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Abstract

Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equi-
librium with the surrounding water, and parameters such as water temperature and
salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioap-
atite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish5

(Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of
the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall
faunal composition and the isotopic composition of bony fish are consistent with marine
conditions, unusually low δ18Op values were measured for the hybodont shark Astera-
canthus. These values are also lower compared to previously published data from older10

European Jurassic localities. Additional analyses on material from Solothurn (Kim-
meridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for
Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-
influenced isotopic composition for this shark that is classically considered as a marine
genus. While reproduction in freshwater or brackish realms is established for other hy-15

bodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions
into lower salinity waters can be linked to the age of the deposits and correspond to
an ecological adaptation, most likely driven by the Kimmeridgian transgression and
by the competition of the primitive shark Asteracanthus with the rapidly diversifying
neoselachians (modern sharks).20

1 Introduction

Chondrichthyan remains are common in the Mesozoic fossil record of Western Europe,
and in many different paleoenvironmental settings (e.g. lagoonal, open marine, reduced
salinity) (Duffin and Thies, 1997; Müller, 2011; Underwood, 2002). Their teeth are pre-
dominantly composed of fluor-apatite, the most resistant variety of apatite (Vennemann25

et al., 2001) and are continuously shed and replaced, except in chimaeras (Cappetta,
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2012; Stahl, 1999). In addition to their abundance, their mechanical and chemical re-
sistance make them an ideal material for stable isotope analyses. They mineralise in
isotopic equilibrium with the surrounding water, hence their primary oxygen isotopic
composition (δ18Op) reflects that of the ambient water at a given temperature when
they formed (Kolodny et al., 1983; Longinelli and Nuti, 1973). This makes them a valu-5

able paleoenvironmental proxy, used in numerous studies (e.g. Kocsis et al., 2007;
Lécuyer et al., 2003; Vennemann et al., 2001).

This research is based on fossil material – mainly chondrichthyans – found be-
tween 2000 and 2011 during controlled palaeontological excavations conducted by
the Paléontologie A16 team (PAL A16, canton of Jura, NW Switzerland). All fossilif-10

erous sites are located in the vicinity of Porrentruy (Ajoie district) and are related to
the building of the Transjurane highway (A16). The Ajoie region is part of the Tabular
Jura (Marty et al., 2007), mainly consisting of subhorizontal Mesozoic (Oxfordian and
Kimmeridgian) strata.

During the Kimmeridgian, the Ajoie region was a shallow-marine carbonate platform15

at a palaeolatitude of about 30◦ N (Marty, 2008) and surrounded by the Central and
London–Brabant massifs, the Tethys and the Paris Basin (Fig. 1). The paleoclimate
was semi-arid with high seasonality (Philippe et al., 2010; Waite et al., 2013). The
platform had a very complex morphology due to the basement structure and sea-level
changes occurred during its depositional history. These processes induced several20

episodes of emersion suggested by numerous dinosaur footprints (Marty, 2008; Marty
et al., 2007) and hardgrounds, followed by erosion and reworking. Lateral changes in
water depth potentially occurred at a very local scale (Jank et al., 2006; Waite et al.,
2013). The record of ammonites typical of the boreal and tethyan domains show that
the study area was influenced by water masses from both the Tethys and Paris Basin25

(Colombié and Rameil, 2007; Comment et al., 2011).
Based on phosphate oxygen isotope analyses obtained from this Late Jurassic chon-

drichthyan fauna, this study proposes answers to the following questions: (1) Is there
any unexpected isotopic composition for the associated marine fauna recorded in Por-

4
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rentruy? (2) Are the Porrentruy isotopic data unique so far, or comparable to other
European localities? (3) What do we learn about the paleoecology of the hybodont
shark Asteracanthus based on the isotopic composition?

