
1 

 

The role of snow cover affecting boreal-arctic soil 1 

freeze/thaw and carbon dynamics 2 

 3 

Yonghong Yi1,*, John S. Kimball1, Michael A. Rawlins2, Mahta Moghaddam3, 4 

Eugénie S. Euskirchen4 
5 

[1] Numerical Terradynamic Simulation Group (NTSG), College of Forestry and Conservation, 6 

The University of Montana, MT, USA, 59812
 7 

[2] Department of Geosciences, University of Massachusetts, Amherst MA, USA 8 

[3] Department of Electrical Engineering, University of Southern California, CA, USA 9 

[4] Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA 10 

Correspondence to:  Yonghong Yi (yonghong.yi@ntsg.umt.edu) 11 

 12 

Abstract  13 

Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the 14 

global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization 15 

and decomposition under projected global warming. Satellite data records spanning the past 3 16 

decades indicate widespread reductions (~0.8-1.3 days decade
-1

) in the mean annual snow cover 17 

extent and frozen season duration across the pan-Arctic domain, coincident with regional climate 18 

warming trends. How the soil carbon pool responds to these changes will have a large impact on 19 

regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology 20 

model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity 21 

of soil organic carbon stocks and soil decomposition to climate warming and changes in snow 22 

cover conditions in the Pan-Arctic region over the past three decades (1982-2010). Our results 23 

indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend 24 

of 6.6±12.0 (SD) cm, corresponding with widespread warming. Warming promotes vegetation 25 

growth and soil heterotrophic respiration particularly within surface soil layers (≤0.2 m). The 26 

model simulations also show that seasonal snow cover has a large impact on soil temperatures, 27 
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whereby increases in snow cover promote deeper (≥0.5 m) soil layer warming and soil 1 

respiration, while inhibiting soil decomposition from surface (≤0.2 m) soil layers, especially in 2 

colder climate zones (mean annual T≤-10 °C). Our results demonstrate the important control of 3 

snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and 4 

the necessity of considering both warming, and changing precipitation and snow cover regimes 5 

in characterizing permafrost soil carbon dynamics.  6 

 7 

1   Introduction  8 

The northern high latitudes contain about twice as much carbon as the global atmosphere, largely 9 

stored in permafrost and seasonally thawed soil active layers (Hugelius et al., 2014). This vast 10 

carbon pool is vulnerable to accelerated losses through mobilization and decomposition under 11 

regional warming, with potentially large global carbon and climate impacts (Koven et al., 2011; 12 

Schaefer et al., 2011; Schuur et al., 2015). The northern high latitudes have experienced a much 13 

stronger warming rate than the global average over recent decades (Serreze and Francis, 2006), 14 

and this warming trend is projected to continue, along with a general increase in surface 15 

precipitation (Solomon et al., 2007). A better understanding of how the northern soil carbon pool 16 

responds to these changes is critical to predict climate feedbacks and associated impacts to 17 

northern ecosystems.   18 

Potential vulnerability of soil carbon to mobilization and accelerated decomposition with climate 19 

warming, particularly in permafrost areas, will largely depend on changes in soil moisture and 20 

thermal conditions (Grosse et al., 2011; Schaefer et al., 2011; Schuur et al., 2015). Widespread 21 

soil thawing and permafrost degradation in the boreal and Arctic have been reported (e.g. 22 

Jorgenson et al., 2006; Romanovsky et al., 2010a, b). This has triggered a series of changes in 23 

boreal and Arctic ecosystems, including changes in lake and wetland areas (Smith et al., 2005; 24 

Watts et al., 2012), tundra shrub cover expansion (Tape et al., 2006; Sturm et al., 2005), 25 

thermokarst and other disturbances (Grosse et al., 2011), which are likely having a profound 26 

influence on both surface and subsurface hydrology, and biogeochemical cycles. In particular, 27 

increases in soil temperature and associated soil thawing potentially expose vast soil organic 28 

carbon stocks, formally stabilized in perennial frozen soils, to mobilization and decomposition, 29 

which may promote large positive climate feedbacks (Schaefer et al., 2011; Schuur et al., 2015).  30 
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Previous studies have highlighted the importance of both surface air temperature and snow cover 1 

conditions affecting the soil thermal regime among many other factors (Stieglitz et al., 2003; 2 

Zhang, 2005; Osterkamp, 2007; Lawrence and Slater, 2010; Romanovsky et al., 2010a). Changes 3 

in the rate of accumulation, timing, duration, density and amount of snow cover during the 4 

winter season play an important role in determining how soil responds to surface warming due to 5 

strong insulation effects of snow cover on ground temperature and its role in the surface energy 6 

budget (Zhang, 2005). Both surface warming and a changing precipitation regime can modify 7 

seasonal snow cover conditions, leading to a non-linear soil response to warming (Lawrence and 8 

Slater, 2010). Increases in winter precipitation and deepening of the snowpack may enhance soil 9 

warming, while a reduced snowpack, due to precipitation decreases or warming-enhanced snow 10 

sublimation, may promote soil cooling. Changes in snow cover duration and condition can also 11 

alter the amount of energy absorbed by the ground and modify the rate of soil warming 12 

(Euskirchen et al., 2007). The Arctic is expected to experience continued warming and 13 

precipitation increases under projected climate trends (Solomon et al., 2007); how these climate 14 

trends will affect soil moisture and thermal dynamics is a key question affecting potential 15 

changes in northern soil carbon dynamics and associated climate feedbacks. 16 

Satellite data records over the past three decades (1979-2011) indicate widespread reductions 17 

(~0.8-1.3 days decade
-1

) in mean annual snow cover extent and frozen season duration across the 18 

pan-Arctic domain, coincident with regional warming (Brown and Robinson, 2011; Kim et al., 19 

2012). Earlier onset of spring snow melt and soil thaw has been observed from both in situ 20 

ground and satellite measurements, while the onset of snow cover and soil freezing in the fall 21 

show more variable trends (Brown and Robinson, 2011; Kim et al., 2012). More active snow 22 

melt during the snow season, largely in the early snow season, has also been observed from 23 

satellite observations of regional snow cover extent and surface freeze/thaw cycles (Kim et al., 24 

2015). On the other hand, snow depth trends in the boreal/Arctic region show large spatial 25 

variability. For example, several studies have shown a general snow depth increase in eastern 26 

Siberia (e.g. Park et al., 2014) and decrease in western North America in recent decades (Dyer 27 

and Mote, 2006).  28 

The objective of this study is to assess how northern soil thermal and carbon dynamics respond 29 

to surface warming and changes in snow cover conditions during the satellite era (since 1979). 30 

To that end, we developed a coupled hydrology and carbon model framework with detailed soil 31 
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heat transfer representation adapted for the pan-Arctic basin and Alaska domain. We used this 1 

model to investigate recent climate-related impacts on soil thermal and carbon dynamics over the 2 

past three decades (1982-2010). We conducted a sensitivity analysis by running the model with 3 

different configurations of surface meteorology inputs to evaluate how soil thermal conditions 4 

and soil carbon dynamics respond to changes in air temperature and precipitation during the 5 

same period.   6 

 7 

2   Methods 8 

2.1  Model description  9 

A coupled hydrology and carbon model was used to investigate sensitivity of the soil thermal 10 

regime and soil carbon decomposition to changes in surface air temperature and snow cover 11 

conditions. The hydrology model accounts for the effects of soil organic layers, changes in 12 

surface snow cover properties and soil water phase change on the soil freeze/thaw process in 13 

permafrost landscapes (Rawlins et al., 2013). These factors represent important controls on soil 14 

thermal dynamics within the active layer (Nicolsky et al., 2007; Lawrence and Slater, 2008; 15 

Lawrence and Slater, 2010), enabling improved estimation of subsurface soil temperature and 16 

moisture profiles, particularly in permafrost areas, and representation of essential environmental 17 

constraints on soil carbon decomposition.  18 

The hydrology model used for this investigation is an extension of previous efforts on large-scale 19 

pan-Arctic water balance modeling (PWBM, Rawlins et al., 2003; Rawlins et al., 2013). Recent 20 

updates to the model include improved simulation of snow/ground and subsurface temperature 21 

dynamics using a 1-D heat transfer equation (Rawlins et al., 2013), instead of the empirical thaw 22 

depth estimation based on the Stefan solutions used in Rawlins et al. (2003). The updated 23 

