

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Interdependencies between temperature and moisture sensitivities of CO₂ emissions in European land ecosystems

C. Gritsch, M. Zimmermann, and S. Zechmeister-Boltenstern

Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria

Received: 2 February 2015 - Accepted: 8 February 2015 - Published: 16 March 2015

Correspondence to: C. Gritsch (christine.gritsch@boku.ac.at)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Paper

Discussion Paper

Discussion Paper

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I4 ►I

→

Back Close

Full Screen / Esc

Printer-friendly Version

Soil respiration is one of the largest terrestrial fluxes of carbon dioxide (CO₂) to the atmosphere. Hence, small changes in soil respiration rates could have large effects on atmospheric CO₂. In order to assess CO₂ emissions from diverse European soils under different land-use and climate (soil moisture and temperature) we conducted a laboratory incubation experiment.

Emission measurements of carbon dioxide under controlled conditions were conducted using soil monoliths of nine sites from the ECLAIRE flux network. Sites are located all over, Europe; from the UK in the west to the Ukraine in the east; Italy in the south to Finland in the north and can be separated according to four land uses (forests, grasslands, arable lands and one peatland). Intact soil cores were incubated in the laboratory at the temperatures 5, 10, 15, 20, and 25 °C in a two factorial design of five soil moisture levels (5, 20, 40, 60, 80 (100) % water filled pore space, WFPS), before analysed for CO₂ fluxes with an automated laboratory incubation measurement system.

Land-use generally had a substantial influence on carbon dioxide fluxes, with the order of CO₂ emission rates of the different land-uses being grassland > peatland > forest/arable land (P < 0.001). CO_2 efflux responded strongly to varying temperature and moisture content with optimum moisture contents for CO₂ emissions between 40-70 % WFPS and a positive relationship between CO₂ emissions and temperature. The relationship between temperature and CO2 emissions could be well described by a Gaussian model. Q₁₀ values ranged between 0.86–10.85 and were negatively related to temperature for most of the moisture contents and sites investigated. At higher temperatures the effect of water and temperature on Q_{10} was very low. In addition, under eeld temperatures Q_{10} varied with moisture contents indicating a stronger prospective effect of rain events in cold areas on temperature sensitivity. We found at both coniferous forest sites a strong increase of the temperature sensitivity at a moisture range between 20-40 % WFPS.

BGD

Paper

Discussion Paper

Discussion Paper

Discussion Paper

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Full Screen / Esc

Printer-friendly Version

Discussion

12, 4433–4464, 2015

Emissions in European land ecosystems

BGD

C. Gritsch et al.

Title Page **Abstract** Introduction Conclusions References **Tables Figures** Back Close

Janssens, 2006). The production of CO₂ in non-calcareous soils originates almost entirely from autotrophic (root respiration) and heterotrophic respiration (microbial decomposition of soil organic matter, SOM). Like all chemical and biochemical reactions, these processes are temperature dependent (Wu et al., 2010) and subject to-water content (Davidson and Janssens, 2006; Suseela et al., 2012). Because root respiration has its own short-term temperature dependence (over periods of more than a few hours root respiration can become relatively insensitive to climate, Atkin et al., 2000) it is necessary to separate autotrophic and heterotrophic soil respiration when investigating the effect of temperature and moisture on ecosystem functioning (Baggs, 2006; Kirschbaum, 2006).

In our study moisture sensitivity (MS) of CO₂ efflux was calculated as the slope of

a polynomial function of second degree. Moisture sensitivities were highest under dry

and wet conditions. In addition we found a positive relationship between MS of CO₂

Most reported impacts of climate change are attributed to warming and/or to shifts in

precipitation patterns (IPCC, 2014) which are known to be key drivers for ecosystem

functioning and biochemical cycles (Larsen et al., 2011). The temperature sensitivity of organic matter decomposition is of considerable eco-physiological importance, espe-

cially in the context of possible climate-change feedback effects (Kirschbaum, 2006).

Disagreement exists if carbon stored belowground is transferred via CO₂ emissions

to the atmosphere by a warming-induced acceleration of its decomposition (positive feedback to climate change) or if increases of plant-derived carbon inputs to soils ex-

ceed increases in decomposition (negative feedback to climate change) (Davidson and

efflux and temperature for both arable lands.

Introduction

The effects of soil temperature on heterotrophic soil respiration are mostly direct and entail a positive correlation between temperature and CO2 emissions as long as

4435

Paper

Printer-friendly Version

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

other factors are not limiting (Ferréa et al., 2012; Meixner, 2006). A widely used term to describe the temperature sensitivity of SOM decomposition is the Q_{10} value which is calculated as the proportional increase in CO₂ efflux for a 10°C increase in temperature (Vanhala et al., 2008). In the context of this paper, we use the term "temperature 5 sensitivity of SOM decomposition" to refer to the short-term temperature dependence of organic matter decomposition as described in Kirschbaum (2006). Other authors reported that land use/cover types, soil moisture content, quality of SOM and temperature itself were found to affect the Q_{10} value of soil CO₂ efflux (Shrestha et al., 2004; Wang and Fang, 2009). Temperature sensitivity of SOM decomposition increases with decreasing SOM lability and therefor increasing recalcitrance of SOM (Conant et al., 2008; Lützow and Kögel-Knabner, 2009; Thornley and Cannell, 2001; Zimmermann and Bird, 2012) due to the higher activation energy associated with the breakdown of recalcitrant substrates that result in a greater temperature sensitivity of decomposition (Davidson and Janssens, 2006; Hartley and Ineson, 2008).

The Arrhenius equation predicts that the Q_{10} of chemical reactions decreases with increasing temperature, as is also commonly observed in nature (Kirschbaum, 1995). The theoretical explanation for this negative correlation is that as temperature increases, there is a declining relative increase in the fraction of molecules with sufficient energy to react (Agren and Wetterstedt, 2007; Davidson and Janssens, 2006). Tuomi et al. (2008) could show that the relationship between temperature and heterotrophic soil respiration can be described best using a Gaussian model.

The effect of soil moisture is more complex. Soil water influences the rate of O₂ supply and thereby determines whether aerobic or anaerobic processes prevail within the soil (Pilegaard et al., 2006; Schindlbacher, 2004). The water content is also important for the substrate supply for soil microorganisms (Meixner, 2006). Highest CO₂ emissions have been reported at intermediate moisture content while at dry and wet conditions CO₂ emissions decline (Schaufler et al., 2010; Suseela et al., 2012). However, if soil moisture becomes limiting, CO₂ fluxes are suppressed irrespective of high soil temperatures (Davidson et al., 1998; Garten et al., 2008).

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page Introduction Abstract Conclusions References

> **Tables Figures**

Close

To describe the effect of moisture on soil microbial activity quadratic functions are common (Moyano et al., 2013; Rodrigo et al., 1997). Moyano et al. (2012) calculated moisture sensitivity as the proportional response of soil microbial respiration to a 0.01 increase in soil moisture of a certain unit. Moisture sensitivity showed highest values at dry conditions decreasing progressively with increasing moisture content.

