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— We first want to thank you for the very thorough and constructive reviews.
These suggestions have greatly strengthened the overall flow and organization of the
manuscript. The positive encouragement to expand on certain sections that needed
additional explanation or supporting evidence has significantly improved the clarity of
the paper and reinforced the validity of our results. Taking all your suggestions into
consideration, we have made great efforts to strengthen the methods section, incor-
porate variability statistics to Table 1 (now Table 2), and expand on why this specific
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CO2 study (the Delaware Estuary) is so important. In addition, to help address the
uncertainties and limitations to our study, we have composed a new assumptions and
limitations section (4.4).

— Major Comments

— In calculating temperature-normalized pCO2, it is necessary to deïňĄne an annual
mean temperature against which seasonal ïňĆuctuations can be measured. Here,
the authors use the mean water temperature measured in the Delaware Estuary from
2013-2015, which covers the span of their sampling. Others have adopted a more
climatological approach that uses a long-term annual mean temperature, as may be
provided by the 10-year average temperature cycle the authors show in Figure 3. Es-
pecially since there important seasonal gaps in the authors’ analysis (e.g., January
and February - the two lowest temperature months), it is my instinct to suggest us-
ing a more resolved temperature product for this calculation, such as a USGS record
(e.g., that given in Figure 3a if it can be applied to the entire estuary) or a satellite-
derived mean. If the authors used a similar temporal interpolation to get an annual
temperature despite months without data (as in the calculation of annual CO2 ïňĆuxes
including months without data, which could also be better shown and described itself),
this should be more directly stated. A broad recalculation of this result constitutes a
major revision.

Agreed. In order to obtain a more solid representation of the annual mean surface
water temperature in the Delaware Estuary against which seasonal fluctuations can
be measured, a longer annual record (10-yr average) of surface water temperature
cycles would be more appropriate. This would help smoothen out any anomalies that a
shorter record would have trouble accounting for. Thus, I have decided to use the 10-
year average temperature (13.3◦C) as shown in Figure 3a for the annual mean surface
water temperature in my calculations.

— Throughout the description of their techniques, the authors take care to point out
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weaknesses. However, they provide no systematic error analysis. A consolidated
summary of methods, assumptions, caveats and gaps at least is integral to the read-
ers understanding, and what was missed. For example, I was left wondering how
the salinity-binned temperature-normalized pCO2 related to the area-averaged CO2
ïňĆux. This seemed out of place next to the other area-based considerations (e.g.,
Tables 1 and 2, Figures 8 and9), and the implications of this choice were not well ex-
plained either for the method itself or for the interpretation of the data. For additional
examples, see the annual mean temperature choice highlighted above, and the ab-
sence of discussion about any weakness in the river CO2 contribution calculations,
as well as additional points listed in the minor comments below. I consider additional
discussion of assumptions and caveats a major revision, whether it involves additional
text or additional calculations.

To resolve these comments, I highly recommend that the authors include a
conceptual sketch to summarize their calculations, and consolidate the informa-
tion about their assumptions and caveats in a clear, concise additional sec-
tion. An excellent reference would be the recent manuscript published by W.
Evans and colleagues, which required a similar methodological description and
error calculation to underpin their observations of coastal CO2 ïňĆuxes. See
http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GB005153/abstract.

Taking your responses into consideration, I have added a new assumptions and
caveats section (4.4) to better address the various limitations in our study.

