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Anonymous Referee #1:

This is a thorough and well-written manuscript on carbonate ion concentrations in the sur-
face oceans. There are no observations appropriate for such evaluations so the authors use
a long control simulation from an Earth System Model. This allows for evaluation of vari-
ance, analysis of the length scales of internal natural variability, as well as determination
of the noise-to-signal ratios. These are all valuable and important insights into a carbon
system variable that is becoming more and more important in the future as a result of ocean
acidification.

Minor issue: Some information is repeated a few times in the manuscript. Most notably the
information about the model run and the lack of external forcing, which is given both in the 1
introduction and the model description section.

I find no major issues with this manuscript.

The one thing I as the reader miss is more discussion. The results are all very well presented,
but lack some discussion. One of the main results, also highlighted in the abstract, is
that “the anthropogenic trend in pH is detectable sooner than the anthropogenic trend in
Ωaragonite.” (page 13134, line 20). I would like some discussion of the implication of this result. 2
In particular since the spatial variability in the detection time is very large. There is some
discussion of the model results in relation to the time series data published by Bates et al.
(2014), and especially mentioned that “all located in places with relatively short detection
times”. Again I miss some discussion on the implication of this. Are the time series then 3
less representative of the “typical” ocean variability and trends? There is a lot of work
going on currently aimed at optimizing the observational network (both using fixed time
series stations and lines/transects covering larger areas). I think such work on the long-term
natural variability of key ocean carbon chemistry is highly relevant for such work. This
merits some mention and discussion also in this paper. Finally, since the detection time is
so spatially variable and the variability has such different time scales in different regions:
is there any point trying to calculate global trends with the observations we have available 4
today? What additional constraints are necessary to make such estimates robust? Some
discussion along these lines would be very nice.

Anonymous Referee #2:

The manuscript ‘Natural variability in the surface ocean carbonate ion concentration’ by
Lovenduski et al. investigates the natural variability of the carbonate ion from years to
decades using a long preindustrial run from an IPCC-class Earth system model. Find-
ings provide a useful background to further our knowledge of the ocean acidification. The
manuscript is clearly structured and reads well. Nevertheless, I think this paper needs some
clarification that have to be addressed first, and which prevent me of accepting this paper
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in its present form. Therefore, I recommend acceptance of this manuscript after some mi-
nor revisions, considering that major points (methodology, detailed below) can be addressed
easily.

Minor comments: In absence of external forcings, the internal variability equals the natural
variability. That said, the main message of the study might be clearer if the authors state 5
that they analyze the internal variability (which is the unforced natural variability). Besides,

6
It might be relevant to evaluate whether an interative atm CO2 will impact their findings
or not (using esmControl simulation for example).

Major Comments:

(1) While I acknowledge that several studies have relied on the Weatherhead et al formalism,
we shall keep in mind that this formalism has been developed using an AR1-process assump-
tion. This hypothesis is clearly relevant for a large number of physical or dynamical fields
but shall be assessed for biogeochemical fields which present are inner ocean fields (evolving
slowly). In order to evaluate an AR1-process for ocean pH or carbonate ion, I recommend to 7
employ partial autocorrelation (pacf) which will give hints on the order of the auto-regressive
memory of the fields. Eventually a map of the greater significant AR for CO32- might be of
interest for the analysis. It might be helpful for me to see timeseries, acf and pacf at some
oceanic domains.

(2) It is unclear to me how the authors have performed their analysis explained in Equation
3 and 4. Do they have set the temporal values of some parameters to zero or not. If not, 8
how large are the crossing terms of the taylor expansion ?

Specific comments

P 13124, L2 fully coupled is not appropriate here since a time-invariant atm CO2 is used 9

P 13124, L15 and lower autocorrelation in pH = few words on IAV might be helpful 10

P 13125, L19, “large internal climate variability” = natural because breaking down the
contribution of the forced vs unforced variability in the observations is hard task regarding 11
the few years of data we have...

P 13126, L28 I agree but they capture the chronology of events which is as important as the 12
IAV to apprehend the detection of anthropogenic signal

P 13127, L4 several others study have investigate this question: (Friedrich et al., 2012; Keller 13
et al., 2014; Lehner et al., 2015; Séférian et al., 2014)

P 13128, L1 intrinsic ? see (Penduff et al., 2011) 14

P 13138 Large variability in the Tropical Pacific. This might be discussed a bit regarding the
study of Resplandy et al which analyze the variability of fgCO2 anf fgO2 using an ensemble
of Earth system model. It seems that the agreement between models in term of variability 15
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is poor. Few words on this point might be helpful and provide lead for future investigation
(ensemble of control run, perturbed simulation or a greater ensemble of Earth system model).

Friedrich, T., Timmermann, A., Abe-Ouchi, A., Bates, N. R., Chikamoto, M. O., Church, M.
J., Dore, J. E., Gledhill, D. K., Gonzlez-Dvila, M., Heinemann, M., Ilyina, T., Jungclaus, J.
H., McLeod, E., Mouchet, A. and Santana-Casiano, J. M.: Detecting regional anthropogenic
trends in ocean acidification against natural variability, Nature Climate change, 2(3), 167171,
doi:10.1038/nclimate1372, 2012.

Keller, K. M., Joos, F. and Raible, C. C.: Time of emergence of trends in ocean biogeochem-
istry, Biogeosciences, 11(13), 36473659, doi:10.5194/bgd-10-18065-2013, 2014.

Lehner, F., Joos, F., Raible, C. C., Mignot, J., Born, A., Keller, K. M. and Stocker, T. F.:
Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE, Earth Syst.
Dynam., 6(2), 411434, 2015.

Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W. K., Treguier, A.-M., Molines, J.-
M. and Audiffren, N.: Sea Level Expression of Intrinsic and Forced Ocean Variabilities
at Interannual Time Scales, J. Climate, 24(21), 56525670, doi:10.1175/JCLI-D-11-00077.1,
2011.

Séférian, R., Ribes, A. and Bopp, L.: Detecting the anthropogenic influences on recent
changes in ocean carbon uptake, Geophys. Res. Lett., 2014GL061223, doi:10.1002/2014GL061223,
2014.
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Response to Reviewers

We thank both reviewers for their constructive comments, which improved our original
manuscript.

Reviewer 1

(1) We have excised the repeated information from the model description.

(2) The implication of this result is that, regardless of where you sample the ocean, a
significant anthropogenic trend in pH should emerge sooner from the record than a significant
anthropogenic trend in Ωaragonite. We have added text to the manuscript to discuss this point
further:

Revised manuscript, section 4: Thus, results from our model suggest that the anthropogenic
trend in pH is detectable sooner than the anthropogenic trend in Ωaragonite. These results
imply that significant trends in pH will emerge before significant trends in Ωaragonite at nearly
every location in the ocean (with perhaps the exception of the Arctic Ocean).

(3) Indeed, the timeseries sites are all ideally located in places with low variability, so
significant trends emerge more quickly from the records there. The same cannot be said
about regions with high variance, such as the equatorial Pacific and inter-gyre regions. Hence,
the focus on the high variance regions in the later sections of the paper. We now include
additional discussion of this:

Revised manuscript, section 4: The timeseries sites are ideally located in places with low
variability in [CO2−

3 ] and pH, so significant trends emerge more quickly there relative to
other locations with high variance in these properties, such as the equatorial Pacific and
inter-gyre regions (Fig. 4).

