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 21 

Abstract 22 

This study evaluates three different metrics of ater content estimated in of an herbaceous 23 

cover in a Mediterranean wooded grassland (dehesa) ecosystem. Fuel Moisture Content 24 

(FMC), Equivalent Water Thickness (EWT) and Canopy Water Content (CWC) were 25 

estimated from proximal sensing and MODIS satellite imagery.  Dry matter (Dm) and Leaf 26 

area Index (LAI) connect the three metrics and were also analyzed. Metrics were derived from 27 

field sampling of grass cover within a 500 m MODIS pixel. Hand held hyperspectral 28 



 2 

measurements and MODIS images were simultaneously acquired and predictive empirical 1 

models were parametrized. Two methods of estimating FMC and CWC using different field 2 

protocols were tested in order to evaluate the consistency of the metrics and the relationships 3 

with the predictive empirical models.  In addition,  Radiative Transfer Models were used to 4 

produce estimates of  CWC and FMC, which were compared with the empirical ones.   5 

Results revealed that, for all metrics spatial variability was significantly lower than temporal. 6 

Thus we concluded that experimental design should prioritize sampling frequency rather than 7 

sample size. Dm variability was high which demonstrate that  a constant annual Dm value 8 

should not be used to predict EWT from FMC as other previous studies did. Relative root 9 

mean square error (RRMSE) evaluated the performance of nine spectral indices to compute 10 

each variable. Visible Atmospherically Resistant Index (VARI) provided the lowest 11 

explicative power in all cases. For proximal sensing, Global Environment Monitoring Index 12 

(GEMI) showed higher statistical relationships both for FMC (RRMSE = 34.5%) and EWT 13 

(RRMSE = 27.43%) while Normalized Difference Infrared Index (NDII)  and Global 14 

Vegetation Monitoring Index (GVMI) for CWC (RRMSE =30.27% and 31.58% 15 

respectively). When MODIS data was used, results showed and increase in R
2
 and Enhanced 16 

Vegetation Index (EVI) as the best predictor for FMC (RRMSE=33.81%) and CWC 17 

(RRMSE=27.56%) and GEMI for EWT (RRMSE=24.6%). Differences in the viewing 18 

geometry of the platforms can explain these differences as the portion of vegetation observed 19 

by MODIS is larger than when using proximal sensing including the spectral response from 20 

scattered trees and its shadows. CWC was better predicted than the other two water content 21 

metrics, probably because CWC depends on LAI, that shows a notable seasonal variation in 22 

this ecosystem. Strong statistical relationship was found between empirical models using 23 

indices sensible to chlorophyll activity (NDVI or EVI), which are not directly related to water 24 

content due to the close relationship between LAI, water content and chlorophyll activity in 25 

grassland cover, which is not true for other types of vegetation such as forest or shrubsThe 26 

empirical methods tested outperformed FMC and CWC products based on radiative transfer 27 

model inversion. 28 

 29 

1 Introduction 30 

Water in leaves is a limiting factor for different physiological processes of vegetation and its 31 

deficit causes malfunctioning of different cellular processes. Water is involved in the thermal 32 
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regulation of plant trough transpiration and also becomes crucial in the uptake of 2CO  for 1 

photosynthesis (Chaves et al., 2003). It is also fundamental to maintain turgor pressure, which 2 

controls different functional processes of plants like cell enlargement or gas exchange (Taiz 3 

and Zeiger, 2010).  4 

Different metrics quantify vegetation water content. Fuel Moisture Content (FMC) (Desbois 5 

et al., 1997), defined as the mass of water per unit mass of vegetation, 6 
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where WFresh is the fresh weight of the sample measured in the field and WDry is the oven 8 

dried weight, has been extensively used to estimate fire risk and fire propagation (García et 9 

al., 2008;Yebra et al., 2008b). Equivalent Water Thickness (EWT) or Leaf Water Content 10 

(LWC), defined as the mass of water per leaf area, measures the thickness of the water layer 11 

with the same leaf area (Danson et al., 1992). 12 
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where AreaLeaf is the leaf area. 14 

Several studies showed that EWT can be retrieved from spectral information at leaf level as it 15 

is directly related to the water absorption depth of leaves (Ceccato et al., 2001;Datt, 1999). 16 

FMC and EWT are related each other since: 17 
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where Dm is defined as the ratio of leaf dry weight and leaf area: 19 
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Finally, another metric is the Canopy Water Content (CWC), the mass of water in the canopy 21 

per ground area (Cheng et al., 2008;Trombetti et al., 2008). CWC represent the product of 22 

EWT and Leaf Area Index (LAI), offering information on vegetation water content at canopy 23 

level and can be expressed as: 24 

  LAIEWT=g/cm CWC 2
       (45) 25 

or 26 
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where Area denotes for the area of the spatial unit used to collect the sample. 2 

FMC, EWT or CWC are usually estimated from vegetation samples using gravitational 3 

methods. Different field and laboratory protocols are used, despite of the need for 4 

standardization (Yebra et al., 2013). In several studies FMC is sampled using a bag were 100-5 