4.4 Assumptions and limitations

“While this study serves as the first air-water CO2 flux product in the Delaware Estuary,
there are several limitations. First, the lack of cross-bay transects (east to west), except
in December 2014, limits our knowledge of surface water pCO2 distributions in shallow
waters regions of the bay system. Due to various biological and physical processes
(i.e. influence from nearby tidal marshes, tributaries, or estuarine circulation forces),
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surface water pCO2 may vary from within the main channel to the perimeters of the
estuary. Jiang et al., (2008a) found that surface water pCO2 and air-water CO2 flux
in the marine-dominated Sapelo and Doboy sounds paralleled seasonal temperature
changes and net CO2 inputs from within the estuarine zone. Due to intense produc-
tivity of vegetation in the surrounding salt marshes, extensive accumulation of organic
carbon occurs during spring and early summer (Dai and Wiegert, 1996; Jiang et al.,
2008a). During late summer and early fall, increased surface water temperatures cou-
pled with tidal flushing of intertidal marsh waters and the decomposition of dead plants
contribute to high CO2 degassing in these estuaries (Dai and Wiegert, 1996; Cai and
Wang, 1998; Cai et al., 1999; Neubauer and Anderson, 2003; Wang and Cai, 2004).
However, due to the much broader geographic size of the Delaware Bay compared
to the marine-dominated Sapelo and Doboy sounds, in-water biological processes are
most likely important. In turn, the impact from the growth and decay of marsh plants on
surface water pCO2 and CO2 flux dynamics may not be as influential in the Delaware
Bay except near the shorelines where tides regularly flush marsh boundaries. Stud-
ies conducted by Culberson et al., (1987) and Lebo et al., (1990) performed several
cross bay transects sampled at various depths, over diel cycles, within tributaries, and
periodically offshore. Results showed that cross-bay gradients were inconsistent and
relatively small, except in shallow waters near the shoreline when total suspended sed-
iment and chlorophyll concentrations were frequently elevated (Culberson et al., 1987;
Lebo et al., 1990; Sharp et al., 2009). Thus, the impact from marsh input of DIC to
the Delaware Bay on overall pCO2 distributions and associated CO2 degassing fluxes
are most likely small. During December 2014, pCO2 measurements were not only
collected in the main channel, but also near the Delaware and New Jersey perimeters
of the bay (Fig. 6I). While slight variability was observed across the bay, pCO2 values
from the lower to upper bay regions remained within about 150 µatm (Fig. 6I and Table
2).

In addition to the lack of cross bay transects, there is a pressing need to conduct more
winter and early spring surveys to fully cover seasonal ranges in key properties such
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as temperature and river discharge rates. Moreover, cruises or moored sensor studies
at or around large discharge events are needed. Recent study by Voynova and Sharp
(2012) found that in the past century there have been a recorded 54 extreme dis-
charges (defined by the average daily discharge as recorded in Trenton, NJ from 1 Oct
1912 to 30 Sept 2011 plus 10 standard deviations); 46% of these occurring in the past
decade (Voynova and Sharp, 2012). With increasing evidence suggesting that extreme
weather events will occur more frequently with climate change, it is important to main-
tain routine seasonal surveys to learn how such subsequent conditions (i.e. increased
summer stratification, riverine CO2 fluxes, removal of oxygen in bottom waters) im-
pact various coastal environments (Allan and Soden, 2008; Yoana and Sharp, 2012).
Furthermore, more research is needed in the urban and upper river sections of the
estuary to better understand CO2 dynamics throughout the whole estuarine gradient.
The lack of inorganic carbon data in these upper regions limits syntheses of regional
CO2 fluxes and generalizations to underlying mechanisms. Routine sampling along
small tributaries and river systems could provide crucial insight to the biogeochemistry
in the upper tidal river.

There are also several limitations to the temperature-normalized and end-member mix-
ing models that need to be addressed. First, knowing the extensively complex nature
of estuarine systems, it is important to note that derived variances in temperature-
normalized pCO2 provide only a relatively simple analysis of seasonal pCO2 ïňĆuctu-
ations due to thermal and non-thermal processes as it neglects the impact that various
physical processes, turbulent forces, and tidal mixing scenarios have on pCO2 dynam-
ics. However, because salinity gradients down the estuary vary greatly depending on
the season, river discharge, tidal cycle, precipitation, and other circulation processes,
salinity-binned climatologies can provide additional insight to the various physical and
biological controls behind observed pCO2 distributions that geographic boundaries
may not. Unfortunately, due to the lack of winter surveys and unusually high pCO2
values in December, interpolated temperature-normalized pCO2 during cooler months
may be biased and slightly overestimated. Moreover, the temperature derived con-
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stants (∂lnpCO2/∂T) derived in this study were based on river and ocean end-member
TA and DIC concentrations collected in the Delaware Estuary over the past two years.
Thus, it is important to note that derived temperature constants here are applicable
for general estuarine systems and may not be suitable for coastal environments with
different hydrological and/or geochemical characteristics.