(4) Thanks for bringing this to our attention! We welcome the opportunity to discuss this
further in the manuscript, and have included an additional paragraph in the conclusions
detailing how our results may eventually influence efforts to optimize the observational net-
work:

Revised manuscript, section 6: Ongoing efforts aimed at optimizing the ocean acidification
observational network (e.g., the Global Ocean Acidification Observing Network, GOA-ON)
stand to benefit from the results presented here. Our analysis suggests that frequent, sustained
observations are required to capture the natural variability that is key to detecting significant
anthropogenic trends in surface Ωaragonite and pH. In regions where variability is muted (e.g.,
the subtropical gyres), detectable trends can emerge from sparse or short records, whereas,
in regions with heightened variability (e.g., the equatorial Pacific), the observational record
must be denser and longer in order to detect the same trend. Further, our finding that the
detection timescale for pH is shorter than that for Ωaragonite nearly everywhere highlights the
need for continued underway and float-based pH measurements.
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Reviewer 2

(5) We now state this point in the Introduction:

Revised manuscript, section 1: This allows us to cleanly ascribe surface carbonate variability
to internal variability (unforced natural variability) of the physical climate system.

(6) While a complete evaluation of the fully-coupled control run (with interactive atmo-
spheric CO2) is beyond the scope of this study, we nevertheless calculated the interannual
and decadal surface ocean [CO2

3−] variance (Figure R1) and the wavelet time frequency
spectrum for regionally averaged surface [CO2−

3 ] (Figure R2) from the fully-coupled run.
These figures are nearly identical to Figures 4 and 8 in the original manuscript (note that
the x-axis on Figure R2 is different, as only the last 700 years of the 1000-year fully-coupled,
control run [CO2−

3 ] were saved to disk). We conclude from this that interactive vs. prescribed
atmospheric CO2 has little impact on our main findings.

(7) We include for the reviewer a map of the order of the auto-regressive memory of sur-
face ocean [CO2−

3 ] and pH (Figure R3) and the autocorrelation and partial autocorrelation
functions for the North Atlantic, North Pacific, and tropical Pacific regions (Figure R4). We
note that while a large fraction of the ocean is best-represented by an AR(1) process, some
regions (e.g., the tropical Pacific) are better represented by a higher-order process. While
we maintain the use of the Weatherhead et al. (1998) method for trend detection timescale
in the manuscript, we now point out that our detection timescale estimates may be biased
under the AR(1) assumption:

Revised manuscript, section 4: We note that the Weatherhead et al. (1998) method assumes
a first-order auto-regressive process (AR(1)), and previous literature suggests that ocean car-
bon fluxes may be better represented by a higher-order auto-regressive process (e.g., AR(3);
Séférian et al., 2013). As such, our detection times represent minimum values.

(8)We apologize for the confusion, and include here for the reviewer Figure R5 to help clarify.
Indeed, the sum of the terms on the right-hand side of Equation (4) (the “Taylor sum”; 2nd

column of Figure R5) is not exactly equal to the left-hand side in some locations (the 1st

EOF; 1st column of Figure R5) due to cross-correlations among the variables (“Residual”;
3rd column of Figure R5). We now include a statement about this in the manuscript:

Revised manuscript, Section 5: Cross-correlations among the variables in the Taylor sum
may lead to imprecise results in some locations.

(9) Thanks for catching this! We excised “fully-coupled” from the text.

(10) Smaller noise-to-signal ratios suggests that either the noise (internal variability) is larger
or the signal (trend) is smaller for pH. Manuscript unchanged in response to comment.

(11) We agree. Manuscript changed to read: large natural variability challenges...

(12) We now include a statement regarding the chronology:
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Revised manuscript, section 1: While hindcast studies can capture the observed chronology
of these modes, they cannot capture the full spectrum of internal variability in the climate
system.

(13) We now make reference to these studies in the manuscript:

Revised manuscript, section 1: Long model simulations (order 1000 years) can capture mul-
tiple realizations of climate variability on decadal and multi-decadal timescales, and have
shown to be useful in the study of ocean carbon cycle variability on these timescales (Doney
et al., 2006; Séférian et al., 2013; Keller et al., 2014; Séférian et al., 2014; Lehner et al.,
2015; Resplandy et al., 2015).

(14) We replaced “intrinsic natural variability” with “internal variability (unforced natural
variability)”. See response to point (6) above.

(15) Great idea! We now include a paragraph of discussion on this point in the Conclusions:

Revised manuscript, section 6: While the spatial pattern of surface [CO2−
3 ] variability in our

model is similar to that reported in other studies (e.g., Friedrich et al., 2012)), a recent study
of natural carbon uptake variability from centuries-long simulations of six ESMs suggests that
we should expect the magnitude of this variability to differ from model to model (Resplandy
et al., 2015). Thus, the detection times for trends in [CO2−

3 ] and pH, which themselves are
a function of the variability, are also likely to differ from model to model. Future investiga-
tions characterizing the uncertainty in internal variability from ESM ensembles are therefore
needed.
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Figure R1: Variance in the surface ocean carbonate ion concentration for (a) annual-mean
and (b) 10-year filtered output from the fully-coupled (interactive atmospheric CO2) simu-
lation (log10(mmol m−3)2).
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Figure R2: The wavelet time-frequency spectrum for the leading principal component of
surface ocean [CO2−

3 ] in the (a) tropical Pacific, (b) North Pacific, and (c) North Atlantic
regions, generated using output from the fully-coupled (interactive atmospheric CO2) simu-
lation (mmol m−3)2. Black contours indicate statistically significant (>95%) spectral power.
Regions defined as in the original manuscript.
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(a) [CO3
2-] AR(p) (b) pH AR(p)
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Figure R3: Order of the auto-regressive memory (AR(p)) of surface ocean (a) [CO2−
3 ] and

(b) pH.
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Figure R4: Autocorrelation and partial autocorrelation functions for regionally-averaged
surface ocean [CO2−

3 ] and pH. Regions defined as in the original manuscript.
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Figure R5: (1st column) The leading EOF of the surface ocean [CO2−
3 ], (2nd column) the

Taylor sum of contributions to the leading EOF, ∆[CO2−
3 ], and (3rd column) the residual

due to cross-correlations among the variables in the Taylor sum.

12



D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

Manuscript prepared for Biogeosciences Discuss.

with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls.

Date: 2 October 2015

Natural variability in the surface ocean

carbonate ion concentration

N. S. Lovenduski1, M. C. Long2, and K. Lindsay2

1Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research,

University of Colorado, Boulder, Colorado, USA
2Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder,

Colorado, USA

Correspondence to: N. S. Lovenduski (nicole.lovenduski@colorado.edu)

1



D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

Abstract

We investigate variability in the surface ocean carbonate ion concentration ([CO2−

3
]) on

the basis of a long control simulation with a fully-coupled
✿✿✿

an
✿

Earth System Model. The

simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for

1000 years, permitting investigation of natural [CO2−

3
] variability on interannual to multi-

decadal timescales. We find high interannual variability in surface [CO2−

3
] in the tropical

Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern

Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres

and in the Southern Ocean. Statistical analysis of modeled [CO2−

3
] variance and autocor-

relation suggests that significant anthropogenic trends in the saturation state of aragonite

(Ωaragonite) are already or nearly detectable at the sustained, open-ocean timeseries sites,

whereas several decades of observations are required to detect anthropogenic trends in

Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale

for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-

signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of

surface [CO2−

3
] variability is primarily driven by variations in the vertical advection of dis-

solved inorganic carbon (DIC) in association with El Niño–Southern Oscillation. In the North

Pacific, surface [CO2−

3
] variability is caused by circulation-driven variations in surface DIC

and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at

20–30 year periods. North Atlantic [CO2−

3
] variability is also driven by variations in surface

DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic

Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic in-

fluence on ocean carbonate chemistry, these results will aid the interpretation of trends

calculated from spatially- and temporally-sparse observations.
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1 Introduction

The global ocean has absorbed ∼ 30% of the carbon dioxide (CO2) released by human

activities since 1765 (Ciais and Sabine, 2013). While ocean uptake of CO2 plays a key

role in mitigating anthropogenic climate change, it also modifies ocean carbonate chem-

istry (Feely et al., 2004). The dissolution of excess CO2 in the surface ocean drives an in-

crease in the dissolved inorganic carbon (DIC) concentration without changing the alkalinity

(Alk). The result is a surface ocean characterized by decreasing carbonate ion concentra-

tion ([CO2−

3
]) and pH (Feely et al., 2009). This acidification of the surface ocean reduces

the saturation state of the calcium carbonate minerals calcite and aragonite (Ωcalcite and

Ωaragonite, respectively) and may reduce biogenic calcification and enhance calcium carbon-

ate dissolution (Doney et al., 2009).

