

1 **Ocean dynamic processes causing spatially**
2 **heterogeneous distribution of sedimentary caesium-137**
3 **massively released from the Fukushima Dai-ichi Nuclear**
4 **Power Plant**

5

6 **H. Higashi, Y. Morino, N. Furuichi and T. Ohara**

7 {National Institute for Environmental Studies, Tsukuba, Japan}

8 Correspondence to: H. Higashi (higashi@nies.go.jp)

9

10 **Abstract**

11 Massive amounts of anthropogenic radiocaesium ^{137}Cs that was released into the environment
12 by the Fukushima Dai-ichi Nuclear Power Plant accident on March 2011 are widely known to
13 have extensively migrated to Pacific oceanic sediment off of east Japan. Several recent reports
14 have stated that the sedimentary ^{137}Cs is now stable with a remarkably heterogeneous
15 distribution. The present study elucidates ocean dynamic processes causing this
16 heterogeneous sedimentary ^{137}Cs distribution in and around the shelf off Fukushima and
17 adjacent prefectures. We performed a numerical simulation of oceanic ^{137}Cs behaviour for
18 about 10 months after the accident, using a comprehensive dynamic model involving
19 advection-diffusion transport in seawater, adsorption and desorption to and from particulate
20 matter, sedimentation and suspension on and from the bottom, and vertical diffusion transport
21 in the sediment.

22 A notable simulated result was that the sedimentary ^{137}Cs significantly accumulated in a
23 swath just offshore of the shelf break (along the 50–100 m isobath) as in recent observations,
24 although the seabed in the entire simulation domain was assumed to have ideal properties
25 such as identical bulk density, uniform porosity, and aggregation of particles with a single
26 grain diameter. This result indicated that the heterogeneous sedimentary ^{137}Cs distribution
27 was not necessarily a result of the spatial distribution of ^{137}Cs sediment adsorptivity. The
28 present simulation suggests that the shape of the swath is mainly associated with
29 spatiotemporal variation between bottom shear stress in the shallow shelf (< 50 m depths) and

1 that offshore of the shelf break. In a large part of the shallow shelf, the simulation indicated
2 that strong bottom friction suspending particulate matter from the seabed frequently occurred
3 via a periodic spring tide about every 2 weeks and via occasional strong wind. The
4 sedimentary ^{137}Cs thereby could hardly stay on the surface of the seabed with the result that
5 the simulated sediment-surface ^{137}Cs activity tended to decrease steadily for a long term after
6 the initial ^{137}Cs migration. By contrast, in the offshore region, neither the spring tide nor the
7 strong wind caused bottom disturbance. Hence, the particulate matter incorporated with ^{137}Cs ,
8 which was horizontally transported from the adjacent shallow shelf, readily settled and
9 remained on the surface of the sediment just offshore of the shelf break.

10 ~~The present simulation also clearly demonstrated that the bottom disturbance influenced the~~
11 ~~sedimentary ^{137}Cs distributions not only horizontally but also vertically. In particular, within a~~
12 ~~part of the near shore off the nuclear power plant, the simulation indicated that large amounts~~
13 ~~of the sedimentary ^{137}Cs were present in both upper and deeper sediments. As a result, total~~
14 ~~sedimentary ^{137}Cs in the entire simulation domain ($1.4 \times 10^5 \text{ km}^2$) at the end of 2011 was $3.2 \times 10^{15} \text{ Bq}$, more than 10 times that in previous estimates using samples of upper sediments.~~

16

1 1 Introduction

2 On March 2011, the Great East Japan Earthquake (moment magnitude M_w 9.0) and
3 subsequent huge tsunami caused a severe accident at the Fukushima Dai-ichi Nuclear Power
4 Plant (1FNPP) operated by the Tokyo Electric Power Company (TEPCO). Massive
5 anthropogenic radionuclides were thereby released from 1FNPP and extensively polluted the
6 Pacific oceanic environment off of east Japan. The radiocaesium ^{137}Cs , one of the massively-
7 released radionuclides, was observed to reach a maximum $O(10^5)$ Bq L $^{-1}$ (we represent on
8 the order of 10^n as $O(10^n)$) on the sea surface near 1FNPP just after the accident (early April
9 2011) (TEPCO, 2011). However, the seawater ^{137}Cs rapidly decreased down to less than O
10 (10^2) Bq L $^{-1}$ within a few months after the accident and finally $O(10^{-1})$ Bq L $^{-1}$ as of the end
11 of 2011 (TEPCO, 2011; MEXT, 2011; Buesseler et al., 2011, 2012). By contrast, the
12 sedimentary ^{137}Cs has been continuously detected with high activity ($> O(10^2)$ Bq kg $^{-1}$) in
13 many sediment samples in the nearshore region off Fukushima and adjacent prefectures up to
14 the present (e.g., Kusakabe et al., 2013; Thornton et al., 2013; Ambe et al., 2014; NRA,
15 2014ab). There is no doubt that the ^{137}Cs remaining in the sediment is that which has migrated
16 from the seawater to seabed. The total ^{137}Cs migration amount has been estimated as $O(10^{13} -$
17 $10^{14})$ Bq (Kusakabe et al., 2013; Ambe et al., 2014; Otosaka and Kato, 2014). Because ^{137}Cs
18 has a very long half-life (30.2 years), we should fully understand the long-term oceanic
19 behaviour of the massive sedimentary ^{137}Cs , to predict its fate and future impact on the marine
20 environment and ecosystem.

21 Recent measurements have made it clear that variation in the sedimentary ^{137}Cs is spatially
22 heterogeneous and temporally slow. Thornton et al. (2013) made in situ measurements of
23 continuous ^{137}Cs distributions on the seabed surface between November 2012 and February
24 2013 using a towed gamma-ray spectrometer. Their results revealed the following non-
25 uniform sedimentary ^{137}Cs distribution. High ^{137}Cs activities ($O(10^2 - 10^3)$ Bq kg $^{-1}$) on the
26 sediment surface were detected in the nearshore region off 1FNPP (about 1–2 km east of the
27 shore of 1FNPP) and offshore (beyond \sim 12 km east of the shore), but low concentrations (O
28 (10^1) Bq kg $^{-1}$) were detected between those regions. Ambe et al. (2014) collected samples
29 with high spatial resolution (5' latitude and longitude) in the nearshore region south of
30 Fukushima in February and July 2012. They found a high-activity region in the shape of a
31 swath with width \sim 20 km along \sim 100 m isobath (we call this region the “hotspot swath”
32 hereinafter). Considering also more recent published and unpublished measurements (e.g.,

1 NRA, 2014a), the hotspot swath possibly extended along the shelf edge (50–100 m depths)
2 from the coastal region off of south Fukushima to northeast Sendai Bay off of Miyagi
3 Prefecture. These features of the sedimentary ^{137}Cs distribution could not be captured by
4 sediment sampling with poor spatial resolution (e.g., MEXT, 2011; TEPCO, 2011; Kusakabe
5 et al., 2013).

6 The seabed in the hotspot swath mainly consists of fine particulate matter such as silt and clay
7 (Thornton et al. 2013; Ambe et al., 2014; NRA, 2014a). Caesium is widely known to be
8 readily and almost irreversibly adsorbed on the surface of fine-grained particles. It is thereby
9 understood that sediment in the swath readily accumulated the oceanic ^{137}Cs . In fact, many
10 observational studies have reported that the sedimentary ^{137}Cs distribution is correlated with
11 sediment properties, especially particle grain size (e.g., Otosaka and Kobayashi, 2013;
12 Kusakabe et al., 2013; Otosaka and Kato, 2014). However, there have been few studies on
13 accumulation mechanisms of the fine particulate matter and sedimentary ^{137}Cs in the hotspot
14 swath. The future fate of sedimentary ^{137}Cs in this swath has not been predicted or discussed.

15 Our primary objective was to elucidate ocean dynamic processes causing the spatially-
16 heterogeneous sedimentary ^{137}Cs distribution, especially in the hotspot swath. The study was
17 based on numerical simulation of oceanic ^{137}Cs behaviour in and around the shelf off
18 Fukushima and adjacent prefectures during March and December 2011.

19 To achieve our objective, a numerical model of oceanic ^{137}Cs behaviour requires with the
20 treatment of comprehensive dynamic processes such as advection-diffusion in seawater,
21 adsorption and desorption on and from the particulate matter, and sedimentation and
22 suspension to and from the seabed (e.g., Periáñez, 2003ab, 2004, 2008; Kobayashi et al.,
23 2007; Monte et al., 2009). Other numerical studies (Periáñez et al., 2012; Choi et al., 2012)
24 simulated spatiotemporal variation in sedimentary ^{137}Cs after the 1FNPP accident using such
25 comprehensive models. However, they did not discuss the hotspot swath. This may be
26 because their simulations were limited to only the 4 months after the accident, probably
27 because of insufficient observations. Misumi et al. (2014) developed a simulation model of
28 ^{137}Cs transfer between bottom seawater and the seabed, focusing on sediment adsorptivity
29 with caesium evaluated from sediment properties such as particle grain diameter, bulk density,
30 and porosity. They thereby succeeded in reproducing major features of the observed
31 heterogeneous distribution of sedimentary ^{137}Cs during the first year after the 1FNPP accident.
32 However, their simulation treated only ^{137}Cs activity on the surface of the sediment, using

1 bottom-seawater ^{137}Cs simulated by another model in advance (offline simulation, unlike the
2 aforementioned two studies). In addition, the spatial distribution of sediment adsorptivity with
3 ^{137}Cs as input data was used by the model. Hence, accumulation mechanisms of either the fine
4 particulate matter or sedimentary ^{137}Cs in the hotspot swath could not be depicted by their
5 simulations.

6 There is another issue to be addressed by the aforementioned earlier models. They did not
7 take into account the vertical ^{137}Cs distribution in the sediment, i.e., model variable
8 sedimentary ^{137}Cs was given in only one active layer of the seabed surface. The studies
9 regarded the layer of sediment incorporated with ^{137}Cs as sufficiently thin (within a few cm).
10 However, it has been reported that the vertical sedimentary ^{137}Cs distribution was not
11 necessarily uniform, and that there were sites where sedimentary ^{137}Cs activity in deeper
12 sediment (> 10 cm) was higher than that in upper sediment (Otosaka and Kobayashi, 2013;
13 Ambe et al., 2014; NRA, 2014a). These observations suggest that the vertical ^{137}Cs profile in
14 the sediment should be considered in modelling sedimentation and suspension processes. For
15 instance, suspension of the sediment (incorporating ^{137}Cs) occurs successively from its upper
16 portions. Although numerical models of only sediment transport have been developed with
17 consideration of the vertical profiles of sediment properties in the seabed (e.g., Reed et al.,
18 1999; Lesser et al., 2004; Blaas et al., 2007), there have been few models for vertical
19 movement of other substances intricately connected with those properties. There is also a
20 severe problem in that data on the sediment property spatial distribution immediately after the
21 1FNPP accident, necessary for such simulation, are extremely limited because of the huge
22 tsunami.