PWBM model has 23 soil layers down to 60 m below surface, with increasing layer thickness at 24 

depth. Up to five snow layers are used to account for the effects of seasonal snow cover 25 

evolution on the ground thermal regime, and changes in seasonal snow density and thermal 26 

conductivities are also considered. Other model improvements include accounting for the impact 27 

of soil organic carbon content on soil thermal and hydraulic properties (Appendix A1, Eq. A3), 28 
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which is an important feature of boreal and Arctic soils (Lawrence and Slater, 2008). Further 1 

details on the updated hydrology model are provided in Appendix A1.   2 

A satellite-based terrestrial carbon flux (TCF) model (Yi et al., 2013) was coupled to the 3 

hydrology model for this investigation. The TCF model uses a light use efficiency algorithm 4 

driven by satellite estimates of FPAR (Fraction of vegetation canopy intercepted 5 

Photosynthetically Active Radiation) to estimate vegetation productivity and litterfall inputs to a 6 

soil decomposition model. In the original TCF model, soil carbon stocks and respiration fluxes 7 

were estimated using a simplified three-pool soil organic carbon (SOC) decomposition 8 

framework with environmental constraints on soil decomposition rates derived from either 9 

satellite-estimated surface soil moisture and temperature fields (Kimball et al., 2009) or 10 

reanalysis data (Yi et al., 2013). This approach assumes that the major source of soil 11 

heterotrophic respiration (Rh) comes from surface (≤ 10 cm) litter and surface organic layers. 12 

However, the contribution of deeper soils to total Rh may be non-negligible, especially in high 13 

latitude boreal and Arctic tundra landscapes with characteristic carbon-rich soils (Koven et al., 14 

2011; Schuur et al., 2015). Therefore, in this study, we incorporated a more detailed soil 15 

decomposition model representing SOC stocks extending to 3 m below the surface, and 16 

representing differences in litterfall and soil organic matter substrate quality within the soil 17 

profile (Thornton et al., 2002). The resulting soil decomposition model used for this study 18 

includes three litterfall pools, three SOC pools with relatively fast turnover rates and a deep SOC 19 

pool with a slow turnover rate (Fig. S1). The three litterfall pools were distributed within the top 20 

20 cm of the soil layers; the three fast SOC pools were distributed within the top 50 cm of the 21 

soil layers, and the deep SOC pool extended from 50 cm to 3 m below the surface. Substantial 22 

SOC may be stored in permafrost soils below 3 m depth (Hugelius et al., 2014), and may 23 

potentially undergo mobilization with continued warming. However, this contribution to total 24 

land-atmosphere carbon (CO2) exchange was assumed negligible for the recent historical period 25 

examined (Schaefer et al., 2011) and was not considered in this study. Further details on the 26 

carbon model used in this study are provided in Appendix A2.  27 

2.2  Datasets  28 

The modeling domain for this investigation encompasses the pan-Arctic drainage basin and 29 

Alaska, representing a total land area extent of approximately 24.95 million km
2
. The model was 30 
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run at a 25-km northern hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) spatial 1 

resolution and daily time step from 1979 to 2010. Further details on the model validation datasets 2 

and inputs used for this study are provided below.  3 

2.2.1  In situ data  4 

In situ measurements from 20 Eddy Covariance (EC) tower sites across the pan-Arctic domain 5 

were obtained from the La Thuile FLUXNET dataset (Baldocchi, 2008), and were used to 6 

evaluate the model simulated daily carbon fluxes, and soil temperature and moisture fields 7 

(Table S1). These tower sites represent major vegetation community types across the study 8 

domain and have at least one year of observations available. For validation, the model was 9 

driven using tower observed meteorology. The tower daily carbon flux observations are derived 10 

from half-hourly EC CO2 flux measurements that have been processed and aggregated using 11 

consistent gap filling and quality control procedures (Baldocchi, 2008). Limited surface (≤15 cm) 12 

soil temperature and moisture measurements were also provided at a portion of the tower sites, 13 

but with unknown soil sampling depths and very few measurements at the tundra sites. Therefore, 14 

we selected one boreal forest and one tundra site with detailed in situ measurements (including 15 

carbon fluxes, soil temperature and soil moisture) for additional model evaluation (Table 1). The 16 

boreal forest site represents a single tower, whereas the tundra site includes three towers 17 

representing three different tundra community types.  18 

The tundra site is located within the Imnavait Creek watershed in the northern foothills of the 19 

Brooks Range, Alaska (68°37ʹN, 149°18ʹW), and underlain with continuous permafrost 20 

(Euskirchen et al., 2012). Mean annual air temperature and precipitation at the site is -7.4 °C and 21 

318 mm with about 40% and 60% of annual precipitation occurring as rain and snow, 22 

respectively. There are three towers in three different tundra community types, including dry 23 

heath, moist acidic tussock and wet sedge tundra. The surface soil organic layer thickness varies 24 

from 34.0±2.4 cm in wet sedge tundra to 2.3±0.3 cm for dry heath tundra. The maximum active 25 

layer thaw depth varies from ~40 cm at the dry heath site to ~70 cm at the tussock tundra site 26 

(Euskirchen et al., 2012). Soil temperature and moisture at 5 cm depth were measured within 27 

each tundra tower footprint. All observations including carbon fluxes and soil temperature and 28 

moisture are available from 2008 to 2011.  29 
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The boreal forest site used in this study is part of a network of tower EC sites spanning a fire 1 

chronosequence in central Manitoba (55°54ʹN, 98°31ʹW) at various stages of succession 2 

following large stand replacement fires (Goulden et al., 2011). We chose one of the two oldest 3 

chronosequence tower sites burned in year 1930 for model validation because this site had more 4 

continuous measurements of carbon fluxes and surface meteorology, and high quality data 5 

(indicated by the tower metadata) during the observation period (2002-2005). This site is 6 

dominated by mature closed-canopy black spruce stands. The mean annual air temperature and 7 

precipitation at this site are -3.2°C and 520 mm respectively. Soil temperatures were measured at 8 

the surface (0 cm) and at multiple (6, 11, 16, 18, 29, 41 and 55 cm) soil depths, while soil 9 

moisture was also measured at multiple (11, 18, 28, 41 and 55 cm) depths.  10 

2.2.2  Model inputs  11 

Primary model drivers include daily surface meteorology and satellite-based normalized 12 

difference vegetation index (NDVI) records. Daily average and minimum air temperature, 13 

precipitation, wind speed, atmosphere vapor pressure deficit (VPD) and downward solar 14 

radiation were obtained from a new version of the WATCH Forcing Data (WFD) applied to 15 

ERA-Interim reanalysis (WFDEI; Weedon et al., 2014). This dataset was created by extracting 16 

and interpolating the ERA-Interim reanalysis to 0.5°×0.5° spatial resolution with sequential 17 

elevation correction of surface meteorological variables and monthly bias correction from 18 

gridded observations including CRU TS (v3.1 and v3.2) and GPCC (v5 and v6) datasets (for 19 

precipitation only). The daily WFDEI surface meteorology data is available from 1979 to 2010 20 

and allows more thorough comparisons of hydrological model outputs with other relevant 21 

satellite products than the previous WFD dataset (Weedon et al., 2014). The third-generation 22 

Global Inventory Monitoring and Modelling Studies (GIMMS3g) NDVI dataset (Xu et al., 2013) 23 

was used to estimate litterfall seasonality and FPAR, as critical inputs to the TCF model (Yi et 24 

al., 2013). The GIMMS3g dataset was assembled from different NOAA Advanced Very High 25 

Resolution Radiometer (AVHRR) sensor records, accounting for various deleterious effects 26 

including calibration loss, orbital drift and volcanic eruptions. The NDVI data has a 15-day 27 

temporal repeat and 8km spatial resolution, extending from 1982 to 2010. For the model 28 

simulations, both WFDEI and GIMMS3g forcing datasets were re-gridded to a consistent 25 km 29 

EASE-GRID format and the bimonthly GIMMS3g data was interpolated to a daily time step. 30 
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The NDVI data from year 1982 were used as drivers for model spin-up and simulations prior to 1 

the start of the GIMMS3g observation record (i.e. 1979-1981). 2 

Other ancillary model inputs included a merged 8-km land cover dataset (Bi et al., 2013) 3 

combining the 500 m MODIS International Geosphere-Biosphere Programme (IGBP) land cover 4 

map (Friedl et al., 2010) and the Circumpolar Arctic Vegetation Map (CAVM; Walker et al., 5 