200g of the fresh sample are introduced and considered as representative (Verbesselt et al., 6 

2007;Chuvieco et al., 2003). In other studies vegetation is sampled within a quadrant whose 7 

area is used as reference (Sims and Gamon, 2003). However, uncertainties introduced by the 8 

different protocols and therefore their comparability are unknown. The three metrics can be 9 

used to measure water content, but relationships existing among them remains also unknown. 10 

No comparative studies for grasslands have been reported.  11 

Moreover, field sampling is limited and cannot provide estimates at regional or global scales, 12 

since it requires interpolation to bridge the gaps in both time and space. Remote sensing is a 13 

powerful alternative data source to provide information on vegetation water content as it fills 14 

such temporal and spatial gaps. Monitoring vegetation water content with remote sensing 15 

benefits agriculture, to control crop production and prevent stress in plants (Peñuelas et al., 16 

1992;Sepulcre-Cantó et al., 2006) and forestry, to assess fire danger associated with 17 

vegetation water conditions (Chuvieco et al., 2003;Chuvieco et al., 2004;García et al., 18 

2008;Yebra et al., 2008b).  19 

To estimate plant water content with remote sensing, vegetation spectral reflectance has been 20 

primarily related to specific water absorption bands in the Short Wave Infrared region (SWIR, 21 

1300-2500 nm) (Ceccato et al., 2001;Zarco-Tejada et al., 2003). Other studies related 22 

vegetation water content to spectral indices that do not include SWIR bands. In the case of 23 

grass the relationship with bands in the Visible (VIS) and Near Infrared (NIR) spectral region, 24 

has shown a close relationship between vegetation biomass, chlorophyll and water content 25 

(Chuvieco et al., 2003;Chuvieco et al., 2004;García et al., 2008;Yebra et al., 2008b) as water 26 

stress produces changes in the chlorophyll activity and biomass of the plant. Least squares 27 

regression models have served to empirically relate observed measurements of vegetation 28 

water content to spectral indices. These models are  site dependent, requiring long datasets for 29 

calibration (Chuvieco et al., 2009) and showing different results when the models are 30 
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extrapolated to other sites using different data sets, making difficult their applicability (Riaño 1 

et al., 2005;Yebra et al., 2008a).  2 

Radiative Transfer Models (RTM) simulate vegetation spectra and are a sound alternative to 3 

empirical modeling. They can be applied to different locations to estimate different vegetation 4 

parameters, as long as the RTM is a true representation of the vegetation canopy. For 5 

example, Trombetti et al (2008) predicted CWC for the continental US using RTM 6 

PROSAILH (Jacquemoud et al., 1995) simulations. Their model was calibrated with CWC 7 

from Airborne Visible / Infrared Imaging Spectrometrer (AVIRIS) hyperspectral water 8 

absorption bands. Yebra et al. (2008b) used also PROSAILH to quantify FMC, and more 9 

recently, Jurdao et al (2013) inverted the RTM GEOSAIL (Huemmrich, 2001) combined with 10 

PROSAILH to estimate FMC. The estimations were validated with extensive field sampling 11 

data in Spain. RTM estimates are based on a physical principle, and one of the advantages is 12 

that are not constrained to local conditions as is the case of empirically derived relationships. 13 

Therefore, in theory they can be extensively applied at different locations with good results 14 

(Yebra et al., 2008a;Yebra et al., 2008b). This study compares the performance of the 15 

different empirically derived models and RTM based estimates models. The former were 16 

created stablishing empirical relationships between three different metrics of vegetation water 17 

content measured simultaneously in the field (FMC, EWT, CWC) and nine spectral indices 18 

calculated at two scales, from proximal sensing and MODIS spectral data. In addition Dm and 19 

LAI were also analyzed in order to connect metrics which estimates water content at leaf and 20 

canopy level. Firstly, an analysis of the temporal and spatial variability of the different 21 

vegetation samples collected in the field was conducted to evaluate which biophysical 22 

parameter offers more information. Secondly, the performance statistics of the fitting 23 

equations were evaluated to select the most accurate empirical models. Finally, these models 24 

were compared to three RTM based estimates, proposed in the literature to derive two FMC 25 

(Jurdao et al., 2013;Yebra et al., 2008b) and the other for CWC (Trombetti et al., 2008). 26 

 27 

2 Methods 28 

2.1 Site description 29 

 The study site is located at Las Majadas del Tiétar (Spain) FLUXNET site 30 

(http://fluxnet.ornl.gov/site/440, last accessed 2014/06/05) (Fig. 1). The area is a dehesa, a 31 

http://fluxnet.ornl.gov/site/440
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typical Mediterranean wooded grassland,  ecosystem that occupies about 4% (2.5 Mha) of the 1 

Iberian Peninsula (Castro, 1997). Common tree species are different varieties of oaks, here 2 

mostly Quercus ilex subsp. ballota (L.), whose acorns and leaves are mainly used as forage 3 

for pigs and cows, respectively. The scattered oak trees have a 9 m mean height and 6 m mean 4 

crown diameter. Due to its deep and wide root system, this species is resistant to long drought 5 

periods (Camarero et al., 2012). Short grassland covers 86% of the area that is managed for 6 

cow shepherding. It is mainly composed by Rumex acetosella, L., Plantago carinata Schrad, 7 