23 Our previous study (Higashi et al., 2014) developed a comprehensive model for simulating
24 oceanic ^{137}Cs behaviour in both seawater and seabed, with consideration of vertical ^{137}Cs
25 transport in the sediment. We then roughly assumed that sediment matter in the entire
26 simulation domain had ideal properties such as identical bulk density, uniform porosity, and
27 particle aggregates of a single grain diameter. The reason why we used this assumption was
28 not only that spatiotemporal variation of the sediment properties just after the tsunami
29 disturbance was unknown but also that the assumption enabled direct simulation of vertical
30 ^{137}Cs behaviour in the sediment, to enable direct simulation of vertical sedimentary ^{137}Cs
31 behaviour in the sediment. This type of assumption has also been used in other models
32 (Kobayashi et al., 2007; Choi et al., 2012), except for the ^{137}Cs behaviour in sediment. Our

earlier simulations using the developed model agreed reasonably well with the sampling of ^{137}Cs activity in both seawater and sediment off east Japan in the Pacific during March and December 2011. However, we could not effectively simulate the heterogeneous sedimentary ^{137}Cs distribution, mainly because of a lack of spatial resolution.

We performed a downscaling simulation of oceanic ^{137}Cs behaviour using the usual one-way nesting method to resolve the heterogeneous sedimentary ^{137}Cs distribution, especially in the hotspot swath. The present simulation also employed the aforementioned assumption of the ideal sediment properties in entire domain. The model and the numerical procedure are described in Sect. 2. Simulated results of the spatiotemporal ^{137}Cs distributions in seawater and sediment within the nested region are shown in Sect. 3 as compared with observations, to evaluate our model performance ~~and uncertainty~~. In Sect. 4, we discuss ocean dynamic processes causing the spatially heterogeneous distribution, especially in the hotspot swath, including our model uncertainties. This includes vertical and temporal distributions of sedimentary ^{137}Cs amount obtained from the present simulation, with consideration of the sedimentary vertical ^{137}Cs profile.

2 Model description

2.1 Outline

The numerical model in the present study was online-coupled with a hydrodynamic model (Sect. 2.2) and an oceanic ^{137}Cs behaviour model of seawater (Sect. 2.3) and sediment (Sect. 2.4) (Higashi et al., 2014). The function of the hydrodynamic model was to simulate three-dimensional oceanic currents, temperature, salinity, pressure, and others. The oceanic ^{137}Cs behaviour models of seawater and sediment dealt with spatiotemporal variations in concentrations of ^{137}Cs and particulate matter capable of adsorbing the ^{137}Cs . ^{137}Cs in our model was classified into two phases, dissolved ^{137}Cs and particulate ^{137}Cs , which was defined as ^{137}Cs adsorbing on the particulate matter. The oceanic ^{137}Cs behaviour model of seawater (hereinafter, “the seawater ^{137}Cs model”) was used to simulate ^{137}Cs advection-diffusion under ocean current conditions evaluated by the hydrodynamic model and simultaneous ^{137}Cs reactions such as adsorption/desorption on/from suspended particulate matter, settling, and radioactive decay (Fig. 1a). The oceanic ^{137}Cs behaviour model of the sediment (hereinafter, “the sediment ^{137}Cs model”) simulated sedimentation/suspension of ^{137}Cs and particulate matter between bottom seawater and surface sediment, and subsequent

1 changes in the vertical ^{137}Cs distribution in the seabed (Fig. 1). To connect the seawater and
2 sediment ^{137}Cs models through sedimentation/suspension at the bottom interface, we used the
3 aforementioned assumption of ideal sediment (i.e., particle aggregates with a single grain-
4 diameter, identical density, and uniform porosity), whose properties were equivalent to silty
5 clay over the entire simulation domain. In the model, ^{137}Cs migrates from seawater to
6 sediment through the following sequential processes: suspension of particulate matter from
7 the seabed caused by erosion; vertical mixing of both suspended particulate matter and
8 dissolved ^{137}Cs ; formation of particulate ^{137}Cs through adsorption of dissolved ^{137}Cs on the
9 suspended particulate matter; sedimentation of the particulate ^{137}Cs on the bottom (Fig. 1a).

10 We carried out a regional-scale simulation of oceanic behaviour of the ^{137}Cs released from
11 1FNPP during March and December 2011. To simulate the heterogeneous sedimentary ^{137}Cs
12 distribution in and around the shelf off Fukushima and adjacent prefectures, a high spatial
13 resolution analysis was needed. In addition, because our target area is within the Kuroshio-
14 Oyashio Interfrontal Zone (Yasuda, 1996) where there are strong currents and mesoscale eddy
15 circulations, the model domain had to be sufficiently wide to simulate these essential
16 dynamics. We therefore used a one-way nesting method for downscale simulation from a
17 large area of the northwestern Pacific (Region-1) to a fine-resolution area (Region-2) (Fig. 2a).
18 Region-1 covered 138.0–148.0°E and 32.0–41.0°N with horizontal resolutions of 4.5 km in
19 longitude and 4.4 km in latitude. Region-2 covered 140.4–144.0°E and 35.2–39.0°N with
20 horizontal resolutions 1.5 km in both longitude and latitude. Vertical layers in both regions
21 were set to 47 levels in the seawater, from the sea surface to 6000 m depth, with thickness
22 between 2 m (near the sea surface) and 500 m (near 6000 m depth). There were 42 levels in
23 the sediment from the seabed surface to 1 m depth, with thickness from 0.01 m (near the
24 seabed surface) to 0.05 m (near 1 m depth). Bathymetry was obtained by spatially
25 interpolating gridded water-depth data of JTOPO30, provided by the Marine Information
26 Research Center (MIRC), Japan Hydrographic Association.

27

28 **2.2 Hydrodynamic model**

29 The hydrodynamic model was originally developed and applied to several fields in our
30 previous studies (e.g., Higashi et al., 2013; Higashi et al., 2011). This model was based on the
31 three-dimensional hydrostatic Boussinesq equations, solved by the finite difference method

1 using a horizontal collocated and vertical z-level grid (e.g., Ushijima et al., 2002). A free
2 seawater surface as a vertical moving boundary was traced by the volume-of-fluid (VOF)
3 method (Hirt and Nichols, 1981). Vertical mixing was evaluated using the latest turbulence-
4 closure scheme (Furuichi et al., 2012; Furuichi and Hibiya, 2015), which was an improved
5 version of the Nakanishi and Niino (2009) scheme. Horizontal eddy diffusion was calculated
6 by the Smagorinsky (1963) formula.

7 Momentum and heat exchanges between ocean and atmosphere, which were the seawater
8 surface boundary conditions, were evaluated using the Kondo (1975) method. For these
9 evaluations, we used the following meteorological data at/above the sea surface: hourly
10 atmospheric pressure, wind velocity, air temperature, specific humidity, and precipitation
11 from the Grid Point Value of Mesoscale Model (GPV/MSM) of the Japan Meteorological
12 Agency (JMA). Six-hourly downward solar and longwave radiation data were from the JMA
13 Climate Data Assimilation System (JCDAS).

14 In the Region-1 simulation, we specified daily-mean data of salinity and temperature at the
15 lateral boundaries, reanalysed by the Japanese Fishery Agency-Japan Coastal Ocean
16 Predictability Experiment 2 (FRA-JCOPE2) (Miyazawa et al., 2009). The FRA-JCOPE2 data
17 were also used for simple three-dimensional nudging of salinity and temperature, to involve
18 observed/assimilated features of geostrophic phenomena in our simulation. Reference data for
19 the nudging were 10-day moving average time series of the FRA-JCOPE2 results. A
20 parameter of nudging time scale was set to 20 days. The Region-2 simulation used the same
21 methods for the lateral boundaries and nudging of temperature and salinity as in the Region-1
22 simulation, but the hourly Region-1 simulations provided the input data instead of FRA-
23 JCOPE2.

24 Sea surface elevation at the open boundaries in the Region-1 simulation was from a composite
25 of mean level and tidal anomaly. The former was from the FRA-JCOPE2 daily data, and the
26 latter from hourly data produced by the ocean tide model NAO.99Jb (Matsumoto et al., 2000).
27 Hourly sea surface height from the Region-1 simulation was used for the Region-2 boundary
28 condition. To generate tidal current radiation through the boundaries, the Flather (1976)
29 method was implemented in the simulations for both regions. Because the present simulations
30 eventually indicated that the tide was an important factor in the heterogeneous sedimentary
31 ^{137}Cs distribution (see discussion in Sect. 4), we attempted to verify the simulated tidal
32 amplitude by comparing to observations (Fig. S1). However, observations were very limited

1 during the simulation period, because most tidal gauges offshore of east Japan were damaged
 2 by the tsunami.

3 **2.3 Seawater ^{137}Cs model**

4 The seawater ^{137}Cs model was used to simulate spatiotemporal variations in dissolved ^{137}Cs ,
 5 particulate ^{137}Cs , and suspended particulate matter in the seawater. The model was based on
 6 the following advection-diffusion-reaction equations that were used in several studies (e.g.,
 7 Kobayashi et al., 2007; Periáñez, 2008; Choi et al., 2012) with the same three-dimensional
 8 grid as in the hydrodynamic model:

9
$$F(C_d) = -\phi k_{1m} C_d + \phi k_{-1} m C_p - \phi \lambda C_d \quad (1),$$

10
$$F(mC_p) = \frac{\partial w_p \phi m C_p}{\partial z} + \phi k_{1m} C_d - \phi k_{-1} m C_p - \phi \lambda m C_p \quad (2),$$

11
$$F(m) = \frac{\partial w_p \phi m}{\partial z} \quad (3),$$

12 where F represents the unsteady advection-diffusion terms, expressed as

13
$$F(M) = \frac{\partial \phi M}{\partial t} + \frac{\partial u \phi M}{\partial x} + \frac{\partial v \phi M}{\partial y} + \frac{\partial w \phi M}{\partial z} - \frac{\partial}{\partial x} \left(\phi A_x \frac{\partial M}{\partial x} \right) - \frac{\partial}{\partial y} \left(\phi A_y \frac{\partial M}{\partial y} \right) - \frac{\partial}{\partial z} \left(\phi K_z \frac{\partial M}{\partial z} \right) \quad (4);$$

14 C_d and C_p are activities of the dissolved (Bq m^{-3} -water) and particulate ^{137}Cs (Bq kg^{-1} -dry),
 15 respectively; m is concentration of the suspended particulate matter (kg-dry m^{-3} -water); w_p
 16 represents settling velocities of the suspended particulate matter and particulate ^{137}Cs (m s^{-1});
 17 k_{1m} and k_{-1} are kinetic transfer coefficients of adsorption (s^{-1}) and desorption (s^{-1}),
 18 respectively; λ is a radioactive decay constant (s^{-1}); u , v and w are three-dimensional seawater
 19 currents (m s^{-1}); A_x and A_y are horizontal eddy-diffusion coefficients ($\text{m}^2 \text{s}^{-1}$); K_z is the
 20 vertical eddy-diffusion coefficient ($\text{m}^2 \text{s}^{-1}$); ϕ is volumetric seawater content in a simulation
 21 grid, as a VOF function ranging from 0 (empty) to 1 (filled) (m^3 -water m^{-3} -grid); volumes of
 22 the suspended particulate matter and particulate- ^{137}Cs are negligible in the seawater. The first
 23 term on the right side in Eqs. (2) and (3) indicates settling of the particulate ^{137}Cs / suspended-
 24 particulate-matter in the seawater. The second/third terms in Eqs. (1) and (2) represent the rate
 25 of ^{137}Cs adsorption/desorption on/from the suspended particulate matter. Variables u , v , w , A_x ,
 26 A_y , K_z , and ϕ were evaluated over time by the hydrodynamic model.

