Question: Corresponding wet weight should be shown in the text, to compare with those of zooplankton (approximately, 200–600 mg w.w.m-3). In that case, please cite the reference for the Organic matter/Chl ratio used for the wet weight calculation.

Answer: the ecosystem model outputs are expressed in mmol N m\(^{-3}\), the conversion to the mg wet weight unit is carried out using the ratios: C:N of 133/17, C:chl of 50 and the relationship between the nitrogen and the wet weight defined by Yamaguchi et al. (2005) for North western Pacific plankton as follow:

\[
\log_{10}(X[mgNm^{-3}]) = -2.57 + 1.26\log_{10}(M[mgwwm^{-3}])
\]

Where \(M \) is the mass that we want to convert and \(X \) is the result of this conversion. By simplifying this equation we obtain:

\[
X[mgwwm^{-3}] = 10^{\left(\frac{\log_{10}(M[mgNm^{-3}]) + 2.57}{1.26}\right)}
\]

So:

1 mg N m\(^{-3}\) \(\rightarrow\) 110 mg ww m\(^{-3}\)

\[
\frac{12 \times 133}{14 \times 17} \text{ mg C m}^{-3} \rightarrow 110 \text{ mg ww m}^{-3}
\]

1 mg C m\(^{-3}\) \(\rightarrow\) 16 mg ww m\(^{-3}\)

1/50 mg C m\(^{-3}\) \(\rightarrow\) 16 mg ww m\(^{-3}\)

1 mg chl-a m\(^{-3}\) \(\rightarrow\) 800 mg ww m\(^{-3}\)

So, to compare the chl-a concentrations reported in Fig.3 with the zooplankton biomasses expressed in mg wet weight m\(^{-3}\), one has to multiply these values by a factor of 800.