Janssens and Pilegaard (2003) and Qi et al. (2002) expect a positive relationship between temperature sensitivity and moisture content due to the assumption that the effects of soil temperature and moisture are negatively correlated. Thus, soil moisture would be positively correlated with the temperature sensitivity of soil respiration. While Mäkiranta et al. (2009) and Gaumont-Guay et al. (2006) found an actual positive relationship between temperature sensitivity and soil moisture content in their field measurements, Peng et al. (2009) describes in a review of 52 papers (all field measurements) a negative correlation between Q_{10} values and mean annual precipitation. However, Curiel Yuste et al. (2004) presented a case study of how the seasonal Q_{10} of soil respiration calculated from field measurements can be decoupled from the temperature sensitivity of heterotrophic soil respiration indicating that the large differences in seasonal Q_{10} do not represent differences in the temperature sensitivity of the soil microbial metabolism.

Land use influences the production and consumption of soil CO_2 emissions through vegetation type (Raich and Tufekciogul, 2000), root density, N input (Skiba et al., 1998) and management (Flechard et al., 2005). Peng et al. (2009) even found differences of Q_{10} values between ecosystem types by comparing field measurements.

In field studies the seasonal development of soil temperature and soil moisture usually is reflected in the seasonal course of soil gas emissions (Schaufler et al., 2010). Authors describe difficulties when investigating the influence of a single climate parameter from seasonal field measurements because confounding factors like N deposition, litterfall and nitrogen availability (Davidson et al., 2000; Pilegaard et al., 2006) co-vary or interact. With these confounding factors, measurements under natural field conditions cannot provide an unbiased estimate of the temperature sensitivity of SOM de-

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

i iguico

4

Back

Full Screen / Esc

Printer-friendly Version

Conclusions **Tables**

References **Figures**

Introduction

Abstract

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

composition (Kirschbaum, 1995). For field soil CO₂ fluxes, further complications arise from the contribution of autotrophic soil respiration (Schaufler et al., 2010). Laboratory incubations provide the best and least biased basis for estimating the temperature dependence of SOM decomposition (Kirschbaum, 2006). This assumption can be extended to the assessment of soil moisture dependence of heterotrophic soil respiration (Schaufler et al., 2010). The combined effects of temperature and moisture changes are not necessarily additive (Beierkuhnlein et al., 2011; Larsen et al., 2011; Leuzinger et al., 2011). A two-factorial incubation design provides the opportunity to assess temperature and moisture effects independently and to investigate how the two climatic factors affect each other (Schaufler et al., 2010).

To investigate the combined effects of soil temperature and moisture on heterotrophic soil respiration from different land-use types, intact soil cores were taken from four representative land-use types from the ÉCLAIRE flux network, Europe and incubated in the laboratory under varying soil temperature and moisture levels. The main objectives of this study were (1) to determine the influence of soil temperature and moisture on CO₂ efflux, (2) to calculate temperature and moisture sensitivities of CO₂ efflux coming from different land-use types, (3) to investigate the influence of moisture and landuse on temperature sensitivity of CO₂ efflux, and (4) to investigate the influence of temperature and land-use on moisture sensitivity of CO₂ efflux.

Material and methods

2.1 Study sites

Emission measurements of carbon dioxide, under controlled conditions were conducted using soil monoliths from nine sites from the ÉCLAIRE flux network. Sites are located all over Europe; from the UK in the west to the Ukraine in the east; Italy in the south to Finland in the north. A list of all sites including relevant site information can be found in Table 1. The sites can be separated according to four land-use types (forests,

12, 4433–4464, 2015

BGD

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

grasslands, arable lands and one peatland). Relevant soil characteristics are given in Table 2.

2.2 Sampling and experimental layout

Thirty-three undisturbed soil cores were collected at each of the investigation sites in spring 2012 after weekly-averaged soil temperatures reached 8°C. This was done to provide comparable conditions across sites with respective to sampling conditions. Soil cores were collected at 6 randomly distributed plots of approximately 10 m² within an overall area of approximately 50 m × 50 m at each site. Six soil samples were collected from each 10 m² plot at 6 spots. The upper 6 cm of the soil was collected in stainless steel cylinders (diameter, 7.2 cm; height, 7 cm). Soil cores were capped and sealed in plastic bags to ensure original conditions and shipped in insulated coolers equipped with ice cartridges to our laboratory in Austria, where they were stored at 4°C before being used for CO₂ flux measurements. 3 soil cores were used to determine gravimetric water contents. The gravimetric water content was determined for mineral soil by oven drying at 103 °C for three days to a constant weight. These water contents were assumed to be representative for the rest of the soil samples from the same location, se that different water contents for the gas measurements could be established. The real gravimetric water content for each core was determined after gas flux measurements were completed.

Intact soil cores were incubated in the laboratory for 22 h at the temperatures 5, 10, 15, 20, and 25 °C in a two factorial design of five soil moisture levels (5, 20, 40, 60, 80 % water filled pore space, WFPS), before analysed for CO₂ fluxes. To design the experiment realistically, moisture levels for the peatland site (UK-AMo) were set between 20–100 % WFPS. To reach the required moisture contents, distilled water was either added to too dry samples, or too moist samples were dried at 4 °C until they reached the required moisture content. The lowest possible moisture content was 5 to 15 % WFPS for soil samples when drying at 4 °C. The second variable, soil temperature, was set by controlling the incubator to the desired temperature. Starting with 5 °C.

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

Full Screen / Esc

Printer-friendly Version

the temperature was increased every day in 5 °C steps up to an end temperature of 25 °C. We used 6 replicates for each moisture content in a complete factorial design in which each of the moisture contents was matched with each of the temperatures for all soil cores investigated.

From three remaining cores soil characteristics (Table 2) were analyzed. Ammonium and nitrate was quantified according to Hood-Nowotny et al. (2010) using the ration 2.5 g soil: 25 ml KCL solution. Photometric analyses were conducted with a photometer from PerkinElmer® type 2300 EnSpireTM. Conductivity was measured with a conducting meter 2F191 (WTW) and pH was measured in 0.01 m CaCl₂, using the ratio 10 g soil: 25 mL CaCl₂ solution. The contents of total soil carbon (C_t) and nitrogen (N_t) were determined with elemental analysis (NA-1500 Carlo Erba, Italy; ÖN1998).

2.3 Gas flux measurements

A fully automatic laboratory incubation system was used (Schindlbacher, 2004) to measure CO₂ flux rates. The system analysed CO₂ fluxes with an open flow system using a PP SYSTEMS WMA-2 (Amesbury, MA, USA) infrared CO₂ analyser. Twenty-four modified Kilner jars were placed in a temperature-controlled incubator and connected to the instruments by Teflen tubes. Two of the chambers in the incubator were empty and served as control chambers for the gas measurements. The incubation chamber was flushed constantly with compressed ambient air (1.0 L min⁻¹). The air sampling period in each test chamber was 6 min and of each reference chamber 4 min. A steady state was achieved after approximately 4 min in the test chambers and 2.5 min in the reference chambers (Schindlbacher, 2004). Gas flux rates were calculated based on gas concentration changes over time according to Schindlbacher (2004) and mean values are shown with standard errors (SE).

To examine the temperature and moisture sensitivity of heterotrophic soil respiration, regression analyses were conducted using the equations $R(T) = R_0 \cdot e^{aT + bT^2}$

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ≻l

•

Full Screen / Esc

Back

Printer-friendly Version

Discussion Pape

Abstract

Printer-friendly Version

(Tuomi et al., 2008) for temperature–CO₂ efflux relations and $R(M) = R_0 + aM + bM^2$ for moisture-CO2 efflux relations.

To investigate how moisture content, temperature and land-use influence moisture sensitivity relative CO₂ values (relative to the CO₂ efflux of the lowest moisture content) were calculated to exclude the temperature contribution from the absolute CO₂ values. Moisture sensitivity was calculated as the slope of a polynomial function of second degree which was fitted ever the relative CO2 values. This has been done for each temperature and site investigated.