27 Values of parameters k_{1m} , k_{-1} and w_p are shown in Table 1. k_{1m} and k_{-1} were derived from other
 28 simulations (Periáñez, 2008; Kobayashi et al., 2007). w_p was confirmed as a sensitive

1 parameter for the horizontal dispersion of sedimentary ^{137}Cs by our sensitivity analyses.
2 Nevertheless, the value used in other studies (e.g., Kobayashi et al., 2007; Choi et al., 2012)
3 had a wide range ($O(10^{-1}-10^2)$ m day $^{-1}$). Although w_p of the fine particulate matter is also
4 known to be variable depending on its concentration (e.g., Sternberg et al., 1999), we treated
5 it as a constant tuning parameter.

6 Inflow conditions of the dissolved ^{137}Cs , particulate ^{137}Cs , and suspended particulate matter
7 must be given at the sea-surface boundary in Eqs. (1)–(3), respectively. We considered the
8 ^{137}Cs inflow through two pathways, direct discharge from 1FNPP and atmospheric deposition.
9 We treated both inflow ^{137}Cs as in the dissolved phase. These source data were referred to
10 (Tsumune et al. (2012) for time series of direct discharge from 1FNPP (total amount of 3.5
11 PBq until the end of May 2011), and Morino et al. (2011) for spatiotemporal variation in
12 atmospheric deposition simulated by an atmospheric chemical-transport model (total amount
13 of 2.3/1.5 PBq in Region-1/2 through the end of April 2011). However, our preliminary
14 experiments using these data indicated that simulated ^{137}Cs activities, especially in both in
15 surface seawater and sediment were much less than observed in all of Region-2, with the
16 result that both sources were considered to be underestimated overall. In fact, these amounts
17 were much smaller than recent evaluation by Miyazawa et al. (2013) (the direct discharge:
18 5.5–5.9 PBq through 6 May 2011, the atmospheric deposition: 5.5–9.7 PBq within 12–62°N
19 and 108–180°E through 6 May 2011). Although their estimation was based on comparison
20 between seawater surface ^{137}Cs in their ocean-atmosphere simulations and that of field
21 observations, their oceanic ^{137}Cs dispersion model did not include ^{137}Cs adsorption to
22 suspended particulate matter and subsequent ^{137}Cs sinking in seawater. If the downward
23 transport were not negligible, their estimation would become more. Furthermore,
24 spatiotemporal variation of atmospheric ^{137}Cs deposition over the ocean, which has been
25 estimated using numerical simulations by several previous studies besides Miyazawa et al.
26 (2013) and Morino et al. (2011), included relatively large uncertainty and its total amount
27 ranged very widely (e.g., 5 PBq within 30.5–48.0°N, 127.0–154.5°E through the end of April,
28 Kawamura et al., 2011; 7.6 PBq in the North Pacific through the end of April, Kobayashi et
29 al., 2013; 28 PBq in the oceans through 20 April, Stohl et al., 2012). This difference could be
30 caused mainly by source parameter of ^{137}Cs emission from 1FNPP to atmosphere (e.g., 8.8
31 PBq, Terada et al., 2012; 13 PBq, Chino et al., 2011, 35.9 PBq, Stohl et al., 2012) and wet/dry
32 deposition schemes (e.g., Stohl et al., 2012). In fact, the total ^{137}Cs amount of direct discharge
33 by Tsumune et al. (2012) (3.5 PBq until the end of May 2011) was smaller than those

estimated by a more recent study (5.5–5.9 PBq through 6 May 2011; Miyazawa et al., 2013). The total ^{137}Cs amount of atmospheric deposition by Morino et al. (2011) (2.3/1.5 PBq in Region 1/2 through the end of April 2011) also showed a tendency to be smaller than those estimated by the other studies (5.5–9.7 PBq within $12^{\circ}\text{--}62^{\circ}\text{N}$ and $108^{\circ}\text{--}180^{\circ}\text{E}$ through 6 May 2011, Miyazawa et al., 2013; 5 PBq within $30.5^{\circ}\text{--}48.0^{\circ}\text{N}$, $127.0^{\circ}\text{--}154.5^{\circ}\text{E}$ through the end of April, Kawamura et al., 2011), although the comparisons may not be accurate because of differences in simulation domains and terms. Hence, the present simulation used source data that were simply scaled as 1.65 and 6.00 times the direct discharge from 1FNPP of Tsumune et al. (2012) and 6.00 times the atmospheric deposition of Morino et al. (2011), respectively (Fig. 3a). As a result, the total direct discharge was 5.9 PBq through the end of May. Total atmospheric deposition on the sea surface was 13.8/9.2 PBq in Region-1/2 through the end of April. Although the simple scaling resulted in decreasing discrepancy between observed and simulated seawater surface ^{137}Cs , we could not validate the ^{137}Cs inflow conditions in detail because neither the direct discharge nor the atmospheric deposition can be measured directly.

We ignored ^{137}Cs loading from the land as a source because its amount, which has been estimated at 0.0075 PBq of ^{134}Cs regarded as almost equivalent to ^{137}Cs amount through the end of October 2011 (Otosaka and Kato, 2014), was much smaller than that of the direct discharge and atmospheric deposition. We also neglected particulate matter loading from the land, because of a lack of available data. This may impose some limitation on our simulation, because the validity of that neglect is not well known.

At the bottom boundaries in the seawater ^{137}Cs simulation, diffusion flux of the dissolved ^{137}Cs and sedimentation/suspension fluxes of the particulate ^{137}Cs and suspended particulate matter, which were evaluated by the sediment ^{137}Cs model described in Sect. 2.4, were specified. At the lateral boundaries, the three variables in the Region-1 simulation were set to zero. We used the hourly Region-1 results in the Region-2 domain.

2.4 Sediment ^{137}Cs model

The sediment ^{137}Cs model was used to simulate the vertical ^{137}Cs distribution in the seabed and sedimentation and/or suspension (erosion) at the bottom boundary. This model was based on the vertical one-dimensional transport equations for particulate and dissolved substances in the sediment (e.g., Fossing et al., 2004; Sohma et al., 2008). Lateral transport into the sediment was negligible. To solve the ^{137}Cs transport equations under the

1 sedimentation/suspension conditions, it is necessary to trace the free boundary of the sediment
 2 surface, which changes with time on the basis of mass balance of the sedimentary particulate
 3 matter. If the usual finite difference method on a Cartesian coordinate (z axis in Fig. 1b) were
 4 used, its numerical procedure would be complicated in spite of the idealized sediment. To
 5 avoid such complication, we applied a relative vertical coordinate z' , defined as distance from
 6 the sediment surface at any time (Fig. 1b). In addition, interaction between the bottom current
 7 and topological change of the sediment surface was ignored, and the ideal sediment
 8 assumption was used. The vertical transport equations were thus transformed into

$$9 \quad \gamma \frac{\partial C'_d}{\partial t} + w_s \gamma \frac{\partial C'_d}{\partial z'} = \gamma D'_d \frac{\partial^2 C'_d}{\partial z'^2} - k_{1m} \gamma C'_d + k_{-1} m' C'_p - \lambda \gamma C'_d \quad (5),$$

$$10 \quad m' \frac{\partial C'_p}{\partial t} + w_s m' \frac{\partial C'_p}{\partial z'} = m' D'_p \frac{\partial^2 C'_p}{\partial z'^2} + k_{1m} \gamma C'_d - k_{-1} m' C'_p - \lambda m' C'_p \quad (6),$$

$$11 \quad m' = (1 - \gamma) \rho_p, \quad (7),$$

12 where m' is dry sediment bulk density (kg-dry m^{-3} -sediment); γ is volumetric water content
 13 (m^3 -porewater m^{-3} -sediment), where $(1 - \gamma)$ indicates volumetric solid content (m^3 -solid m^{-3} -
 14 sediment); ρ_p is particle density (kg-dry m^{-3} -particle); C'_d is dissolved ^{137}Cs activity in
 15 porewater (Bq m^{-3} -porewater); C'_p is particulate ^{137}Cs activity (Bq kg^{-1} -dry) in the sediment;
 16 D'_d and D'_p are diffusion coefficients of the dissolved ($\text{m}^2 \text{s}^{-1}$) and particulate ^{137}Cs ($\text{m}^2 \text{s}^{-1}$) in
 17 the sediment, respectively; w_s is vertical displacement of the sediment surface per unit time
 18 (m s^{-1}). Equation 7 is a stationary solution of the partial-differential transport equation of the
 19 particulate matter satisfying the ideal sediment assumption. The second terms on the left side
 20 of Eqs. (5) and (6) represent parallel downward/upward translation of the vertical profiles of
 21 dissolved and particulate ^{137}Cs as much as the sedimentation/suspension thickness (Fig. 1b).
 22 Because sediment bulk density and porosity were defined as constant parameters by the ideal
 23 sediment assumption, the relationship between the rate of sedimentation/suspension and w_s
 24 can be simply expressed by the following linear expression:

$$25 \quad w_s = (sus_m - sed_m) / m', \quad (8),$$

26 where sus_m and sed_m are suspension ($\text{kg-dry m}^{-2} \text{s}^{-1}$) and sedimentation ($\text{kg-dry m}^{-2} \text{s}^{-1}$)
 27 fluxes of the particulate matter, respectively. They are evaluated by

$$28 \quad sed_m = w_p m_b \quad (9),$$

$$29 \quad sus_m = \max[0, E(\tau_b / \tau_{cr} - 1)], \quad (10),$$

1 where m_b is suspended matter concentration in the bottom seawater (kg-dry m^{-3} -water); E is a
 2 suspension (erosion) coefficient ($kg\ m^{-2}\ s^{-1}$); τ_b is bottom friction ($N\ m^{-2}$); τ_{cr} is critical shear
 3 stress ($N\ m^{-2}$). τ_b is calculated using “the law of the wall” from the bottom current (e.g.,
 4 Deltares, 2012) in the hydrodynamic model, expressed as

$$5 \quad \tau_b = \rho_b \kappa \Delta z_b (u_b^2 + v_b^2) / \int_0^{\Delta z_b} \ln \left(\frac{z+z_0}{z_0} \right) dz \quad (11),$$

6 where ρ_b is bottom seawater density ($kg\ m^{-3}$ -water); κ is the von Kármán constant (= 0.4); Δz_b
 7 is thickness of the sea-bottom grid (m); u_b and v_b are currents in the x and y directions on the
 8 sea-bottom grid ($m\ s^{-1}$), respectively; z_0 is roughness length of the seabed (m). Whereas Eqs.
 9 (9) and (10) are simple equations for sediment transport, they have generally been used in
 10 studies such as in coastal engineering (e.g., Blaas et al., 2007). Sedimentation and erosion of
 11 the particulate ^{137}Cs are similarly expressed by

$$12 \quad sed_{mC_p} = sed_m C_{pb} \quad (12),$$

$$13 \quad sus_{mC_p} = sus_m C'_{ps}, \quad (13),$$

14 where sed_{mC_p} and sus_{mC_p} are sedimentation and suspension rates of the particulate ^{137}Cs (Bq
 15 $\text{m}^{-2}\ \text{s}^{-1}$), respectively; C_{pb} and C'_{ps} are particulate ^{137}Cs activity in the bottom seawater (Bq
 16 kg^{-1} -dry) and in surface sediment ($\text{Bq}\ \text{kg}^{-1}$ -dry), respectively.