2005). The CAVM was used to identify tundra vegetation within the circumpolar region as a 6 

supplement to the IGBP classification, which does not provide a specific category for tundra and 7 

forest-tundra transition biome types (Bi et al., 2013). The dominant land cover type within each 8 

25 km EASE Grid cell was chosen based on the merged 8-km land cover dataset and reclassified 9 

according to the original PWBM land cover classification (Rawlins et al., 2013; Fig. S2). Tundra, 10 

forest-tundra and taiga/boreal biomes account for approximately 70% of the total pan-Arctic 11 

drainage basin area (Fig. S2).  12 

Soil organic carbon inventory data (GSDT, 2000; Hugelius et al., 2014) were used to prescribe 13 

the SOC fraction in each model soil layer. The fraction of SOC has a large impact on soil 14 

thermal and hydraulic properties, and is therefore an important control on characterizing soil 15 

freeze/thaw and moisture processes (Lawrence and Slater, 2008; Nicolsky et al., 2007). The 16 

IGBP Global Soil Data Task (GSDT, 2000) and the Northern Circumpolar Soil organic Carbon 17 

Database (NCSCD; Hugelius et al., 2014) SOC data was distributed through the top 11 model 18 

soil layers (≤1.4 m depth) across the study area following Rawlins et al. (2013) and Lawrence 19 

and Slater (2008). The NCSCD data, which provides an updated estimate of SOC in permafrost 20 

affected areas, was used to prescribe the SOC fraction for permafrost areas, while the GSDT data 21 

was applied to non-permafrost areas. Generally, the organic carbon fraction within the top 5 soil 22 

layers (≤23 cm depth) is high, with mean values of 53.7% and 39.4% for the two deeper surface 23 

soil layers (13-23 cm depth) averaged over the pan-Arctic domain.  24 

2.3  Model parameterization        25 

A dynamic litterfall allocation scheme based on satellite NDVI data (Appendix A2) was used to 26 

prescribe the daily litterfall fraction through each annual cycle to account for litterfall seasonality, 27 

particularly for deciduous vegetation types (Randerson et al., 1996; White et al., 2000). The 28 

GIMMS3g NDVI bimonthly data was first aggregated to a monthly time step and then used to 29 
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characterize monthly leaf loss and turnover rates of fine roots during the active growth period 1 

based on Eq. (A7). The monthly litterfall fraction was then evenly distributed on a daily time 2 

step within each month. This approach generally allocates more litterfall during the latter half of 3 

the growing season, while the model simulations show generally more soil heterotrophic 4 

respiration during the latter portion of the year (Fig. S3). A comparison of model simulations 5 

against tower measurements shows overall improved NEE seasonality relative to a previous TCF 6 

model application where litterfall was distributed evenly over the annual cycle (Yi et al. 2013).  7 

2.4  Model sensitivity analysis  8 

We conducted a model sensitivity analysis to examine how the estimated soil thermal regime and 9 

SOC decomposition respond to changes in surface air temperature and snow conditions over the 10 

most recent three decades. Three sets of daily model simulations were run by: 1) varying air 11 

temperature (T) and precipitation (P) inputs; 2) varying T inputs alone (temperature sensitivity 12 

analysis), and 3) varying P inputs alone (precipitation sensitivity analysis).  Daily mean T 13 

(including daily mean and minimum temperature) and P climatology was first derived from the 14 

initial three-year (1979-1981) WFDEI meteorological record and used in the model sensitivity 15 

runs. The daily climatology, based on three-year (1979-1981) meteorological records rather than 16 

a single year (i.e. 1979), was used to minimize effects from characteristically large climate 17 

fluctuations in the northern high latitudes. For precipitation, we first created a monthly 18 

climatology from the daily record (1979-1981) and then scaled the daily WFDEI precipitation by 19 

maintaining the monthly climatology value (Lawrence and Slater, 2010):  20 

( )
( , , ) ( , , )

( , )

P m
P y m d P y m d

P y m
                                                                                                      (1)  21 

where y , m and d  represent a particular year, month and day; ( )P m  is the precipitation monthly 22 

climatology averaged from 1979 to 1981 and ( , )P y m  is the monthly total precipitation for a 23 

particular year and month; ( , , )P y m d and ( , , )P y m d  are the original and scaled daily 24 

precipitation for a particular year, month and day, respectively. Due to a relatively short record 25 

(i.e. 1979-1981) and large variability in northern latitude precipitation, the ratio of 
( )

( , )

P m

P y m
 may 26 

be too large for a particular month with very low precipitation rates. In this case, the daily 27 
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precipitation was not adjusted to avoid unreasonable estimates. We then ran the model with 1 

different configurations of the daily surface meteorology datasets. Model simulations derived 2 

using the dynamic WFDEI daily surface meteorology from 1979 to 2010 (i.e. varying T and P) 3 

was used as the model baseline simulation. For the temperature sensitivity analysis, we ran the 4 

model using the dynamic daily WFDEI temperature records from 1979 to 2010, but holding P as 5 

the climatology value from 1979-1981. For the precipitation sensitivity analysis, we ran the 6 

model using the dynamic daily WFDEI precipitation records, but with the T daily climatology. 7 

Since VPD is dependent on air temperature, we also created a daily VPD climatology (1979-8 

1981) as an additional input to the carbon model, assuming negligible changes in relative 9 

humidity during the study period for the precipitation sensitivity analysis. There was no 10 

significant trend in solar radiation during the study period; we therefore used the historical (i.e. 11 

1979-2010) solar radiation data for the three sets of simulations.  12 

The model was initialized using a two-step process prior to the three sets of simulations. The 13 

model was first spun-up using the daily surface climatology (1979-1981) including T, VPD, and 14 

P for 50 years to bring the top 3-m soil temperature into dynamic equilibrium; the model was 15 

then run using the same climatology and simulated soil temperature and moisture fields over 16 

several thousand years to bring the SOC pools to equilibrium.  17 

We mainly used correlation analysis to evaluate the climatic controls on simulated soil 18 

temperature and carbon fluxes. The outputs from the model baseline simulations (i.e. varying T 19 

and P) from 1982 to 2010 were used for this analysis. The period from 1979 to 1981 was 20 

excluded in order to reduce the impact of the spin-up process on model simulations. We first 21 

calculated the correlation coefficients between the time series of each climate variable and 22 

modeled soil temperature or carbon fluxes at each grid cell from 1982 to 2010. The resulting 23 

correlation coefficients were then averaged for each climate zone classified using the annual 24 

mean air temperature (1982-2010) and binned into 2.5 °C intervals. The climate variables used in 25 

the correlation analysis included air temperature, snow water equivalent (SWE) and snow cover 26 

extent (SCE). The model did not simulate SCE directly, and the SCE was estimated using the 27 

following equation: 28 

0.1

SNOWD
SCE

SNOWD



                                                                                                                    (2)  29 
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where SNOWD is the simulated snow depth (m), and the surface roughness was set as 0.1 m 1 

(Lawrence and Slater, 2010).   2 

 3 

3  Results  4 

3.1  Model validation  5 

The model simulations were generally consistent with observed daily carbon fluxes from the 20 6 

EC tower sites across the pan-Arctic domain (Table 2), with mean R values of 0.84±0.11 (SD) 7 

for GPP and 0.63±0.17 for NEE, and mean RMSE differences of 1.44±0.50 gC m
-2

 day
-1

 for 8 

GPP and 1.04±0.36 gC m
-2

 day
-1

 for NEE. The model results showed relatively large 9 

discrepancies with the tower based carbon fluxes for tundra sites; however, large uncertainties 10 

are associated with the tower measurements in tundra areas due to the characteristically harsh 11 

environment and extensive missing data. The simulated temperature and moisture fields also 12 

capture the seasonality of the in situ surface (≤15 cm) soil measurements representing variable 13 

soil depths (not shown), despite large uncertainties in the surface meteorology inputs 14 

(particularly precipitation/snowfall), and soil parameters including definition of texture and peat 15 

fraction within the soil profile. Additional assessment of the model simulations was conducted 16 

using detailed in situ measurements at selected tundra and boreal forest validation sites (Table 1) 17 

as summarized below.  18 

The model simulations compared favourably with in situ measurements at the tundra validation 19 

sites for surface soil temperature (R=0.93, RMSE=3.12°C) and carbon fluxes, including GPP 20 