Statistical analysis

Statistical analyses were performed with R (version 3.0.2) and SigmaPlot (version 11.0). Data were tested for normal distribution with the Shapiro-Wilk normality test and for variance homogeneity with the Constant Variance test. For multiple comparisons, the ANOVA test was performed to analyse significant differences. Significance of all tests was accepted at P levels < 0.05.

Results

Intact soil cores from nine sites of the ÉCLAIRE flux network were incubated in the laboratory at the temperatures 5, 10, 15, 20, and 25°C in a two factorial design of five soil moisture levels (5, 20, 40, 60, 80 (100)% water filled pore space, WFPS) before analysed for CO₂ fluxes. Data were normally distributed (Shapiro Wilk test) and showed homogeneity of variances (Constant Variance test). CO2 emissions differed significantly among sites, temperatures and moisture contents (ANOVA). Comparison of CO₂ fluxes calculated as mean values over all temperature and moisture contents indicate that grassland sites showed the highest CO₂ emissions with 848.39 (±87.81) and 420.70 (±40.68) mg CO₂-C m⁻² h⁻¹ for CH-Po and HU-BU, respectively, followed

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page Introduction

Conclusions References

Tables Figures

Back Close

by the peatland site with 303.25 (\pm 26.16) mg CO₂–C m⁻² h⁻¹ for UK-AMe. Forests and arable sites ranged between 27.60 (\pm 1.69) and 126.00 (\pm 12.43) mg CO₂–C m⁻² h⁻¹.

Figure 1 shows absolute mean values of CO_2 emissions at each temperature and moisture content for all nine sites investigated. Highest CO_2 emissions occurred with intermediate moisture content (40–70 % WFPS) over all sites investigated except NLSpe where no significant moisture optimum could be detected. Additionally, a positive relation between CO_2 emissions and temperature is clearly visible.

3.1 Temperature sensitivity

The relationship between CO_2 emissions and temperature could be well described by a Gaussian model with the equation $R(T) = R_0 \cdot e^{aT+bT^2}$ (Tuomi et al., 2008) for all sites investigated. Table 3 summarizes the fit of the Gaussian model for all sites investigated with all forest sites and the peatland site ranging between an R^2 of 0.990 and 1; grasslands between an R^2 of 0.871 and 1; and arable lands between an R^2 of 0.639 and 1. The temperature course of individual soil cores exhibited a good fit to the Gaussian model. As a result mean values of CO_2 fluxes for each of the five temperatures per moisture content and site were calculated to fit the equation. When taking all samples R^2 ranged between 0.019 (UA-Pet; 6 % WFPS) and 0.958 (NL-Spe; 30 % WFPS) due to the variability between soil cores.

Based on the Gaussian model temperature sensitivities were calculated as Q_{10} values from 5–15 °C for each moisture content and site investigated. Table 3 shows Q_{10} at the lowest and highest temperatures investigated, 5 and 15 °C. Q_{10} values of almost every moisture content and site showed that temperature sensitivity was negatively correlated to temperature (Q_{10} values were decreasing from 5 to 15 °C) for all sites investigated except one arable land (UA-Pet) which showed no distinct relationship between temperature sensitivity and temperature. Also IT-BFo at 26 % WFPS, NL-Spe at 18 % WFPS showed no relationship to temperature and CH-Po at 5 % WFPS and UK-AMo at 83 % WFPS showed a small increase of Q_{10} values with temperature. Additionally,

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I4

4

Back

Full Screen / Esc

Printer-friendly Version

Q₁₀ at 15 °C showed that temperature sensitivity converged towards 2 as temperature was increasing. There was no positive or negative relationship of temperature sensitivities to increasing moisture content. However, the variability between Q_{10} values of different moisture contents (highest Q_{10} value minus lowest Q_{10} value illustrated in Table 3 for 5 and 15 °C) at a certain temperature decreases with increasing temperature. Figure 2 shows Q₁₀ values calculated from 5–15 °C for each of the 5 moisture contents investigated at the sites IT-IFo, NL-Spe, FI-Hyy, and UK-AMo. At both the coniferous forest sites (NL-Spe, FI-Hyy) results show a strong increase of temperature sensitivity at lower temperatures at a moisture range between 20–40 % WFPS (Q_{10} (5°C) = 10.85 at NL-Spe, Q_{10} (5 °C) = 7.78 at FI-Hyy) which can also be seen in Table 3.

Moisture sensitivity

Moisture sensitivity (MS) was calculated as the slope of a quadratic function fitted over relative CO₂ values (to exclude the temperature contribution). Figure 3a shows relative values calculated for a deciduous forest in Italy (IT-IFo) and Fig. 3b shows the quadratic function fitted ever, relative CO₂ emissions for the same forest at 5°C. Table 4 shows the fit of the regression analysis (polynomial function of second degree) to relative CO₂ values with R^2 ranging between 0.445–0.984 for forest sites; 0.840–0.927 for grassland and peatland sites; and 0.337-0.980 for arable sites. Using the quadratic function, optimum moisture contents were calculated when moisture sensitivities reached zero which equals highest CO₂ values. Optimum moisture contents (MC_{Opt}) were ranging between 41-54% WFPS for forest sites except for the coniferous site NL-Spe (38-74% WFPS) which showed no significant moisture trend (Fig. 1); 53-59% WFPS for the grassland site CH-Po; 44–54 % WFPS for the peatland site UK_AMo; and 43–54 % WFPS for the arable sites (Table 4). Relative values could not be calculated for HU-Bu because CO₂ values at lowest moisture contents were missing due to technical problems. Figure 4 shows calculated moisture sensitivities at all 5 temperatures investigated for a grassland site (CH-Po) and one arable land investigated (UA-Pet). Results showed that moisture sensitivities were highest at very wet and dry conditions. Addi**BGD**

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Full Screen / Esc

Printer-friendly Version

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

tionally moisture sensitivities of CO₂ fluxes coming from arable lands showed a positive relationship to temperature which can be also seen in Table 4, namely that moisture sensitivities at 5 % WFPS increased with temperature for both arable lands, FR-Gri and UA-Pet.

Discussion

Land-use generally had a substantial influence on carbon dioxide, fluxes, with the order of CO₂ emission rates of the different land-use being grassland > peatland > forest/arable land (P < 0.001), which is in line with observations by Schaufler et al. (2010); Raich and Tufekciogul (2000); Ambus and Robertson (2006). Heterotrophic soil respiration responded strongly to varying temperature and moisture content (Ferréa et al., 2012; Gasche and Papen, 1999; Papen and Butterbach-Bahl, 1999; Schindlbacher, 2004; Suseela et al., 2012; Wu et al., 2010). Optimum moisture contents for CO₂ emissions occurred with intermediate moisture content (Bowden et al., 1998; Schaufler et al., 2010; Suseela et al., 2012) ever all sites investigated (except for the coniferous forest site NL-Spe where no significant moisture optimum could be detected). Possible explanations for a decline of CO₂ emissions at dry and wet conditions according to literature are (1) limiting diffusivity of air at wet conditions, and (2) osmotic stress of soil microbial communities at dry conditions (Smith et al., 2003), which means a thinner film of water coats, the soil particles, slowing the diffusion of labile substrates and reducing the activity of exo-enzymes needed for the decomposition of organic matter (Stark and Firestone, 1995). Additionally, results showed a positive correlation between CO2 emissions and temperature (Davidson et al., 1998; Luo et al., 2012; Wang et al., 2006; Wu et al., 2010). In agreement with other studies the relationship between CO₂ emissions and temperature could be well described by a Gaussian model with the equation (Tuomi et al., 2008; Vanhala et al., 2008).