Trifolium subterraneum L., Cynodon dactylon (L.) Pers., Taraxacum dens -leonis Desf. and 8 

Vulpia myuros (L.) C. C. Gmel. During the summer, grass dries out rapidly and turns into 9 

dead matter. Summers are hot and dry, with 30 °C daily average temperature and only 67 mm 10 

total precipitation, which are not representative of mean annual 16.7 °C and 572 mm. The 11 

average altitude is 256 m above mean sea level. Soils are lixisols with an average thickness of 12 

80 cm. Due to the presence of a clay layer in some of the areas, small water pools may appear 13 

in winter after rainy periods. The occurrence of this type of ecosystem in Mediterranean areas 14 

worldwide, the need to track the responses to water stress conditions, together with the 15 

presence of a FLUXNET eddy covariance flux tower (http://fluxnet.ornl.gov/site/440) 16 

justifies the selection of this site. 17 

2.2 Field data 18 

2.2.1 Vegetation sampling 19 

Grass water status was estimated through destructively sampling every two weeks from April 20 

2009 to April 2011. Sampling was performed assuring no rain occurred in the two previous 21 

days to avoid sampling superficial water on the leaves. During the summer, when grass 22 

become completely dry,  samples were not collected in 2009. However, to ensure the time 23 

series continuity of at least one phenological cycle, sampling was restated throughout the 24 

summer of 2010. This sampling strategy leaded to a total of 21 valid sampling days for the 25 

whole study period.  26 

Six 25 x 25 m plots were randomly located within the 500 m MODIS pixel that contained the 27 

eddy covariance flux tower that was stablished as the center of the study site (Fig. 1). Three 28 

grass samples were collected from 25 x 25 cm quadrants randomly positioned within each 29 

plot. All rooted grasses were collected inside the quadrant using clippers (IQSample hereafter). 30 

Additionally, a different sampling strategy was tested and a smaller sample was collected 31 
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outside of the quadrant but nearby, containing a representative proportion of surrounding 1 

species (OQSample hereafter) (Fig. 2). All samples were placed in sealed plastic bags, weighed 2 

on a scale with 0.01 g precision and then transported in a cooler to the laboratory. Every 3 

OQSample and a sub-sample from each IQSample were scanned at 150 pixels per inch (ppi) in an 4 

Epson Perfection V30 color scanner (Epson American Inc., Long Beach, CA, USA). Leaf 5 

area was calculated automatically from the scanned images using the unsupervised 6 

classification algorithm ISOCLUS with 16 iterations in PCI Geomatica (PCI Geomatics, 7 

Richmond Hill, Ontario, Canada). All samples were then placed in an oven for 48 hours at a 8 

constant temperature of 60°C to obtain their dry weigh. Five biophysical variables were 9 

obtained from the collected vegetation samples: FMC, EWT, Dm, CWC and LAI.  10 

FMC was determined from the fresh and dry weights of both the IQSample (FMCIQ) and the 11 

OQSample (FMCOQ) according to Eq. 1. The OQsample permitted to calculate both, EWT and Dm 12 

using Eq. 3 and Eq. 4 respectively, since fresh/dry weight and leaf area were measured.  The 13 

IQsample was not used in this case as it was unfeasible to obtain the area of the total sample 14 

collected inside the quadrant and neither the fresh weight of a sub-sample.   15 

CWC was calculated from two different approaches. In the first one, information 16 

corresponding to the IQsample and OQsample were combined using Eq.  17 

The grass height was very short due to cow shepherding during some periods, so the only 18 

feasible technique to estimate LAI, was using gravitational methods (He et al., 2007). The 19 

biomass to leaf area ratio of a sub-sample inside the IQSample to the total quadrant’s biomass 20 

provided LAI using the following expression (Eq 57):  21 
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W
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LeafSub

Dry

Dry

22       (7) 22 

where WDry is the total dry weight of the whole sample inside the IQSample, 
Sub

DryW  is the dry 23 

weight of a sub-sample of WDry, 
Sub

LeafArea  is the sub-sample leaf area and Area is the total area 24 

of the quadrant. The second approach measured CWC from the fresh and dry weight 25 

difference of the IQSample as in (Eq. 6). 26 

 27 
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2.2.2 Proximal sensing 1 

Simultaneously to vegetation sampling, proximal sensing data were acquired using an ASD 2 

FieldSpec® 3 spectroradiometer (http://www.asdi.com/) along NE-SW and NW-SE transects 3 

in each 25x25 m plot. This instrument measures Hemispherical-Conical Reflectance Factor 4 

(HCRF) from 350 to 2500 nm. Before measuring along each transect, dark current was 5 

recorded, instrument settings were optimized and reference spectra were acquired using a 6 