(R=0.72, RMSE=0.76 gC m
-2

 day
-1

) and NEE (R=0.79, RMSE=0.50 gC m
-2

 day
-1

), but with 21 

relatively larger discrepancy during the winter when the model showed lower values of NEE 22 

(e.g., less CO2 emissions) than the measurements (December to February, DJF; Fig. 1). The 23 

simulated maximum soil thaw depth (~50 cm averaged from 2008 to 2011) was also consistent 24 

with site measurements, ranging from 40 to 70 cm at three locations within the tundra validation 25 

site (Euskirchen et al., 2012). An apparent cold bias ranging from -2 to -5°C in the simulated soil 26 

temperature during the fall and winter period of year 2009 and 2010 (Fig.1a) reflects lower 27 

model simulated snow depth and associated reductions in thermal buffering between the 28 

atmosphere and underlying soil layers. This cold bias in the simulated soil temperatures results in 29 
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early freezing of simulated soil water content (Fig. S4). Compared with the tower observations, 1 

the simulated daily surface soil temperatures generally show large temporal variations, 2 

particularly during the summer (June to August, JJA). There were also considerable differences 3 

among in situ soil temperatures at the different tundra sites. Summer (JJA) soil temperature at the 4 

wet sedge tundra location was generally lower than the other tundra vegetation types, which may 5 

reflect higher soil water content and specific heat capacity, and greater latent heat loss from 6 

evapotranspiration, leading to slower soil warming at this site. Overall, the model simulations 7 

compare well with the tower observed carbon fluxes during the growing season, but significantly 8 

underestimate NEE and soil respiration during the dormant season. Model underestimation of 9 

soil respiration during the dormant season may reflect less liquid soil water represented by the 10 

model under frozen (<0°C) temperatures than the tower measurements (Fig. S4), and also a lack 11 

of model representation of wind-induced CO2 exchange between the atmosphere and surface 12 

snow pack (Luers et al., 2014). The model generally shows earlier seasonal onset and offset of 13 

photosynthesis relative to the in situ measurements, while partitioning of the tower NEE 14 

measurements during the shoulder season may be subject to large uncertainties under partial 15 

snow cover conditions (Euskirchen et al., 2012).  16 

The model simulations also compared favourably against observations at the boreal forest 17 

validation sites (Fig. 2), capturing observed seasonality in soil temperatures (R>0.95, 18 

RMSE<2.00°C) at different soil depths, and daily variations in tower observed carbon fluxes for 19 

GPP (R=0.89, RMSE=1.24 gC m
-2

 day
-1

) and NEE (R=0.73, RMSE=0.65 gC m
-2

 day
-1

). Similar 20 

to the tundra sites, snow depth also has a large impact on simulated soil temperatures at the 21 

boreal forest sites, but is subject to large uncertainties from both model snowfall inputs and 22 

forest canopy snow interception processes. The timing of simulated thaw and freeze of soil water 23 

at different depths is generally consistent with the tower measurements, with later seasonal 24 

thawing and freezing occurring in deeper soils (Fig. S5). The tower site soil moisture 25 

measurements show larger variability than the model simulations during the growing season, 26 

which likely reflect differences in the model parameterization of surface moss/peat and mineral 27 

soil hydraulic conductivities relative to local site conditions. The model simulated NEE fluxes 28 

during the non-growing season stem mainly from soil heterotrophic respiration and are largely 29 

consistent with the in situ tower observations, generally diminishing towards the end of the year, 30 

and then gradually recovering with soil warming toward the onset of the growing season. Both 31 
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the model and in situ tower NEE fluxes show large temporal variations during the growing 1 

season, largely due to GPP reductions caused by high vapour pressure deficits or water stress.  2 

The model simulated SCE was generally consistent with satellite observation based global 3 

climate data records documenting weekly SCE changes (Brown and Robinson, 2011; Fig. 3). 4 

The model simulations show a similar mean seasonal cycle as the satellite observations, with 5 

spring snow melt mostly occurring from April to May, and fall onset of seasonal snow cover 6 

occurring in October over the 1982 to 2010 record (Fig. 3a). The model simulated SCE shows 7 

consistent changes with the satellite observations in spring, indicating realistic simulation of the 8 

snow melting process. However, the model generally underestimates SCE in the fall and winter. 9 

The model did not directly simulate SCE, which was calculated from simulated snow depth 10 

using an empirical equation (Eq. 2). Based on Eq.2, the modelled SCE will never approach 100 11 

percent, while the satellite data indicates nearly complete winter snow cover over the study 12 

domain. Larger model SCE differences from the satellite observations are expected when the 13 

snow cover is relatively shallow and patchy owing to the relatively coarse spatial resolution of 14 

both model simulations and satellite observations. Moreover, the satellite SCE dataset is 15 

presented as a binary classification at a weekly time step, which may not adequately depict 16 

transient SCE fluctuations under active surface melting and freezing processes in the fall (Kim et 17 

al., 2015).    18 

3.2  Climatic control on simulated permafrost and soil temperatures  19 

The simulated permafrost area is generally consistent with reported estimates from previous 20 

studies. The simulated mean permafrost area from 1982 to 2010 is approximately 11.3 million 21 

km
2
, which is within the range of observation based estimates (11.2-13.5 million km

2
) of the 22 

combined area for continuous (90-100%) and discontinuous (50-90%) permafrost extent over the 23 

northern polar region (≥45°N) (Zhang et al., 2000). 24 

The simulated active layer depth (ALD) shows an overall increasing trend across the pan-Arctic 25 

domain over the 1982 to 2010 record (Fig. 4a, b). No strong bias was observed for the model 26 

ALD simulations compared against in situ observations for 53 pan-Arctic sites from the 27 

Circumpolar Active Layer Monitoring (CALM) program (Brown et al., 2000); these results 28 

showed a mean model bias of -9.48 cm, representing approximately 16.5% of the estimated ALD, 29 
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but with low model correspondence (R=0.31, p<0.1) relative to in situ site observations (Fig. S6). 1 

The discrepancy between model simulated ALD results and in situ observations may be partly 2 

due to a spatial scale mismatch between the coarse resolution model simulations and the local 3 

CALM site measurements, as well as uncertainties in the reanalysis surface meteorology data 4 

used as model forcings (Rawlins et al., 2013). Previous studies have shown large local spatial 5 

variations in ALD due to strong surface heterogeneity including microtopography, vegetation 6 

and soil moisture conditions (Romanovsky et al., 2010 a, b; Mishra and Riley, 2014). Simulated 7 

widespread ALD deepening is consistent with generally decreasing snow cover extent in the pan-8 

Arctic region (Fig. 4c). Simulated ALD trends over the 1982-2010 record range from -4.32 cm 9 

yr
-1

 to 8.05 cm yr
-1

, with a mean value of 0.66 cm yr
-1

. A notable model ALD deepening trend 10 

occurs in discontinuous permafrost areas with relatively large mean ALD values. However, in 11 

portions of Alaska, the model simulations indicate slightly decreasing ALD trends across the 12 

study period (Fig. 4b), despite strong reduction in the local snow cover extent (Fig. 4c). This 13 

mainly reflects a large decrease in the simulated snowpack (Fig. 4d) due to a decreasing trend in 14 

WFDEI precipitation/snowfall data, resulting in less thermal insulation of underlying soil, which 15 

may offset warming effects from decreasing snow cover extent.  16 

The regional differences in snow cover effects on model simulated ALD can be explained by 17 

different climatic controls on warm-season (May to October) soil temperatures. The correlation 18 

analysis between climate variables and warm-season soil temperatures (Fig. 5) indicates that 19 

surface warming has a dominant control on upper (<0.5 m) soil temperatures in all climate zones, 20 

and also on deeper (≥0.5 m) soil temperatures in warmer climate zones (mean annual Tair>-4°C). 21 

A deep snow pack has a strong warming effect on simulated deeper (≥0.5 m) soil temperatures in 22 

colder climate zones (mean annual Tair≤-4°C), but with limited warming effects on surface soil 23 

temperatures across all pan-Arctic climate zones. Correspondingly, the effects of seasonal snow 24 

cover duration on model soil temperatures vary across different climate zones and soil depths. In 25 

colder climate areas, a longer snow cover duration has a relatively strong warming effect on 26 

deeper (≥0.5 m) soil temperatures, but with negligible warming effects on surface soil layers. In 27 

warmer areas, a shorter snow cover season promotes warmer soils, particularly within surface 28 

soil layers, due to stronger air and soil thermal coupling. Additional analysis also indicates that 29 

earlier snow cover seasonal onset in the fall has a stronger warming effect on modelled soil 30 
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temperatures in colder climate areas, while earlier offset of seasonal snow cover in the spring has 1 

a stronger warming effect on modelled soil temperatures in warmer climate areas.  2 