4444

Discussion Paper

12, 4433-4464, 2015

Emissions in European land ecosystems

BGD

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables

Figures

Q₁₀ values were calculated based on the Gaussian model equation for the whole temperature range between 5-15°C for each moisture content and site investigated and were ranging between 0.86-10.85, which is in agreement with the estimation (2.0-6.3) of European and North American forest ecosystems (Davidson et al., 1998; Peng et al., 2009) and Janssens and Pilegaard (2003) who found Q_{10} values up to 16, and also with results for temperate grasslands by Wu et al. (2010). Our findings confirm results from previous studies (Kirschbaum, 1995; Lloyd and Taylor, 1994; Luo et al., 2001) that temperature sensitivity is negatively correlated to temperature which was true for most of the moisture contents and sites investigated (except one arable land UA Pet and IT-BFo at 26% WFPS, NL-Spe at 18% WFPS; CH-Po at 5% WFPS and UK-AMo at 83 % WFPS). Additionally, temperature sensitivity converged towards 2 as temperature increased for all moisture contents at all sites investigated. We found that precipitation can influence temperature sensitivity of CO₂ efflux due to the decrease of the variability between Q_{10} values of different moisture contents (highest Q_{10} value minus lowest Q_{10} value) at each moisture point with increasing temperature. At low temperatures Q_{10} values vary more between dry and wet conditions. At higher temperatures the effect of water and temperature on Q_{10} is very low as Q_{10} converges towards 2. Additionally to the Gaussian model equation we applied the Arrhenius function $(R(T) = R_0 \cdot e^{aT^{-1}})$ to our results, which showed similar trends but unrealistic Q_{10} values at temperatures below 8 °C (Q_{10} ranging between 20 and 2000).

Our results showed that no distinct relationship (neither positive nor negative) could be found between temperature sensitivity and moisture content at any of the investigated sites. Janssens and Pilegaard (2003) and Qi et al. (2002) expected a positive relationship between temperature sensitivity and moisture content due to the assumption that the effects of soil temperature and moisture are negatively correlated. Thus, soil moisture would be positively correlated with the temperature sensitivity of soil respiration. While Mäkiranta et al. (2009) and Gaumont-Guay et al. (2006) found an actual

Paper

Discussion Paper

Discussion Paper

Discussion

Paper

12, 4433-4464, 2015

BGD

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

. .9....

I₫

Full Screen / Esc

Printer-friendly Version

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

positive relationship between temperature sensitivity and soil moisture content in their field measurements. Peng et al. (2009) described in a review of 52 papers a negative correlation between Q_{10} values and mean annual precipitation. However, all these conclusions were achieved through seasonal field measurements at which derivation of the influence of a single climate parameter is difficult, because of incorporated seasonal changes in root biomass, litter inputs, microbial population, nitrogen availability and other seasonally fluctuating processes and conditions, and thus reflect community responses, which may differ from temperature and moisture responses of the respiratory processes (Davidson et al., 2000; Janssens and Pilegaard, 2003; Pilegaard et al., 2006) and can even be partly decoupled from actual soil temperature and moisture (Curiel Yuste et al., 2004; Schaufler et al., 2010). Also most of the studies did not separate autotrophic from heterotrophic soil respiration. Curiel Yuste et al. (2004) presented a case study of how the seasonal Q_{10} of soil respiration can be decoupled from the temperature sensitivity of soil respiration indicating that the large differences in seasonal Q_{10} do not represent differences in the temperature sensitivity of the soil metabolism. Kirschbaum (2006) and Lützow and Kögel-Knabner (2009) considered that laboratory incubations provide the best and least biased basis for estimating the temperature sensitivity of organic matter decomposition. This assumption can be extended to the assessment of soil moisture sensitivity of organic matter decomposition (Schaufler et al., 2010). Another laboratory incubation study by Schindlbacher et al. (2007) showed that different soil moisture contents of trenched and control plots affected rates of heterotrophic soil respiration, but did not affect the temperature sensitivity of heterotrophic respiration which is in agreement with our results.

We found at both the coniferous forest sites a strong increase of the temperature sensitivity at a moisture range between 20–40 % WFPS. At coniferous sites the amount of recalcitrant material is higher (Landsberg and Gower, 1997; Wang et al., 2006) than at all other sites investigated. Temperature sensitivity of soil respiration increases with substrate recalcitrance as long as environmental constraints are not limiting decomposition (Conant et al., 2008; Hartley and Ineson, 2008; Karhu et al., 2010; Lützow and

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Conclusions References

Tables

Figures

Introduction

12, 4433–4464, 2015

BGD

Emissions in European land ecosystems

C. Gritsch et al.

Title Page Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc Printer-friendly Version

Interactive Discussion

Kögel-Knabner, 2009; Zimmermann and Bird, 2012) because of the higher number of steps needed for decomposition of more complex substrates. Also according to kinetic theory the temperature sensitivity of decomposition increases with increasing molecular complexity of the substrate due to higher activation energy of recalcitrant substrate (Hartley and Ineson, 2008; Vanhala et al., 2008). We hypothesize that a moisture range between 20-40 % WFPS promotes decomposition of recalcitrant material in coniferous forests. Not the absolute amount of carbon dioxide increases at this moisture range as NL-Spe shows no significant CO₂ maximum at any moisture content and Hyytiälä has its maximum between 40-70 % WFPS. Results rather state that within this moisture range recalcitrant material is being favourably decomposed to easy degradable material. Initially discriminative differences in Q_{10} values between moisture contents evened out with increasing temperature as Q_{10} values converged towards 2 for all moisture contents.

We couldn't see any obvious trends of Q_{10} values among land uses which is in agreement with Wu et al. (2010). Peng et al. (2009) found differences of Q_{10} values among ecosystem types but did compare field measurements and different temperatures which both result in different Q_{10} values (Curiel Yuste et al., 2004; Janssens and Pilegaard, 2003; Kirschbaum, 1995; Lloyd and Taylor, 1994; Luo et al., 2001; Schindlbacher et al., 2009).

Moisture sensitivity

In our study moisture sensitivity was calculated as the slope of a polynomial function of second degree. The use of quadratic functions for the description of the relationship between heterotrophic soil respiration and moisture content is widely common (Moyano et al., 2013; Rodrigo et al., 1997). Our results show that significant moisture effects (P < 0.05) occurred only at higher temperatures which is in agreement with other studies (Teepe et al., 2004; Wu et al., 2010). To calculate the moisture sensitivity without temperature influence, we took relative CO₂ values for regression analysis to exclude the temperature contribution.