Observations collected at sustained open ocean timeseries stations (e.g., HOT, BATS)

indicate significant anthropogenic changes in surface DIC, [CO2−

3
], pH, and Ωaragonite rela-

tive to background natural variability (Bates et al., 2014). The detection of statistically robust

trends in carbonate chemistry at these stations benefits from frequent sampling (3–16 times

per year), long records (15 to 30 years), and low natural variability (Le Quéré et al., 2000;

Brix et al., 2004; Bates et al., 2014). In the rest of the global ocean, however, sparse spa-

tial and temporal sampling, coupled with potentially large internal climate
✿✿✿✿✿✿✿

natural variability

challenges the detection of anthropogenic changes in carbonate chemistry from obser-

vations. In the equatorial Pacific, Sutton et al. (2014) report decreasing pH from 1997 to

2011 using mooring observations, but they attribute approximately 40 % of this decrease to

natural variability. Based on measurements from repeat hydrographic surveys, Feely et al.

(2012) report an average decrease in Ωaragonite and Ωcalcite of 0.34%yr−1 in the Pacific

Ocean. In the South Pacific, the trend is primarily driven by uptake of anthropogenic CO2,

while the trends in the North Pacific Subtropical Gyre and the California Current are at-

tributed to natural variability in ocean circulation. On the global scale, Lauvset et al. (2015)

find a mean rate of decrease in surface ocean pH of 0.0018 yr−1 over 1991–2011, using

observations of fCO2 aggregated into 17 biogeographical biomes. They find a substantial
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amount of interannual variability in pH in many of the biomes (RMSE ranging from 0.01 and

0.04 pH units) that is of a similar magnitude to the cumulative trend in pH.

Internal climate variability arises from the coupled interaction of atmospheric, oceanic,

terrestrial, and cryospheric processes (Deser et al., 2012a) and complicates our ability to

detect anthropogenically forced trends from sparse observations. In the tropics, the dom-

inant mode of internal climate variability is the El Niño–Southern Oscillation (ENSO). In

the extratropics, three major climate modes drive variability: the North Atlantic Oscillation

(NAO), the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). Stud-

ies conducted using ocean physical and biogeochemical models run in hindcast mode (i.e.,

forced with the historically observed atmospheric state) suggest that ENSO, NAO, PDO,

and SAM impact regional ocean biogeochemistry. Le Quéré et al. (2000) and Long et al.

(2013) find reduced CO2 outgassing in the tropical Pacific during El Niño events as a re-

sult of changes in dynamics reducing the vertical advection and diffusion of DIC into the

surface ocean. In the North Atlantic, the NAO drives shifts of the subpolar/subtropical

intergyre boundary that affect the vertical and lateral advection of DIC and air–sea CO2

flux (Thomas et al., 2008). On the basis of seven biogeochemical models run in hindcast

mode, McKinley et al. (2006) show that the positive phase of the PDO is associated with

an increased surface DIC tendency in the subtropical and western subpolar gyres of the

North Pacific. In the Southern Ocean, multiple hindcast modeling studies find large inter-

annual variability in surface DIC and Alk driven by the SAM (Lenton and Matear, 2007;

Lovenduski et al., 2007; Verdy et al., 2007).

Model hindcast studies are useful for quantifying the impact of climate variability on ocean

carbonate chemistry, but are limited in their temporal scope to the period of time for which

we have abundant observations of the global atmosphere (typically 1948 to the present

day). Large-scale modes of climate variability such as PDO, NAO, and SAM have spec-

tral power at low frequencies. As such, these hindcast studies
✿✿✿✿✿

While
✿✿✿✿✿✿✿✿✿

hindcast
✿✿✿✿✿✿✿

studies
✿✿✿✿

can

✿✿✿✿✿✿✿

capture
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿

chronology
✿✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

modes,
✿✿✿✿

they
✿

cannot capture the full spectrum of

internal variability in the climate system. Long model simulations (order 1000 years) can cap-

ture multiple realizations of climate variability on decadal and multi-decadal timescales, and
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have shown to be useful in the study of ocean carbon cycle variability on these timescales

(Doney et al., 2006; Séférian et al., 2013; Resplandy et al., 2015)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Doney et al., 2006; Séférian et al., 2013; Keller et al., 2014; Séférian et al., 2014; Lehner et al., 2015

Here, we assess the influence of internal climate variability on surface ocean carbonate

chemistry by analyzing output from a 1000 year control simulation of a coupled Earth Sys-

tem Model. Interaction between the model’s atmosphere, ocean, terrestrial biosphere, and

cryosphere generates internal climate variability on timescales ranging from interannual to

multi-decadal and longer. We aim to quantify and mechanistically understand the drivers

of variability in surface ocean carbonate chemistry on these timescales. In doing so, we

will gain perspective on the statistical confidence in the anthropogenic carbonate chemistry

trends reported in the literature.

Our study builds upon two recent studies of natural variability in ocean carbonate chem-

istry from long integrations of Earth System Models
✿✿✿✿✿✿✿

(ESMs). Friedrich et al. (2012) use

MPI-ESM to quantify the natural variability in surface Ωaragonite and compare it to the an-

thropogenic trend over the years 800–2099. They suggest that recent anthropogenic trends

in surface Ωaragonite exceed natural variability by 30 times on regional scales, but do not

focus on detectability in the observational record or on the mechanisms driving variability.

Séférian et al. (2013) analyze output from a fully-coupled 1000 year control simulation of

IPSL-CM5A-LR and describe decadal to multi-decadal variability in air–sea CO2 flux and

its driving factors in the North Atlantic, North Pacific, and the Southern Ocean. They find

that a large fraction of the variance in CO2 flux is driven by internal climate variability in

the various regions, due to circulation-mediated variability in the upwelling of DIC to the

surface ocean, but only very briefly discuss the implications of this for carbonate ion vari-

ability. Here, we analyze output from a 1000 year control simulation of the Community Earth

System Model (CESM) with a focus on quantifying and understanding the drivers of variabil-

ity in surface ocean carbonate chemistry. Unlike the simulation analyzed in Friedrich et al.