In situ DIC and TA measurements were coupled using the Excel macro CO2SYS (Pier-
rot, 2006) and inorganic carbon dissociation constants from Millero et al. (2006) for
estuarine waters to calculate dissolved CO2 concentrations. While river and ocean
end-members were obtained at near zero salinity and at the mouth of the bay, re-
spectively, no fixed end-member sampling locations were established. This marginal
difference in end-member location could slightly increase or decrease estimated CO2
concentrations. In the chemical model of the CO2SYS, NH3, NH4+, and organic mat-
ter contribution to TA were not included (Cai et al., 1998; Cai et al., 2010b), which
were likely high in low salinity waters. Thus, lower calculated CO2 than observed CO2
was expected as the observed TA included other acid-base components (Fig. 3C).
However, due to the very high pCO2, such uncertainty is deemed unimportant in our
consideration. Another factor that may contribute to the lower calculated CO2 than
observed CO2 could be the use of mercuric chloride as a preservative in low salinity
samples (S < 10) (Trabalka and Reichle, 2013). Excess alkalinity generated via the
dilution of mercuric chloride could contribute to conservative CO2 flux estimates (Tra-
balka and Reichle, 2013) although due to the relatively high TA in the Delaware River
we believe this effect is small.”

— Minor Comments

— Introduction

— Page 10900 Line 24: Nice note about industrialization and future change at the end
of this manuscript that could be included up front.

Thanks. I wanted to emphasis the point that the system is continuously responding to
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a rapidly changing environment (i.e. industrialization) and have moved this part and
added some supporting evidence to the Introduction.

“The tidal freshwater portion of the Delaware River flows from the head of the tide near
Trenton, NJ through the greater Philadelphia area, the sixth largest municipal region
of the U.S., before passing into the saline Delaware Bay (Fig. 1) (Sharp et al., 2009;
Sharp, 2010). In turn, the upper Delaware River is heavily influenced by major industrial
activity and continuously responding to a rapidly changing environment. For example,
in the mid-20th century, the urban river of the Delaware Estuary suffered from severe
hypoxia with average summer dissolved oxygen (DO) concentrations near zero value
(Sharp, 2010). Fortunately, the implementation of the Clean Water Act (CWA) in the
early 1970s helped promote efforts to improve water quality conditions in the Delaware
River. With major upgrades to large sewage treatment plants, DO concentrations since
the early 1990s have consistently been above the CWA standard of 3.5 mg L-1 (∼219
µmol L-1) illustrating significant recovery from post hypoxic conditions (Sharp, 2010).
Nonetheless, high pCO2 is still expected to associate with strong respiratory O2 con-
sumption in the upper estuary. In contrast, the Delaware Bay is a large shallow embay-
ment surrounded by partially undeveloped salt marshes (Cifuentes et al., 1988). Thus,
the Delaware Estuary is governed by the dynamic interaction between a river domi-
nated upper estuary and an ocean dominated lower bay. This feature, typical for other
large estuaries, and depending on river ïňĆow and geomorphology, smaller estuarine
systems as well, provides us the opportunity to examine how contrasting geographical
settings, physical mixing processes, and ecosystem metabolism in an extensive bay
system can affect CO2 gas exchange.”

