- and *P*-statistics show the statistical significance of the difference between the midden and non-midden areas (for slugs the values are from non-parametric Wilcoxon signed rank test).

5

6		Midden area	Non-midden area	df	F	Р
7	Earthworm number ^a	3.6 (2.6-4.6)	1.6 (0.6-2.6)	1, 8	8.51	0.019
8	Earthworm mass (g f.w.) ^a	2.0 (1.4-2.7)	0.8 (0.1-1.5)	1, 16	7.81	0.013
9	Slug number ^a	3.0 (0, 6)	0 (0, 1)		22.5	0.004
10	Soil moisture (% of f.w.) ^b	26.5 (25.8-27.2)	25.4 (24.8-26.1)	1, 8	7.66	0.024
11	Mineral N (mg kg ⁻¹ soil d.w.) ^b	9.2 (7.9-10.5)	7.1 (5.7-8.4)	1,8	8.24	0.021
12	Potential denitrification	1.2 (1.1-1.4)	1.0 (0.9-1.2)	1,8	4.16	0.076
13	$(\mu g N_2 O-N g^{-1} \text{ soil } d.w. h^{-1})^{b}$					

14

15 ^a Sample covers the chamber base area (diameter 15 cm)

^b Soil core (depth 5 cm, diameter 5 cm); in the midden area taken around the *L. terrestris* burrow entrance.

Table 5. Characteristics of *L. terrestris* (n=13) and control mesocosms (n=15) at the end of the laboratory experiment (model based mean
estimates and 95% confidence intervals presented for all variables). *F*- and *P*-statistics show the statistical significance of the difference
between the *L. terrestris* and control mesocosms.

4

5		L. terrestris	Control	df	F	Р
6	Mineral N (mg kg ⁻¹ soil d.w.) ^a	21.9 (20.9-23.0)	21.0 (20.0-21.9)	1, 12.3	8.71	0.012
7	Soil moisture (% of f.w.) ^b	20.7 (20.6-20.8)	20.4 (20.3-20.5)	1, 14.1	13.46	0.003
8	Mineral N (mg kg ⁻¹ soil d.w.) ^b	23.1 (21.0-25.4)	19.3 (17.6-21.2)	1, 24	7.74	0.010
9	Potential denitrification	0.30 (0.27-0.32)	0.25 (0.23-0.27)	1, 26	10.55	0.003
10	$(\mu g N_2 O-N g^{-1} \text{ soil } d.w. h^{-1})^{b}$					

11

^a Sample represents the entire soil column (excluding the soil core)

^b soil core (depth 5 cm, diameter 5 cm); in the *L. terrestris* mesocosm taken around the burrow entrance

1 Figure captions

Figure 1. The mean (±SE) estimates of statistical models for (a) N₂O, (b) CO₂ and (c, d) CH₄ (separately for field sites A and B) emissions in *L. terrestris* midden (•) and non-midden (o) areas and the effect of the removal of middens and surface residues on the emissions. For CH₄, the differences between the midden and non-midden areas at p<0.05 are marked with * (for effects on N₂O and CO₂, see Table 1). Figure 2. The mean estimates (\pm SE) of statistical models for (a) N₂O, (b) CO₂ and (c) CH₄ emissions in L. terrestris (\bullet) and control (o) mesocosms and the effect of the removal of middens and surface residues on the emissions. For CH₄, the differences between treatments at p<0.1 are marked with * (for effects on N₂O and CO₂, see Table 1).

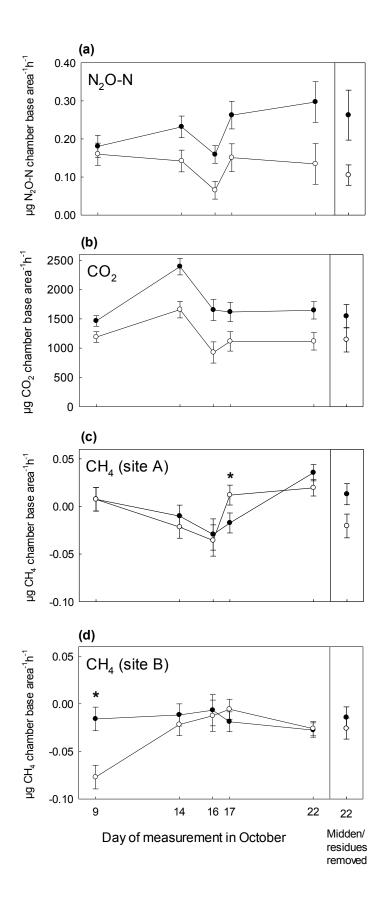


Fig 1.

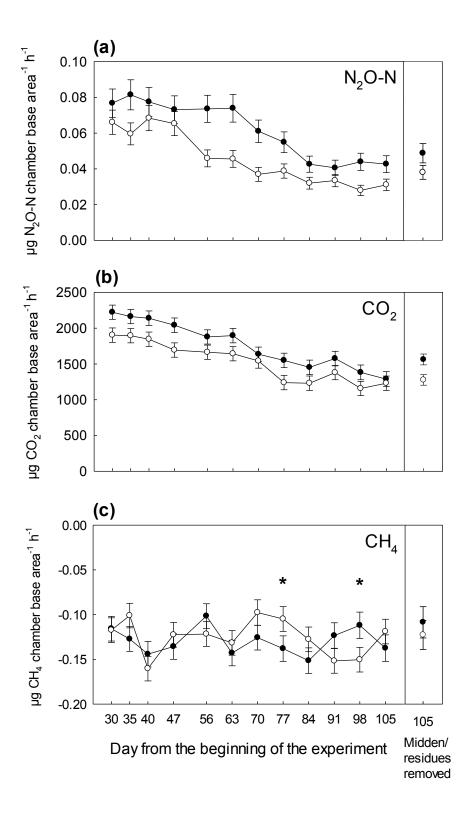


Fig. 2