2 Material and methods

The chondrichthyan dental material of the PAL A16 collection is rich and diverse, com-5

prising more than 2000 fossils. Sharks and rays (subclass Elasmobranchii) are repre-
sented by the so-called “primitive sharks” or hybodonts (order Hybodontiformes), mod-
ern sharks (superorder Selachimorpha) and rays (suborder Rhinobatoidei). Chimaeras
(superorder Holocephali, order Chimaeriformes) are also present. The investigated ma-
terial comes from the Kimmeridgian Reuchenette Formation and more precisely from10

the latest Early Kimmeridgian (Cymodoce ammonite zone, Banné Marls) and up to the
Late Kimmeridgian (Eudoxus ammonite zone, lower Virgula Marls) (Fig. 2). Except for
Asteracanthus and Ischyodus remains that are of a considerable size and were col-
lected directly on the field, the material consists predominantly of microfossils resulting
from sediment sieving.15

The oxygen isotopic composition of phosphate from biogenic apatite was measured
on rays, the chimaeroid Ischyodus and the hybodonts Asteracanthus and Hybodus.
Bioapatite of bony fish Pycnodontiformes was also analysed for comparison. Strati-
graphically, samples were selected from different beds in order to cover all units of
the studied section (Fig. 2). Additionally, Kimmeridgian material from the neighbouring20

Natural History Museum of Solothurn was analysed for comparison.
The best mineralised part (enamel s.l., i.e. enamel and enameloid) was isolated from

Pycnodontiformes and Asteracanthus teeth (Fig. 3). From eleven of the Asteracanthus
teeth, dentine was analysed in parallel to examine any isotopic differences between
the tissues. In the case of chimaeroid dental plates the densest parts were selected.25

For the very small material (1–5 mm) – as in rays and Hybodus – several isolated

5
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teeth were analysed together as bulk samples of enamel and dentine. The visibly most
unaltered and dentine-free teeth were selected.

From the Porrentruy material, 38 samples of Asteracanthus teeth (27 enamel and 11
dentine), 7 of Ischyodus dental plates and 13 of Pycnodontiformes teeth were analysed;
in addition, 4 bulk samples for Hybodus and 3 for rays were investigated. From the5

Solothurn material, enamel of 9 Asteracanthus and 3 Pycnodontiformes teeth were
added for comparison. Altogether, a total of 77 analyses were made.

The sample powders were pre-treated following the procedure of Koch et al. (1997),
and the PO3−

4 ion of the apatite was separated and precipitated as silver-phosphate
(e.g. Kocsis, 2011; O’Neil et al., 1994). NBS–120c phosphorite reference material was10

processed in parallel with the samples. Generally, triplicates of each sample were
analysed together with two in-house phosphate standards (LK–2L: 12.1 ‰ and LK–
3L: 17.9 ‰) to correct the results. The samples were analysed in a high-temperature
conversion elemental analyser (TC/EA) coupled to a Finningan MAT Delta Plus XL
mass spectrometer at the University of Lausanne after the method described in Ven-15

nemann et al. (2002). The data are expressed in permil and reported as δ18Op on the
VSMOW scale. The overall analytical error is 0.3 ‰, however individual samples often
reproduced better. For the NBS–120c an average value of 21.3±0.3 ‰ (n = 6) was
obtained.

The oxygen isotopic composition of unaltered fish teeth is function of both, water tem-20

perature and isotopic composition of ambient water during tooth growth (Kolodny et al.,
1983; Lécuyer et al., 2013; Longinelli and Nuti, 1973). Here below is the phosphate
fractionation equation of Lécuyer et al. (2013) used for calculating the temperature of
sea water:

T (◦C) = 117.4(±9.5)−4.50(±0.43)×
(
δ18OPO4

−δ18OH2O

)
. (1)25

For marine fauna, the global, average seawater isotopic composition can be used as
an approximation that is assumed to be equal to −1 ‰ for Late Jurassic seawater (e.g.
Shackleton and Kennet, 1975).