— Page 10902 Line 5/6: Great statement. Lead this section with that, and then clearly
state the gaps that contribute to this concern (spatially, not a lot done in Mid-Atlantic;
theoretically, not a lot done in large, fast-moving estuaries), and how the Delaware
Estuary could help address these issues. That would lead well into the review of the
Delaware R. Estuary in the next section.
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This paragraph now leads as follows:

“There is rising concern that global estuarine CO2 degassing flux may be overesti-
mated (Cai, 2011). Although substantial progress has been achieved over the past
decade (Borges and Abril, 2011; Chen et al., 2013; references therein), our knowledge
of CO2 degassing fluxes and their controlling processes in estuaries remains insuffi-
cient. Globally, the majority of past estuarine CO2 studies have been conducted on
small estuarine systems, which typically have high pCO2. (Chen and Borges, 2009;
Cai, 2011; Borges and Abril, 2011). . .”

In addition, I have added the following to address the importance and lack of CO2
studies conducted in the Delaware Estuary:

“. . .Thus, there is limited research on CO2 dynamics in large estuaries or bay systems
with long freshwater residence times in the U.S. Mid-Atlantic coast (most notably the
Chesapeake and Delaware estuaries). Presumably, these large estuaries have lower
pCO2 than small estuaries or bay systems with rapid freshwater transit times (Borges
and Abril, 2011; Cai, 2011). Except for a few recent studies and the pioneering work
of Sharp and Culberson, over the past 30 years there have been few inorganic carbon
studies in the Delaware Estuary (Culberson, 1988; Sharp, 2009). Air-water COÂň2
fluxes, total DIC fluxes, and ongoing evaluations of water acidification have not been
consistently (via annual and seasonal surveys) studied. Overall, there is a lack of data
and pressing need to synthesize and expand global research to larger estuaries. Fur-
thermore, of past estuarine CO2 studies, many lack spatial and seasonal coverage of
surface water pCO2 and air-water CO2 fluxes, making flux estimates highly uncertain.”

— Page 10902 Line 9/10: Later you point out that your manuscript represents the
ïňĄrst carbon work, so it is important here to state that too.

In addition to the added information above about the lack of inorganic carbon studies in
the Delaware Estuary, I have stated that this is the first paper that summarizes a CO2
flux product for the system.
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“In this paper, we report the first seasonal distribution of pCO2 and air-water CO2 flux
in the Delaware Estuary, which was surveyed nine times via various day- to week-long
surveys from 2013 through 2014. We further assess the temperature and biological
effects on pCO2 distributions as well as the overall contribution of internal versus river-
ine sources on CO2 inputs to the estuarine system. Finally, we present a summarized
pCO2 distribution over the study area and provide a conceptual model to illustrate the
control mechanisms on surface water CO2 dynamics in the Delaware Estuary.”

— Page 10902 Line 14: Why does industrialization matter? It is better stated at the
conclusion of the paper, but should be explained here too.

Agreed. Please see above response (Page 10900 Line 24) where I address industrial-
ization and the systems continuous response to a rapidly changing environment (with
historical examples).

— Page 10903 Line 3: Sampling bias implied by lack of Jan/Feb data. This should be
discussed in reorganized methods section.

The lack of winter data definitely limits our seasonal coverage of the system. I’ve tried
my best to address this issue in the new caveats section (please see 4.4 Assumptions
and limitations)

— Methods

— Page 10904 Line 3/4: Sampling method reference for ïňĄltration?

The same sampling technique as in Cai and Wang (1998) and Jiang et al. (2008a)
was used. I have added these references. When collecting water, all bottles were
overflowed for at least twice its volume to minimize contact with the atmosphere.

— Page 10904 Line 5: There is some internal discussion among the carbon community
about use of mercuric chloride as a preservative in low-salinity samples. The challenge
is that the mercury salt impacts alkalinity concentrations at salinities less than 10. The
excess alkalinity from the HgCl2 may have lowered calculated CO2 concentrations,
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and as a result these ïňĆux estimates are likely conservative. Important to point this
out in new assumptions/caveats section.

Please see new 4.4 Assumptions and limitations section. As mentioned earlier, due to
the relatively high TA in the Delaware River, we believe this effect is small.

— Page 10904 Line 26: Starting out this section strong by trying stating these chal-
lenges directly, but need a clearer description or summary of how they were addressed.

