1 SUPPORTING INFORMATION

2

3 Nitrate, nitrite, and ammonium contamination in $^{15}N_2$ gas

4 Materials and Methods

5	$^{15}N_2$ gas supplied by SI Science Co., Ltd was used during all of the cruises. We
6	performed the following experiments to examine possible contamination of nitrate,
7	nitrite, and ammonium in the ${}^{15}N_2$ gas (Dabundo et al., 2014).
8	Experiment 1: Ten 250 mL PC bottles were filled with aged subtropical surface
9	water (ASSW), and were sealed with thermoplastic elastomer caps without headspaces.
10	2 mL 98+ at% $^{15}\mathrm{N}_2$ gas (batch #11059) was added to five of these bottles and mixed
11	well. All of the bottles were kept at room temperature for at least 12 h, and the water
12	was subsampled to a 30 mL polypropylene tube.
13	Experiment 2: Degassed seawater was mixed from the ASSW using a Sterapore
14	membrane unit (20M1500A: Mitsubishi Rayon Co., Ltd., Tokyo, Japan) (Shiozaki et al.,
15	2015), and stored in three 1 L Tedlar bags without headspaces. A different batch number
16	of ${}^{15}N_2$ gas (#11059 and #11143) was added to two of these bags. The ${}^{15}N_2$ gas was
17	injected at a ratio of 10 mL per 1 L seawater, and dissolved completely using a ruler
18	(Großkopf et al., 2012). The ${}^{15}N_2$ -enriched and non- ${}^{15}N_2$ -enriched seawater samples

19	were subsampled to five 30 mL polypropylene tubes from each Tedlar bags.
20	We determined the concentrations of nitrate, nitrite, and ammonium at the
21	nanomolar levels using supersensitive colorimetric systems (Hashihama et al., 2009,
22	2015). The detection limits of nitrate, nitrite, and ammonium were 3, 2, and 4,
23	respectively.
24	
25	Results and Discussion
26	In both experiments, there were no significant differences between the control and
27	$^{15}N_2$ -added samples or among different batch numbers of $^{15}N_2$ gas, with one exception;
28	the nitrite concentration in the ${}^{15}N_2$ (#11143)-added samples was significantly lower
29	than that of the control in Experiment 2 (Fig. S1a and b). Because we did not determine
30	the ${}^{15}\text{N}/{}^{14}\text{N}$ ratios of nitrate, nitrite, and ammonium, the contamination at isotope level
31	was not evaluated. The contamination of nitrate, nitrite, and ammonium in the 250 ml of
32	seawater with 2 ml $^{15}N_2$ gas was undetectable (<nm 1.="" during="" experiment="" in="" level)="" td="" the<=""></nm>
33	cruise experiments, we added 2 ml $^{15}N_2$ gas into 4.5 L seawater, and hence, the
34	contamination level would be one order lower than that in experiment 1, indicating that
35	¹⁵ N-labeled substrates in the seawater were at most 10^{-2} nM. When the substrate

36 concentration in the seawater was 3 nM (the detection limit of our analysis), the

37 concentration of ¹⁵N-labeled substrate would be <1/100 lower than that of seawater. In
38 this case, the ¹⁵N concentration would be too low to detect the uptake rate (Shiozaki et
39 al., 2009).

40	Dabundo et al. (2014) found contamination of ${}^{15}N_2$ gas supplied from
41	Sigma-Aldrich and from Cambridge Isotopes and suggested that the contamination
42	could be caused by the production method of the $^{15}\mathrm{N}_2$ gas. The $^{15}\mathrm{N}_2$ gas of the two
43	companies is produced by the catalytic oxidation of $^{15}NH_3$ gas with cupric oxide
44	(Dabundo et al., 2014), whereas the SI Science ${}^{15}N_2$ gas is produced by oxidation of
45	¹⁵ N-labeled ammonium sulfate with potassium hypobromite (Nakane, 1963). Surplus
46	potassium hypobromite is added to avoid ammonia and NO_x gas generation, and the
47	$^{15}N_2$ gas is purified using a molecular sieve and liquid nitrogen. This different
48	production process from that used by Sigma-Aldrich and Cambridge Isotopes probably
49	explains why there is little contamination of nitrate, nitrite, and ammonium in the $^{15}\mathrm{N}_2$
50	gas produced by SI Science.

51

52

Shiozaki, T., Nagata, T., Ijichi, M., Furuya, K.: Nitrogen fixation and the diazotroph
community in the temperate coastal region of the northwestern North Pacific,

56 Biogeosciences, 12, 4751-4764, 2015.

57	Hashihama,	F.,	Kanda,	J.,	Tauchi, A.,	Kodama,	Т.,	, Saito,	Н.,	Furuya,	K.:	Liqui	d
----	------------	-----	--------	-----	-------------	---------	-----	----------	-----	---------	-----	-------	---

- 58 waveguide spectrophotometric measurement of nanomolar ammonium in seawater
- 59 based on the indophenol reaction with o-phenylphenol (OPP), Talanta, 143,
- 60 374-380, 2015..
- 61 Nakane, R.: Measurements of isotope ratio by mass spectrometry (III): Measurements
- 62 of isotope abundance ratio of nitrogen, Mass spectrometry, 22, 51-56, 1963 (in
- 63 Japanese).