17 A list of parameters in the sediment ^{137}Cs model is also given in Table 1. We used k_{-1} and k_{1m}
 18 in that model that were identical to those in the seawater ^{137}Cs model. These values were
 19 confirmed valid by the simulated sedimentary ^{137}Cs , which was consistent with little
 20 dissolution and nearly irreversible adsorption from and on the sediment in other studies (e.g.,
 21 Otosaka and Kobayashi, 2013). The particulate phase (> 99% of the sedimentary ^{137}Cs)
 22 dominated the dissolved phase in the sediment during the simulation term. Sediment physical
 23 properties such as particle density, volumetric water content, the suspension coefficient, and
 24 critical shear stress were selected as values representative of fine particulate matter (e.g., silt
 25 and clay). Sedimentary diffusion coefficients D'_m and D'_p usually consist of molecular
 26 diffusion and/or bioturbation (e.g., Fossing et al., 2004; Sohma et al., 2008). These
 27 coefficients were taken from the literature (Fossing et al., 2004), but their effects on the
 28 simulated result of sedimentary ^{137}Cs were found to be slight.

29 Net flux of suspended particulate matter/particulate ^{137}Cs evaluated from Eqs. (9)/(12) and
 30 (10)/(13) was given as surface seabed condition of Eq. (7) (but unnecessary)/(6) and bottom

boundary of Eq. (3)/(2). Exchange of dissolved ^{137}Cs between bottom seawater (Eq. (1)) and surface seabed (Eq. (5)) was calculated from diffusion equation. Diffusion coefficient was derived from bottom seawater turbulent and sedimentary bioturbation. Adsorption of dissolved ^{137}Cs in bottom seawater to surface sediment could occur through the diffusion process in our model. At the bottom boundaries of Eqs. (5) and (6), we specified flux conditions as advection-outflow at the sedimentation, or zero-inflow at the suspension if deeper ^{137}Cs activity was assumed zero. These fluxes were consistent with mass balance of the particulate matter expressed by the identical Eq. (7). However, there is an issue in the method, in that Eq. (7) cannot be restricted to the suspended amount of sediment matter, i.e., it is possible that the fine particulate matter is infinitely and endlessly supplied from deeper levels. Therefore, the present procedure using the relative vertical-axis z' and uniform sediment assumption, which facilitates simulation of the vertical profile of sedimentary ^{137}Cs , probably overestimates the suspension in regions whose seabed does not actually have sufficient suspendable particulate matter.

3 Results

Here we show simulated variation of spatiotemporal ^{137}Cs in both seawater and sediment in Region-2, and describe model performance and uncertainty based on comparison to observation. To evaluate model performance, we used two statistical indexes, factor (FAn) and fractional bias (FB) (e.g., Draxler, 2006; Draxler et al., 2013) as described in Appendix A. FAn is defined as the percentage of number of simulated results within a certain factor n of a measured value (i.e., within a range from n^{-1} - to n -times the measurements). A larger value indicates better estimation. FB represents normalized model bias in a range from -2 to 2 , with positive/negative values indicating overestimation/underestimation. Evaluation results of the statistical indexes for the sea-surface ^{137}Cs , sediment-surface ^{137}Cs , and vertical profile of sedimentary ^{137}Cs are summarized in Tables S1–S4.

3.1 Seawater ^{137}Cs dispersion

To investigate performance the validity of the seawater ^{137}Cs model, simulated ^{137}Cs activities on the sea surface ($= C_d + mC_p$; however, the sea-surface mC_p was negligible) were compared with observed data. For this comparison, we used TEPCO monitoring data (TEPCO, 2011) at the nearshore sites shown in Fig. 4j, where time series were sufficient. Observations at

1 stations W-1 and W-2 were within the same simulation grid (Fig. 4a and j), because they are
2 very close.

3 Sea-surface ^{137}Cs simulated by our model ~~largely agreed well~~ with observed data (Figs. 4 and
4 S2). The average $FA2$ at all stations, which had a relatively large value of 52.2%, also
5 indicates good model performance (Table S1). This agreement was ~~mainly largely~~ attributable
6 to adjustment of the amount of ^{137}Cs inflow through atmosphere deposition and direct
7 discharge from 1FNPP (mentioned in Sect. 2.3). However, all FB values in Table S1 became
8 negative, indicating that the simulations still somewhat underestimated the sea-surface ^{137}Cs .

9 ~~In particular, relatively large discrepancies between the simulations and the observations were
10 found in initial period between the end of March and the mid-April (Fig. 4). These
11 discrepancies would affect initial ^{137}Cs sedimentation in our simulation. Meanwhile, the
12 results implied that the amount of actual ^{137}Cs inflow exceeded that input to our simulation. It
13 is possible that the amount of actual ^{137}Cs inflow exceeded that input to our simulation.~~

14 Spatiotemporal variation in sea-surface ^{137}Cs strongly depended on atmospheric deposition
15 prior to the end of March, and afterward on direct discharge from 1FNPP (Figs. 3 and 4).
16 Early in April, seawater ^{137}Cs reached a peak $O(10^3\text{--}10^4)$ Bq L $^{-1}$ along the coast near 1FNPP
17 (Fig. 4a–c) and $O(10^2)$ Bq L $^{-1}$ 15 km offshore (Fig. 4d–i). There was a rapid decline of
18 activity from mid-April to beginning of May, and a gradual decrease afterward (Fig. 4a–i).
19 The decrease in seawater ^{137}Cs was caused by significant dispersion from the coastal region to
20 the open ocean (Fig. S2). As mentioned in Sect. 1, many studies have discussed the
21 spatiotemporal ^{137}Cs distribution and its physical background in detail on the basis of
22 numerical simulations (Kawamura et al., 2011; Tsumune et al., 2012, 2013; Masumoto et al.,
23 2012; Choi et al., 2013; Miyazawa et al., 2012, 2013). Hence, W~~we~~ do not address the
24 seawater ^{137}Cs in detail hereinafter. ~~Although as a matter of course there was no earlier~~
25 ~~simulation that quite quantitatively agreed with our spatiotemporal distribution of the~~
26 ~~seawater ^{137}Cs because of differences in numerical procedures and/or simulation conditions,~~
27 ~~we confirmed that our seawater ^{137}Cs dispersion (Figs. 4 and S2) had similar qualitative~~
28 ~~features to the earlier simulations. For instance, our simulation tended to underestimate sea-~~
29 ~~surface ^{137}Cs southeast of 1FNPP such as at stations W-8–10 (Fig. 4g–i, and FB in Table S1)~~
30 ~~per the earlier simulations (Kawamura et al., 2011; Tsumune et al., 2012; Miyazawa et al.,~~
31 ~~2013). because the seawater ^{137}Cs dispersion simulated by our model (Figs. 4 and S2) was~~
32 ~~largely consistent with the earlier simulations. In particular, our seawater ^{137}Cs behaved~~

1 similarly to the simulations of JCOPE T (Miyazawa et al., 2013), probably because both
2 simulations used similar geostrophic nudging data to reproduce reliable currents. Our
3 simulations therefore had the same weaknesses and strengths as JCOPE T. That is,
4 underestimation of sea surface ^{137}Cs southeast of 1FNPP such as at stations W 9 and W 10
5 (Fig. 4h and i, and FB in Table S1), and favourable reproduction northeast of 1FNPP such as
6 at stations W 5 and W 6 (Fig. 4d and e, and FB in Table S1).

8 **3.2 Spatiotemporal ^{137}Cs distribution on surface of sediment**

9 To evaluate the reproduction performance of the sediment ^{137}Cs model, simulated ^{137}Cs on the
10 sediment surface was compared with observations (Figs. 5–7 and Tables S2 and S3). We
11 mainly used sediment sampling data from the Ministry of Education, Culture, Sports, Science
12 and Technology (MEXT) and TEPCO. TEPCO sampling stations were near the shore of
13 Fukushima Prefecture (Fig. 2c), and MEXT monitoring stations were offshore of Miyagi
14 through Ibaraki Prefectures (Fig. 2b). Detailed information on MEXT measurements was
15 given by Kusakabe et al. (2013). It was noted that TEPCO data were published in units Bq
16 kg^{-1} -wet at the time, while others were in Bq kg^{-1} -dry.

17 Spatiotemporal variations of the sediment-surface ^{137}Cs were comparable with the
18 observations in both coastal and offshore regions (Figs. 5–7). Station averages of FA2, which
19 are 40.7% for the offshore MEXT stations (Table S2) and 30.1% for the coastal TEPCO
20 stations (Table S3), indicates tolerable model performance. Simulated sediment-surface ^{137}Cs
21 activities increased dramatically in the first three months at most of the stations (Figs. 6 and
22 7) but, unfortunately, this cannot be sufficiently verified because of a lack of observations
23 during that period. Afterward, activities remained stable or decreased steadily. These temporal
24 changes in sediment-surface ^{137}Cs activities indicate that reproduction performance for the
25 sediment-surface ^{137}Cs was largely determined by the initial ^{137}Cs migration from seawater to
26 seabed.

27 The simulation overestimated some sediment-surface ^{137}Cs activities, especially in the region
28 northeast of 1FNPP such as at MEXT stations B1 and C1 (Fig. 6b and c) in Sendai Bay, and
29 TEPCO stations 5 and 6 (Fig. 7d) near the coast of north Fukushima where even FA5 values
30 were 0.0% (Tables S2 and S3). It was believed that the main cause of these overestimations
31 was the uniform application of the ideal sediment assumption to the entire simulation domain.