Spectralon® 99% reflective reference panel (Labsphere Inc., North Sutton, NH, USA). All 7 

measurements were taken under clear sky within about ±2 hours from local solar noon, to 8 

guarantee homogeneous illumination and maximum solar irradiance. Sky conditions were 9 

recorded in the field logs, and a quality control check removed the spectra where illumination 10 

changes may have occurred after calibration. The ASD was handled using bare fiber. Spectra 11 

were acquired at approximately 1.2 m height, rendering a sensor footprint diameter of about 12 

53 cm, since nominal FOV is 25º.  13 

An average of approximately 10 spectral measurements was calculated for each transect and 14 

this information was spectrally resampled to MODIS bands using ITT ENVI 4.7. (EXELIS, 15 

Boulder CO, USA). 16 

2.2.3  MODIS data images 17 

MODIS Terra daily surface reflectance (MOD09GA) data from April 1st, 2009 to April 15th, 18 

2011 were downloaded from NASA Land Processes Distributed Active Archive Center (LP 19 

DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, 20 

South Dakota, USA. This product includes the reflectance of bands 1 to 7, from 469 to 2130 21 

nm at 500 m spatial resolution, as well as sensor and solar observation angles and quality 22 

flags at 1 km. A script programmed in Matlab (Mathworks, Batick, Massachusetts, USA) 23 

extracted the MODIS pixel value of our study site from all the images to build the time series. 24 

The impact of angular effects on reflectance was reduced by removing images with sensor 25 

zenith angles wider than 20°, which also assures the accuracy of the geometrical location of 26 

the pixel (Wolfe et al., 2002). In addition, the quality flag layer eliminated images under 27 

clouds, cloud shadows and/or with high atmospheric aerosol content. The algorithm selected 28 

the closest valid MODIS image to the field sampling day within ±+ 5 days window, or the 29 

MODIS image acquired before the sampling day in case they were equal. Minimal time lag 30 

between sensor and field data reduces the chances of discrepancy, as grassland grazing could 31 
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affect LAI in a short period of time. This leaded to a total of 14 days of MODIS data with 1 

coincident proximal sensing measurements and field data.  2 

2.3 Vegetation indices 3 

For the study 9 spectral indices were calculated form proximal and MODIS reflectance data 4 

according to the equations in Table 1. The indices selected to estimate the biophysical 5 

variables included bands in the water absorption SWIR region (Faurtyot and Baret, 1997) and 6 

bands sensitive to vegetation greenness and structure in the NIR region (Paltridge and Barber, 7 

1988;Yebra et al., 2008b). 8 

2.4 RTM based water metrics estimates  9 

In order to compare performance with the empirical derived models, three RTM based models 10 

were used to estimate CWC (Trombetti et al., 2008) and FMC (Yebra et al. (2008b);Jurdao et 11 

al. (2013)). As for the empirical models, the spectral information used to run the RTMs was 12 

the one obtained using proximal sensing and MODIS data. 13 

2.4.1 CWC 14 

CWC was estimated in the study site following Trombetti et al. (2008). This method uses 15 

PROSAILH RTM (Jacquemoud and Baret, 1990;Jacquemoud et al., 1995) and Artificial 16 

Neural Networks (ANN) to estimate CWC.  Trombetti et al. (2008) trained their model by 17 

using MODIS synthetic spectra based on a set of empirical relationships. Different MODIS 18 

spectra combinations and vegetation indices were later used as input variables to train a neural 19 

network and obtaining as outputs CWC, leaf water content, and LAI. The outputs were 20 

validated against AVIRIS CWC and MODIS MOD15A2 LAI product. Multiple linear 21 

regression approach is later used to establish the equations for each landcover type. In our 22 

case we used the original calibration from Trombetti et al. (2008) for grassland. 23 

 Further details on this method can be found in Trombetti et al. (2008). 24 

2.4.2 FMC  25 

The FMC estimates are based on Look Up Table (LUT) inversion technique. This technique 26 

compares each observed spectra against previously generated spectra stored in a LUT.  In this 27 

study two LUTs were tested. One specifically designated for grassland based on the study of 28 
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Yebra et al. (2008b) and that was generated using PROSAILH (Jacquemoud and Baret, 1990). 1 

The second LUT was generated using a link between PROSAILH (Jacquemoud and Baret, 2 

1990) at leaf level and  GEOSAIL RTM (Huemmrich, 2001) at canopy level and originally 3 

proposed to estimate FMC in a mixed-oak-tree-grassland cover (Jurdao et al., 2013). This 4 

model includes some additional parameters that allow to account for shadows, especially 5 

important in areas with disperse tree coverage as is the case in our study site.    6 

Further details on these methods can be found in Yebra et al. (2008b) and Jurdao et al. (2013). 7 

 8 

2.5 Empirical models fitting 9 

Intra-group, inter-group and overall R
2
 values between FMCIQ, FMCOQ, EWT, CWCIQ, 10 

CWCOQ or LAI, and each of the proximal sensing spectral indices were calculated to 11 

investigate their variability within the 500 m MODIS pixel. More specifically, the intra-group 12 