(2012), the CESM control simulation does not include any external forcing, such as anthro-

pogenic CO2 emissions, volcanic eruptions, or solar variability. This allows us to cleanly as-

cribe surface carbonate variability to intrinsic natural variability
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿✿✿

(unforced

5
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✿✿✿✿✿✿

natural
✿✿✿✿✿✿✿✿✿✿

variability)
✿

of the physical climate system. Further, unlike the simulations analyzed in

Friedrich et al. (2012) and Séférian et al. (2013), we analyze output from a simulation with

constant, prescribed atmospheric CO2 concentration, so variability in ocean biogeochem-

istry is only affected by the physical state of the atmosphere and ocean and not by variability

in atmospheric CO2. This simplifies our quantification of the mechanisms driving variability

in carbonate chemistry. Finally, we focus on variability in surface ocean [CO2−

3
], as it is the

primary source of variability in Ωaragonite, and is likely to be influenced by internal climate

variability ([CO2−

3
]≈ Alk−DIC). As such, our results will be useful for determining the de-

tectability of anthropogenic trends in Ωaragonite over background internal climate variability

on a global scale.

2 Model description

We analyze output from a 1000 year pre-industrial control simulation of the Community

Earth System Model. CESM is a state-of-the-art coupled climate model consisting of atmo-

sphere, ocean, land, and sea ice component models (Hurrell et al., 2013). The atmosphere

model is the Community Atmosphere Model, version 4 (CAM4), with a horizontal resolu-

tion of 1.25◦× 0.9◦ and 26 vertical levels (Neale et al., 2013). The Community Land Model

(Lawrence et al., 2011) operates on the same horizontal grid as CAM4. The sea ice model

is the Community Ice Code, version 4 (Hunke and Lipscomb, 2008), and the dynamic land

ice component is inactive. The ocean physical model is identical to the ocean component

of the Community Climate System Model version 4 (CCSM4) (Danabasoglu et al., 2012),

except that shortwave absorption in the ocean is computed using prognostic chlorophyll

fields, rather than a fixed satellite-derived monthly climatology as in CCSM4. The ocean

model has nominal 1◦ horizontal resolution and 60 vertical levels. Mesoscale eddy trans-

port is parameterized with an updated version of (Gent and McWilliams, 1990), where the

eddy-induced advection coefficient, κ, is diagnosed as a function of space and time. Diapy-

cnal mixing is represented using the K-Profile Parameterization of Large et al. (1994), and

mixed layer restratification by submesoscale eddies is parameterized using the method of

6
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Fox-Kemper et al. (2011). The biogeochemical-ecosystem ocean model incorporates multi-

nutrient co-limitation on phytoplankton growth and specific phytoplankton functional groups

(Moore et al., 2004, 2013), full carbonate system thermodynamics, sea–air CO2 fluxes, and

a dynamic iron cycle (Doney et al., 2006; Moore and Braucher, 2008). Phytoplankton calcifi-

cation in the model is unaffected by variations in the saturation state of calcite or aragonite.

Previous studies conducted with hindcast simulations of this model configuration reveal

that the ocean physical state and air–sea CO2 fluxes compare favorably with observations

(Danabasoglu et al., 2012; Long et al., 2013).

Biogeochemical fields were initialized using data-based climatologies; for instance, DIC

was from the Global Ocean Data Analysis Project (GLODAP; Key et al., 2004) and nutri-

ents were from the World Ocean Atlas (Garcia et al., 2010). Subsequently, the fully-coupled

model was integrated for a period of 1000 years to allow the deep ocean to approach

equilibrium; the tracer fields resulting from this spin-up procedure were used to initialize

a 1000 year control simulation (Lindsay et al., 2014), in which atmospheric CO2 was held

constant at preindustrial levels (pCOatm

2
= 284.7 ppm). By prescribing atmospheric CO2, this

control simulation generates sea–air CO2 flux variance that differs slightly from a control

simulation using prognostic atmospheric CO2 (Lindsay et al., 2014), owing to a lack of com-

munication between land and ocean carbon reservoirs. Following Doney et al. (2006), vari-

ability in the control simulation is generated entirely from internal processes, as there is

no external forcing (e. g., anthropogenic emissions, volcanic eruptions, solar variability) in

this simulation. .
✿

During the first 100 years of the simulation, ocean [CO2−

3
] was not saved

to disk, so our analysis is limited to the final 900 years of the simulation. Over this time, the

global ocean drift in surface [CO2−

3
] is small (0.0029mmolm−3 yr−1).

3 Model evaluation

Confidence in our interpretation of model output relies on the ability of the model to re-

produce realistic estimates of mean surface [CO2−

3
] and its variability. We compare the

annual-mean surface [CO2−

3
] in the pre-industrial control simulation with reconstructed, pre-

7



D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

D
iscu

ssion
P
ap

er
|

industrial surface [CO2−

3
] in Fig. 1. Pre-industrial surface [CO2−

3
] is reconstructed from ob-

servations of pre-industrial surface DIC (present-day DIC minus anthropogenic DIC) and

present-day Alk as estimated by GLODAP (Key et al., 2004), combined with present-day

estimates of temperature, salinity, silicate, and phosphate from the World Ocean Atlas

(Locarnini et al., 2010; Antonov et al., 2010; Garcia et al., 2010) using a program devel-

oped for CO2 system calculations (CO2SYS) with the preferred dissociation constants.

Computing [CO2−

3
] this way is not strictly correct, owing to non-linear relationships between

[CO2−

3
] and state variables, but no synthesized climatology of [CO2−

3
] from bottle sites ex-

ists. The model captures the large-scale distribution of surface [CO2−

3
] as estimated by the

pre-industrial reconstruction (Fig. 1). Pre-industrial surface [CO2−

3
] is elevated in the tropi-

cal oceans, with the exception of the tropical Pacific cold tongue region, where persistent

upwelling of DIC maintains low surface [CO2−

3
]. High latitude, pre-industrial surface [CO2−

3
]

is substantially lower than that in the tropics, due to upwelling of waters enriched in DIC

and enhanced CO2 solubility in these cold regions (Feely et al., 2004; Fabry et al., 2009).

The model-estimated, pre-industrial surface [CO2−

3
] is noticeably lower than observed. The

globally-averaged surface [CO2−

3
] bias in the model is −16mmolm−3, excluding the Arctic

Ocean and marginal seas. This model bias is caused by low biases in both surface Alk and

DIC. The former bias is larger in magnitude and results from a combination of the prescribed

carbonate dissolution profile, the representation of calcification, and a lack of riverine inputs

in the model (Long et al., 2013).

We investigate the vertical distribution of salinity-normalized DIC (sDIC) and salinity-

normalized Alk (sAlk) in the eastern Equatorial Pacific and compare with the vertical distri-

bution of reconstructed pre-industrial sDIC and sAlk from observations in Fig. 2. As we will

see later, the response of these tracers to ENSO variability depends on the their vertical

gradients in this region. We define the eastern equatorial Pacific region according to the cor-

responding location of the biogeographical biome presented in Fay and McKinley (2014). In

our model, the eastern equatorial Pacific is characterized by a large vertical gradient in

sDIC, and a relatively small vertical gradient in sAlk, in general agreement with the obser-

vations in this region. Notably, the vertical gradient of modeled sDIC in the upper 1000m

8
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is ∼ 25% larger than that estimated from observations. Thus, the influence of ENSO on

surface [CO3] is likely to be slightly exaggerated in the model.