Conclusions

Tables

Abstract

Introduction

References

Figures

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Many articles can be found on the topic of temperature sensitivity. However, much fewer articles calculate moisture sensitivities. Our results indicate that moisture sensitivity is highest at very dry and wet conditions. Results by Moyano et al. (2012) indicate that moisture sensitivity is negatively correlated to soil moisture. However, Moy-5 ano et al. (2012) calculated moisture sensitivity as the proportional response of soil microbial respiration to a 0.01 increase in soil moisture of a certain unit. As CO₂ values decline after a moisture optimum this mathematical approach results in moisture sensitivities showing highest values at dry conditions decreasing progressively with increasing moisture content until converging to a certain value. Our approach to calculate moisture sensitivities indicates that moisture sensitivities decrease until reaching the moisture optimum and increase again after that (negative values after reaching the optimum moisture content (MCont) only indicate a decrease of CO2 emissions with increasing moisture content; positive values indicate an increase of CO2 emissions with increasing moisture content). Therefor, we can show that changing moisture content has a higher impact on CO₂ emissions at dry and wet conditions than at intermediate moisture conditions.

No relationship between moisture sensitivity and temperature could be found for forests, grasslands and peatlands. However, moisture sensitivity was positively correlated with temperature for both arable lands, which both showed the highest bulk densities of all sites (> 1.00 g m⁻³; Table 2). Moyano et al. (2012) found that bulk density influences moisture sensitivity but did not investigate the influence of temperature. Also tillage can change physical protection of organic matter, diffusivity as well as improve the exchange with deeper soil layers (Davidson and Janssens, 2006). There are several characteristics in which arable lands differ from other ecosystems with respect to carbon-cycle responses to climate change. Cropland systems are entirely managed and the soil-vegetation system can be reset regularly through harvest and agricultural management such as tillage, manure/residue management and irrigation. Consequently, the response to climate is highly modulated by human intervention both immediately and over longer periods (Reichstein et al., 2013).

4448

12, 4433–4464, 2015

BGD

Emissions in

European land

ecosystems

C. Gritsch et al.

Title Page

Our experiments showed that under cold temperatures temperature sensitivities of CO_2 emission were highest which means that in cold areas (e.g. northern latitudes or mountain areas) warming will have a larger impact on CO_2 emissions. In addition Q_{10} values varied strongly under cold temperatures with moisture content indicating an effect of rain events in cold areas on temperature sensitivity.

Moisture sensitivity was prominent under dry or wet conditions, which indicates that increased moisture in dry areas or drying of wet areas will largely promote CO_2 emissions. Moisture sensitivities of CO_2 emissions from cropland soils were positively related to temperature; hence irrigation of arable lands might have a higher impact on CO_2 emissions in warmer regions in the South of Europe than in the North.

Acknowledgements. The authors thank their colleagues Florian Egger, Christian Holtermann, Angelica Patterson and Barbara Kitzler for continuing support and discussion.

References

- Ågren, G. I. and Wetterstedt, J. Å. M.: What determines the temperature response of soil organic matter decomposition?, Soil Biol. Biochem., 39, 1794–1798, 2007.
 - Ambus, P. and Robertson, G. P.: The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan, Biogeochemistry, 79, 315–337, 2006.
- Atkin, O. K., Edwards, E. J., and Loveys, B. R.: Response of root respiration to changes in temperature and its relevance to global warming, New Phytol., 147, 141–154, 2000.
- Baggs, E. M.: Partitioning the components of soil respiration: a research challenge, Plant Soil, 284, 1–5, 2006.
- Beierkuhnlein, C., Thiel, D., Jentsch, A., Willner, E., and Kreyling, J.: Ecotypes of European grass species respond differently to warming and extreme drought, J. Ecol., 99, 703–713, 2011.

Discussion

Paper | Di

Discussion Paper

Discussion Paper

PrinterDiscussion Paper

Back

© (i)

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

•

Full Screen / Esc

Printer-friendly Version

- BGD
 - 12, 4433-4464, 2015
 - Emissions in European land ecosystems
 - C. Gritsch et al.
 - Title Page

 Abstract Introduction

 Conclusions References

 Tables Figures

 I◀ ▶I
 - Back Close
 - Full Screen / Esc
 - Printer-friendly Version
 - Interactive Discussion
 - © BY

- Bowden, R. D., Newkirk, K. M., and Rullo, G. M.: Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions, Soil Biol. Biochem., 30, 1591–1597, 1998.
- Conant, R. T., Drijber, R. A., Haddix, M. L., Parton, W. J., Paul, E. A., Plante, A. F., Six, J., and Steinweg, J. M.: Sensitivity of organic matter decomposition to warming varies with its quality, Glob. Change Biol., 14, 868–877, 2008.
- Curiel Yuste, J., Janssens, I. A., Carrara, A., and Ceulemans, R.: Annual Q_{10} of soil respiration reflects plant phenological patterns as well as temperature sensitivity, Glob. Change Biol., 10, 161–169, 2004.
- Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.
 - Davidson, E. A., Belk, E., and Boone, R. D.: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Glob. Change Biol., 4, 217–227, 1998.
- Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., and Veldkamp, E.: Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils, Biol. Science, 50, 667–680, 2000.
- Ferréa, C., Zenone, T., Comolli, R., and Seufert, G.: Estimating heterotrophic and autotrophic soil respiration in a semi-natural forest of Lombardy, Italy, Pedobiologia, 55, 285–294, 2012.
 - Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., and Fuhrer, J.: Bi-directional soil/atmosphere N₂O exchange over two mown grassland systems with contrasting management practices, Glob. Change Biol., 11, 2114–2127, 2005.
- Garten, C. T., Classen, A. T., and Norby, R. J.: Soil moisture surpasses elevated CO₂ and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment, Plant Soil, 319, 85–94, 2008.
 - Gasche, R. and Papen, H.: A 3 year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany, 2, NO and NO₂ fluxes, J. Geophys. Res.-Atmos., 104, 18505–18520, 1999.
 - Gaumont-Guay, D., Black, T. A., Griffis, T. J., Barr, A. G., Jassal, R. S., and Nesic, Z.: Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand, Agr. Forest Meteorol., 140, 220–235, 2006.

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◀ ▶I

Full Screen / Esc

Close

Printer-friendly Version

Back

- Hartley, I. P. and Ineson, P.: Substrate quality and the temperature sensitivity of soil organic matter decomposition, Soil Biol. Biochem., 40, 1567–1574, 2008.
- Hood-Nowotny, R., Umana, N. H.-N., Inselbacher, E., Oswald-Lachouani, P., and Wanek, W.: Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil, Soil Sci. Soc. Am. J., 74, 1018–1027, 2010.
- Janssens, I. A. and Pilegaard, K. I. M.: Large seasonal changes in Q_{10} of soil respiration in a beech forest, Glob. Change Biol., 9, 911–918, 2003.
- Karhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., and Liski, J.: Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles, Soil Biol. Biochem., 42, 72–82, 2010.
- Kirschbaum, M.: The temperature dependence of organic-matter decomposition still a topic of debate, Soil Biol. Biochem., 38, 2510–2518, 2006.
- Kirschbaum, M. U. F.: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage, Soil Biol. Biochem., 27, 753–760, 1995.
- Landsberg, J. J. and Gower, S. T.: Applications of physiological ecology to forest management, Physiol. Ecol., ISBN-9780080527383, 161–184, 1997.
- Larsen, K. S., Andresen, L. C., Beier, C., Jonasson, S., Albert, K. R., Ambus, P. E. R., Arndal, M. F., Carter, M. S., Christensen, S., Holmstrup, M., Ibrom, A., Kongstad, J., Van Der Linden, L., Maraldo, K., Michelsen, A., Mikkelsen, T. N., Pilegaard, K. I. M., Priemé, A., Ro-Poulsen, H., Schmidt, I. K., Selsted, M. B., and Stevnbak, K.: Reduced N cycling in response to elevated CO₂, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments, Glob. Change Biol., 17, 1884–1899, 2011.
- Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Korner, C.: Do global change experiments overestimate impacts on terrestrial ecosystems?, Trends Ecol. Evol., 26, 236–241, 2011.
- Lloyd, J. and Taylor, J.: On the temperature dependence of soil respiration, Funct. Ecol., 8, 315–323, 1994.
- Luo, G. J., Brüggemann, N., Wolf, B., Gasche, R., Grote, R., and Butterbach-Bahl, K.: Decadal variability of soil CO₂, NO, N₂O, and CH₄ fluxes at the Höglwald Forest, Germany, Biogeosciences, 9, 1741–1763, doi:10.5194/bg-9-1741-2012, 2012.
- Luo, Y., Wan, S., Hui, D., and Wallace, L. L.: Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 413, 622–625, 2001.