6
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3 Results

For the Porrentruy samples, the bioapatite oxygen isotope compositions have a range
between 17.0 and 21.9 ‰, with an overall average value of 18.8±0.9 ‰ (n = 65). These
values can be grouped into three ranges: (1) values of bulk samples (Hybodus and
rays) and Ischyodus that are between 18.5 and 19.8 ‰ (average 19.2±0.4 ‰, n = 14);5

(2) enamel values of Asteracanthus, averaging 18.1±0.6 ‰ (17.0–19.7 ‰, n = 27) and
(3) those of Pycnodontiformes with an average of 19.8±1.0 ‰ (18.2–21.9 ‰, n = 13).
Dentine values of Asteracanthus average 18.9±0.8 ‰ (17.7–20.0 ‰, n = 11), indicating
a statistically significant difference to the equivalent enamel samples collected on the
same teeth (student t test: t(20) = 2.98, p < 0.01).10

For the Solothurn comparison material, an average of 18.7±0.9 ‰ (n = 9) and 19.4±
0.7 ‰ (n = 3) was obtained for Asteracanthus and Pycnodontiformes teeth respectively.

All the data are available and detailed in the Supplement.

4 Associated fauna and palaeoecology

The associated fauna of the Porrentruy material is characteristic of a coastal marine15

environment, with notably a rich marine bivalve assemblage, sea urchins and over 600
ammonites (Comment et al., 2011; Marty and Billon-Bruyat, 2009). Among vertebrates,
coastal marine turtles (Plesiochelyidae) (Anquetin et al., 2014; Püntener et al., 2014)
and crocodilians (Thalattosuchia) are common (Schaefer, 2012).

During the Late Jurassic, modern sharks were expanding and diversifying, while20

hybodonts were declining and restricted more to environments of reduced salinity,
or even freshwater, where modern sharks were less represented (Kriwet and Klug,
2008; Rees and Underwood, 2008; Underwood, 2002). In our assemblage however,
hybodonts and rays clearly dominate (86 % of the dental material). This suggests con-
ditions still favourable to hybodonts in Porrentruy, unlike in neighbouring localities from25

southern Germany (Nusplingen, Solnhofen) or France (Cerin), where hybodonts are

7
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scarce or absent. However, our chondrichthyan assemblage is similar to that in north-
ern Germany (e.g. in Oker) (Duffin and Thies, 1997; Thies, 1995), also dominated by
hybodonts and rays and associated to conditions of reduced salinity (Underwood and
Rees, 2002; Underwood and Ward, 2004; Underwood, 2002, 2004). The chimaeroid
Ischyodus must also be regarded as one of the most abundant chondrichthyans, even5

if representing only 3 % of the remains. Indeed, its non-renewable and less resistant
dentition and the relatively low amount of dental elements per individual (six dental
plates against hundreds to thousands of teeth for sharks and rays) (Stahl, 1999) easily
lead to an underestimate of its abundance. Interestingly, the few modern sharks of our
assemblage (Heterodontiformes, Squatiniformes and Scyliorhinidae) are all thought to10

have had a benthic lifestyle, supporting a well-oxygenated bottom water, which is also
indicated by the invertebrate fauna.

5 Discussion

5.1 δ18Op values from the Porrentruy material: palaeoecological indications

Values of bulk samples (Hybodus and rays) and Ischyodus have a similar range and15

could reflect either a similar habitat for these groups, or a similar diagenetic alteration.
Since they correspond to dentine-bearing samples – i.e. tissues that are more easily
altered than enamel – and regarding that the dentine samples of Asteracanthus tend
to similar values, all these specimens could have been affected by alteration during
diagenesis.20

In contrast, the isotopic compositions of Pycnodontiformes and Asteracanthus
enamel samples are considered not to have been altered, because of their distinct
range in values, their original histological structure when examined with a microscope
and the generally good preservation potential for enamel/enameloid when not re-
crystallised (e.g. Kohn and Cerling, 2002). The significant differences in δ18Op val-25

8

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/1/2015/bgd-12-1-2015-print.pdf
http://www.biogeosciences-discuss.net/12/1/2015/bgd-12-1-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
fischer
Durchstreichen

fischer
Eingefügter Text

fischer
Notiz
references for that fact?

fischer
Hervorheben
So far nothing has been said about conditions of reduced salinity in Porrentruy. Anticipating of the interpretation.

fischer
Notiz
references for the lifestyles of these sharks?