We use the approach outlined in Friedrich et al. (2012) to evaluate simulated interannual

variability and to compare it with observations collected at two open-ocean timeseries sta-

tions (BATS and HOT). At the model grid cells corresponding to the observational records,

we generate probability density distributions of the standard deviation of annual-mean sur-

face [CO2−

3
] over a period of record sampled from the model that is the same length as the

observational time series. At BATS, we calculate the standard deviation for 30 independent

30 year periods (Fig. 3a), and at HOT, we calculate the standard deviation for 36 indepen-

dent 25 year periods (Fig. 3b). These are compared to the interannual standard deviation in

de-trended, annual-mean surface [CO2−

3
] from the observational record, which is 30 years

long at BATS and 25 years long at HOT (Bates et al., 2014). Figure 3 illustrates that the

model underestimates interannual variability as compared to the observational data. This

underestimate may be due to the mis-match in the spatiotemporal scales of model and ob-

servations; we would expect higher variance in the point-source observational record than

in the smoothed model. As a result of the model’s low variance bias, we expect our estimate

of the detection timescale for the anthropogenic trend in [CO2−

3
] to be conservative

✿✿✿✿✿✿

biased

✿✿✿

low, discussed next.

4 Surface carbonate variability and trend detection

We find the highest simulated interannual variability in pre-industrial surface [CO2−

3
] in the

eastern equatorial Pacific and at the boundaries between the subtropical and subpolar

gyres (Fig. 4a). In the eastern equatorial Pacific, our model simulates a large vertical gradi-

ent in [CO2−

3
] (≈ Alk−DIC; Fig. 2), so variability is likely driven by changes in vertical motion

here. The boundaries between the gyres exhibit the largest horizontal gradients in surface

[CO2−

3
] (Fig. 1b), so changes in the shape of these gyres could have a large impact on local

variability here (Friedrich et al., 2012). In the North Atlantic and North Pacific, the inter-gyre

regions exhibits high variance on decadal (Fig. 4b) and longer timescales, as well, sug-

9
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gesting an influence from low-frequency climate variability. Finally, we note that simulated

surface [CO2−

3
] exhibits low interannual variability in the Southern Ocean, consistent with

previous modeling studies (Orr et al., 2005; Friedrich et al., 2012; Conrad and Lovenduski,

2015).

How does the magnitude of the variability in surface [CO2−

3
] affect the detection of an-

thropogenic trends in Ωaragonite? We use monthly model output to investigate the length of

the time series needed to detect an anthropogenic trend in Ωaragonite with 90 % confidence,

using the method of Weatherhead et al. (1998),

n∗ =

[

3.3σN
|ω0|

√

1+φ

1−φ

]2/3

. (1)

At each location, we calculate the standard deviation (σN ) and autocorrelation (φ) in

the de-seasonalized, monthly anomalies of surface [CO2−

3
] and solve for the detection

time (n∗, Fig. 5a). This statistical technique has been applied successfully to ocean bio-

geochemical data in several previous studies (Henson et al., 2010; Beaulieu et al., 2013;

Majkut et al., 2014; Lovenduski et al., 2015); it provides a way to quantify the impor-

tance of the variance and autocorrelation on the detection of the trend. It differs in prac-

tice from other statistical methods that estimate detectability or time of emergence of

the trend (Ilyina et al., 2009; Friedrich et al., 2012; Hauri et al., 2013; Keller et al., 2014),

in that it also includes the influence of temporal autocorrelation which affects sample

size (Bretherton et al., 1999) and therefore trend detectability (Beaulieu et al., 2013).
✿✿✿

We

✿✿✿✿

note
✿✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Weatherhead et al. (1998) method
✿✿✿✿✿✿✿✿✿

assumes
✿✿✿

a
✿✿✿✿✿✿✿✿✿✿

first-order
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-regressive

✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿

(AR(1)),
✿✿✿✿✿

and
✿✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿✿✿✿

literature
✿✿✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿✿

carbon
✿✿✿✿✿✿

fluxes
✿✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿

better

✿✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

higher-order
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-regressive
✿✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., AR(3); Séférian et al., 2013) .

✿✿

As
✿✿✿✿✿✿

such,
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿

detection
✿✿✿✿✿

times
✿✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿✿✿

values.

The estimate of the detection time is strongly influenced by the size of the anthropogenic

trend to be detected (ω0). Since n∗ is proportional to (1/ω0)
2/3, it takes longer to detect

smaller trends and vice versa. As the simulation we analyze here is a pre-industrial control,

carbonate chemistry is not influenced by anthropogenic factors, and we must turn else-
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where for an estimate of ω0. Bates et al. (2014) report trends in Ωaragonite for 7 global open-

ocean timeseries stations and note that the timeseries exhibit very consistent changes in

Ωaragonite, with an average trend of −0.0078 yr−1. Ωaragonite can be approximated as

Ωaragonite ≈

[

CO2−

3

]

[

CO2−

3

]

sat, aragonite

, (2)

where [CO2−

3
]sat, aragonite is the carbonate ion concentration in equilibrium with mineral arag-

onite, which is primarily a function of pressure. Since variability in surface [CO2−

3
]sat, aragonite

is an order of magnitude smaller than variability in surface [CO2−

3
] (not shown), we approx-

imate the local, anthropogenic trend in surface [CO2−

3
] (ω0) as the product of the global-

mean, anthropogenic trend in Ωaragonite (−0.0078 yr−1) and the local, model-estimated

value of [CO2−

3
]sat, aragonite.

The length of the timeseries needed to detect an anthropogenic Ωaragonite trend of

−0.0078 yr−1 (n∗) is shown in Fig. 5a. This detection time is spatially heterogeneous and

ranges from 5 years at some locations to > 50 years at others. Equation (1) reveals that de-

tection time is influenced by the ratio of the standard deviation to the trend (i.e., the noise-to-

signal ratio, σN/ω0, Fig. 6a) and the autocorrelation (φ, Fig. 6b). Further, the noise-to-signal

ratio spatial pattern (Fig. 6a) is dominated by the noise (i.e., the variance, Fig. 4a). Gen-

erally, we find long detection times in regions with high variance and high autocorrelation,

such as at the boundaries between the subtropical and subpolar gyres in the Northern

Hemisphere and in the Pacific cold tongue region, and short detection times in regions with

low variance and low autocorrelation, such as in the Southern Ocean (cf. Figs. 6a and b,

5a). We note an additional area with high detection time in the eastern North Pacific Sub-

tropical Gyre, adjacent to the California Current System, where variance is moderate, but

autocorrelation is at a maximum.

[CO2−

3
] and Ωaragonite are not directly measured in seawater, but rather derived from the

measurement of other carbonate system variables, such as fCO2, pH, DIC, and Alk. It

is thus of interest to know how the detection timescale for trends in [CO2−

3
] or Ωaragonite

compares to the detection timescale for trends in the measured parameters. Figure 5b

11
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shows the model-estimated detection time for a spatially-uniform pH trend of −0.0018 yr−1

(the average pH trend of the 7 timeseries analyzed in Bates et al. (2014), and the global-

mean pH trend reported in Lauvset et al., 2015). As for Ωaragonite, the pH trend detection

time is elevated in the equatorial Pacific and inter-gyre regions, but we find much shorter

detection times overall for the pH trend (cf. Fig. 5a and b). Figure 6 reveals that the shorter

detection time for pH results from lower noise-to-signal ratios and lower autocorrelation

than for [CO2−

3
]. Thus, results from our model suggest that the anthropogenic trend in pH

is detectable sooner than the anthropogenic trend in Ωaragonite.
✿✿✿✿✿✿

These
✿✿✿✿✿✿✿

results
✿✿✿✿✿✿

imply
✿✿✿✿

that

✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿

trends
✿✿

in
✿✿✿✿

pH
✿✿✿✿

will
✿✿✿✿✿✿✿

emerge
✿✿✿✿✿✿✿

before
✿✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿✿✿✿

Ωaragonite
✿✿✿

at
✿✿✿✿✿✿

nearly
✿✿✿✿✿✿

every

✿✿✿✿✿✿✿

location
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

ocean
✿✿✿✿✿

(with
✿✿✿✿✿✿✿✿

perhaps
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

exception
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

Arctic
✿✿✿✿✿✿✿✿

Ocean).