Discussion Paper

Lützow, M. and Kögel-Knabner, I.: Temperature sensitivity of soil organic matter decomposition – what do we know?, Biol. Fert. Soils, 46, 1–15, 2009.

Mäkiranta, P., Laiho, R., Fritze, H., Hytönen, J., Laine, J., and Minkkinen, K.: Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity, Soil Biol. Biochem., 41, 695–703, 2009.

Meixner, F. X.: Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land, in: Dryland Ecohydrology, Springer, Netherlands, 233–255, 2006.

Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, A., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke, J. A., Thomsen, I. K., and Chenu, C.: The moisture response of soil heterotrophic respiration: interaction with soil properties, Biogeosciences, 9, 1173–1182, doi:10.5194/bq-9-1173-2012, 2012.

Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models, Soil Biol. Biochem., 59, 72–85, 2013.

Papen, H. and Butterbach-Bahl, K.: A 3 year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany, 1, N₂O emissions, J. Geophys. Res., 104, 18487, doi:10.1029/1999JD900293, 1999.

Peng, S., Piao, S., Wang, T., Sun, J., and Shen, Z.: Temperature sensitivity of soil respiration in different ecosystems in China, Soil Biol. Biochem., 41, 1008–1014, 2009.

Pilegaard, K., Skiba, U., Ambus, P., Beier, C., Brüggemann, N., Butterbach-Bahl, K., Dick, J., Dorsey, J., Duyzer, J., and Gallagher, M.: Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N₂O), Biogeosciences, 3, 651–661, doi:10.5194/bg-3-651-2006, 2006.

Qi, Y., Xu, M., and Wu, J.: Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises, Ecol. Model., 153, 131–142, 2002.

Raich, J. and Tufekciogul, A.: Vegetation and soil respiration: correlations and controls, Biogeochemistry, 48, 71–90, 2000.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, 2013.

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

•

Close

Back

Full Screen / Esc

Printer-friendly Version

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

- Printer-friendly Version

Interactive Discussion

Full Screen / Esc

- Rodrigo, A., Recous, S., Neel, C., and Mary, B.: Modelling temperature and moisture effects on C–N transformations in soils: comparison of nine models, Ecol. Model., 102, 325–339, 1997.
- Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., and Zechmeister-Boltenstern, S.: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature, Eur. J. Soil Sci., 61, 683–696, 2010.
- Schindlbacher, A.: Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils, J. Geophys. Res., 109, D17302, doi:10.1029/2004JD004590, 2004.
- Schindlbacher, A., Zechmeister-Boltenstern, S., Kitzler, B., and Jandl, R.: Experimental forest soil warming: response of autotrophic and heterotrophic soil respiration to a short-term 10°C temperature rise, Plant Soil, 303, 323–330, 2007.
- Schindlbacher, A., Zechmeister-Boltenstern, S., and Jandl, R.: Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally?, Glob. Change Biol., 15, 901–913, 2009.
- Shrestha, B. M., Sitaula, B. K., Singh, B. R., and Bajracharya, R. M.: Fluxes of CO₂ and CH₄ in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate addition, Nutr. Cycl. Agroecosys., 68, 155–164, 2004.
- Skiba, U. M., Sheppard, L. J., Macdonald, J., and Fowler, D.: Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland, Atmos. Environ., 32, 3311–3320, 1998.
- Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.: Exchange of green-house gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 54, 779–791, 2003.
- Stark, J. M. and Firestone, M. K.: Mechanisms for soil moisture effects on activity of nitrifying bacteria, Appl. Environ. Microbiol., 61, 218–221, 1995.
 - Suseela, V., Conant, R. T., Wallenstein, M. D., and Dukes, J. S.: Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment, Glob. Change Biol., 18, 336–348, 2012.
- Teepe, R., Vor, A., Beese, F., and Ludwig, B.: Emissions of N₂O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing, Eur. J. Soil Sci., 55, 357–365, 2004.

- Thornley, J. H. M. and Cannell, M. G. R.: Soil Carbon Storage Response to Temperature: an Hypothesis, Ann. Bot.-London, 87, 591–598, 2001.
- Tuomi, M., Vanhala, P., Karhu, K., Fritze, H., and Liski, J.: Heterotrophic soil respiration comparison of different models describing its temperature dependence, Ecol. Model., 211, 182–190, 2008.
- Vanhala, P., Karhu, K., Tuomi, M., Björklöf, K., Fritze, H., and Liski, J.: Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone, Soil Biol. Biochem., 40, 1758–1764, 2008.
- Wang, C., Yang, J., and Zhang, Q.: Soil respiration in six temperate forests in China, Glob. Change Biol., 12, 2103–2114, 2006.
- Wang, W. and Fang, J.: Soil respiration and human effects on global grasslands, Global Planet. Change, 67, 20–28, 2009.
- Wu, X., Yao, Z., Brüggemann, N., Shen, Z. Y., Wolf, B., Dannenmann, M., Zheng, X., and Butterbach-Bahl, K.: Effects of soil moisture and temperature on CO₂ and CH₄ soil—atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China, Soil Biol. Biochem., 42, 773–787, 2010.
- Zimmermann, M. and Bird, M. I.: Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition, Geoderma, 187–188, 8–15, 2012.

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢

Back

Full Screen / Esc

Printer-friendly Version

Table 1. Sampling sites with information on ecosystem, geographical location, climate type, long-term mean annual temperature and rainfall.

Country/ Site Code	Site	Ecosystem	Vegetation	Elevation [m] annual soil temperature [°C]	Average annual air temperature [°C]	Average annual preciptiation [mm]	Average	Location type	Climate
Italy IT-IFo	Ispra	Forest	Quercus robur (dominant), Robinia pseudoacacia, Alnus glutinosa, Pinus rigida	210	11.2	11.6	1140	45°48′47.9″ N; 8°38′21.0″ E	Continental Climate with warm, humid summers and dryer winters
Italy IT-BFo	Bosco Fontana	Forest	Quercus robur, Hornbeam	36	13	12.6	1154	45°41′18.4″ N; 9°36′40.5″ E	Continental Climate with warm, humid summers and dryer winters
Netherlands NL-Spe	Speulderbos	Forest	Pseudotsuga menziesii	52	9.4	9.7	925	52°15′8.1″ N; 5°41′25.8″ E	Temperate atlantic
Finland FI-Hyy	Hyytiäla	Forest	Pinus sylvestris	181	3.5	3	700	61°51′0″ N; 24°16′60″ E	Boreal
Switzerland CH-Po	Posieux	Grassland	Lolium perenne, Trifolium repens, Taraxacum officinalis	641	10.7	8.9	1075	46°46′4.1″ N; 7°6′28.1″ E	Temperate mixed
Hungary HU-Bu	Bugac	Grassland	Cynodonti Festucetum pseudovinae	111	11	10.4	562	46.7° N, 19.6° E	Pannonian
United Kingdom UK-AMo	Auchencorth Moss	Peatland	Calluna vulgaris, Juncus effusus	270	7.6	7.7	1000	55°47′36″ N; 3°14′41″ E	Atlantic Northern
France FR-Gri	Grignon	Arable	rotation: maize – wheat – rapeseed – wheat	125	11.3	11.5	600	48°51′0″ N; 1°57′5.4″ E	Oceanic climate with moderate continental influence
Ukraine UA-Pet	Petrodolinskoye	Arable	Solánum lycopérsicum	66	13	10.1	464	46°27′22.1″ N; 30°20′9.9″ E	Moderately continental