R
2
 offers information about the spatial variability, due to the collection of samples from 13 

different plots within the MODIS pixel. A linear regression model was created for each 14 

sampling day where the biophysical variable and the spectral index were the dependent and 15 

the independent variable, respectively. The average R
2
 of all the regression models for each 16 

day provided the intra-group R
2
. Instead, the inter-group R

2
 explains the temporal variability 17 

due to the collection of the samples on different days. In this case, the biophysical variable 18 

and the spectral index for all plots were averaged for each sampling day. The linear regression 19 

model of these averaged values determined the inter-group R
2
. To explain temporal and 20 

spatial variability together, the overall R
2
 fitted in a single regression model including all 21 

plots and sampling days for each spectral index and biophysical variable. 22 

Later, using the mean values of each biophysical variable and the proximal sensing spectral 23 

indices, a univariate linear regression model was applied. The same procedure was repeated 24 

for MODIS data. Bootstrapping techniques evaluated the empirical model robustness, which 25 

is a valid alternative to traditional leave-one-out methods to validate regression models 26 

predictability according to Richter et al. (2012) and following Steyerberg et al. (2001) to that 27 

recommends two hundred simulations. Later the median value of each statistics was used as 28 

indicative of its performance. Root Mean Square Error (RMSE), Relative Root Mean Square 29 

Error (RRMSE), determination coefficient (R
2
) and Taylor’s diagrams evaluated the models’ 30 
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performance.  The RMSE measured the error in the estimation of the biophysical variable by 1 

each model: 2 
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i
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 is its observed field measurement. RMSE 4 

cannot compare the error of different variables with different units. To address this limitation 5 

in order to compare the model performances between different variables, RRMSE divides 6 

RMSE by the average of the observed values V obs
 (Richter et al., 2012): 7 
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measures the proportion of variance explained by the model and is calculated as: 9 
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where 2

rσ  represents the residual variance and 2σ  is the variance of the dependent variable.  11 

2.6 Comparing performance between empirical and RTM based estimates 12 

Taylor diagrams allowed the comparison between the FMC and CWC predicted by empirical 13 

models fit and the RTM inversion estimates Jurdao et al. (2013)  for FMC and CWC, 14 

respectively. In these plots the observed variable and its standard deviation (SD) are plotted in 15 

the x-axes. RMSE is represented as semicircles centered at the observed data. The correlation 16 

coefficient (r) is displayed in the azimuthal position. Best models are closer in the plot to the 17 

observed measurement; therefore they will have a high r, a low RMSE and a SD similar to the 18 

observed values. 19 

 20 

3 Results 21 

3.1 Empirical models fitting 22 

All variables showed similar temporal evolution, a strong variability controlled by the 23 

meteorological conditions with a peak in spring and second minor peak in the winter except 24 
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Dm (Fig. 3). Dm fluctuated throughout the year and exhibited its highest values in the 1 

summer. The 47% Coefficient of Variation (CV) for Dm was less than for CWCIQ (CV= 2 

95%), CWCOQ (CV=0.95%), FMCIQ (CV= 60%) and FMCOQ (CV= 56%), but higher than for 3 

EWT (CV= 38%). A higher precipitation in the spring of 2010 compared to previous year 4 

translated into higher FMC, CWC and LAI values. FMCOQ and CWCOQ, calculated from the 5 

OQSample, presented similar trends but in some cases higher values than FMCIQ and CWCIQ, 6 

calculated from the IQSample.  7 

A low intra-group R
2
 for all the variables indicates a low spatial variability between plots 8 

(Fig. 4). Contrary, the high inter-group R
2
 also for all variables points to the high temporal 9 

variability between sampling dates. The main differences between variables occurred for 10 

overall R
2
. Similar overall and inter-group R

2
 values for CWCOQ and FMCOQ indicated that 11 

the combination of the temporal and spatial factors matched in importance each factor on its 12 

own. Instead, overall R
2
 for CWCIQ and FMCIQ laid in between the inter-group and the intra-13 

group R
2
 underling the temporal factor as the main source of variation. GEMI offers the best 14 

R
2
 for all variables while VARI had the weakest R

2
. 15 

The explicative model with the highest R
2
 to retrieve each variable differed between proximal 16 

sensing and MODIS (Fig. 5). FMCOQ and FMCIQ showed the best correlations with GEMI 17 

from proximal sensing data but EVI was the index that presented the highest R
2
 when using 18 

MODIS images. EWT offered the poorest adjustments among all variables analyzed both for 19 

proximal sensing and MODIS data. In this case GEMI was the best predictor. NDII and 20 

GVMI were the most accurate predictors for LAI, CWCOQ and CWCIQ with proximal sensing. 21 

When using MODIS, the most accurate results for LAI were achieved with NDII and GVMI, 22 

but EVI did so for CWCOQ and CWCIQ. When the IQsample was used instead of the OQsample, 23 

both FMC and CWC showed higher R
2
 results (Fig. 5) with lower RRMSE, although the 24 