We detail the model-estimated detection times for trends in Ωaragonite and pH at the seven

open ocean timeseries sites (Bates et al., 2014) in Table 1. For reference, the locations of

the timeseries sites are shown as white circled xs in Fig. 5. The timeseries sites are all

✿✿✿✿✿✿

ideally located in places with relatively short detection times for both Ωaragonite
✿✿✿

low
✿✿✿✿✿✿✿✿✿

variability

✿✿

in [CO2−

3
] and pH, and according

✿✿✿

so
✿✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿

trends
✿✿✿✿✿✿✿✿

emerge
✿✿✿✿✿

more
✿✿✿✿✿✿✿

quickly
✿✿✿✿✿✿

there
✿✿✿✿✿✿✿

relative

✿✿

to
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿

locations
✿✿✿✿

with
✿✿✿✿✿

high
✿✿✿✿✿✿✿✿

variance
✿✿

in
✿✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

properties,
✿✿✿✿✿

such
✿✿✿

as
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

equatorial
✿✿✿✿✿✿✿

Pacific
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿

inter-gyre
✿✿✿✿✿✿✿

regions
✿✿✿✿✿

(Fig.
✿✿✿✿

4).
✿✿✿✿✿✿✿✿✿✿

According to our model calculations, the observational record

is of sufficient length to detect the anthropogenic trends in Ωaragonite and pH at all stations

except Munida in the Southern Hemisphere, where the Ωaragonite trend is not yet detectable

(Table 1). Bates et al. (2014) report significant (at the 99 % level) decreases in Ωaragonite

and pH at all stations, with the exception of the Iceland Sea, where the trend in Ωaragonite

is not significant. That the model and observational records both suggest detectable an-

thropogenic trends at the timeseries sites is encouraging, but the agreement must be in-

terpreted with some caution. We previously demonstrated that the model underestimates

interannual variability at two of these sites, and our calculation of detection time from model

output (see Eq. 1) assumes perfect temporal coverage at the sites. Taken together, the

model detection time at the timeseries sites is likely to be an underestimate.

12
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5 Modes and drivers of variability in surface carbonate

Given the important role of variance in trend detection, and the high magnitude of sur-

face [CO2−

3
] variance in the Tropical Pacific, North Pacific, and North Atlantic (Fig. 4), it

behooves us to characterize and understand the large-scale drivers of variability in these

regions. Figure 7a shows the leading empirical orthogonal function (EOF) in tropical Pa-

cific (18◦ S–18◦ N) surface [CO2−

3
]. This EOF captures 55 % of the interannual variance in

tropical Pacific surface [CO2−

3
] and its spatial pattern resembles that of ENSO SST vari-

ability. The wavelet power spectrum of the leading principal component (PC) in this region

shows statistically significant spectral power on timescales associated with ENSO variabil-

ity (3–7 years; Fig. 8a). We construct an ENSO index, defined as the annual-mean SST

in a box bounded by 5◦ S to 5◦ N and 120–170◦ W (Nino 3.4 region), from pre-industrial

control simulation model output. We note that, while the main characteristics of ENSO are

well-captured by the model, the overall magnitude of ENSO in CCSM4 is overestimated

(Deser et al., 2012b). Nevertheless, the modeled ENSO index is highly correlated with the

leading PC of surface [CO2−

3
] (r =−0.94). This suggests that ENSO exerts a strong control

on surface [CO2−

3
] variability in the tropical Pacific.

We investigate the drivers of variability in tropical Pacific surface [CO2−

3
] by decomposing

the leading EOF into contributions from surface DIC, Alk, temperature (T ), and salinity (S)

using a linear Taylor expansion,

∆
[

CO2−

3

]

=
∂
[

CO2−

3

]

∂DIC
∆DIC+

∂
[

CO2−

3

]

∂Alk
∆Alk+

∂
[

CO2−

3

]

∂T
∆T +

∂
[

CO2−

3

]

∂S
∆S, (3)

where the ∆ terms are the perturbations in state variables associated with ENSO, which

we estimate using the regression coefficients of the local value with the leading PC of sur-

face [CO2−

3
] in the tropical Pacific region, and the partial derivatives are estimated from

CO2SYS using finite difference approximation. We separate the contribution from freshwa-

ter (fw) fluxes on DIC and Alk by expanding the derivatives to include sDIC and sAlk (see

13
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Appendix for more details). Substituting Eqs. (A1)–(A3) into Eq. (3) yields

∆
[

CO2−

3

]

=
S

S0

∂
[

CO2−

3

]

∂DIC
∆sDIC+

S

S0

∂
[

CO2−

3

]

∂Alk
∆sAlk+

∂
[

CO2−

3

]

∂fw
∆fw

+
∂
[

CO2−

3

]

∂T
∆T +

∂
[

CO2−

3

]

∂S
∆S, (4)

whose individual terms are shown in Fig. 7.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cross-correlations
✿✿✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿✿✿✿✿✿

variables
✿✿✿

in
✿✿✿

the

✿✿✿✿✿

Taylor
✿✿✿✿✿

sum
✿✿✿✿

may
✿✿✿✿✿

lead
✿✿

to
✿✿✿✿✿✿✿✿✿✿

imprecise
✿✿✿✿✿✿

results
✿✿✿

in
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿

locations.

Our analysis demonstrates that variations in sDIC are the primary driver of [CO2−

3
] vari-

ability in the tropical Pacific, with smaller, opposing contributions from sAlk and freshwa-

ter (Fig. 7). Contributions from temperature and salinity play comparatively smaller roles.

As the east/central equatorial Pacific is associated with a large vertical gradient in sDIC

(Fig. 2), variations in vertical exchange here likely dominate surface sDIC variability. El

Niño events are associated with relaxed trade winds and less upwelling of DIC-rich water

in the east/central equatorial Pacific, raising the surface [CO2−

3
]; the opposite is true during

La Niña events, when we would expect anomalously low surface [CO2−

3
] in these regions.

In our simulation, the ENSO index has a strong negative (positive) correlation with surface

sDIC ([CO2−

3
]) in the east/central equatorial Pacific (not shown).

The leading EOF of surface [CO2−

3
] variability in the north Pacific (20–70◦ N) is charac-

terized by a broad, horseshoe-shaped area of [CO2−

3
] off the coast of North America that is

out of phase with [CO2−

3
] in the western subtropical gyre (Fig. 9a). This EOF explains 35 %

of the variance in surface [CO2−

3
] in the north Pacific basin and its spatial pattern resembles

the PDO. The wavelet spectrum for the associated first PC (Fig. 8b) reveals high spectral

power at 20–30 year periods, similar to the PDO, but also detects significant spectral power

at high frequencies (3–7 years), and low frequencies (> 60 year). We define a model PDO as

the leading EOF of sea surface temperature anomalies in the north Pacific (20–70◦ N); it has

a generally realistic spatial pattern and amplitude (Deser et al., 2012b). The model PDO is

highly correlated with the leading PC of surface [CO2−

3
] in the north Pacific (r =−0.94),

suggesting that the PDO has a large influence on surface [CO2−

3
] in this region.