3.3  Climatic control on simulated carbon fluxes  3 

The model simulations indicated that air temperature has an overall dominant control on the two 4 

main components of the NEE flux (i.e. NPP and Rh) across all pan-Arctic climate zones, while 5 

snow has a larger control on estimated annual NEE fluxes in colder climate areas (Fig. 6). These 6 

results indicate that warming generally promotes vegetation photosynthesis and soil 7 

heterotrophic respiration in the pan-Arctic region. However, a reduced positive correlation 8 

between NPP and air temperature in warmer climate zones (mean Tair>0°C) also indicates that 9 

warming-induced drought may reduce vegetation productivity to some extent (Kim et al., 2012; 10 

Yi et al., 2014). No significant correlation (p>0.1) between NEE and air temperature was 11 

observed for most areas (mean Tair≤5°C) due to NEE being a residual between two large fluxes 12 

(i.e. NPP and Rh) with similar temperature responses. A predominantly positive correlation 13 

(mean R=0.32; p<0.1) between annual NEE and SWE in colder regions (mean Tair<-4°C) is 14 

mainly due to a strong positive correlation (R>0.60, p<0.01) between SWE and NEE fluxes 15 

during the cold season (November to April; Fig. S7). A deeper snow pack promotes warmer soil 16 

conditions (Fig. 5b) and associated SOC decomposition and heterotrophic respiration, which 17 

contributes significantly to annual NEE, especially in colder climate areas (Zimov et al., 1996). 18 

No significant correlation (p>0.1) between annual SCE/SWE and warm-season (MJJASO) 19 

carbon fluxes was observed.  20 

While snow cover has a negligible effect on total estimated carbon fluxes during the warm 21 

season, it has a strong control on the composition of soil Rh (Fig. 7). An overall, deeper snow 22 

pack promotes soil decomposition and respiration from deeper (≥0.5 m) soil layers, while 23 

inhibiting contributions from surface (≤0.2 m) soil layers, especially in colder climate areas. This 24 

response is due to a stronger warming effect of snow cover on deeper soil layers in colder areas 25 

(Fig. 5). Comparatively, even though air temperature has a strong control on total warm-season 26 

Rh fluxes, it has a limited effect on the contribution of different soil depths to total soil 27 

decomposition and respiration except in the warmer climate areas (mean annual Tair > 0°C). In 28 

the cold season, a deeper snow pack also promotes soil decomposition in deeper (>0.2 m) soil 29 

layers more than in surface (0-0.2 m) soil layers.   30 
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3.4  Sensitivity of simulated soil thermal dynamics and soil carbon decomposition 1 

to climate variations 2 

The model sensitivity analysis using different surface meteorology inputs indicated that warming 3 

and reduced snow cover extent promoted widespread ALD deepening across the pan-Arctic 4 

domain over the 1982 to 2010 record (Fig. 8). In Eurasia, strong winter warming reduced model 5 

simulated SWE and SCE, while increasing winter precipitation generally increased SWE and 6 

SCE. In North America, regional trends in winter snow pack and SCE were more variable due to 7 

variable trends in winter air temperature and precipitation. Therefore, the resulting model 8 

simulated trends in SWE and SCE based on varying temperature and precipitation inputs showed 9 

strong spatial heterogeneity across the pan-Arctic domain. The model sensitivity analysis based 10 

on varying temperature inputs alone indicated overall ALD deepening in permafrost areas, 11 

corresponding with widespread warming and reduced SCE. However, the sensitivity analysis 12 

based on varying precipitation alone showed more variable trends in the simulated ALD results. 13 

Areas with strong decreasing winter precipitation and snow pack trends, such as interior Alaska 14 

and eastern Siberia, showed a decreasing ALD trend, attributed to reduced snow insulation 15 

effects. The results also indicated that changing air temperature had an overall dominant effect 16 

on the simulated ALD trends, though changing precipitation also contributed to ALD changes in 17 

some areas.    18 

The model sensitivity analysis indicated that varying precipitation accounts for more of the 19 

change in the simulated Rh contribution from different soil depths (i.e., soil Rh ratio, Figs. 9 and 20 

10, and Fig. S8), which is consistent with the above results indicating strong control of snow 21 

cover on the soil Rh ratio at different soil depths. The model sensitivity results also indicated that 22 

changing air temperature has minimal impact on the simulated soil Rh ratio, while increasing 23 

(decreasing) winter snow pack in permafrost areas generally corresponded with increasing 24 

(decreasing) soil Rh ratio from deeper (>0.5 m) soil layers and decreasing (increasing) soil Rh 25 

contributions from surface (0-0.2 m) soil layers (Fig. 9). This is particularly true in cold climate 26 

regions (mean annual Tair<-10°C; Fig. 10). The simulated Rh ratio from the deeper soil layers 27 

(0.5-3.0 m) based on model runs using varying precipitation alone did not show significant 28 

differences (p>0.1) from model simulations based on varying air temperature and precipitation. 29 

However, the simulated soil Rh ratio from both surface (0-0.2 m) and deeper (0.5-3.0 m) soil 30 

layers based on model runs using varying temperature alone was significantly (p<0.01) different 31 
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from model simulation results based on varying air temperature and precipitation. Moreover, 1 

cold regions (mean Tair<-10°C) showed stronger decreasing trends in the Rh ratio from surface 2 

soil layers and increasing soil Rh contributions from deeper soil layers, likely due to increasing 3 

winter precipitation and snow cover (Figs. 8 and 9), and consistent with field studies involving 4 

snow cover manipulations and associated impacts on soil respiration (e.g. Nowinski et al., 2010). 5 

 6 

4   Discussion     7 

4.1  Impact of climate variations on soil active layer properties  8 

Our results show that recent strong surface warming trends in the pan-Arctic region have 9 

promoted widespread soil thawing and active layer (ALD) deepening (Fig. 8), while changing 10 

precipitation and snow depth have had a relatively smaller impact on ALD trends (Figs. 4 and 8). 11 

We find a mean increasing ALD trend of 0.66±1.20 cm yr
-1

 across the pan-Arctic region over the 12 

past three decades, which is similar to reported values from previous studies (Zhang et al., 2005; 13 

Romanovsky et al., 2010a), albeit representing different time periods. This overall ALD 14 

deepening trend across the pan-Arctic domain corresponds with widespread warming and 15 

warming-induced decreases in SCE (Fig. 4c), and increasing non-frozen season duration (Kim et 16 

al., 2012). Our analysis indicates that air temperature has a dominant control on upper (<0.5 m) 17 

soil layer temperatures during the warm-season, with increasing control in warmer climate zones 18 

(Fig. 5a). The model simulations also suggest that most pan-Arctic permafrost areas, especially 19 

continuous permafrost areas, have a relatively shallow (<1 m) active layer (e.g. Fig. 4a). 20 

Therefore, rapid warming of the upper soil layers corresponds with general ALD deepening.   21 

Previous studies have also shown that summer air temperature is a primary control on ALD 22 

trends, while the relationship between snow cover and ALD is more variable (Zhang et al., 2005; 23 

Romanovsky et al., 2010a, b). Our results demonstrate that deeper snow pack conditions promote 24 

warming of deep (>0.5 m) soil layers, especially in colder climate areas (Fig. 5b), and this effect 25 

exceeds the impact of surface warming on deeper soil layers (e.g. >1 m). Previous studies 26 

indicate that changes in snow depth can influence borehole (10-20 m) permafrost temperatures as 27 

much as changes in air temperature (Stieglitz et al., 2003; Romanovsky et al., 2010a, b). 28 