Station	Area	Longitude	Latitude	Date (LST)	start time (LST)**	Trichodesmium	N ₂ fixation*	$\Sigma \: N_2 \: fixation$	Temperature*	MLD	NO3 ⁻ +NO2 ^{-*}	PO ₄ ^{3-*}	N/P ratio*	DFe*
Station						[filaments l-1]	[nmolN L ⁻¹ d ⁻¹]	[µmolN m ⁻² d ⁻¹]	[°C]	[m]	[nM]	[nM]		[nM]
T0601	East China Sea	129.1	30.9	10-Sep-06	11:30	6	2.18	n.a.	29.3	32	3	9	0.33	0.89
T0602	East China Sea	129.35	30.71	10-Sep-06	14:00	6	6.2	305	29.4	39	10	32	0.31	n.a.
T0606	Kuroshio	131.17	28.92	11-Sep-06	11:45	4	5.61	377	30.5	21	<3	19	0.16	0.6
T0622	East China Sea	127.31	30.39	13-Sep-06	12:00	0	6.35	306	29	40	21	12	1.75	0.83
T0625	East China Sea	127.76	30.39	14-Sep-06	8:45	0	1.41	77.2	28.7	40	19	11	1.73	n.a.
T0702	East China Sea	128.38	30.82	6-Sep-07	13:30	4	0.97	38.4	28.7	13	9	25	0.36	0.55
T0706	Kuroshio	130.97	28.72	7-Sep-07	9:30	68	1.05	88.1	29.4	27	9	15	0.60	0.36
T0711	Philippine Sea	133.17	26.25	8-Sep-07	9:30	16	0.86	67.3	29.5	26	10	<3	3.33	0.39
T0715	Philippine Sea	133.16	23.81	9-Sep-07	14:20	0	0.63	77.7	29.3	21	5	<3	1.67	0.8
T0718	Philippine Sea	130.22	24.44	10-Sep-07	9:10	8	0.29	29.9	29.5	23	10	36	0.28	0.35
T0723	Kuroshio	129.85	29.05	12-Sep-07	2:25	26	3.58	251	29.1	39	3	4	0.75	0.39
GW-1	East China Sea	128.61	33.84	23-Jul-07	5:45	0	0.54	29.5	25.1	17	42	17	2.47	n.a.
GN-3	East China Sea	128.57	33.38	23-Jul-07	15:10	12	14	n.a.	27.6	14	16	22	0.73	n.a.
NW-8	East China Sea	129.25	32.24	25-Jul-07	5:25	0	1.77	113	28.6	12	17	5	3.40	n.a.
В	East China Sea	127.85	32.25	25-Jul-07	20:15	0	5.15	171	28.6	17	32	5	6.40	n.a.
CK-10	East China Sea	127.5	31.75	27-Jul-07	6:15	194	28	418	29.4	13	17	16	1.06	n.a.
T0902	Miyako Islands	125.67	25.13	10-Sep-09	9:50	2	0.54	62.7	29.2	51	15	<3	5.00	0.19
T0903	Miyako Islands	125.43	25.12	10-Sep-09	n.a.	6	n.a.	n.a.	29.2	24	15	<3	5.00	0.35
T0904	Miyako Islands	125.2	25.07	10-Sep-09	16:25	2	0.64	58.9	29	48	374	23	16.3	0.39
T0905	Miyako Islands	125.42	24.93	10-Sep-09	17:35	102	4.37	n.a.	29.7	31	6	4	1.50	0.2
T0906	Miyako Islands	125.73	25.19	10-Sep-09	23:50	>20000	62	753	29.6	60	3	14	0.21	0.25
T0907	Miyako Islands	125.57	24.67	11-Sep-09	11:10	2	1.66	49.1	29.2	27	53	9	5.89	0.89
T0908	Miyako Islands	125.61	24.92	11-Sep-09	14:05	10	1.04	105	29.4	40	4	5	0.80	0.4
T1001	East China Sea	129.28	30.66	4-Sep-10	9:45	6	3.69	70	29.1	28	21	9	2.33	n.a.
T1004	Kuroshio	126.9	28.4	9-Sep-10	7:15	72	3.94	79	28.6	22	19	20	0.95	n.a.
T1007	Miyako Islands	125.75	24.6	11-Sep-10	6:50	24	4.29	179	29.2	40	15	<3	5.00	n.a.

Table S1 Locations and obtained data at each station

*values in the surface water

**start time of incubation for nitrogen fixation

n.a. = no data available

Fig. S1 Nitrate, nitrite, and ammonium concentration in control and ${\rm ^{15}N_2}$ -gas added waters in experiment (a) 1 and (b) 2

Fig. S2 Satellite-derived average chlorophyll *a* during the summer from July 2003 to September 2009. Dashed lines indicate 200 m isobaths.

Fig. S3 Vertical profiles of *Trichodesmium* spp. during the *Nagasaki-maru* 242 and KT-0721 cruises

Fig. S4 Vertical profiles of nitrate during the KT-09-17 cruise

Fig. S5 (a) Particle trajectries released from points aroud the Miyako Islands on June 1, June 11, June 21, and July 1, 2009. (b) The ratio of particles delivered to Area K to the total released particles.

Fig. S6 Particle trajectories from the release points around (a) Amami Islands, (b) Main island of Okinawa, and (c) Ishigaki Islands. The released points of particles were selected at model grid points around the coastal waters of each island

Fig. S7 The ratio of particles delivered to Area K from the Ishigaki Islands, Miyako Islands, Okinawa Main Island, Amami Islands to the total released particles from all islands