1 As mentioned in Sect. 2.4, our model possibly overestimated the amount of particulate matter
2 suspended from the seabed, especially in regions whose sediment does not actually have
3 sufficient suspendable particulate matter. The suspended particulate matter is important in
4 ^{137}Cs migration from seawater to seabed in our model, because ^{137}Cs in seawater cannot sink
5 toward the bottom unless it is transformed from dissolved to particulate phase by adsorbing
6 on the suspended particulate matter (Fig. 1a). Hence, it is believed that the excess particulate
7 matter suspended from the seabed resulted in overestimation of the sediment-surface ^{137}Cs .
8 Indeed, the region where the simulation overestimated sediment-surface ^{137}Cs was dominated
9 by coarse sand outcrops in surveys prior to the powerful tsunami (Aoyagi and Igarashi, 1999).
10 In addition, sediment sampling after the tsunami indicated that the surface sediment had low
11 water contents, which correspond to coarse particles at MEXT stations B1 and C1 (Kusakabe
12 et al., 2013).

13 Despite the aforementioned limitation, our model succeeded in reasonably reproducing the
14 hotspot swath (Fig. 5j), consistent with the recent observations (Thornton et al., 2013; Ambe et
15 al., 2014) described in Sect. 1. The hotspot swath could not be captured by the sediment
16 sampling with coarse spatial resolution, such as that of TEPCO (2011) and MEXT (2011), as
17 mentioned in Sect. 1. The ability to simulate such a heterogeneous distribution of sedimentary
18 ^{137}Cs was very interesting and valuable, because the simulation used the ideal sediment
19 assumption over the entire simulation domain. That is, spatial distributions of sediment
20 adsorptivity with caesium input data were not input to the model, in contrast to the simulation
21 of Misumi et al. (2014). Sequential processes causing the hotspot swath simulated by our
22 model are discussed in detail in Sect. 4.

23

24 **3.3 Vertical ^{137}Cs profile in sediment**

25 It is important to understand the performance and uncertainty of our sediment ^{137}Cs model by
26 comparing observed and simulated vertical profiles of sedimentary ^{137}Cs . However, we could
27 not accomplish this adequately, because there were only a few data available in the study area
28 in 2011. Among those, we used observations of Otosaka and Kobayashi (2013) and Otosaka
29 and Kato (2014). The former were from a narrow nearshore region (26–95 m depths) off
30 Ibaraki Prefecture (Fig. 2c). Their samples were from the upper 10 cm of sediment and cut
31 into two layers, upper (0–3 cm) and lower (3–10 cm). The latter sampling stations were

1 offshore (105–1175 m depths) of Fukushima and Ibaraki prefectures, and samples were upper
2 from 10 cm of sediment and cut into 1 cm-thick sections. Although the latter survey was over
3 a wider area than the former, we selected observations at only four stations (Fig. 2b) where
4 sedimentary ^{137}Cs concentration $m'\text{C}'_p$ was considerably greater than 50 kBq m^{-3} . It is an
5 issue that the above two observations covered only a small part of Region-2, not including
6 notable regions such as the nearshore off 1FNPP and Sendai Bay.

7 The comparison in the nearshore region off Ibaraki Prefecture (Fig. 8a–t) indicates that
8 simulated sedimentary ^{137}Cs in the upper 3 cm layer largely agreed with the observations
9 within one order of magnitude. The station-average $FA5$ is 95.0%, also showing good model
10 performance, but the station-average FB is a positive value of 0.72, indicating some
11 overestimation (Table S4a). Discrepancy between simulated and observed sedimentary ^{137}Cs
12 in the lower layer (3–10 cm) was less than that in the upper layer; station averages of $FA2$ and
13 FB in the lower layer were superior to those in the upper layer (Table S4a). By contrast,
14 results in the offshore region (Fig. 8u–x and Table S4b) show that our model clearly
15 overestimated sedimentary ^{137}Cs in the lower layers (4–30 cm), although the simulated result
16 in the upper layers (0–4 cm) agreed well with the observations. In particular, at the Otosaka
17 and Kato (2014) stations O-K9 and O-K1, simulated sedimentary ^{137}Cs dispersion into the
18 sediment reached about 20 cm depth, although observation was confined to 5-cm depth (Fig.
19 8u, x). Although these results imply that sedimentation of the suspended matter and
20 particulate ^{137}Cs were somewhat overestimated in the offshore region by our model, this did
21 not matter much because the sedimentary ^{137}Cs amounts were very small there.

22 Notably, the simulation successfully reproduced an observed feature of the vertical
23 sedimentary ^{137}Cs profile, i.e., activity in the deeper sediment was significantly higher than
24 that in the upper in the nearshore region, such as at the Otosaka and Kobayashi (2013) station
25 O-S4 (Fig. 8i). Processes causing such a vertical profile in the sediment are described in Sect.
26 4.2.

27

4 Discussion

4.1 Total amount of sedimentary ¹³⁷Cs and its uncertainty in seawater and sediment

The total ¹³⁷Cs amount rapidly increased at the beginning of April in our simulation because of atmospheric deposition and direct discharge from 1FNPP (Fig. 3). After that, it stabilized at ~ 12 PBq by the end of May, and strongly declined to 4.3 PBq at the end of 2011. The latter decrease was caused by the seawater ¹³⁷Cs dispersed from Region-2 to the open ocean. Sedimentary ¹³⁷Cs also increased steadily until onset of the significant seawater dispersion, but suddenly declined at the end of May. This rapid decrease resulted from short but strong suspension induced by an extratropical cyclone that originated as typhoon 201102 (SONGDA) and passed over the southern part of Region-2. Afterward, the sedimentary ¹³⁷Cs rapidly recovered, indicating that the suspended ¹³⁷Cs returned to the sediment. Such behaviours of sedimentary ¹³⁷Cs before and after the cyclone were also simulated by Choi et al. (2013). The temporal variation of sedimentary ¹³⁷Cs amount before and after the cyclone was also reproduced by a previous simulation (Choi et al., 2013). Our simulation showed that the impact of the cyclone on sedimentary ¹³⁷Cs reached more than 10 cm deep in the seabed.

In our simulation, total sedimentary ¹³⁷Cs amount was 0.10 PBq (0.66% of total ¹³⁷Cs inflow) in the upper 3 cm layer, 0.40 PBq (2.6% of total ¹³⁷Cs inflow) in the upper 10 cm layer, and 3.2 PBq (21% of total ¹³⁷Cs inflow) in the entire seabed over all of Region-2 (1.4×10^5 km²) at the end of 2011. Kusakabe et al. (2013) estimated 0.042–0.052 PBq of total sedimentary ¹³⁷Cs between September and December 2011 in the upper 3 cm seabed off Miyagi, Fukushima, and Ibaraki prefectures (2.2×10^4 km² domain) on the basis of the MEXT (2011) observations. Otosaka and Kato (2014) estimated total sedimentary ¹³⁴Cs regarded as almost equivalent to ¹³⁷Cs amount at 0.20 ± 0.06 PBq (decay-corrected to 11 March 2011) within the region less than 200 m depth (1.5×10^4 km² domain) in October 2011 using their sampling data in upper 10 cm sediments and the MEXT observations. Accounting for the difference in study area, our results of the sedimentary ¹³⁷Cs amounts in the upper layers were almost comparable to the two studies. However, the simulated amounts in the upper 3 and 10 cm layers were only 3 and 13% of the total sedimentary ¹³⁷Cs, respectively, while the remaining was present in the deeper sediment. observed relationships between water depth, depth from the sediment surface, and sedimentary ¹³⁴Cs amount. In our simulation, total sedimentary ¹³⁷Cs was 0.10 PBq in the upper 3 cm, and 3.2 PBq in the entire seabed over all of Region-2

($1.4 \times 10^5 \text{ km}^2$) at the end of 2011. Our results, especially the entire inventory, appeared to be overestimates in comparison with the two studies above, even accounting for the difference in study areas.

The difference between the present and previous sedimentary ^{137}Cs amounts were found to be associated with two factors, underestimation in the previous studies and overestimation in our simulation. The former was caused by rough estimation of sedimentary ^{137}Cs amount near 1FNPP, where massive sedimentary ^{137}Cs remains even today, because of a lack of observations after the accident. In addition, the previous works did not include ^{137}Cs in lower sediment,

We could not adequately validate the simulated result of a large amount of ^{137}Cs in the deeper layers. One of the reasons was a lack of observations, necessary for the validation, after the accident in the deeper sediment, especially near 1FNPP where massive sedimentary ^{137}Cs remains even today, as described in Sect. 3.3. Although we described in Sect. 3.2 that the simulated concentrations of sediment-surface ^{137}Cs was roughly comparable with observations except for overestimation in the region northeast of 1FNPP, only this agreement could not indicate validation of ^{137}Cs migration flux from seawater to sediment. The insufficient of the deeper data also became the reason why the earlier estimations of the total sedimentary ^{137}Cs might be underestimated as described by their authors (Kusakabe et al., 2013; Otosaka and Kato, 2014). Indeed, recent surveys have detected high activity $O(10^3 - 10^4) \text{ Bq kg}^{-1}$ ($=O(10^6 - 10^7) \text{ Bq m}^{-3}$) through the present, in both surface and lower ($> 30 \text{ cm}$) sediment at several sampling stations near 1FNPP (Thornton et al., 2013; NRA, 2014a). Our simulation also revealed 1.0 PBq (31% of the total sedimentary ^{137}Cs amount) in a large amount of sedimentary ^{137}Cs in the $30 \times 30 \text{ km}$ square domain ($140.88 - 141.21^\circ\text{E}$, $37.29 - 37.56^\circ\text{N}$ in Fig. 9, except for the land) around 1FNPP at the end of 2011.

Another reason why we could not validate the sedimentary ^{137}Cs amount in the deeper layer was uncertainty related to our simulation conditions. As mentioned in Sect. 2.4, because we used the ideal sediment assumption, our simulation would overestimate sedimentary suspension unless actual seabed mainly consisted of fine particles. However, the other factor in overestimation of total sedimentary ^{137}Cs in our simulation resulted from overestimation of ^{137}Cs sedimentation in the region northeast of 1FNPP, as mentioned in Sect. 3.2. In fact, our simulation overestimated some sediment-surface ^{137}Cs activities in the region northeast of 1FNPP and Sendai Bay whose seabed was dominated by coarse sand, as mentioned in Sect.