Regional simulations from the improved Community Land Model (CLM) also indicate that snow 29 
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state changes can explain 50% or more of soil temperature trends at 1m depth over the recent 50 1 

year record (Lawrence and Slater, 2010). On the other hand, the impact of changing snow cover 2 

duration on soil temperatures may vary across different climate zones (Fig. 5c) due to the 3 

influence of both precipitation/snowfall and air temperature on snow cover duration. A shorter 4 

snow cover season may cool the soil in colder climate zones due to less insulation from cold 5 

temperatures, but may warm the soil in warmer climate zones by promoting greater atmospheric 6 

heat transfer into soils (Lawrence and Slater, 2010; Euskirchen et al., 2007). Our results indicate 7 

that recent regional trends toward continued warming, earlier spring snowmelt onset and a 8 

shorter snow cover season will likely enhance soil warming and permafrost degradation in 9 

relatively warmer (mean annual Tair>-5°C) regions of the pan-Arctic domain.  10 

4.2  Impact of climate variations on soil carbon dynamics 11 

Snow cover is an important control on the annual carbon budget in cold regions (annual mean 12 

Tair<-4°C; Fig. 6b-c), even though air temperature has a dominant control on both annual NPP 13 

and Rh fluxes across all climate zones (Fig. 6a). Strong snow cover buffering of underlying soil 14 

temperatures sustains soil respiration even under very cold winter air temperatures and the 15 

resulting winter soil respiration can be a large component of the annual NEE budget (Sullivan et 16 

al., 2010). Field experiments have shown that winter soil respiration in tundra areas can offset 17 

total net carbon uptake during the growing season and thus switch the ecosystem from a net 18 

carbon sink to a carbon source (Zimov et al., 1996; Euskirchen et al., 2012; Luers et al., 2014). 19 

Our results also indicate that cold-season (November-April) Rh accounts for ~25% of total 20 

annual Rh over the entire pan-Arctic domain, while this estimate may be conservative since our 21 

model may underestimate soil respiration in tundra areas (Fig. 1b). The model simulations 22 

indicate very low (<5%) unfrozen water below ~-3°C at the tundra sites, while previous studies 23 

and the tower measurements (Fig. S4) indicate that substantial unfrozen water may remain even 24 

under very low soil temperatures (e.g. ~-10°C), sustaining soil microbial activities (Romanovsky 25 

and Osterkamp, 2000). On the other hand, winter warming may change the depth and structure of 26 

insulating snow cover, affecting underlying soil temperatures, which could alter soil N 27 

mineralization rates and soil microbial activities that influence ecological processes during the 28 

growing season (Schimel et al., 2004; Sturm et al., 2005; Monson et al., 2006).  29 
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Even though air temperature has a dominant control on Rh during the warm season (from May to 1 

October), snow cover strongly influences the contribution of different soil depths to total soil 2 

decomposition and Rh (Fig. 7). This non-linear response is due to different controls of surface air 3 

temperature and snow cover on soil temperatures at different soil depths (Zhang, 2005; 4 

Romanovsky et al., 2010a, b; Lawrence and Slater, 2010). Surface warming during the summer 5 

has a dominant control on upper soil layer temperatures (<0.5 m; Fig. 5a), while a deeper winter 6 

snowpack has a persistent warming effect on deeper soil temperatures in colder climate areas 7 

(Fig. 5b; Gouttevin et al., 2012). Therefore, surface warming likely promotes more heterotrophic 8 

respiration from surface litter and soil layers, while a deeper snow pack promotes soil respiration 9 

from deeper soil layers. This is particularly important for soil carbon dynamics in permafrost 10 

areas, where a large amount of soil carbon occurs in deep perennial frozen soils (Hugelius et al., 11 

2014). Previous studies including field experiments have primarily focused on the effects of 12 

surface warming on permafrost soil carbon decomposition (e.g. Schuur et al., 2007; Koven et al., 13 

2011; Schaefer et al., 2011), while our results show that snow cover may play a larger role than 14 

air temperature in influencing deeper soil temperatures and permafrost stability. This is also 15 

supported by a recent snow addition experiment in Alaska tundra areas (Nowinski et al., 2010), 16 

which showed that a deeper snow treatment resulted in a larger contribution of deep and old soil 17 

carbon decomposition to total soil heterotrophic respiration.       18 

4.3   Limitations and uncertainties  19 

Although soil temperature and moisture are the two major environmental controls on soil carbon 20 

decomposition, other factors may also influence soil decomposition rates and permafrost carbon 21 

feedback potential, but not represented by our modeling study (Hobbie et al., 2000). A number of 22 

chemical and biological factors can affect the temperature sensitivity of soil carbon 23 

decomposition in northern soils, including enzyme abundance, microbial population size and 24 

oxygen availability (Waldrop et al., 2010). Previous studies also show that soil carbon 25 

decomposition rates may be depth-dependent. Accounting for vertical changes in soil 26 

biogeochemical properties and processes, including the size and substrate quality of the soil 27 

active layer and permafrost carbon pool, and the degree of N mineralization with decomposing 28 

permafrost carbon, may have significant impacts on the sign and magnitude of the projected 29 

high-latitude carbon response to future warming (Koven et al., 2011; Koven et al., 2015). Finally, 30 
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changing wintertime soil microclimate will alter the amount and timing of plant-available 1 

nutrients (N) in tundra ecosystems, and may drive a positive feedback between snow, soil 2 

temperature, microbial activity, and plant community composition (Schimel et al., 2004; Sturm 3 

et al., 2005). 4 

A number of processes, notably fire disturbance, shrub expansion and thermokarst, are not 5 

included in this study but may be important factors affecting regional permafrost and soil carbon 6 

dynamics (Grosse et al., 2011; Schuur et al., 2015). A warming climate has been linked with 7 

increasing boreal-arctic fire activity and severity (Grosse et al., 2011). Fire can change the 8 

surface vegetation composition and consume a large portion of the soil organic layer, which can 9 

dramatically alter the surface energy balance and soil thermal properties, and cause rapid 10 

permafrost degradation (Harden et al. 2006; Jafarov et al., 2013). Both field experiments and 11 

satellite measurements indicate a “greening” Arctic with increasing shrub abundance due to 12 

climate warming (Tape et al., 2006). Shrub expansion in Arctic tundra can change the snow 13 

distribution and surface albedo, affecting the surface energy balance and underlying active layer 14 

and permafrost conditions (Sturm et al., 2005). Development of surface water ponding with 15 

thermokarst in ice-rich permafrost areas can alter the local surface hydrology, affecting 16 

permafrost and soil carbon decomposition (Schuur et al., 2007; Grosse et al., 2011).  17 

Another important feature of the Arctic is strong surface heterogeneity, characterized by 18 

widespread lakes, ponds, wetlands and waterlogged soils as a result of both topography and 19 

restricted surface drainage due to underlying permafrost. Changes in both surface and subsurface 20 

hydrology are tightly coupled with local permafrost conditions and potential carbon and climate 21 

feedbacks (Smith et al., 2005; Watts et al., 2012; Yi et al., 2014; Schuur et al., 2015). Current 22 

large-scale model simulations, including this study, generally operate at the order of tens of 23 

kilometers or even larger, and may not adequately represent the effects of surface heterogeneity 24 

on simulated permafrost hydrologic processes and soil carbon decomposition processes (Koven 25 

et al., 2011; Rawlins et al., 2013; Schuur et al., 2015). For example, most models prescribe a 26 

dominant vegetation type or a single value for the organic layer thickness commensurate with the 27 

model spatial resolution, which likely introduces large uncertainties to the model simulated 28 

moisture and heat fluxes and thus the permafrost properties. Next generation satellites, including 29 

the NASA SMAP (Soil Moisture Active Passive) mission provide for finer-scale (i.e. 3-9 km 30 

resolution) monitoring and enhanced (L-band) microwave sensitivity to surface (~<5 cm) soil 31 
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freeze/thaw and moisture conditions (Entekhabi et al., 2010), and may enable improved regional 1 

hydrological and ecological model parameterizations and simulations that more accurately 2 

represent active layer conditions. Finer spatial scale observations using lower frequency (such as 3 

P-band) Synthetic Aperture Radar (SAR) measurements from airborne sensors such as AirMOSS 4 

(Tabatabaeenejad et al., 2015) may also provide improved information on sub-grid scale 5 

processes and subsurface soil thermal and moisture profiles, providing critical constraints on 6 

model predictions of soil active layer changes, and soil carbon and permafrost vulnerability.   7 