RRMSE results obtained presented small differences (Fig. 6).  25 

Smaller confidence intervals of R
2
 were observed when proximal sensing reflectance was 26 

used with the exception of EWT in which MODIS presented smaller intervals.   27 

3.2 Comparing performance between empirical based and RTM estimates 28 

Taylor diagrams in Figs. 7 and 8 compare FMC and CWC estimates using spectral indices 29 

and RTM. In the case of FMCIQ from proximal sensing (Fig. 7 left), RTMs are distant from 30 

empirical index-based models. They presented higher RMSE and lower r than the spectral 31 
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indices whereas RTM SD was more similar to the observed values. In the case of FMCIQ 1 

estimated from MODIS (Fig. 7 right), RTMs were closer to the empirical models in the 2 

Taylor diagram and therefore perform more similar to those. For CWCIQ (Fig. 8), the 3 

differences between the empirical and RTMs are larger. Using proximal sensing data (Fig. 8 4 

left), RTM overestimated the SD of the observed CWCIQ. Using MODIS (Fig. 8 right), RTM 5 

showed a very high overestimation of the CWCIQ.  6 

Temporal evolution of the biophysical variables estimated using the most explicative model 7 

for proximal sensing and MODIS in Fig. 5 and 6 are shown in Fig. 9. Fitting equations for the 8 

different variables are shown in Table 2. Both sensors predicted well EWT, FMCIQ and 9 

FMCOQ but showed an overestimation, especially during the dry season. Contrary, the models 10 

for LAI, CWCOQ and CWCIQ adjusted well even during the dry season. 11 

 12 

4 Discussion 13 

Results revealed that Dm varies significantly throughout the year (CV=47 %) with high 14 

values in the summer. These changes could be related to the temporal variation in plant 15 

community structure, species composition and diversity in this ecosystem (Casado et al., 16 

1986). Summer should be the best time of the year to invert RTM and predict Dm, since 17 

leaves are drier and therefore EWT does mask the Dm spectral absorption signal (Riaño et al., 18 

2005). Casas et al. (2014) applied a constant annual Dm value from the literature to 19 

successfully predict seasonal variations in EWT and CWC. However, our study suggests that, 20 

due to the high seasonal variation in Dm, a constant annual value would not be recommended 21 

in grassland ecosystems as the one analyzed in this work.  22 

The high inter-group and low intra-group R
2
 implies that the temporal trend is much more 23 

critical than the spatial variation within the MODIS pixel (Fig. 4). Therefore, the strategy to 24 

better capture the variability of grass water content in this ecosystem should consist in 25 

increasing the number of samples in time and but sampling less number of plots per day. In 26 

addition, CWCIQ and FMCIQ, generated from larger sample sizes than CWCOQ and FMCOQ, 27 

presented higher inter-group R
2 

values, which indicate a better characterization of the 28 

temporal variability. Even though similar conclusion were obtained using the two strategies 29 

the results in this study showed that the higher R
2
 are found in the case of the IQSample. Using 30 

the quadrant also presented some advantages as it allows not just the retrieval of FMC but 31 

also CWC (as in Eq. 6)  without going through the time consuming leaf scanning process to 32 
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retrieve leaf area needed to estimate EWT. This suggests the need to standardize sampling 1 

protocols for the estimation of vegetation biophysical parameters to ensure data quality, 2 

repeatability and to facilitate accurate cross comparison from different studies. Some 3 

initiatives already exist to facilitate this standardization, as the Global Terrestrial Carbon 4 

System (GTOS) guidelines in support of carbon cycle science (Law et al., 2008). However, 5 

currently there is no international backbone that ensures this and an agreement in the 6 

protocols is needed in order to validate remote sensing products.  7 

CWC was better predicted than the other two water content metrics, FMC and EWT (Fig. 4). 8 

CWC depends on LAI which is showing higher correlation values to the empirical models 9 

than other metrics such as FMC or EWT. Some studies have shown that LAI contributions to 10 

total reflectance variability is much higher than water (Bowyer and Danson, 2004) for this 11 

reason also, CWC should provide more accurate retrievals than FMC or EWT. It is possible to 12 

have the same FMC and EWT for different LAI and hence different CWC and amount of soil 13 

background, which will change its reflectance. Yebra et al. (2013) demonstrated through 14 

PROSAILH simulations how a very different CWC for the same EWT based on changes of 15 

LAI translates into a large range of NDII values. Our results confirm this theoretical 16 

assumption described in Yebra et al. (2013). This issue is especially critical over areas like the 17 

one analyzed in this work with an herbaceous cover exhibiting large dynamic annual growth. 18 

Very low R
2
 values were obtained in this study regarding the EWT. More research needs to 19 

be done in this line as EWT is a key input parameter in many RTM. 20 

The empirical methods estimated FMC and CWC with slightly different results for proximal 21 

sensing and MODIS (Figs. 5 and 6). While GEMI and NDII were the most accurate for FMC 22 

and CWC respectively from proximal sensing in our study; EVI was the most explicative 23 

estimator of both variables from MODIS. The relationship between these indices and water 24 

metric is indirect, since none of them include spectral bands in the SWIR region where water 25 

absorption is strong. However, there is a strong link between grass water content, chlorophyll 26 

activity and LAI in this ecosystem. During wet periods the grass grows very rapidly, 27 

increasing the LAI, biomass and chlorophyll content, but as soon as the dry season starts with 28 

high temperatures and low rainfall the grass becomes cured rapidly losing all chlorophyll and 29 

quickly decreasing the LAI and biomass. This explains the empirical relationships with high 30 