fischer
Hervorheben
That kind of durophagous  lifestyle can be also assumed for Astercanthus with its clutching-crushing-grinding-dentition.Cappetta, H. (2012): Chondrichthyes - Mesozoic and Cenozoic Elasmobranchii: Teeth. - In: Schultze, H.-P. (eds): Handbook of Paleoichthyology 3E.  Verlag Dr. Friedrich Pfeil,  München: 512 p.	Cuny, G. (2012): Freshwater hybodont sharks in Early Cretaceous ecosystems : A review. - In:  Godefroit, P. (eds):  Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems. Indiana University Press, Bloomington, p. 518-529.

fischer
Hervorheben
What kind of distinct range is this between Astercanthus dentine (17.7-20 permil) and Asteracanthus enameloid (17.0-19.7 permil)? What points to alteration in the first one? The wider range?

fischer
Notiz
You examined cathodoluminescence on the material or how do you decided whats altered and whats not? What means original and how do you detect it?

fischer
Notiz
The stability of enameloid has been repeatedly questioned:e.g.:Kohn, M. J., Schoeninger, M. J. & Barker, W. W. (1999): Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63 (18): p. 2737-2747.	Sharp, Z. D., Atudorei, V. & Furrer, H. (2000): The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. American Journal of Science 300: p. 222-237.	Zazzo, A., Lécuyer, C. & Mariotti, A. (2004): Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta 68 (1): p. 1-12.



BGD
12, 1–23, 2015

Freshwater-
influenced δ18Op for

the shark
Asteracanthus

L. Leuzinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ues of Asteracanthus and Pycnodontiformes enamel from Porrentruy (Student t test,
t(38) = 6.36, p < 0.01) hence indicate different living environments (Fig. 4).

Water temperatures calculated with Eq. (1) from enamel δ18Op of Pycnodontiformes
and Asteracanthus differ by 7.4 ◦C (1.6 ‰). The two taxa are found in the same de-
posits and such a temperature difference is not plausible neither laterally, nor vertically,5

given that the water depth did not exceed a few tens of meters in the study area (Waite
et al., 2013). Most of the Pycnodontiformes δ18Op values are compatible with the ma-
rine conditions indicated by the associated fauna and the resulting average sea surface
temperature is also consistent (23.9±4.4 ◦C, n = 13). The good state of preservation
of Pycnodontiformes remains and the presence of several mandibles and tooth palates10

suggest that the material was not transported over long distances. For the lowest Py-
cnodontiformes values however, an influence of reduced salinity cannot be excluded
since some of those bony fish are known to be euryhaline (Kocsis et al., 2009; Poyato-
Ariza, 2005).

The preservation of the fine ornamentation of Asteracanthus teeth also suggests15

that they lived in the vicinity, even if the isotopic composition of Asteracanthus is signif-
icantly different from that of Pycnodontiformes. Moreover, the record of Asteracanthus
fin spines and several teeth still preserved with their root (see Fig. 3) – an indication
of post-mortem embedding rather than tooth loss in hybodonts (Underwood and Cum-
baa, 2010) – also precludes transport. Yet, temperatures obtained with Asteracanthus20

enamel samples using the Eq. (1) are higher (average 31.3±2.9 ◦C, n = 27). This could
imply a habitat closer to the sea surface but would then also suggest a possible influ-
ence of more evaporative conditions on the oxygen isotope composition of the water
with δ18Ow values higher than the global average used above (i.e. −1 ‰). For example,
0 ‰ as proposed by Lécuyer et al. (2003) for low latitude marginal seas with high evap-25

oration rates. However, such a change towards higher δ18O values of water would also
raise the temperature calculated to an unrealistic average of 35.8 ◦C, with a maximum
reaching 41.0 ◦C. A more consistent explanation is to consider Asteracanthus as living

9
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in a freshwater-influenced environment, i.e. an environment with a lower δ18Ow value
(Fig. 4).