1 3.2. The simulated amount of sedimentary ^{137}Cs in the 30×45 km rectangular region in
2 Sendai Bay (141.03–141.37°E, 37.71–38.11°N in Fig. 9) reached was 0.52 PBq (16% of total
3 sedimentary ^{137}Cs amount). Furthermore, our result included uncertainty of ^{137}Cs inflow
4 conditions, especially atmospheric deposition, as mentioned in Sect. 2.2. It goes without
5 saying that the total amount of sedimentary ^{137}Cs directly depends on that of ^{137}Cs inflow.
6 However, even excluding this amount in that rectangular region, the residual simulated
7 amount of sedimentary ^{137}Cs (2.7 PBq) was still more than 10 times the amount in the
8 previous estimations. It is therefore concluded that the earlier studies likely underestimated
9 the total amount of sedimentary ^{137}Cs .

10 **4.2 Influences of tide and strong wind on sedimentary ^{137}Cs on shallow shelf**

11 Suspension of particulate matter from the seabed was important in determining
12 spatiotemporal variation of sedimentary ^{137}Cs in our model, as mentioned in Sect. 3.2. This
13 significant suspension is generally induced by strong bottom friction, caused by ocean
14 currents, tides, wind waves, and others. From linear long wave theory, current velocity is in
15 inverse proportion to the square root of water depth, thus, influences such as tide and wind on
16 bottom shear stress tend to increase with water depth (but also depend on local bottom
17 topography of course). Our simulation confirmed that strong bottom friction exceeding the
18 critical shear stress (0.10 N m^{-2} in the simulation) in the shallow region (< 50 m depths)
19 tended to occur more frequently than offshore (50–200 m depths) (Fig. 10). Extremely strong
20 bottom friction is also found in the deep region (> 800 m depths) (Fig. 10). This is caused by
21 the strong Kuroshio Current. As a result, sediment suspension occurred there at all times in
22 our simulation (Fig. 11). This simulated result was probably in disagreement with actual
23 suspension there. However, the direct effect of this on the simulated ^{137}Cs behaviour in and
24 around the shelf region (< 200 m depths), such as sedimentary ^{137}Cs activity, was slight. This
25 was because particulate matter suspended from the deep sediment had difficulty being
26 transported upward beyond several tens of meters above the seabed by vertical mixing.
27 Therefore, this suspended matter rapidly settled on the seabed within the deep region or
28 dispersed to the open ocean because of the Kuroshio Current in our simulation (no figure
29 shown).

30 The simulation indicates that the tide caused significant suspension and sedimentation of the
31 particulate matter in the nearshore region from Sendai Bay to 1FNPP and off southern Ibaraki
32 (Figs. 10a and b and 11a and b). Bottom friction in the nearshore region varied periodically,

1 and the variation period of strong bottom friction exceeding the critical shear stress was
2 approximately two weeks, corresponding to the spring-neap tidal variation (Fig. 12a). The
3 same periodic changes were found in temporal variations of the vertical profiles of suspended
4 matter concentration and particulate ^{137}Cs activity in seawater above the seabed (Fig. 12c and
5 d). The simulated results revealed that this tidal bottom disturbance caused suspension during
6 spring tide and sedimentation during neap tide (Fig. 11a and b). Particulate matter and
7 particulate ^{137}Cs suspended from the seabed were not believed to be transported over a large
8 horizontal scale, because they rapidly settled on the bottom for several days (Fig. 12c and d).
9 However, the long-term periodic tidal disturbance made the suspension/sedimentation
10 distribution heterogeneous (Fig. 11d). We also found similar periodic changes in simulated
11 sediment-surface ^{137}Cs activities at some nearshore TEPCO stations (Figs. 7a, b and c and
12 12e). It is believed that these temporal changes—perhaps including observed ones as at
13 TEPCO station 22 (Fig. 7a)—resulted from the periodic tidal disturbance. In addition, this
14 long-term tidal influence steadily and strongly reduced sediment-surface ^{137}Cs activities (Figs.
15 7a, b, c, f, and 12a), whose rate of decrease tended to be greater in the shallower region.
16 Periáñez et al. (2012) indicated little tidal effects on the initial ^{137}Cs dispersion and
17 sedimentation on the basis of their numerical experiments, but our simulation suggests that
18 this finding should be confined to the initial 3 months after the accident, and that the tide is
19 very important for long-term sedimentary ^{137}Cs behaviour in the shallow region.

20 Strong wind also had considerable but occasional impacts on the bottom in the shallow region.
21 In particular, the extratropical cyclone at the end of May increased the bottom shear stress to
22 well beyond the critical value (Fig. 10c). As a result, simulated sediment-surface ^{137}Cs
23 activities at many stations near 1FNPP (e.g., TEPCO stations 1, 2, 4, 11, 14 and 20–23 in Fig.
24 7) suddenly decreased about an order of magnitude. As mentioned in Sect. 3.1, the suspended
25 ^{137}Cs rapidly returned to the seabed afterward, across all of Region-2 (Fig. 3). However, the
26 sediment-surface ^{137}Cs activities did not necessarily return to levels before the strong wind
27 event (TEPCO stations 1, 2 and 4 in Fig. 7). On the contrary, we found that the latter
28 sediment-surface ^{137}Cs became much greater than before at some sites (TEPCO stations 18
29 and 29 in Fig. 7). These results suggest that the strong wind event considerably enhanced
30 horizontal transport of sedimentary ^{137}Cs and bottom suspension.

31 The bottom disturbance caused by the tide or strong wind did not occur in every shallow
32 region (< 50 m depths) because of the seabed topography and other factors. In the narrow

1 nearshore region from south Fukushima to north Ibaraki, bottom friction did not increase even
2 during extratropical cyclone passage (Fig. 10c). The Otosaka and Kobayashi (2013) station O-
3 S4, where the apparent downward movement of sedimentary-¹³⁷Cs was found in both
4 observation and simulation (Fig. 8i), was just located in that region. This area was where the
5 bottom disturbance rarely occurred; if anything, the sedimentation slightly dominated the
6 suspension over a long period (Fig. 11d). This indicates that the apparent vertical transport of
7 sedimentary-¹³⁷Cs found at station O-S4 was caused by relatively fresh suspended particulate
8 matter settling on earlier sediment containing substantial ¹³⁷Cs. It is inconceivable that the
9 amount of sedimentation over only several months became so large under the stable seabed
10 condition. However, Although this is probably caused by the uncertainty related to the ideal
11 sediment assumption as mentioned in Sect. 4.1, this may have been possible in the unstable
12 seabed state just after the extraordinary disturbance of the tsunami.

13

14 **4.3 Sedimentary ¹³⁷Cs behaviour in offshore region**

15 In contrast to the shallow region, in the offshore region along the shelf break (50–200 m
16 depths), impacts of the tide and strong wind on the bottom disturbance were much weaker
17 (<50 m depths). Even the extratropical cyclone that caused the strong bottom disturbance in
18 the shallow region at the end of May could not increase bottom friction beyond the critical
19 shear stress (Figs. 10c and 12f), so little sediment was suspended (Figs. 11c and 12h).
20 Although strong vertical mixing then occurred in seawater, dissolved ¹³⁷Cs activity in bottom
21 seawater did not rise (Fig. 12g) in contrast to the shallow result (Fig. 12b). Nevertheless,
22 sedimentary ¹³⁷Cs activities in the offshore region began to increase significantly just after
23 that strong wind event (MEXT stations C3, E1, D1, G0, G1, I0, I1, J1 in Fig. 6, and E1 in Fig.
24 12j). This increase in sedimentary ¹³⁷Cs resulted from sedimentation of particulate ¹³⁷Cs (Fig.
25 12i), which was suspended and horizontally transported into and from the adjacent shallow
26 shelf by the wind event. This horizontal transport is supported by the fact that both
27 concentrations of suspended matter and particulate ¹³⁷Cs suddenly increased in the upper
28 seawater, without bottom suspension or upward diffusion (Fig. 12h and i).

29 The bottom friction barely exceeded the critical shear stress caused by the spring-neap tidal
30 variation in the offshore region as well (Figs. 10 and 12f). Hence, the particulate ¹³⁷Cs, once
31 settled on the seabed, was rarely moved horizontally over a long period. This result is
32 consistent with the fact that both simulated and observed sediment-surface ¹³⁷Cs at many

1 offshore stations remained stable or slightly decreased after the strong sedimentation during
2 extratropical cyclone passage (Figs. 6 and 12j). ~~Notably, Although~~ there were considerable
3 changes in sediment-surface ^{137}Cs at MEXT offshore stations J3 and L3 (Fig. 6j and l). ~~This~~ was because of seasonal variation in strong bottom disturbance caused by the Kuroshio
4 Current.
5

6 **4.4 Hotspot swath**

7 The hotspot swath in our simulation was just offshore of the shelf break (along the 50–100 m
8 isobath) off southern Fukushima Prefecture through northern Sendai Bay at the end of 2011
9 (Fig. 5j). After the 1FNPP accident, the region of high sedimentary ^{137}Cs activity gradually
10 expanded from south of 1FNPP to north in and around the shelf (< 100 m depths) by June
11 (Fig. 5a–e). Afterward, in the shallow shelf (< 50 m depths), the sediment-surface ^{137}Cs
12 significantly decreased because of the periodic tidal disturbance causing sediment suspension,
13 horizontal transport in the seawater, and/or apparent downward movement in the seabed.
14 Meanwhile, in the offshore region (50–100 m depths), the sedimentary ^{137}Cs that settled after
15 being horizontally transported from the shallow region during the extratropical cyclone at the
16 end of May remained largely stable, because of rare bottom disturbance. The present
17 simulation suggests that these were the sequential processes causing the hotspot swath, and
18 that its shape is closely related to spatiotemporal variation between bottom shear stress on the
19 shallow shelf and that offshore of the shelf break. Although our simulation includes
20 quantitative uncertainty as mentioned in Sect. 4.1, these processes are qualitatively reasonable
21 at least. This is because ^{137}Cs accumulation in the hotspot swath is governed mainly by ocean
22 dynamics: spatiotemporal variation of bottom shear stress. That is, the quantitative
23 uncertainty in our simulation conditions would affect amounts of suspension and subsequent
24 horizontal transport of sedimentary ^{137}Cs on shallow shelf, but not ^{137}Cs accumulating
25 location in the offshore.

26 As mentioned in Sect. 1, Misumi et al. (2014) developed a sediment-surface ^{137}Cs model by
27 considering the spatial distribution of sedimentary adsorptivity with caesium. They thereby
28 reproduced the spatially heterogeneous distribution in sediment-surface ^{137}Cs , as in our
29 simulation. Although the processes causing this distribution in their simulation appeared
30 distinct from those in ours, they were not unrelated. This was because the ease/difficulty of
31 sedimentation and accumulation of suspended particulate matter with high adsorptivity were
32 related to the rare/frequent occurrence of strong bottom friction (Figs. 10 and 11). It is

1 believed that our successful reproduction of the hotspot swath resulted from rough
2 consistency between the actual distribution of seabed properties (e.g., Aoyagi and Igarashi,
3 1999) and the simulated spatial variation of bottom friction.