To address the challenge of estimating gas transfer velocities, we adopted an estab-
lished method based on wind speed that avoided calculations of zero gas transfer
velocities (k) at low wind speeds (Wanninkhof et al., [2009]).

“Unfortunately, because there have not been many studies on gas transfer velocities in
estuaries, we relied on wind speed dependence to estimate gas exchange rates. . .To
avoid gas transfer velocities of zero in river and inland waters where wind speeds are
typically low, we adopted the gas transfer relationship as proposed by Wanninkhof et
al., (2009). . .”

In order to address the challenge of obtaining spatial and temporal heterogeneity of
pCO2 distributions I added the following details:

“Another challenge to accurately determining air-water CO2 fluxes is obtaining reliable
spatial and temporal pCO2 distributions. Unfortunately, while seasonal distributions of
pCO2 were measured from the mouth of the bay to near zero salinity of the estuary
(north to south), our lack of cross bay transects (east to west) limits our knowledge of
CO2 dynamics in shallow water regions of the estuary. Thus, there is a pressing need
to conduct more research near these shallow water boundaries”

— Page 10906 Line 14: Why split the upper and mid-bay regions? Are these salinity
binned designations, or geographically...?

We noticed rapid changes and range in pCO2 values (salinity as well) across these
regions and felt that if we divided the area into one more region (now upper, mid-, and
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lower bay) that this would allow for a more thorough comparison of pCO2 and CO2
fluxes throughout the system.

Geographically binned designations

“In order to calculate area-averaged CO2 ïňĆux throughout the Delaware Estuary, the
system was divided into ïňĄve geographic zones as deïňĄned by Sharp et al. (2009).
However, due to rapid change in pCO2 values across the mid-bay, this region was split
into an upper and mid-bay zone to allow for a more robust comparison of pCO2 and
CO2 fluxes throughout the system (Fig. 1).”

— Page 10907 Line 24: stating the temperature constant here is redundant “Similar
to the results found in Jiang et al. (2008a), temperature derived constants were lower
than the isochemical seawater constant 0.0423âŮęC−1 determined by Takahashi et
al. (1993)”

This is now replaced with, “Similar to the results found in Jiang et al. (2008a), temper-
ature derived constants were lower than that determined by Takahashi et al. (1993).”

— Page 10907 Line 25-27: Address with other caveats in new section Thus, knowing
the extensively complex nature of estuarine systems, it is important to note that derived
variances in temperature-normalized pCO2 provide only a relatively simple analysis
of seasonal pCO2 ïňĆuctuations due to temperature and biological processes as it
neglects the impact that various physical processes, turbulent forces, and tidal mixing
scenarios have on pCO2 dynamics.

I have addressed this issue and other caveats in new limitations section (please see
4.4 Assumptions and limitations)

— Page10908Line13: Not sure what “stationary” signiïňĄes here. The salinity bin
rationale needs more detail, and more description of how salinity-bins and geographic
bins relate to each other in the data interpretation. — Page 10914 Line 6: Why is the
salinity interval more important than the geographical interval? I’m still confused by the
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salinity binning as described in Section 2.3 and the results here are not helping clarify
why this was important or what it showed.

“Stationary” has been removed as it only brought confusion and is unnecessary. More
information on the difference and importance between salinity and geographic bins has
been added.

“Because salinity gradients down the estuary vary greatly depending on the season,
river discharge, tidal cycle, precipitation, and other circulation processes, salinity-
binned climatologies can provide crucial insight and a different perspective to the
various physical and biological controls behind observed pCO2 distributions that geo-
graphic boundaries may not. In turn, pCO2 values from each survey were constructed
into salinity-binned climatologies (intervals of five units from 0-30) to better isolate and
interpret the thermal versus non-thermal effects on seasonal pCO2 fluctuations.”

— Page 10909 Line 20-22: Clever way of calculating this, but is it the ideal way? What
are the challenges here? Good thing to discuss in caveats section.

Discussed some limitations of using TA and DIC to calculate CO2 in new caveats sec-
tion.