 8 

5   Conclusions 9 

We developed a coupled hydrology and terrestrial carbon flux modeling framework to evaluate 10 

the sensitivity of soil thermal and carbon dynamics to snow cover and recent climate variations 11 

across the pan-Arctic basin and Alaska during the past 3 decades (1982-2010). Our results 12 

indicate that surface warming promotes wide-spread soil thawing and active layer deepening due 13 

to strong control of surface air temperature on upper (<0.5 m) soil temperatures during the warm 14 

season (from May to October). Recent trends indicating earlier spring snowmelt and shorter 15 

seasonal snow cover duration with regional warming (Dyer and Mote, 2006; Brown and 16 

Robinson, 2011; Kim et al., 2012) will most likely enhance soil warming in relatively warmer 17 

climate zones (mean annual Tair>-5°C) and promote permafrost degradation in these areas. Even 18 

though air temperature has a dominant control on soil decomposition during the warm season, 19 

snow cover has a strong control on the contribution of different soil depths to the total soil 20 

heterotrophic respiration flux. A deeper snow pack inhibits surface (<0.2 m) litter and soil 21 

organic carbon decomposition, but enhances soil decomposition and respiration from the deeper 22 

(>0.5 m) soil carbon pool. This non-linear relationship between snow cover and soil 23 

decomposition is particularly important in permafrost areas, where a large amount of soil carbon 24 

is stored in deep perennial frozen soils that are potentially vulnerable to mobilization and 25 

accelerated losses from near-term climate change. Our results demonstrate the important control 26 

of snow cover in affecting active layer properties and soil carbon decomposition processes across 27 

the pan-Arctic, and the necessity of considering both warming, and changing precipitation and 28 

snow cover regimes in characterizing permafrost soil carbon dynamics. In addition, further 29 

improvements in regional assessment and monitoring of precipitation and snow cover across the 30 
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northern high latitudes are needed to improve quantification and understanding of linkages 1 

between snow and permafrost carbon dynamics.  2 

 3 

Appendix  4 

A1  Hydrology model description 5 

The PWBM model (Rawlins et al., 2013) simulates snow and ground thermal dynamics by 6 

solving a 1-D heat transfer equation with phase change (Nicolsky et al., 2007): 7 
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t t z z
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                                                                          (A1) 8 

where ( , )T z t  is the temperature (°C), ( , )C T z  and ( , )T z  are the volumetric heat capacity (J m
-9 

3
 K

-1
) and thermal conductivity (W m

-1
 K

-1
) of soil respectively; L  is the volumetric latent heat of 10 

fusion of water (J m
-3

);   is the volumetric water content, and   is the unfrozen liquid water 11 

fraction. The Dirichlet boundary conditions at the snow/ground surface
sz , i.e., ( , ) ( )s airT z t T t , 12 

and a heat boundary condition at the lower boundary 
bz , i.e., ( , )T l t g

z






, were used to solve 13 

the heat equation, where 
airT is the observed air temperature and g is the geothermal heat flux (K 14 

m
-1

). The volumetric water content ( ) can be obtained by solving the Richard’s equation. The 15 

unfrozen liquid water fraction ( ) was estimated empirically as: 16 
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                                                                                                             (A2) 17 

where the constant 
*T  is the freezing point depression, and b is a dimensionless parameter 18 

obtained from unfrozen water curve fitting (Romanovsky and Osterkamp, 2000).  19 

The bulk thermal properties of soil (i.e. C  and  ) are a combination of the thermal properties of 20 

soil solids, air, and thawed and frozen states of soil water (Rawlins et al., 2013). Particularly, for 21 

the soil solids, the volumetric heat capacity (
sC ) and thermal conductivities (

s ) vary with the 22 

fraction of organic carbon of the soil, defined as: 23 



23 

 

1(1 ) f f

s m o s m oC f C fC                                                                                               (A3) 1 

where f  is the fraction of organic carbon in the soil, 
mC and 

oC  are the volumetric heat 2 

capacities of the mineral and organic soils respectively, and 
m  and 

o are the thermal 3 

conductivities of the mineral and organic soils respectively.  4 

Up to five snow layers were used to characterize the snowpack dynamics and solve the snow 5 

temperature profile, with varying depth for each layer depending on the snow depth. A two-layer 6 

snow density model similar to Schaefer et al. (2009) was used to characterize the impact of the 7 

bottom depth hoar layer on the snow thermal conductivity for tundra and taiga, with fixed snow 8 

thermal conductivity for this layer. For the upper snow layer, both the snow heat capacity and 9 

thermal conductivity vary with snow density. Following Liston et al. (2007), temporal evolution 10 

of the snow density is mainly affected by new snowfall and compaction due to winds: 11 

2
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where 
s is the snow density (kg m

-3
), U represents the wind-speed contribution to the snow 13 

density changes with negligible influence for wind speed below 5 m/s; fT  and 
sT are the freezing 14 

and snow temperatures, respectively; 
1a , 

2a  and b are empirical dimensionless parameters. The 15 

snow thermal conductivity (
snow ) is an empirical estimate of snow density based on Sturm et al. 16 

(1997): 17 

20.138 1.01 3.233snow s s                                                                                                     (A5) 18 

More details on the numerical solution of the heat transfer equation and the parametrization of 19 

the snow model can be found in Rawlins et al. (2013) and Nicolsky et al. (2007).  20 

A2 Carbon model description 21 

A satellite-based light use efficiency (LUE) approach was used to estimate vegetation 22 

productivity: 23 

GPP FPAR PAR                                                                                                                 (A6) 24 
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where GPP is the gross primary productivity (g C m
-2

 day
-1

);   (g C MJ
-1

) is the LUE coefficient 1 

converting absorbed photosynthetically active solar radiation (APAR) to vegetation biomass, and 2 

FPAR defines the fraction of incident PAR (MJ m
-2

 day
-1

) absorbed by the vegetation canopy (i.e. 3 

APAR). A maximum LUE coefficient (
mx , g C MJ

-1
) was prescribed for each land cover type 4 

and was reduced for sub-optimal environmental conditions (including low air temperature, soil 5 

moisture and frozen conditions) to estimate  (Yi et al., 2013). Vegetation net primary 6 

productivity (NPP) was estimated as a fixed portion of GPP for each biome type based on an 7 

assumption of conservatism in vegetation carbon use efficiency within similar plant functional 8 

types. 9 

A dynamic carbon allocation of litterfall estimated from NPP, based on Randerson et al. (1996) 10 

and White et al. (2000), was used to characterize litterfall seasonality. The total litterfall was 11 

partitioned into three components, including leaves, fine roots, and woody components with 12 

prescribed ratios for each plant functional type based on field experiments (White et al., 2000; 13 

Table S2). Daily constant turnover rates were prescribed for the woody components of litterfall 14 

including stems and coarse roots (White et al., 2000), while the NDVI time series were used to 15 

characterize turnover rates of the other two variable components of litterfall during leaf 16 

senescence and active growth periods (Randerson et al., 1996). Approximately half of the fine 17 

root turnover was assumed to occur during the active growing season, and the monthly variable 18 

fraction of litterfall was calculated as: 19 
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where 
var1( )LT t  and 

var 2 ( )LT t  represent the litterfall fraction associated with leaf loss (i.e. ( )LL t ) 21 

and vegetation active growth, respectively; leafLT  and frootLT  are the prescribed fractions of leaf 22 

and fine root components for each plant functional type, respectively (Table S2). The estimated 23 

monthly litterfall fraction was then distributed evenly within the month.  24 
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To account for the contribution of deep soil organic carbon pools to the total heterotrophic 1 

respiration (Rh), we extended the original Terrestrial Carbon Flux (TCF) soil decomposition 2 

model to incorporate soil organic carbon down to 3 m below surface, and multiple litter and soil 3 

organic carbon (SOC) pools were used to characterize the progressive decomposition of fresh 4 

litter to more recalcitrant materials. Following BIOME-BGC (Thornton et al., 2002), the new 5 

soil decomposition model includes 3 litter pools, 3 SOC pools with relatively fast turnover rates 6 

and a deep SOC pool with slow turnover rates (Fig. S1). The litterfall carbon inputs were first 7 

allocated to the 3 litter pools according to the substrate quality of each litterfall component, i.e. 8 

labile, cellulose and lignin fractions of estimated leaf, fine root, and woody litterfall (Table S3; 9 

White et al., 2000), and then transferred to the SOC pools through progressive decomposition.    10 

For each carbon pool (
iC ), the carbon balance of the decomposition process was defined as: 11 

(1 )i
i j ji j j i i

j i

C
R r T k C k C

t 


   