5.2 Shark nurseries in reduced salinity environments for Asteracanthus?

Assessing the tooth replacement rate of an extinct shark is impossible. However, Aster-
acanthus possesses a crushing dentition composed of a rather small amount of large5

teeth (see Rees and Underwood, 2008); hence, a relatively slow replacement rate is
likely, compared to other sharks with numerous slender, cuspidated teeth adapted to
clutch and tear their prey. This implies that the δ18Op values of Asteracanthus poten-
tially reflect an average of the surrounding water parameters over a relatively longer
period. The isotopically lower signature of Asteracanthus, compared to a classical ma-10

rine signal, corresponds either to a constant brackish living environment or to a marine
environment with regular excursions into fresh- or brackish waters (or vice-versa). As
Asteracanthus remains were not re-sedimented nor transported over long distances, it
can be proposed that they partly inhabited the marine realm, as indicated by the asso-
ciated fauna, but not continuously. Lateral salinity changes are readily caused by rainy15

winters coupled with an irregular morphology of the platform, creating marked depth
differences and lagoons (Waite et al., 2013) where the proportion of meteoric water
could have been important. However, excursions into more distant brackish/freshwater
realms can also be considered.

While more than 130 middle-sized to large Asteracanthus teeth were found in the20

Porrentruy excavation sites, only 4 very small-scaled (< 1 cm) and badly preserved
teeth were discovered among hundreds of kilograms of sediment sieved and picked,
which suggests a different living environment during the juvenile stage, and excursions
of adult individuals for reproduction purposes. The record of hundreds of submillimetric
fish remains such as dermal denticles exclude a taphonomic bias linked to the size of25

the teeth. Asteracanthus juveniles could have spent the first period of their life in estu-
aries, rivers or lagoons, sheltered from predators such as crocodilians or the bony fish

10
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Caturus. Extant euryhaline bull shark females (Carcharhinus leucas) and their juveniles
are known to have a similar behaviour (Jenson, 1976; Pillans et al., 2005), as is the
case for some small hybodont sharks (Fischer et al., 2011; Klug et al., 2010). Middle-
sized teeth potentially represent young individuals that had already colonised the ma-
rine realm. Asteracanthus individuals that have reached a considerable size were then5

a less easy prey and also able to feed on the large ammonites and bivalves living in
the marine realm of the platform. The location of this environment with reduced salinity
remains open, especially since some sharks are known to migrate across very long dis-
tances, e.g. the blacktip shark (Castro, 1996). Several chondrichthyan taxa recorded in
Porrentruy are potential indicators of reduced salinity: the chimaeroid genus Ischyodus10

was reported in Jurassic freshwater deposits of Russia (Popov and Shapovalov, 2007)
and can therefore not be considered as strictly marine. The modern shark Palaeoscyl-
lium, relatively scarce but present in our fossil assemblage, is the oldest modern shark
known to tolerate freshwater, so far only in the Cretaceous though (Sweetman and
Underwood, 2006).15

In Fig. 5, the oxygen isotopic compositions of Pycnodontiformes and Asteracanthus
enamel samples measured in this study are shown for the Porrentruy and Solothurn lo-
calities and compared to previously published data from others – mostly older – Swiss,
French, and British Jurassic localities (Billon-Bruyat et al., 2005; Dromart et al., 2003;
Lécuyer et al., 2003). All data given in this Figure are available in the Supplement. Gen-20

erally, the Porrentruy Asteracanthus δ18Op values – especially in the Late Kimmerid-
gian – are lower than in other studies, while Pycnodontiformes values are comparable.
The material from Solothurn (Kimmeridgian) – a locality with similar palaeoenvironment
but under Tethyan influence only – shows some affinities with the Porrentruy material,
for instance with unusually low values for several Asteracanthus. The Porrentruy Aster-25

acanthus δ18Op values tend to get lower in the Upper Kimmeridgian but this trend must
be considered cautiously due to the relatively small amount of Lower Kimmeridgian
samples.