14
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We decompose the leading EOF of surface [CO2−

3
] in the north Pacific into contributions

from sDIC, sAlk, freshwater, temperature, and salinity using Eq. (4). Our analysis reveals

that sDIC contributes to most of the variability in surface [CO2−

3
] in this region, with smaller,

opposing contributions from sAlk and freshwater, and near zero contributions from temper-

ature and salinity (Fig. 9). Positive/warm phases of the PDO are associated with southerly

winds off the coast of California, suppressing the upwelling of carbon-rich water and ele-

vating surface [CO2−

3
], while the western subtropical gyre experiences increased upwelling

of DIC and lower surface [CO2−

3
]. The opposite is true during negative/cold phases of the

PDO, when we find anomalously high (low) surface [CO2−

3
] in the eastern (western) north

Pacific. We find a significant positive correlation between the PDO and surface [CO2−

3
] off

the coast of California and a significant negative correlation between the PDO and surface

[CO2−

3
] in the western north Pacific subtropical gyre (not shown).

In the North Atlantic (40–80◦ N), the leading EOF of surface [CO2−

3
] explains 18 % of

the variance and is characterized by a tripole pattern, with nodes centered in the subpolar

gyre, the inter-gyre region, and the subtropical gyre (Fig. 10). The wavelet time-frequency

diagram of the leading PC (Fig. 8c) looks like a red noise process (Torrence and Compo,

1998) with significant spectral power at 20–40 year and longer periods. A Taylor series de-

composition of the variability in this region using Eq. (4) reveals that, similar to the other

two regions, sDIC variability is the dominant driver of [CO2−

3
] variations here, with smaller,

opposing contributions from sAlk, freshwater, and salinity in the inter-gyre region (Fig. 10)

where variance in [CO2−

3
] is at a maximum (Fig. 4). The leading PC of [CO2−

3
] in this region

is weakly correlated with the NAO (r =−0.16) and the Atlantic Multi-decadal Oscillation

(AMO, r =−0.33). Positive phases of the NAO and AMO are associated with anomalously

high [CO2−

3
] in the subpolar and subtropical gyres and anomalously low [CO2−

3
] in the inter-

gyre region, though the weak correlations preclude further investigation of the mechanistic

link between these modes of climate variability and surface [CO2−

3
] in this region.
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6 Conclusions

We analyze output from a 1000 year, pre-industrial control simulation of an Earth System

Model in order to quantify, characterize, and understand the drivers of variability in the sur-

face ocean carbonate ion concentration. We find the highest variability in the tropical Pacific,

where the model simulates large vertical gradients in [CO2−

3
], and at the boundaries be-

tween the subtropical and subpolar gyres in the Northern Hemisphere. High variance cou-

pled with high autocorrelation results in long detection times (> 50 years) for anthropogenic

trends in Ωaragonite at these locations, whereas we find short detection times (∼ 15 years) at

the open ocean timeseries sites and in the Southern Ocean, where variance is at a min-

imum. Our results suggest that the detection timescale for anthropogenic trends in pH is

shorter than that for Ωaragonite, owing to smaller noise-to-signal ratios and lower autocor-

relation in pH. We further characterize the surface [CO2−

3
] variance in the Tropical Pacific,

North Pacific, and North Atlantic using EOF and wavelet analysis. The leading mode of

variability in the tropical Pacific exhibits statistically significant spectral power at 3–7 year
timescales and is highly correlated with ENSO. In the North Pacific, the leading EOF of

[CO2−

3
] has the characteristic horseshoe pattern of the PDO, with peak spectral power at

20–30 year timescales. In the North Atlantic, the wavelet decomposition of the leading mode

of variability appears similar to a red noise process, with weak correlations with the NAO

and AMO. In all locations, surface [CO2−

3
] variability is driven by variability in sDIC, with

smaller opposing contributions from sAlk and freshwater dilution. Temperature and salinity

variability contribute very little to [CO2−

3
] variance. In all regions, climate variability imposes

changes in ocean circulation that likely mediate the vertical and lateral advection of DIC into

the surface ocean.

✿✿✿✿✿

While
✿✿✿✿✿

the
✿✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

pattern
✿✿✿

of
✿✿✿✿✿✿✿✿

surface
✿

[CO2−

3
]

✿✿✿✿✿✿✿✿✿

variability
✿✿✿

in
✿✿✿✿

our
✿✿✿✿✿✿✿

model
✿✿✿

is
✿✿✿✿✿✿✿

similar
✿✿✿

to

✿✿✿

that
✿✿✿✿✿✿✿✿✿

reported
✿✿✿

in
✿✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

studies
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Friedrich et al., 2012) ),
✿✿✿

a
✿✿✿✿✿✿✿

recent
✿✿✿✿✿✿

study
✿✿✿

of
✿✿✿✿✿✿✿

natural

✿✿✿✿✿✿

carbon
✿✿✿✿✿✿✿✿

uptake
✿✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

centuries-long
✿✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿

of
✿✿✿✿

six
✿✿✿✿✿✿✿

ESMs
✿✿✿✿✿✿✿✿✿

suggests
✿✿✿✿✿

that

✿✿✿

we
✿✿✿✿✿✿✿

should
✿✿✿✿✿✿✿✿

expect
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

variability
✿✿✿

to
✿✿✿✿✿✿

differ
✿✿✿✿✿✿

from
✿✿✿✿✿✿✿

model
✿✿✿

to
✿✿✿✿✿✿✿

model

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Resplandy et al., 2015) .
✿✿✿✿✿✿

Thus,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

detection
✿✿✿✿✿

times
✿✿✿✿

for
✿✿✿✿✿✿

trends
✿✿✿

in
✿

[CO2−

3
]

✿✿✿✿

and
✿✿✿✿

pH,
✿✿✿✿✿✿

which
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✿✿✿✿✿✿✿✿✿✿

themselves
✿✿✿✿✿

are
✿✿

a
✿✿✿✿✿✿✿✿✿

function
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

variability,
✿✿✿✿✿

are
✿✿✿✿✿

also
✿✿✿✿✿✿

likely
✿✿✿

to
✿✿✿✿✿✿

differ
✿✿✿✿✿

from
✿✿✿✿✿✿✿

model
✿✿✿

to

✿✿✿✿✿✿

model.
✿✿✿✿✿✿✿

Future
✿✿✿✿✿✿✿✿✿✿✿✿✿

investigations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

characterizing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿

in
✿✿✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿

from
✿✿✿✿✿

ESM

✿✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿✿

are
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿

needed.

Our results provide meaningful perspective on the trends in Ωaragonite and pH reported in

the literature. Our statistical analysis of model output suggests that, due to low variance in

[CO2−

3
] and pH, significant anthropogenic trends in Ωaragonite and pH are already or nearly

detectable at the open-ocean timeseries sites, whereas high variability and autocorrelation

in [CO2−

3
] may obscure the detection of anthropogenic trends in Ωaragonite in the tropical

Pacific, North Pacific, and North Atlantic. Our characterization of the spatial pattern and

frequency of natural [CO2−

3
] variability in these high variance regions suggests that it is

largely driven by large-scale modes of internal climate variability, such as ENSO, PDO,

NAO, and AMO. One should consider the phasing of these modes of climate variability,

therefore, when interpreting trends calculated from carbonate chemistry data collected in

these regions.