— Page 10910 Line 15: Very interesting comment in the caption for Figure 2 con-
cerning panel C, but panel C is not discussed here. Another important point for the
assumptions and caveats section, especially since CO2SYS was again used for the
calculation of riverine contribution to ïňĆuxes (Section 2.4; Page 10909, line 20-22).

I included part of the caption into the main paper to assist with clarification. In addition,
I have added some discussion about assumptions and limitations in this part to the new
caveats section. I have also noted how the addition of mercuric chloride to low salinity
samples may also result in low calculated then observed CO2 concentrations.

“Because CO2 concentrations do not change linearly during mixing, they were esti-
mated using corresponding DIC and TA mixing values (Fig. 3C) (Jiang et al., 2008a).
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In the chemical model of the CO2SYS, NH3, NH4+, and organic matter contribution to
TA were not included (Cai et al., 1998; Cai et al., 2010b), which were likely high in low
salinity waters. Thus, lower calculated CO2 than observed CO2 was expected as the
observed TA included other acid-base components (Fig. 3C). Another factor that may
contribute to the lower calculated CO2 than observed CO2 could be the use of mer-
curic chloride as a preservative in low salinity samples (S < 10) (Trabalka and Reichle,
2013). Excess alkalinity generated via the dilution of mercuric chloride could contribute
to conservative CO2 flux estimates (Trabalka and Reichle, 2013) although due to the
relatively high TA in the Delaware River we believe this effect is small.”

— Results

— Page 10910 Line 21-25: Why different time ranges for discharge and temperature?
Directly mention differences in the data record.

I felt that the variability in monthly mean water temperatures could be sufficiently cap-
tured within the past 10-year average records. However, due to the irregularity of
weathering and various external events, river discharge fluctuations are much larger
from year to year than monthly mean surface water temperatures. Thus, I believe a
longer 30-year monthly discharge record is necessary to capture the general trend and
range of seasonal river discharge rates.

“Measured surface water temperatures and river discharge during each cruise were
compared with the 10 year (2004-2014) and 30 year (1980-2014) monthly averages for
surface water temperatures and Delaware River discharge rates, respectively.”

— Page 10911 Line 1: Change “The Delaware River discharged...” to “The Delaware
River discharge...”

Now the sentence is, “The Delaware River discharge was greatest during March 2014
and June 2013.”

— Page 10912 Line 10: DifïňĄcult to see any DIC drawdown relative to salinity in
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Figure 2a that would also indicate a bloom... unusual for such a strong bloom. If entire
water column/estuary was affected by the bloom, how does this affect your calculation
of the DIC endmember? Since much of the seasonal cycle you describe relies on this
point, the biological production should be better shown or explained.

Agreed. I have added some research on variability of DIC at the end-members. It ap-
pears that for the most part, precipitation rates are the dominant controlling processes
effecting DIC variability at the river end-member with minimal impact from biological ac-
tivity. This is actually expected as river DIC and TA are largely a dilution of weathering
production by rain (Cai et al., 2008).

“With much of the DIC pool dominated by carbonate and bicarbonate ions, Sharp et al.,
(2009) observed small seasonal influences on DIC concentrations due to temperature
affects and biological activity. They suggest that the majority of variability in DIC in the
upper tidal river of the Delaware Estuary is due to the combined interaction of varying
precipitation rates and prior meteorological conditions. This is expected as river DIC
and TA are largely a dilution of weathering production by rain (Cai et al., 2008). On the
other hand, at higher salinities, any drawdown of DIC relative to salinity is small since
less than 1% of the DIC pool exists as pCO2 (Sharp et al., 2009). Thus, while total DIC
concentrations illustrate some fluctuations in biological activity (which occurred mostly
at the highly productive mid-bay), it is an integrated measurement of freshwater and
seawater mixing (Sharp et al., 2009).”

— Page 10913 Section 3.4: Temporal questions here could be better addressed, such
as deïňĄnition of seasons as well as the temporal averaging for the annual estimates.

Good point. I have defined each season and given annual estimates for each of them.