11
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This global comparison suggests that the especially low δ18Op values measured
for Asteracanthus here are likely linked to the age of the deposits. Interestingly, a tol-
erance of Asteracanthus to salinity variations has briefly been mentioned by Kriwet
(2000), based on its presence in the younger deposits of the Purbeck and Wealden
group in southern England (Woodward, 1895). Asteracanthus remains from freshwater5

deposits are also recorded in the Upper Cretaceous of Sudan (Buffetaut et al., 1990).
The present data indicate an adaptation to a wider salinity range through time and in the
Kimmeridgian already, maybe in response to the spectacular diversification of modern
sharks in the marine realms of Western Europe at the end of the Jurassic (Cuny and
Benton, 1999). Also, the shallow-water platform of NW Switzerland may have some-10

how represented a shelter for the hybodonts, still dominating the shark fauna around
Porrentruy. The high sea-level in the Kimmeridgian (Hardenbol et al., 1998) could have
opened new niches in shallow-water environments that was influenced by freshwater
run-offs. These new living places could have provided shelter and nursery ground for
Asteracanthus.15

This is the first isotopic evidence of a euryhaline ecology for the large, durophagous
shark Asteracanthus, classically considered as marine for more than 150 years (Agas-
siz, 1843; Rees and Underwood, 2006, 2008).

6 Concluding remarks

1. The δ18Op values of enamel measured in the hybodont shark Asteracanthus are20

too low to reflect fully marine conditions.

2. Comparisons with geochemical data of older European Jurassic localities con-
firm the unusual character of the Asteracanthus isotopic compositions measured
in the material from this study. This new freshwater-influenced isotopic composi-
tion of Asteracanthus is likely linked to a change in its ecology through geologic25

time, as suggested by similar results obtained with Kimmeridgian material from

12
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Solothurn. The Kimmeridgian transgression (i.e. opening of new shallow-water
niches) and probably competing stress from quickly diversifying neoselachians
could have played an important role in the adaptation to brackish and freshwater
realms.

3. A predominantly marine ecology is proposed for Asteracanthus, combined with5

regular excursions into freshwater/brackish environments for reproduction pur-
poses, and a brackish to freshwater habitat during early ontogenetic life stages.

The Supplement related to this article is available online at
doi:10.5194/bgd-12-1-2015-supplement.
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Figure 1. Geographical position of Porrentruy (    ) and other European sites () of previously 2 

published studies and providing geochemical data compared in Fig. 5. Paleogeographical map 3 

of the shaded square area (Late Kimmeridgian, modified from Comment et al. 2011). CH = 4 

Switzerland, paleolatitude of Porrentruy = ~ 30°N. Emerged land is outlined, darker grey 5 

corresponds to deeper water. 6 

  7 

) and other European sites (•) of previously
published studies and providing geochemical data compared in Fig. 5. Paleogeographical
map of the shaded square area (Late Kimmeridgian, modified from Comment et al., 2011).
CH=Switzerland, paleolatitude of Porrentruy =∼30◦ N. Emerged land is outlined, darker grey
corresponds to deeper water.
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Figure 2. Simplified stratigraphic profile of the Porrentruy area with third order orbital cycle
and section yielding the studied chondrichthyan material. Numbers indicate geological age
in millions of years. SB = sequence boundary, ts = transgressive surface, mfs = maximum
flooding surface.
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Figure 3. Fossil material from the study site. (a) Tooth of Asteracanthus in occlusal (top) and
lateral view, with root preserved (specimen SCR010-303). (b) Left prearticular bone of Pycn-
odontiformes with teeth (specimen SCR010-1204). Photographs by PAL A16.
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Figure 4. δ18Op values of Porrentruy fish samples and related water temperature (T ) result-
ing from Eq. (1). Hybodus, rays, Ischyodus as well as most Asteracanthus dentine samples
are considered diagenetically altered. Arrows show effect of varying δ18Ow in Eq. (1) from
classical seawater value (−1 ‰). Realistic and consistent temperatures for Asteracanthus and
Pycnodontiformes imply the influence of respectively distinct paleoenvironments.
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Figure 5. Comparison of δ18Op values (average, standard deviation, end members) of Pyc-
nodontiformes and Asteracanthus enamel samples from Porrentruy, Solothurn and other Eu-
ropean localities through time. The approximate geographical position of previously studied
localities (Dromart et al., 2003; Lécuyer et al., 2003; Billon-Bruyat et al., 2005) is shown in
Fig. 1. Detailed localities are available in the Supplement.
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