4

5 **5 Conclusions**

6 To clarify ocean dynamic processes causing the massive heterogeneous sedimentary ^{137}Cs
7 distribution that persists in and around the shelf off Fukushima and adjacent prefectures, we
8 numerically simulated oceanic ^{137}Cs behaviour for about 10 months after the 1FNPP accident.

9 We succeeded in simulating such that distribution, especially the hotspot swath just offshore
10 of the shelf break (along the 50–100 m isobath) shown by recent observations (Thornton et al.,

11 2013; Ambe et al. 2014; NRA, 2014a), although quantitative validations were not adequate.

12 The result suggests that several spatiotemporal characteristics of the sedimentary ^{137}Cs would
13 be produced by ocean dynamics.

14 The simulation provided new and meaningful findings to help predict the sedimentary ^{137}Cs
15 fate. The most important suggestion is that the shape of the hotspot swath is largely due to
16 spatiotemporal variation between bottom shear stress in the shallow shelf and that offshore of
17 the shelf break, corresponding to regional-scale bathymetry. Although sediment in the hotspot
18 swath consists of fine particulate matter with high caesium adsorptivity (Thornton et al.,
19 2013; Ambe et al. 2014; NRA, 2014a), the shape of the swath is not directly attributable to
20 that caesium adsorptivity of the sediment. Our simulation indicated that sediment with
21 sufficient fine particulate matter resulted only from the fact that this matter was horizontally
22 transported from the adjacent shelf and readily settled there. It was also found that the
23 accumulation process of sedimentary ^{137}Cs in the hotspot swath was the same as that of the
24 particulate matter. These results indicate that this swath was where the particulate matter
25 (incorporated with ^{137}Cs) was readily accumulated, because it was in a boundary region
26 between frequent and rare occurrence of bottom disturbance caused by tides and/or strong
27 wind. It is therefore predicted that large amounts of sedimentary ^{137}Cs that are currently in the
28 hotspot swath will remain stable or be submerged by additional sedimentation of fresh
29 particulate matter.

30 Our simulation also produced significant findings regarding sedimentary ^{137}Cs behaviour on
31 the shallow shelf. There, the simulated bottom disturbance tended to occur frequently because
32 of the periodic spring tide and occasional strong winds, steadily decreasing simulated

1 sediment-surface ^{137}Cs per several observations. The simulation indicated that repeated
 2 bottom disturbances reducing sediment-surface ^{137}Cs over the long term caused sedimentary
 3 ^{137}Cs to not only be horizontally transported to the offshore region but also vertically toward
 4 deeper sediment. Consequently, in our simulation, relatively large amounts of ^{137}Cs in deeper
 5 sediment remained on the shallow shelf, especially near 1FNPP, even about 10 months after
 6 the 1FNPP accident. Hence, total sedimentary ^{137}Cs at the end of 2011 ~~was reached~~ 3.2 PBq,
 7 ~~and 87% of that was present below 10 cm layers, more than ten times that in earlier~~
 8 ~~estimations using samples of upper sediments (Kusakabe et al., 2013; Otosaka and Kato,~~
 9 ~~2014).~~ If our simulation ~~is were~~ correct, ^{137}Cs in deeper sediment, ~~which has not been~~
 10 ~~adequately observed,~~ would be much greater than in upper sediment, and would remain stable
 11 over a long period. However, ~~the simulated sedimentary ^{137}Cs amount in the deeper layers~~
 12 ~~would include relatively large uncertainty at the present. the present simulation of the vertical~~
 13 ~~^{137}Cs distribution in the sediment could not be adequately verified, owing to a lack of~~
 14 ~~observations during our simulation period. In addition, there remains an issue that our model~~
 15 ~~tended to overestimate sedimentation of particulate matter and subsequent ^{137}Cs migration to~~
 16 ~~the sediment in regions such as northeast of 1FNPP, where the sediment did not actually have~~
 17 ~~sufficient suspendable particulate matter.~~ In future work, we will improve the model for
 18 quantitative simulation of the spatiotemporal variation of fine particulate matter in both
 19 seawater and sediment, ~~and carry out long-term simulations including the tsunami disturbance~~
 20 ~~to validate the model using recent observations of vertical sedimentary ^{137}Cs distribution.~~

22 Appendix A: Statistical method to evaluate model performance

23 The factor FAn (e.g., Draxler, 2006) indicates the percentage of the population of the
 24 simulated results that satisfy

$$25 \quad \frac{1}{n} \leq \frac{Sim}{Obs} \leq n, \quad (\text{A1}),$$

26 where Obs and Sim are the observed and simulated results, respectively. Fractional bias FB
 27 (e.g., Draxler, 2006) is the normalized difference between the average of the observations and
 28 that of the simulations, as defined by

$$29 \quad FB = \frac{\overline{Sim} - \overline{Obs}}{(\overline{Sim} + \overline{Obs})/2}, \quad (\text{A2}),$$

30 where \overline{Obs} and \overline{Sim} are the averages of Obs and Sim , respectively. The FB value ranges from
 31 -2 to 2, and a positive/negative value indicates overestimation/underestimation.

1

2 **Acknowledgements**

3 We acknowledge MEXT and the Nuclear Regulation Authority for providing the observation
4 datasets. We also thank the Japan Agency for Marine-Earth Science and Technology for
5 providing the FRA-JCOPE dataset. Special thanks go to Dr. Akio Imai and Dr. Hiroshi
6 Koshikawa for their insightful comments and encouragement. We are grateful for comments
7 and suggestions from anonymous reviewers and the managing editors. The simulations were
8 performed using supercomputer system NEC SX-9/A(ECO) of the National Institute for
9 Environmental Studies.

10

11 **References**

12 Ambe, D., Kaeriyama, H., Shigenobu, Y., Fujimoto, K., Ono, T., Sawada, H., Saito, H., Miki,
13 S., Setou, T., Morita, T., and Watanabe, T.: Five-minute resolved spatial distribution of
14 radiocesium in sea sediment derived from the Fukushima Dai-ichi Nuclear Power Plant, *J.*
15 *Environ. Radioactiv.*, 138, 264–275, doi:10.1016/j.jenvrad.2014.09.007, 2014.

16 Aoyagi, K., and Igarashi, S.: On the size distribution of sediments in the coastal sea of
17 Fukushima Prefecture. *Bull. Fukushima Prefecture Fish. Exp. Station*, 8, 69–81, 1999 (in
18 Japanese).

19 Blaas, M., Dong, C., Marchesiello, P., McWilliams, J. C., and Stolzenbach, K. D.: Sediment-
20 transport modeling on Southern Californian shelves: a ROMS case study, *Cont. Shelf Res.*,
21 27, 832–853, 2007.

22 Buesseler, K., Aoyama, M., and Fukasawa, M.: Impacts of the Fukushima nuclear power
23 plants on marine radioactivity, *Environ. Sci. Technol.*, 45, 9931–9935,
24 doi:10.1021/es202816c, 2011.

25 Buesseler, K. O., Jayne, S. R., Fisher, N. S., Rypina, I. I., Baumann, H., Baumann, Z., Breier,
26 C. F., Douglass, E. M., George, J., Macdonald, A. M., Miyamoto, H., Nishikawa, J., Pike,
27 S. M., and Yoshida, S.: Fukushima-derived radionuclides in the ocean and biota off Japan,
28 *P. Natl. Acad. Sci. USA*, 109, 5984–5988, 2012.

29 Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H.: Preliminary
30 estimation of release amounts of ^{131}I and ^{137}Cs accidentally discharged from the Fukushima

1 [daiichi nuclear power plant into the atmosphere, J. Nucl. Sci. Technol., 48, 1129–1134,](#)
2 [2011.](#)

3 Choi, Y., Kida, S., and Takahashi, K.: The impact of oceanic circulation and phase transfer on
4 the dispersion of radionuclides released from the Fukushima Daiichi Nuclear Power Plant,
5 Biogeosciences, 10, 4911–4925, doi:10.5194/bg-10-4911-2013, 2013.

6 Deltires: Delft3D-FLOW User Manual, Simulation of Multi-Dimensional Hydrodynamic
7 Flows and Transport Phenomena, Including Sediments, Version: 3.15.25157, Deltires, the
8 Netherlands, 674 pp., 2012.

9 Draxler, R. R.: The Use of global and mesoscale meteorological model data to predict the
10 transport and dispersion of tracer plumes over Washington, D.C., Weather Forecast., 21,
11 383-394, doi:/10.1175/WAF926.1, 2006.

12 Draxler, R., Arnold, D., Galmarini, S., Hort, M., Jones, A., Leadbetter, S., Malo, A., Maurer,
13 C., Rolph, G., Saito, K., Servranckx, R., Shimbori, T., Solazzo, E., and Wotawa, G.:
14 Evaluation of Meteorological Analyses For the Radionuclide Dispersion and Deposition
15 From the Fukushima Daiichi Nuclear Power Plant Accident, WMO-No. 1120, World
16 Meteorological Organization, Switzerland, 64 pp., available at:
17 library.wmo.int/opac/index.php?lvl=notice_display&id=15838 (last access: 8 June 2015),
18 2013.

19 Flather, R. A.: A tidal model of the northwest European continental shelf, *Memories de la*
20 *Societe Royale des Sciences de Liege*, 6, 141–164, 1976.

21 Fossing, H., Berg, P., Thamdrup, B., Rysgaard, S., Sørensen, H. M., and Nielsen, K.: A
22 Model Set-Up For an Oxygen and Nutrient Flux Model For Aarhus Bay (Denmark), NERI
23 Technical Report No. 483, National Environmental Research Institute, Denmark, 65 pp.,
24 2004.

25 Furuichi, N., and Hibiya, T.: Assessment of the upper-ocean mixed layer parameterizations
26 using a large eddy simulation model, *J. Geophys. Res.*, 120, 2350–2369, doi:10.1002/
27 2014JC010665, 2015.

28 Furuichi, N., Hibiya, T., and Niwa, Y.: Assessment of turbulence closure models for resonant
29 inertial response in the oceanic mixed layer using a large eddy simulation model, *J.*
30 *Oceanogr.*, 68, 285–294, doi:10.1007/s10872-011-0095-3, 2012.

1 Higashi, H., Koshikawa, H., Murakami, S., and Kohata, K.: A long-term simulation study on
2 variability of short-necked clam resources in Ise Bay in the 1990s, Journal of Japan Society
3 of Civil Engineers, Ser. B2 (Coastal Engineering), 67, I_1046–I_1050,
4 doi:10.2208/kaigan.67.I_1046, 2011 (in Japanese with English abstract).

5 Higashi, H., Furuichi, N., and Maki, H.: Validation of Vertical Mixing Schemes Based on In-
6 situ Turbulence Measurements in Tokyo Bay, J. Jpn Soc. Civil Engineers, Ser. B2 (Coastal
7 Engineering), 69, I_1066–I_1070, doi:10.2208/kaigan.69.I_1066, 2013 (in Japanese with
8 English abstract).