“The seasonal variation between pCO2 values was largest at low salinities around 0 to
5 with pCO2 values in the summer (June, July, and August) nearly two-fold greater than
those observed in the spring (March) and fall (October and November) seasons (Fig.
7). . .” “In winter (December), pCO2 values were always supersaturated with respect to
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the atmosphere across the entire salinity range.”

“Seasonally, the Delaware Estuary served as a strong CO2 sink (-5.0 ± 6.0 mol-C m-2
yr-1) in the spring, a strong source (4.9 ± 8.1 mol-C m-2 yr-1) in the summer, a weak
source (1.0 ± 2.4 mol-C m-2 yr-1) in the fall, and a strong source (5.7 ± 1.9 mol-C m-2
yr-1) in the winter. While low salinity waters were strong CO2 sources, proportionally
these upper regions (0 ≤ S < 10) were small in comparison to the total estuarine study
area. In turn, their area-averaged contribution (27.1 ± 6.4 mol-C m−2 yr−1) to overall
regional flux (2.4 ± 4.8 mol-C m-2 yr-1) is minor. Thus, the Delaware Estuary as a
whole acts as a relatively weak CO2 source (2.4 ± 4.8 mol-C m-2 yr-1), which is in
great contrast to many river estuaries that are strong CO2 sources (26 ± 21 mol-C m-2
yr-1) (Borges and Abril, 2011).”

— Page 10914 Line 13/14: How does this bloom timing relate to other observations of
the seasonal biological cycles in the Delaware Estuary?

Good question. I’ve added a little more information about historical production data to
the discussion section as shown below.

“For example, in the urban river and turbidity maximum zones (S < 5), high pCO2obs
at 12.7 ◦C in the spring and winter may reflect both river inputs and strong respiratory
CO2 production. Low pCO2obs at 12.7 ◦C during the warmer months likely reflect the
removal of CO2 due to various non-thermal processes. During the warmer months
from May to October, Yoshiyama and Sharp (2006) found elevated nitrite (NO2) con-
centrations in the urban river when nitrification and primary production were highest. In
addition, high NO2 concentrations were observed in the mid-bay in summer when pri-
mary production was maximal (Pennock and Sharp, 1994). Comparably, pCO2mean
at Tobs (changes due to the seasonal thermal cycle) trends were opposite to that of
pCO2obs at 12.7 ◦C with lower than pCO2obs values in the winter and higher than
pCO2obs values in the summer. These opposing signals suggest that increases in
surface water pCO2 due to winter-to-summer warming are partially compensated by
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the reduction of surface water pCO2 due to mixing processes and/or biological removal
of CO2 (Takahashi et al., 2002). Sharp et al. (2009) found that during the March-April
period ammonium (NH4), phosphate (PO4), and silicate (Si) concentrations were heav-
ily depleted in the mid and lower bay regions due to extensive spring blooms. Similarly,
but in the opposite direction, the reduction in surface water pCO2 due to fall-to-winter
cooling is partially compensated by the elevation of surface water pCO2 caused by
various non-thermal processes (Fig. 8).”

— Discussion

— Page 10915 Appendix B could be expanded and would be a worthy inclusion in the
main paper.

It appears that the need for Appendixes is probably unnecessary (similar comments
made by other referee) since space is not a critical issue for Biogeosciences. I have
included both Appendixes back into the main paper and tried to make some expansions
for clarification.

“We further examine the relative importance of the temperature and biological effects in
each salinity interval by calculating the ratio of ∆pCO2temp to ∆pCO2bio (T/B). Using
similar methods as performed in Takahashi et al., (2002), we calculate the thermal
effects on surface water pCO2 in each salinity interval as follows:

∆pCO2thermal = (pCO2mean at Tobs)max - (pCO2mean at Tobs)min (12)

where (pCO2mean at Tobs)max and (pCO2mean at Tobs)min are the maximum and
minimum pCO2mean at Tobs values, respectively. In other words, the thermal ef-
fects on the mean annual pCO2 value is represented by the seasonal amplitude of
(pCO2mean at Tobs) values computed using Eq. (7). Likewise, the non-thermal effects
(biological and mixing processes) on surface water pCO2 were calculated as follows
(Takahashi et al., 2002):