R
2
 between water metrics and indices sensible to chlorophyll activity, or those more sensible 31 

to water in the SWIR region. In addition, it is remarkable that MODIS estimations presented 32 
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higher R
2
 than proximal sensing. Bootstrap confidence intervals indicated that R

2
 and 1 

RRMSE presented large intervals, larger when using MODIS images. Roberts et al. (2006) 2 

also observed different correlations between indices and platforms and the discrepancies here 3 

need further investigation. The difference in the confidence interval amplitude between 4 

proximal sensing and MODIS can be explained because the pixel included not only grass but 5 

also trees, their shades, and other marginal covers like bare soil and a water pond (Fig. 1), and 6 

its view angle could be up to 20° whilst proximal sensing measures only two transects within 7 

each of the six plots and provides only nadiral measurements of herbaceous cover which 8 

could be more affected by the soil signal.   9 

Similarly to this study, Casas et al. (2014) reliably predicted water content variables in 10 

California (USA) from GEMI, NDII and EVI using simulated MODIS spectral response from 11 

airborne hyperspectral AVIRIS instrument. In their case, it was actually VARI the most 12 

accurate for grasslands (FMC and CWC), chaparral (EWT, FMC and CWC) and a 13 

Mediterranean oak forest (EWT). Contrary, VARI showed very poor accuracies in our case to 14 

estimate FMC, EWT and CWC, but was still capable of capturing the variability in LAI (Fig. 15 

4). This fact also contradicts other studies that predicted FMC from VARI on chaparral 16 

(Peterson et al., 2008;Roberts et al., 2006;Stow et al., 2005, 2006). VARI was developed to 17 

detect vegetation fraction in homogenous wheat crops (Gitelson et al., 2002b), but Gitelson et 18 

al. (2002a) nor the above studies have tested this spectral index to detect vegetation water 19 

content on sites like ours, with strong seasonal changes in species composition and LAI.  20 

The empirical methods calibrated for this specific site outperformed the physical RTM 21 

estimates for CWC and FMC (Figs. 7 and 8). This confirms the results in Casas et al. (2014) 22 

where the CWC algorithm based on RTM inversion developed by Trombetti et al. (2008) also 23 

failed to improve results from empirical estimates. Regarding the RTM-based-FMC estimates, 24 

considering that the FMC inversion models were not calibrated with any data from the field 25 

campaign and that the results were similar to those obtained using empirical approach (Fig. 7) 26 

we believe that the models can be applied in other similar areas.  27 

Future work in this line can still be done, testing other inversion techniques, using multiple 28 

observations or other optimization algorithms might help to improve the performance of 29 

physical based estimates of biophysical variables of vegetation.  30 

 31 

 32 



 16 

5 Conclusions 1 

This work showed a complete analysis of three metrics, EWT, FMC and CWC, to measure 2 

grass water content at two different spatial scales by using proximal sensing from a field 3 

spectroradiometer and MODIS images. The temporal changes in these metrics are more 4 

critical than their spatial variation within the MODIS pixel. Results indicated that larger 5 

samples collected using quadrants as spatial reference sampling units are more representative 6 

than small samples in order to follow the temporal trends in FMC and CWC.. Protocol 7 

standardization should be considered to make different dataset comparable both spatially and 8 

temporally.  Due to the high seasonal Dm variability, a constant annual value should not be 9 

used to estimate EWT from FMC in this ecosystem. The dependence of CWC on LAI makes 10 

this vegetation water content variable easier to predict than FMC or EWT in grasslands due to 11 

the strong existing link between LAI, water content and chlorophyll activity. 12 

GEMI, NDII and EVI reliably predicted vegetation water content. The best empirical 13 

estimator differed between sensors. Empirical models based on vegetation indices showed 14 

higher R
2
 for MODIS than from proximal sensing, probably due to differences induced by 15 

observation geometry and canopy observed. These empirical methods still exceed RTM 16 

inversions developed for other sites to predict FMC (Jurdao et al., 2013;Yebra et al., 2008b) 17 

and CWC (Trombetti et al., 2008). Conclusions from this study are much related to grassland 18 

physiology and cannot be extended to other vegetation types such as forest or shrubs. 19 
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Table 1: Spectral indices calculated using field HCRF measurements and MODIS data. Bx 1 

designates the band number corresponding to the MOD09GA product surface reflectance 2 

product. 3 

 Index   Formula   Reference  

Normalized difference 

vegetation index 

(NDVI)  
12

12=
BB

BB
NDVI





 

(Rouse et al., 

1973) 

Enhanced Vegetation 

Index (EVI) 
















312

12

7.56
2.5=

BBB

BB
EVI

 

(Huete et al., 

2002) 

Normalized Difference 

Water Index (NDWI) 52

52=
BB

BB
NDWI





 
(Gao, 1996) 