9 Higashi, H., Morino Y., and Ohara, T.: A numerical study on oceanic dispersion and
10 sedimentation of radioactive Cesium-137 from Fukushima Daiichi nuclear power plant,
11 Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 70, I_1121–
12 I_1125, doi:10.2208/kaigan.70.I_1121, 2014 (in Japanese with English abstract).

13 Hirt, C. W., and Nichols, B. D.: Volume of fluid method for the dynamics of free boundaries,
14 J. Comput. Phys., 39, 201–225, 1981.

15 Kawamura, H., Kobayashi, T., Furuno, A., In, T., Ishikawa, Y., Nakayama, T., Shima, S., and
16 Awaji, T.: Preliminary numerical experiments on oceanic dispersion of ^{131}I and ^{137}Cs
17 discharged into the ocean because of the Fukushima daiichi nuclear power plant disaster, J.
18 Nucl. Sci. Technol., 48, 1349–1356, 2011.

19 Kobayashi, T., Nagai, H., Chino, M., and Kawamura, H.: Source term estimation of
20 atmospheric release due to the Fukushima Daiichi Nuclear Power Plant accident by
21 atmospheric and oceanic dispersion simulations, J. Nucl. Sci. Technol., 50, 255-264,
22 doi:10.1080/00223131.2013.772449, 2013.

23 Kobayashi, T., Otosaka, S., Togawa, O., and Hayashi, K.: Development of a non-conservative
24 radionuclides dispersion model in the ocean and its application to surface cesium-137
25 dispersion in the Irish Sea, J. Nucl. Sci. Technol., 44, 238–247,
26 doi:10.1080/18811248.2007.9711278, 2007.

27 Kondo, J.: Air-sea bulk transfer coefficients in diabatic conditions, Bound.-Lay. Meteorol., 9,
28 91–112, 1975.

29 Kusakabe, M., Oikawa, S., Takata, H., and Misonoo, J.: Spatiotemporal distributions of
30 Fukushima-derived radionuclides in nearby marine surface sediments, Biogeosciences, 10,
31 5019–5030, doi:10.5194/bg-10-5019-2013, 2013.

1 Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G. S.: Development and
2 validation of a three-dimensional morphological model, *Coast. Eng.*, 51, 883–915, 2004.

3 Matsumoto, K., Takanezawa, T., and Ooe, M.: Ocean tide models developed by assimilating
4 TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a
5 regional model around Japan, *J. Oceanogr.*, 56, 567–581, 2000.

6 Masumoto, Y., Miyazawa, Y., Tsumune, D., Kobayashi, T., Estournel, C., Marsaleix, P.,
7 Lanerolle, L., Mehra, A., and Garrao, Z. D.: Oceanic dispersion simulation of Cesium 137
8 from Fukushima Daiichi Nuclear Power Plant, *Elements*, 8, 207–212, 2012.

9 Ministry of Education, Culture, Sports, Science and Technology (MEXT): Monitoring
10 Information of Environmental Radioactivity Level, available at: radioactivity.nsr.go.jp/en/
11 (last access: 8 June 2015), 2011.

12 Ministry of the Environment (MOE): Radioactive Material Monitoring Surveys of the Water
13 Environment, available at: www.env.go.jp/en/water/rmms/surveys.html (last access: 8 June
14 2015), 2011.

15 Misumi, K., Tsumune, D., Tsubono, T., Tateda, Y., Aoyama, M., Kobayashi, T., and Hirose,
16 K.: Factors controlling the spatiotemporal variation of ^{137}Cs in seabed sediment off the
17 Fukushima coast: implications from numerical simulations, *J. Environ. Radioactiv.*, 136,
18 218–228, doi:10.1016/j.jenvrad.2014.06.004, 2014.

19 Miyazawa, Y., Zhang, R., Guo, X., Tamura, H., Ambe, D., Lee, J. S., Okuno, A., Yoshinari,
20 H., Setou, T., and Komatsu, K.: Water mass variability in the western North Pacific
21 detected in a 15-year eddy resolving ocean reanalysis, *J. Oceanogr.*, 65, 737–756, 2009.

22 Miyazawa, Y., Masumoto, Y., Varlamov, S. M., Miyama, T., Takigawa, M., Honda, M., and
23 Saino, T.: Inverse estimation of source parameters of oceanic radioactivity dispersion
24 models associated with the Fukushima accident, *Biogeosciences*, 10, 2349–2363,
25 doi:10.5194/bg-10-2349-2013, 2013.

26 Monte, L., Periáñez, R., Boyer, P., Smith, J. T., and Brittain, J. E.: The role of physical
27 processes controlling the behaviour of radionuclide contaminants in the aquatic
28 environment: a review of state-of-the-art modelling approaches, *J. Environ. Radioactiv.*,
29 100, 779–784, doi:10.1016/j.jenvrad.2008.05.006, 2009.

1 Morino, Y., Ohara, T., and Nishizawa, M.: Atmospheric behavior, deposition, and budget of
2 radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011,
3 Geophys. Res. Lett., 38, L00G11, doi:10.1029/2011GL048689, 2011.

4 Murakami, K., Saganuma, F., and Sasaki, H.: Experimental Investigation on Erosion and
5 Deposition of Fine Cohesive Sediments in an Annular Rotating Channel, Report of the Port
6 and Harbour Research Institute, 28, Japan, 43–76, 1989.

7 Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the
8 atmospheric boundary layer, J. Meteorol. Soc. Jpn., 87, 895–912, 2009.

9 Nuclear Regulation Authority (NRA): Achievement Report on Measurement and Study of
10 Radionuclide Distribution in Ocean in 2013 Japanese Fiscal Year, available at:
11 radioactivity.nsr.go.jp/ja/contents/10000/9423/24/report_20140613.pdf (last access: 8 June
12 2015), 2014a (in Japanese).

13 Nuclear Regulation Authority (NRA): Monitoring Information of Environmental
14 Radioactivity Level, available at: radioactivity.nsr.go.jp/en/ (last access: 8 June 2015),
15 2014b.

16 Otosaka, S. and Kato, Y.: Radiocesium derived from the Fukushima Daiichi Nuclear Power
17 Plant accident in seabed sediments: initial deposition and inventories, Environ. Sci.: Proc.
18 Impacts, 16, 978–990, doi:10.1039/c4em00016a, 2014.

19 Otosaka, S. and Kobayashi, T.: Sedimentation and remobilization of radiocesium in the
20 coastal area of Ibaraki, 70km south of the Fukushima Dai-ichi Nuclear Power Plant,
21 Environ. Monit. Assess., 185, 5419–5433, doi:10.1007/s10661-012-2956-7, 2013.

22 Periáñez, R.: Redissolution and long-term transport of radionuclides released from a
23 contaminated sediment: a numerical modelling study, Estuar. Coast. Shelf S., 56, 5–14,
24 2003a.

25 Periáñez, R.: Kinetic modelling of the dispersion of plutonium in the eastern Irish Sea: two
26 approaches, J. Marine Syst., 38, 259–275, 2003b.

27 Periáñez, R.: Testing the behaviour of different kinetic models for uptake-release of
28 radionuclides between water and sediments when implemented on a marine dispersion
29 model, J. Environ. Radioactiv., 71, 243–259, 2004.

1 Periáñez, R.: A modelling study on ^{137}Cs and $^{239,240}\text{Pu}$ behaviour in the Alborán Sea, western
2 Mediterranean, *J. Environ. Radioactiv.*, 99, 694–715, 2008.

3 Periáñez, R., Suh, K. S., and Min, B. I.: Local scale marine modelling of Fukushima releases,
4 Assessment of water and sediment contamination and sensitivity to water circulation
5 description, *Mar. Pollut. Bull.*, 64, 2333–2339, doi:10.1016/j.marpolbul.2012.08.030, 2012.

6 Reed, C.W., Niedoroda, A.W., and Swift, D. J. P.: Modeling sediment entrainment and
7 transport processes limited by bed armoring, *Mar. Geol.*, 154, 143–154, 1999.

8 Smagorinsky, J.: General circulation experiments with the primitive equations, I. The basic
9 experiment, *Mon. Weather Rev.*, 91, 99–164, 1963.

10 Sohma, A., Sekiguchi, Y., Kuwae, T., and Nakamura, Y.: A benthic-pelagic coupled
11 ecosystem model to estimate the hypoxic estuary including tidal flat – model description
12 and variation of seasonal/daily dynamics, *Ecol. Model.*, 215, 10–39,
13 doi:10.1016/j.ecolmodel.2008.02.027, 2008.

14 Sternberg, R. W., Berhane, I., and Ogston, A. S.: Measurement of size and settling velocity of
15 suspended aggregates on the northern California continental shelf, *Mar. Geol.*, 154, 43–53,
16 1999.

17 [Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313–2343, doi:10.5194/acp-12-2313-2012, 2012.](#)

18 [Terada, H., Katata, G., Chino, M., and H. Nagai: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion, J. Environ. Radioactiv., 112, 141–154, 2012.](#)

26 Thornton, B., Ohnishi, S., Ura, T., Odano, N., Sasaki, S., Fujita, T., Watanabe, T., Nakata, K.,
27 Ono, T., and Ambe, D.: Distribution of local ^{137}Cs anomalies on the seafloor near the
28 Fukushima Dai-ichi Nuclear Power Plant, *Mar. Pollut. Bull.*, 74, 344–350,
29 doi:10.1016/j.marpolbul.2013.06.031, 2013.

1 Tokyo Electric Power Corporation (TEPCO): Influence to Surrounding Environment,
2 Archives, available at: www.tepco.co.jp/en/nu/fukushima-np/f1/index2-e.html (last access:
3 8 June 2015), 2011.

4 Tsumune, D., Tsubono, T., Aoyama, M., and Hirose, K.: Distribution of oceanic ^{137}Cs from
5 the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean
6 model, *J. Environ. Radioactiv.*, 111, 100–108, 2012.

7 Tsumune, D., Tsubono, T., Aoyama, M., Uematsu, M., Misumi, K., Maeda, Y., Yoshida, Y.,
8 and Hayami, H.: One-year, regional-scale simulation of ^{137}Cs radioactivity in the ocean
9 following the Fukushima Dai-ichi Nuclear Power Plant accident, *Biogeosciences*, 10,
10 5601–5617, doi:10.5194/bg-10-5601-2013, 2013.

11 Ushijima, S., Takemura, M., and Nezu, I.: Investigation on computational schemes for MAC
12 methods with collocated grid system, *J. Jpn Soc. Civil Engineers*, 719, 11–19, 2002 (in
13 Japanese with English abstract).

14 Yasuda, I., Okuda, K., and Shimizu, Y.: Distribution and modification of the North Pacific
15 Intermediate Water in the Kuroshio-Oyashio Interfrontal zone, *J. Phys. Oceanogr.*, 26,
16 448–465, 1996.

17