∆pCO2non-thermal = (pCO2obs at 13.3 ◦C)max - (pCO2obs at 13.3 ◦C)min (13)
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where (pCO2obs at 13.3 ◦C)max and (pCO2obs at 12.7 ◦C)min are the maximum and
minimum pCO2obs at 12.7 ◦C values, respectively. Thus, the non-thermal thermal
effects on surface water pCO2 (pCO2obs at 13.3 ◦C) is represented by the seasonal
amplitude of pCO2 values corrected to the annual mean temperature using Eq. (6).
The relative importance of these effects in each salinity interval can be expressed as
the difference between ∆pCO2thermal and ∆pCO2non-thermal (T – B) or the ratio
of ∆pCO2thermal to ∆pCO2non-thermal (T/B). In estuarine regions where thermal
effects on surface water pCO2 exceed non-thermal effects, the (T/B) ratio is greater
than 1 or (T – B) is positive, whereas in areas where non-thermal effects dominate, the
(T/B) ratio is less than 1 or (T – B) is negative.

— Summary and Concluding Remarks

— Page 10919 Line 6: Great statement! Belongs at the top of the paper.

“While this study serves as the ïňĄrst air–water CO2 ïňĆux product in the Delaware
Estuary, there are several limitations.”

Thanks! I have included this in the beginning of the new caveats sections (please see
4.4 Assumptions and limitations)

— Page 10919 Line 6-16: This section needs to be broadly expanded to turn it into
an appropriate assumptions and caveats section (consider it section 4.4). Some of
the points made here could then receive more attention, such as some review of how
nearby marshes might inïňĆuence pCO2

Please see new 4.4 Assumptions and limitations section

— Tables and Figures

— Table 1. Area-weighted average ïňĆux in an additional column.

Taking into consideration responses from both referees, I have made some significant
changes to Table 1 (now Table 2). First, I split the data into two tables. One showing
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area-averaged pCO2 and CO2 flux and the other showing estimated flushing times for
each zone. Second, I have added standard deviation and range for each section to
help strengthen the results.

— Figures1-9. In general, sizing here could be made a little more uniform. In some
cases text sizes were extremely difïňĄcult to read (see especially the legends in Fig-
ures 7 and 9). Increasing the size of Figure 2 might also be able to highlight any
potential DIC drawdown inïňĆuencing biological production.

I agree. I was also a little disappointed in the “readability”of the figures. I will try to
increase figure and text sizes.

— Figure 2. Panel c not discussed in manuscript.

I have included some discussion of Fig. 3C in the manuscript. Please see response
(Page 10910 Line 15).

— Figure 4, 5. ODV stamp required on ïňĄgures generated using that program, as well
as a Schlitzer citation.

I have included ODV stamps and Schlitzer citations to Figures 4 and 5.

— Figure 7. Not sure this is the best way to show differences between temperature and
biological forcing, salinity binning aside. Firstly, the variables need better labels (use T
and B as in Appendix B) and the pCO2(obs) line should be the boldest. I would also
consider plotting T and B as anomalies from pCO2(obs), or showing a vector diagram,
or using color to highlight times when warming, cooling, production, and respiration are
clearly factors so that the interpretation of this ïňĄgure immediately jumps out.

I have made pCO2(obs) line the boldest. To help highlight times of addition (red)
or removal (blue) of CO2, I have inserted colored arrows. Moreover, each arrow is
accompanied with either a T or B symbol to indicate whether this pCO2 change was
governed by thermal or non-thermal processes.
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Please also note the supplement to this comment:
http://www.biogeosciences-discuss.net/12/C5056/2015/bgd-12-C5056-2015-
supplement.pdf

Interactive comment on Biogeosciences Discuss., 12, 10899, 2015.
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NJ to the mouth of the bay as defined in Sharp et al. (2009).
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