Normalized Difference 

Infrared Index (NDII) 62

62=
BB

BB
NDII





 

(Hardisky et 

al., 1983) 

Simple Ratio Water 

Index (SRWI) 5

2=
B

B
SRWI

 

(Zarco-

Tejada et al., 

2003) 

Soil Adjusted 

Vegetation Index 

(SAVI) 

 L
LBB

BB
SAVI 














1=

12

12

 

Where L= 0.5 

(Huete, 

1988) 

Global Environment 

Monitoring Index 

(GEMI) 

 
1

1

1

0.125
0.251=

B

B
GEMI




 

 

 where 

 
0.5

0.51.52
=

12

22

2

1

2

2





BB

BBBB


 

(Pinty and 

Verstraete, 

1992) 

Visible 

Atmospherically 

Resistant Index (VARI) 
314

14=
BBB

BB
VARI





.  

(Gitelson et 

al., 2002a) 
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Global Vegetation 

Monitoring Index 

(GVMI) 







 






 







 






 

0.020.1

0.020.1

=
*

*

SWIRNIR

SWIRNIR

REC

REC
GVMI  

 

(Ceccato et 

al., 2002)  

Central band 

wavelength 

B1= 645.5 nm, B2= 856.5 nm, B3= 465.6 nm, B4= 

553.6 nm, B5= 1241.6 nm, B6= 1629.1 nm, B7= 

2114.1 nm 

 

 NIRREC stands for the information in the Near Infra Red rectified as the index was 1 

designed for SPOT-VEGETATION (Ceccato et al., 2002). In this study the index was 2 

calculated using the spectral bands from MODIS corresponding to that B2 for the NIR 3 

and B5 for the SWIR regions4 
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Table 2: Empirical fitting equations obtained after bootstrap.  1 

Fitting equation 

Proximal Sensing 

Fitting equation 

MODIS 

FMCOQ = (1184.400 ∙GEMI)  - 734.405 FMCOQ = (1727.326 ∙EVI)  - 216.433 

FMCIQ = (999.707 ∙GEMI)  - 626.932 FMCIQ = (1398.385 ∙EVI)  - 173.518 

EWT = (0.029 ∙EVI)  + 0.011 EWT = (0.059 ∙EVI)  + 0.003 

LAI = (2.621 ∙NDII)  + 1.268 LAI = (3.524 ∙NDII)  + 1.189 

CWCOQ = (0.075 ∙NDII)  +0.029 CWCOQ = (0.195 ∙EVI)  -0.032 

CWCIQ = (0.063 ∙NDII)  +0.023 CWCIQ = (0.157 ∙EVI)  -0.026 

2 



 24 

 1 

 2 

Figure 1. Plots sampled near the FLUXNET tower within the 500 m MODIS pixel at Las 3 

Majadas del Tiétar (Spain) study site.  4 

 5 
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 1 

 2 

 3 

Figure 2. Scheme showing the different samples collected in the field and how they are 4 

processed in the laboratory. Metrics obtained as results are also indicated in the last column.  5 

 6 
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 1 

 2 

Figure 3. Box plot showing the temporal evolution of field biophysical variables measured. 3 

Filled points represent the median of the daily measurements, the boxes indicate the position 4 

of the 1st and 3rd quartile, lines delimit the maximum and minimum values. Line inside the 5 

boxes showed the median value of the day and the point the mean value. Precipitation is 6 

represented using bars and temperature is represented with a solid line 7 
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1 
  2 

Figure 4. Intra-group, inter-group and overall 
2R  values between proximal sensing spectral 3 

indexes and biophysical variables measured in the field.  4 

 5 

 6 

7 
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1 
  2 

Figure 5. Determination coefficient for proximal (green circles) and MODIS (red squares) 3 

empirical models after bootstrap. Upper and lower limits of the confidence intervals for 4 

MODIS and proximal sensing are presented.  5 

6 
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1 
  2 

Figure 6. Relative root mean square error for proximal (green circles) and MODIS (red 3 

squares) empirical models after bootstrap. Upper and lower limits of the confidence intervals 4 

for MODIS and Proximal sensing are presented.   5 
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 1 

 2 

Figure 7. Comparison of empirical vs RTM models to estimate FMC with proximal sensing 3 

(left) and MODIS (right). RTM FMC (Grassland) obtained from the LUT proposed by (Yebra 4 

et al., 2008b). RTM FMC (Grassland& Holm Oak) obtained from the LUT proposed by  5 

Jurdao et al. (2013).  6 

7 
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Figure 8. Comparison of empirical vs RTM models to estimate CWC with proximal sensing 3 

(left) and MODIS (right). RTM CWC is based on Trombetti et al. (2008). 4 

5 
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Figure 9. Temporal evolution of the observed (red circles) and estimated FMCOQ, FMCIQ, 3 

EWT, LAI, CWCOQ and CWCIQ obtained for proximal sensing (green asterisks) and MODIS 4 

(blue crosses). Fitting equations are presented in Table 2. 5 

 6 

 7 