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

1.4

4

Full Screen / Esc

Printer-friendly Version

4

12, 4433–4464, 2015

BGD

Emissions in European land ecosystems

C. Gritsch et al.

Title Page Abstract Introduction

Conclusions References

Tables Figures

Close

Back

Printer-friendly Version

Table 2. Soil characteristics of the 9 sampling sites. Indicated soil textures are loamy sand (LS), sandy loam (SL), sandy clay (SC), Silt loam (SiL), and clay (C).

Landuse	Site	Ammonium $[NH_4^+ - N \mu g g^{-1}]$	Nitrate $[NO_3^ N \mu g g^{-1}]$	Bulk densitiy [g cm ⁻³]	Conductivity [μS]	рН	Texture	C/N
Forest	IT-IFo	38.0	21.0	0.46	37.0	3.4	LS	19.6
Forest	IT-BFo	32.5	26.0	0.68	53.4	4.0	SL	17.8
Forest	NL-Spe	13.9	17.5	0.89	34.8	2.9	LS	32.7
Forest	FI-Hyy	23.0	17.5	0.61	20.9	3.1	LS	42.1
Grassland	CH-Po	5.7	28.2	0.77	100.4	6.7	SC	12.9
Grassland	HU-Bu	79.3	155.3	0.70	91.1	6.9	LS	13.0
Peatland	UK-AMo	42.9	29.1	0.12	38.9	3.2	organic	23.7
Arable	FR-Gri	1.9	21.5	1.11	65.5	6.8	SiĽ	13.3
Arable	UA-Pet	1.7	20.0	0.99	29.3	6.5	С	16.4

Table 3. Regression analysis of temperature relationship of heterotrophic soil respiration at all moisture contents (MC; shown in real values) investigated (Gaussian model equation); determination coefficient R^2 , Standard Error of Estimate, significance level P, and number of observations n (mean values ever 6 replicants); Q_{10} values at 5 and 15 °C for all moisture contents and all sites investigated; and variability (Var) at 5 and 15 °C. Variability was calculated as the highest Q_{10} value at a certain temperature minus the lowest Q_{10} value at a certain temperature $Q_{10Max} - Q_{10Min}$.

Site	MC [% WFPS]	n	R^2	Р	Q ₁₀ (5 °C)	Q ₁₀ (15°C)	Var(5°C)	Var(15°C)
IT-IFo	13	5	1.00	< 0.001	3.8	2.7	1.1	0.6
IT-IFo	27	5	0.99	0.008	3.9	2.0		
IT-IFo	44	5	1.00	0.001	4.4	2.5		
IT-IFo	65	5	1.00	< 0.001	3.9	2.3		
IT-IFo	84	5	0.99	0.007	4.9	2.6		
IT-BFo	13	4	1.00	0.026	3.8	2.8	2.1	0.9
IT-BFo	26	4	1.00	0.004	2.9	3.0		
IT-BFo	46	4	1.00	0.021	3.3	3.1		
IT-BFo	65	4	0.99	0.089	4.3	2.7		
IT-BFo	84	4	1.00	0.005	2.3	2.2		
NL-Spe	18	5	0.99	0.010	3.7	3.8	7.5	1.3
NL-Spe	30	5	0.99	0.006	10.9	4.3		
NL-Spe	42	5	0.99	0.007	8.6	3.9		
NL-Spe	55	5	1.00	0.003	3.4	3.0		
NL-Spe	74	5	1.00	< 0.001	4.3	3.0		
FI-Hyy	15	5	1.00	0.005	2.9	2.7	4.9	0.3
FI-Hyy	22	5	0.99	0.009	7.8	2.5		
FI-Hyy	45	5	0.99	0.009	3.1	2.4		
FI-Hyy	65	5	1.00	< 0.001	3.5	2.5		
FI-Hyy	83	5	1.00	< 0.001	3.5	2.7		
CH-Po	5	5	1.00	0.001	2.1	2.3	1.3	1.2
CH-Po	18	5	1.00	0.002	3.1	2.1		

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Printer-friendly Version

Interactive Discussion

Discussion Paper

12, 4433-4464, 2015

BGD

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction

Conclusions References

> Tables **Figures**

I₫ Þ١

Close Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 3. Continued.

Site	MC [% WFPS]	п	R^2	Р	Q ₁₀ (5 °C)	Q ₁₀ (15°C)	Var(5°C)	Var(15°C)
CH-Po	45	5	0.95	0.046	3.1	1.7		
CH-Po	59	5	0.89	0.105	2.9	1.2		
CH-Po	86	5	0.87	0.129	3.4	1.1		
HU-Bu	5	3	na	na	na	na	2.1	0.5
HU-Bu	19	5	0.99	0.007	4.9	2.5		
HU-Bu	36	5	0.96	0.037	5.2	2.5		
HU-Bu	57	5	0.96	0.041	5.3	2.3		
HU-Bu	77	5	0.98	0.020	3.2	2.0		
UK-AMo	22	5	1.00	< 0.001	3.8	2.8	1.5	0.6
UK-AMo	41	5	1.00	< 0.001	2.8	2.5		
UK-AMo	59	5	1.00	< 0.001	3.4	2.5		
UK-AMo	83	5	0.99	0.010	2.3	2.9		
UK-AMo	101	5	1.00	0.003	3.3	2.3		
FR-Gri	5	5	0.94	0.062	1.3	1.1	3.5	1.6
FR-Gri	21	5	1.00	< 0.001	3.2	2.7		
FR-Gri	40	5	0.99	0.013	4.8	1.6		
FR-Gri	60	5	0.99	0.007	4.5	1.8		
FR-Gri	80	5	0.96	0.036	3.5	1.8		
UA-Pet	6	5	0.64	0.361	1.1	0.9	1.1	1.5
UA-Pet	19	5	0.98	0.017	1.6	1.9		
UA-Pet	40	5	0.99	0.006	2.0	2.4		
UA-Pet	63	5	1.00	< 0.001	2.2	2.3		
UA-Pet	83	5	1.00	0.005	1.7	1.8		

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 4. Regression analysis of moisture relationship of heterotrophic soil respiration at all temperatures investigated (Polynomial second degree); determination coefficient R^2 , Standard Error of Estimate, significance level P, and number of observations n (mean values over 6 replicants; relative values). Calculated moisture content (MC_{Opt}), where CO₂ emissions show their optimum and calculated moisture sensitivity (MS) at 5 % WFPS.