✿✿✿✿✿✿✿✿

Ongoing
✿✿✿✿✿✿✿

efforts
✿✿✿✿✿✿

aimed
✿✿

at
✿✿✿✿✿✿✿✿✿✿

optimizing
✿✿✿✿

the
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿✿✿✿✿

acidification
✿✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿

network
✿✿✿✿✿

(e.g.,

✿✿✿

the
✿✿✿✿✿✿✿

Global
✿✿✿✿✿✿✿

Ocean
✿✿✿✿✿✿✿✿✿✿✿✿

Acidification
✿✿✿✿✿✿✿✿✿✿

Observing
✿✿✿✿✿✿✿✿✿

Network,
✿✿✿✿✿✿✿✿✿✿

GOA-ON)
✿✿✿✿✿✿

stand
✿✿✿

to
✿✿✿✿✿✿✿

benefit
✿✿✿✿✿

from
✿✿✿✿

the

✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿✿

here.
✿✿✿✿

Our
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿

frequent,
✿✿✿✿✿✿✿✿✿✿

sustained
✿✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

are

✿✿✿✿✿✿✿✿

required
✿✿

to
✿✿✿✿✿✿✿✿

capture
✿✿✿

the
✿✿✿✿✿✿✿

natural
✿✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿

that
✿✿

is
✿✿✿✿

key
✿✿

to
✿✿✿✿✿✿✿✿✿

detecting
✿✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic

✿✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

Ωaragonite
✿✿✿

and
✿✿✿✿

pH.
✿✿

In
✿✿✿✿✿✿✿✿

regions
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿

variability
✿✿

is
✿✿✿✿✿✿

muted
✿✿✿✿✿

(e.g.,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

subtropical

✿✿✿✿✿✿

gyres),
✿✿✿✿✿✿✿✿✿✿✿

detectable
✿✿✿✿✿✿

trends
✿✿✿✿

can
✿✿✿✿✿✿✿✿

emerge
✿✿✿✿✿

from
✿✿✿✿✿✿✿

sparse
✿✿✿

or
✿✿✿✿✿✿

short
✿✿✿✿✿✿✿✿

records,
✿✿✿✿✿✿✿✿✿

whereas,
✿✿

in
✿✿✿✿✿✿✿✿

regions

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

heightened
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

(e.g.,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

equatorial
✿✿✿✿✿✿✿✿

Pacific),
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿

record
✿✿✿✿✿

must
✿✿✿

be

✿✿✿✿✿✿

denser
✿✿✿✿

and
✿✿✿✿✿✿✿

longer
✿✿

in
✿✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

detect
✿✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿

trend.
✿✿✿✿✿✿✿✿

Further,
✿✿✿✿

our
✿✿✿✿✿✿

finding
✿✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

detection

✿✿✿✿✿✿✿✿✿

timescale
✿✿✿

for
✿✿✿

pH
✿✿

is
✿✿✿✿✿✿✿

shorter
✿✿✿✿✿

than
✿✿✿✿

that
✿✿✿

for
✿✿✿✿✿✿✿✿

Ωaragonite
✿✿✿✿✿✿✿

nearly
✿✿✿✿✿✿✿✿✿✿✿

everywhere
✿✿✿✿✿✿✿✿✿

highlights
✿✿✿✿

the
✿✿✿✿✿

need
✿✿✿

for

✿✿✿✿✿✿✿✿✿

continued
✿✿✿✿✿✿✿✿✿✿

underway
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

float-based
✿✿✿✿

pH
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
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Appendix: Freshwater contributions to [CO
2−

3
] variability

To separate the contribution from freshwater fluxes on DIC and Alk, we use the following

two equations for the first and second terms of Eq. (3),

∂
[

CO2−

3

]

∂DIC
∆DIC =

∂
[

CO2−

3

]

∂(S/S0sDIC)
∆(S/S0sDIC)

=
sDIC

S0

∂
[

CO2−

3

]

∂DIC
∆S+

S

S0

∂
[

CO2−

3

]

∂DIC
∆sDIC (A1)

∂
[

CO2−

3

]

∂Alk
∆Alk =

∂
[

CO2−

3

]

∂(S/S0sAlk)
∆(S/S0sAlk)

=
sAlk

S0

∂
[

CO2−

3

]

∂Alk
∆S+

S

S0

∂
[

CO2−

3

]

∂Alk
∆sAlk. (A2)

We extract the first terms from Eqs. (A1) and (A2), as they represent the contribution from

freshwater forcing (fw) on [CO2−

3
],

∂
[

CO2−

3

]

∂fw
∆fw =

sDIC

S0

∂
[

CO2−

3

]

∂DIC
∆S+

sAlk

S0

∂
[

CO2−

3

]

∂Alk
∆S. (A3)
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Table 1. The standard deviation (σN ) and autocorrelation (φ) in the de-seasonalized monthly anoma-

lies of surface [CO2−

3
] (mmolm−3) and pH, and the length of the timeseries in years (n∗) needed

to detect an Ωaragonite trend of −0.0078 yr−1, and a pH trend of −0.0018 yr−1 with 90 % confidence

at the stations discussed in Bates et al. (2014). Boldfaced values of n∗ indicate that the detection

timescale is shorter than the length of the observational record at that location.

[CO2−

3
] pH

Location σN φ n∗ σN φ n∗

Iceland Sea 5.4 0.69 18 1.88 0.62 17

Irminger Sea 5.5 0.30 13 1.26 0.14 9

BATS 2.4 0.78 12 0.41 0.58 6

ESTOC 2.9 0.80 15 0.41 0.66 7

HOT 2.3 0.94 20 0.50 0.77 9

CARIACO 2.7 0.81 15 0.37 0.81 8

Munida 7.2 0.42 17 1.85 0.41 14
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(a) reconstructed, pre-industrial surface [CO3
2-] (b) modeled surface [CO3

2-]
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Figure 1. (a) Reconstructed, pre-industrial and (b) model-estimated surface ocean carbonate ion

concentration (mmolm−3).
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Figure 2. The vertical distribution of pre-industrial sDIC and sAlk in the eastern equatorial Pacific as

estimated by the model and reconstructed from observations.
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Figure 3. Blue bars: probability density of interannual standard deviation of simulated [CO2−

3
] at

(a) BATS, based on 30 independent 30 year periods and (b) HOT, based on 36 independent 25 year

periods. Black line: interannual standard deviation of surface [CO2−

3
] at (a) BATS and (b) HOT, based

on detrended annual-mean observations.
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(a) Surface [CO3
2-] interannual variance (b) Surface [CO3

2-] decadal variance

Figure 4. Variance in the surface ocean carbonate ion concentration for (a) annual-mean and (b)

10 year filtered model output (log10 (mmolm−3)2).
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Figure 5. Model-estimated length of time series in years needed to detect (a) an Ωaragonite trend of

−0.0078 yr−1, and (b) a pH trend of −0.0018 yr−1 with at least 90 % confidence. White circled xs

indicate the locations of the time series stations discussed in Bates et al. (2014).
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Figure 6. (1st column) The noise-to-signal ratio (σN/ω0, years) and (2nd column) lag-1 autocorre-

lation in monthly, de-seasonalized surface ocean (1st row) [CO2−

3
], and (2nd row) pH anomalies.
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(a) 1st EOF of [CO32-]

(d) contribution from fw

(b) contribution from sDIC (c) contribution from sAlk

(e) contribution from T (f) contribution from S

Figure 7. (a) Leading EOF of tropical Pacific surface ocean [CO2−

3
], and the contributions from (b)

sDIC, (c) sAlk, (d) freshwater, (e) temperature, and (f) salinity as in Eq. (4) (mmolm−3).
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Figure 8. The wavelet time-frequency spectrum for the leading principal component of surface ocean

[CO2−

3
] in the (a) tropical Pacific, (b) North Pacific, and (c) North Atlantic regions (mmolm−3)2. Black

contours indicate statistically significant (> 95%) spectral power.
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Figure 9. As in Fig. 7, but for the North Pacific.
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Figure 10. As in Fig. 7, but for the North Atlantic.
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