                                                                                                (A8) 12 

where 
iR  is the carbon input from litterfall allocated to pool i  (only non-zero for the 3 litter 13 

pools), jiT is the fraction of carbon directed from pool j  to pool i  with fraction jr  lost as 14 

respiration, and 
ik ( jk ) is the decomposition rate of carbon pool i ( j ). The heterotrophic 15 

respiration (
hR ) is then computed as the sum of respiration fluxes from the decomposition 16 

process: 17 

1,7

h i i i

i

R rk C


                                                                                                                                (A9) 18 

The soil decomposition rate (
ik ) for each pool is derived as the product of a theoretical maximum 19 

rate constant ( ,mx ik , Fig. S1) and dimensionless multipliers for soil temperature (
multT ) and 20 

moisture (
multW ) constraints to decomposition under prevailing climate conditions:   21 

,i mx i mult multk k T W                                                                                                                      (A10) 22 

where 
multT and 

multW  vary between 0 (fully constrained) and 1 (no constraint), as defined in Yi et 23 

al. (2013).  24 

 25 
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Table 1. Characteristics of two selected tundra and boreal forest tower sites used for model 1 

validation. Three tundra types are represented by the tower measurements at Imnavait Creek, 2 

Alaska, including dry heath, moist acidic tussock and wet sedge tundra. The boreal forest site 3 

encompasses a set of tower Eddy Covariance (EC) sites and measurements spanning a regional 4 

fire chronosequence at various succession stages in central Manitoba, Canada. 5 

 Tundra Boreal forest 

Site  Imnavait Creek, AK Manitoba, Canada 

Location (Lat, Lon) 68°37ʹN, 149°18ʹW 55°54ʹN, 98°31ʹW 

Permafrost Continuous permafrost No 

Observation period 2008-2011 2002-2005 

Soil temperature 

measurement depths 

(cm) 

0, 5 0, 6,11,16,18,29,41,55 

Soil moisture 

measurements depths 

(cm) 

5 11,18,28,41,55 

  6 
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Table 2. Coefficient of determination (R
2
) and root mean square error (RMSE) differences 1 

between model simulated daily carbon fluxes and in situ tower EC measurement based 2 

observations across the study area. The mean of tower-observed daily GPP flux is also shown. 3 

The uncertainty of the estimates including mean, R
2
 and RMSE values was indicated as a 4 

standard deviation when there were multiple sites represented for each plant functional type.    5 

 

PFT 

 

Tower 

sites 

GPP 

Mean                R
2
              RMSE 

(gC m
-2

 day
-1

)               (gC m
-2

 day
-1

) 

NEE 

  R
2
                RMSE 

            (gC m
-2

 day
-1

) 

ENF 12 2.18±1.23 0.70±0.17 1.46±0.59 0.34±0.15 1.06±0.40 

DBF 2 2.11±0.96 0.82±0.02 1.31±0.60 0.59±0.04 1.29±0.39 

MXF 3 1.99±1.02 0.77±0.03 1.46±0.45 0.58±0.11 1.00±0.29 

GRS 1 1.87 0.92 1.38 0.89 1.12 

WET 1 0.77 0.83 1.23 0.71 0.75 

Tundra 1 0.39 0.62 1.76 0.38 0.66 

PFT (plant functional type): evergreen needle-leaf forest; DBF: deciduous broadleaf forest; MXF: 6 

mixed forest; GRS: grassland; WET: wetland.   7 
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Figure 1. Comparisons of model simulated (a) surface soil temperature (~5 cm depth) and carbon 3 

fluxes (b: NEE and c: GPP), and tower measurements at the Imnavait Creek, Alaska tundra sites, 4 

over a three year (2008-2010) daily record. The tower observed carbon fluxes were averaged 5 

across three tundra community types, including dry heath, moist acidic tussock and wet sedge 6 

tundra. NEE measurements were not collected at the tussock tundra site during the winter; 7 

therefore, the winter NEE measurements were averaged for the dry heath and wet sedge tundra 8 

sites only. 9 
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Figure 2. Comparisons of model simulated (a) soil temperature at different depths (6, 16, 29, and 3 

55 cm) and carbon fluxes (b: NEE and c: GPP), and tower measurements at a mature boreal 4 

forest site in Manitoba, Canada over a three year (2002-2004) daily record. 5 

  6 
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Fig. 3 Comparisons of model simulations and satellite-based climate data records (CDR) of snow 3 

cover extent (SCE; Brown and Robinson 2011) over the pan-Arctic modeling domain. (a) The 4 

seasonal cycle of modeled and satellite observed SCE; (b) the probability density function of the 5 

correlation coefficient (R) between modeled and satellite observed SCE at annual and seasonal 6 

time scales (spring: March to May; fall: September to November) from 1982 to 2010. Gray 7 

shading (a) denotes the temporal standard deviation from the multi-year means for the 1982 to 8 

2010 record.  9 
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Figure 4. Model simulated spatial pattern of active layer depth (ALD, a) and estimated trends in 3 

ALD (b), snow cover extent (SCE, c) and snow water equivalent (SWE, d) over the pan-Arctic 4 

basin and Alaska domain from 1982 to 2010. Areas in white are non-permafrost areas (a, b) or 5 

outside of the modeling domain. 6 

 7 

  8 
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 2 

Figure 5. Correlations between climate variables and warm-season (May-October) soil 3 

temperature at different soil depths (0.09, 0.25, 0.50 and 1.75 m). The climate variables include 4 

warm-season air temperature (Tair), preseason snow water equivalent (SWE) and snow cover 5 

extent (SCE). The preseason is defined from November of the previous year to April of this year. 6 

The correlations were binned into 2.5 °C intervals. The standard deviation of correlations across 7 

each climate zone is shown by the error bars. 8 

9 
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Figure 6. Correlations between climate variables and annual carbon fluxes. The climate variables 3 

include annual mean air temperature (Tair), snow water equivalent (SWE) and snow cover extent 4 

(SCE). The annual carbon fluxes include NEE and its two component fluxes (i.e. NPP and soil 5 

heterotrophic respiration Rh). The correlations were binned into 2.5 °C intervals. The standard 6 

deviation of correlations across each climate zone is shown by the error bars.  7 
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Figure 7. Correlations between climate variables and warm-season (May-October) soil 3 

heterotrophic respiration (Rh) composition from soil organic carbon (SOC) pools distributed at 4 

different soil depths (i.e. Rh ratio). The climate variables include warm-season air temperature 5 

(Tair), preseason snow water equivalent (SWE) and snow cover extent (SCE). The correlations 6 

were binned into 2.5 °C intervals. The 3 litterfall SOC pools were distributed at the top 0.2 m of 7 

the soil layers; the 3 SOC pools with fast turnover rates were distributed in the top 0.5 m of the 8 

soil layers; the deep SOC pool with slow turnover rates extended from 0.5 m to 3 m below 9 

surface. The standard deviation of correlations across each climate zone is shown by the error 10 

bars. 11 
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Figure 8. Simulated trends of snow water equivalent (SWE), snow cover extent (SCE) and active 3 

layer depth (ALD) for the three model sensitivity experiments for the 1982 to 2010 period. For 4 

the sensitivity analysis, the model was driven using different surface meteorology datasets. The 5 

results based on model runs using varying temperature (T) and precipitation (P) are presented in 6 

the left column; the results based on model runs using varying T alone are shown in the middle 7 

column, and results based on model runs using varying P alone are shown in the right column.  8 
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Figure 9. Similar to Fig. 8, but for simulated trends (unit: yr
-1

) of the warm-season (May-October) 3 

Rh (soil heterotrophic respiration) contribution from surface (a: 0-0.2 m) and deep (b: 0.5-3.0 m) 4 

soil carbon pools for the three sensitivity experiments using different surface meteorology 5 

configurations, i.e. varying temperature (T) and precipitation (P) inputs, from 1982 to 2010.  6 
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Figure 10. The zonal-average trends of warm-season (May-October) Rh (soil heterotrophic 3 

respiration) contribution from surface litterfall (0-0.2 m) and deep (0.5-3.0 m) soil carbon pools 4 

(i.e. Rh ratio) for the three sensitivity experiments from 1982 to 2010. Run1 indicates model 5 

simulations based on varying temperature (T) and precipitation (P) inputs; Run2 indicates model 6 

simulations based on varying T inputs alone; and Run3 indicates model simulations based on 7 

varying P inputs alone. 8 