IT-IFo 5 5 0.66 0.338 49 3 IT-IFo 10 5 0.80 0.202 41 3 IT-IFo 15 5 0.99 0.007 43 3 IT-IFo 20 5 0.98 0.016 45 3	MS (5 %WFPS) 3.6 3.1 3.7 3.0 3.3 2.4
IT-IFo 10 5 0.80 0.202 41 3 IT-IFo 15 5 0.99 0.007 43 3 IT-IFo 20 5 0.98 0.016 45 3	5.1 5.7 5.0 5.3
IT-IFo 15 5 0.99 0.007 43 3 IT-IFo 20 5 0.98 0.016 45 3	3.7 3.0 3.3
IT-IFo 20 5 0.98 0.016 45 3	3.0 3.3
	3
IT-IF0 25 5 0.90 0.102 42 2	
11110 20 0.00 0.102 42 2	2.4
IT-BFo 5 5 0.87 0.132 52 13	4.4
IT-BFo 10 5 0.80 0.199 50 8	.6
IT-BFo 15 5 0.70 0.304 50 1	1.5
IT-BFo 20 5 0.85 0.148 49 1	1.8
IT-BFo 25 5	•
NL-Spe 5 5 0.89 0.106 74 0	.2
NL-Spe 10 5 0.89 0.106 75 3	3.7
NL-Spe 15 5 0.45 0.555 46 –	-4.5
NL-Spe 20 5 0.76 0.241 38 -	-2.5
NL-Spe 25 5 0.90 0.101 45 –	-2.2
FI-Hyy 5 5 0.87 0.134 54 9	.3
FI-Hyy 10 5 0.93 0.069 53 2	0.3
FI-Hyy 15 5 0.98 0.018 52 2	0.6
FI-Hyy 20 5 0.83 0.174 53 1s	5.2
	5.6
CH-Po 5 5 0.91 0.091 57 5	5.4
CH-Po 10 5 0.89 0.106 59 1:	27.7
CH-Po 15 5 0.93 0.074 58 9	6.9

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page Abstract Introduction Conclusions References Tables Figures I◀ ▶I

Back Close
Full Screen / Esc

Printer-friendly Version

Discussion Paper

Full Screen / Esc

Interactive Discussion

Table 4. Continued.

Site	<i>T</i> [°C]	n	R^2	Р	MC _{Opt} [%WFPS]	MS (5 %WFPS)
CH-Po	20	5	0.90	0.096	55	121.2
CH-Po	25	5	0.84	0.160	53	79.0
HU-Bu	5	_	_	-	_	_
HU-Bu	10	_	_	-	_	_
HU-Bu	15	_	_	-	_	_
HU-Bu	20	_	_	-	_	_
HU-Bu	25	_	_	-	_	_
UK-AMo	5	5	0.95	0.046	52	3.2
UK-AMo	10	5	0.93	0.066	54	3.7
UK-AMo	15	5	0.93	0.073	51	2.5
UK-AMo	20	5	0.92	0.080	44	1.6
UK-AMo	25	5	0.88	0.119	46	1.7
FR-Gri	5	5	0.34	0.663	52	3.2
FR-Gri	10	5	0.64	0.362	51	7.8
FR-Gri	15	5	0.70	0.302	49	16.2
FR-Gri	20	5	0.78	0.224	51	28.3
FR-Gri	25	5	0.74	0.265	49	27.7
UA-Pet	5	5	0.66	0.338	54	-1.8
UA-Pet	10	5	0.48	0.523	292	-0.3
UA-Pet	15	5	0.25	0.751	43	0.6
UA-Pet	20	5	0.88	0.118	49	5.0
UA-Pet	25	5	0.98	0.020	50	9.9

BGD

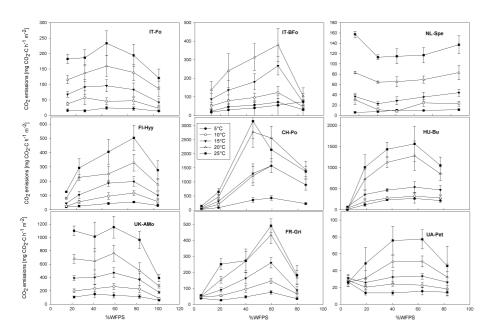
12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract Introduction


Conclusions References

> Tables **Figures**

I₫ Þ١

Close Back

Printer-friendly Version

Figure 1. Mean CO₂ flux rates measured at 5 temperatures and 5 moistures contents (real values) from the 9 study sites, starting with the deciduous forests (IT-IFo, IT-BFo) followed by the coniferous forests (NL-Spe, FI-Hyy), grasslands (CH-Po, HU-Bu), the peatland site (UK-AMo) and the arable lands (FR-Gri, UA-Pet).

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

Figures

I₫

Full Screen / Esc

Printer-friendly Version

Printer-friendly Version

Interactive Discussion

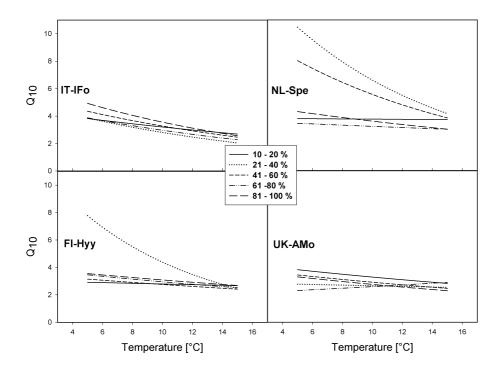


Figure 2. Calculated Q_{10} values of CO_2 efflux derived from the Gaussian model as a function of temperature for each of the investigated moisture contents here shown for the deciduous forest IT-IFo, the 2 coniferous forests NL-Spe and FI-Hyy and the peatland site UK-AMo.

BGD

12, 4433-4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

12, 4433–4464, 2015

BGD

Emissions in European land ecosystems

C. Gritsch et al.

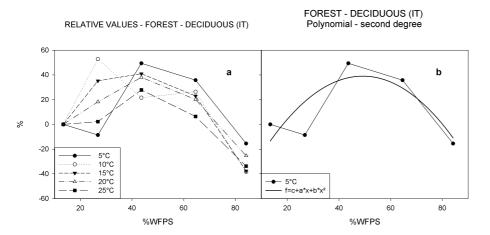
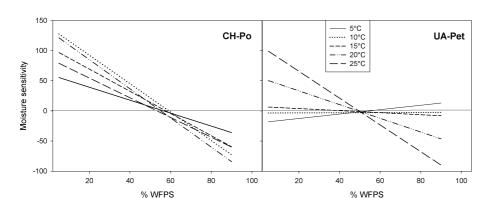



Figure 3. (a) Relative CO₂ flux rates measured at 5 temperatures and 5 moistures contents (real values) from the deciduous forest IT-IFo; (b) Polynomial, function of second degree fitted of the moisture relationship of relative CO₂ values at 5 °C.

Figure 4. Illustrated moisture sensitivity (MS) of relative CO_2 efflux in relations to soil moisture content. MS was calculated as the slope of a polynomial function of second degree for each of the 5 temperatures investigated here shown for the grassland site CH-Po and the arable site UA-Pet. Cutpoint on x axis indicates optimum moisture content for CO_2 emissions at respective temperature. Negative values of moisture sensitivity after reaching the optimum moisture content (MC_{Opt}) indicate a decrease of CO_2 emissions with increasing moisture content; positive values indicate an increase of CO_2 emissions with increasing moisture content.

BGD

12, 4433–4464, 2015

Emissions in European land ecosystems

C. Gritsch et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

4

Full Screen / Esc

Printer-friendly Version

