
We	thank	the	reviewers	for	the	time	and	effort	they	put	in	reviewing	our	manuscript.	
Based	on	their	comments	and	advice,	we	have	changed	our	methodology	from	an	
approach	where	the	conversion	of	VOD	to	forest	loss	area	was	based	on	country-level	
statistics	to	a	grid-cell	level	approach	to	estimate	forest	loss.	This	led	to	somewhat	
revised	estimates	and	figures	but	overall	our	messages	have	not	changed	and	the	new	
approach	allowed	us	to	provide	spatial	estimates	of	errors.		The	spatial	estimates	
resulted	also	in	revised	tables	and	figures.		
	
The	biggest	changes	are:	

- Revised	figure	with	the	data	that	are	excluded		
- Revised	estimates	of	forest	loss	on	a	country-level.	
- Revised	estimates	of	VOD	forest	loss	on	a	state-level.	
- A	new	figure	with	a	spatial	error	map,	which	provides	uncertainties	on	a	grid-

scale.	
- A	new	figure	which	shows	the	relation	between	the	error	of	VOD	compared	to	

GFC	with	the	mean	forest	loss.		
- A	new	table	with	the	Root	Mean	Square	Error	and	Coefficient	of	Variance	on	a	

grid-scale	and	a	country-scale	for	the	different	bins.	
- A	new	table	with	the	average	gridded	error	between	GFC	and	VOD	per	on	a	

state-level	
- The	definition	of	net	and	gross	forest	loss	and	what	GFC,	VOD	and	PRODES	

exactly	observe	is	described	in	more	detail	and	used	throughout	the	manuscript	
- The	introduction	is	extended	with	more	information	about	other	remote	

sensing	techniques	such	as	LiDAR	and	SAR	deforestation	products	
- The	conclusions	include	recommendations	for	future	work	with	comparison	to	

existing	SAR	and	LiDAR	based	maps.		
	
We	will	start	with	showing	the	revised	and	new	Figures	and	Tables	and	then	address	
the	reviewers	point	by	point.	
	
Kind	regards,	
Margreet	van	Marle,	on	behalf	of	all	co-authors	 	



Table	1a.	Slope	and	correlation	(r2)	of	annual	GFC	forest	losses	(km2yr-1)	with	IYD	
(yr-1)	for	various	VOD	bins	for	all	grid	cells	for	the	2001-2010	overlapping	time-
period.	In	the	fourth	column	the	corresponding	Coefficient	of	Variation	(CV	in	%),	
which	is	based	on	the	Root	Mean	Square	Error	(RMSE	in	km2)	between	both	
datasets.	

VOD	bin	 slope	
	

r2	(gridcell)	
	

CV	(%)	 RMSE	(km2)		

0.6-0.7	 22.4	 0.63	 804		 15.7	
0.7-0.8	 34.8	 0.52	 163		 3.7	
0.8-0.9	 61.7	 0.80	 147		 5.0	
0.9-1.0	 79.4	 0.72	 134	 4.7	
1.0-1.2	 82.7	 0.72	 253	 3.2	
	 	
Table	1b.	Country-level	Pearson	correlation	coefficient	(r2)	of	annual	GFC	forest	
losses	(km2yr-1)	with	IYD	(yr-1)	for	various	VOD	bins	for	the	overlapping	time	
period.	In	the	third	column	the	corresponding	Coefficient	of	Variation	(CV	in	%),	
which	is	based	on	the	Root	Mean	Square	Error	(RMSE	in	km2)	between	both	
datasets.	

VOD	bin	 r2	(country)	
	

CV	(%)		 RMSE	(km2)	

0.6-0.7	 0.63		 203		 666	
0.7-0.8	 0.84	 122		 586	
0.8-0.9	 0.84	 83		 567	
0.9-1.0	 0.88	 92		 684	
1.0-1.2	 0.96	 53		 366	
	
	 	



Table 2. Country-level forest loss estimates (total area, contribution to total South 
American forest loss, as well as absolute and relative trends) for VOD and GFC for the 
overlapping time period (2001-2010). Asterisks indicate the significance, where *=p>0.25 
**=p<0.25 ***=p<0.05 

	 Average forest loss 2001-2010 Slope 2001-2010 
 

	 Absolute (km2yr-1) Percentage of total 
forest loss area 
(Absolute / Total) 

Percentage	of	
masked	country	[%]	
 

Absolute (km2yr-2) 
 

Relative  
(Absolute/Average) 

	 VOD GFC VOD GFC VOD GFC VOD GFC VOD GFC 

Argentina 4517	 3329	 11.73%	 8.29%	 0.61%	 0.53%	 79*	 358**	 1.68%	 11.00%	

Bolivia 3045	 2338	 8.07%	 5.89%	 0.39%	 0.33%	 21*	 166***	 0.75%	 7.84%	

Brazil 21926	 27317	 55.18%	 67.81%	 0.32%	 0.39%	 -1385**	 -1530**	 -6.47%	 -5.55%	

Chile 173	 408	 0.50%	 1.04%	 0.12%	 0.30%	 35**	 17***	 18.62%	 4.19%	

Colombia 1899	 1861	 4.95%	 4.75%	 0.20%	 0.21%	 -2*	 65**	 -0.13%	 3.46%	

Ecuador 450	 305	 1.24%	 0.79%	 0.18%	 0.15%	 -63**	 19**	 -14.19%	 6.21%	

Fr. Guiana 115	 17	 0.33%	 0.04%	 0.16%	 0.02%	 13**	 0*	 11.08%	 1.18%	

Guyana 288	 50	 0.75%	 0.13%	 0.16%	 0.03%	 -3*	 0*	 -1.24%	 -0.61%	

Peru 1077	 1047	 3.06%	 2.69%	 0.12%	 0.13%	 52*	 84***	 4.46%	 8.24%	

Paraguay 3030	 2556	 7.68%	 6.49%	 1.05%	 0.98%	 115*	 213***	 3.93%	 8.78%	

Surinam 276	 29	 0.75%	 0.08%	 0.25%	 0.03%	 34***	 2**	 12.57%	 8.69%	

Uruguay 868	 122	 2.28%	 0.31%	 0.77%	 0.12%	 131*	 18***	 13.61%	 15.43%	

Venezuela 1322	 658	 3.46%	 1.70%	 0.21%	 0.11%	 -148***	 20*	 -13.65%	 3.12%	

Total 38987	 40038	 100.00%	 100.00%	 	 	 -1121*	 -568*	 -2.94%	 -1.42%	

	 	



Table	3.	Trends	in	forest	losses	based	on	VOD	for	the	whole	time	period	(1990-2010)	
and	the	decades	1990-2000	and	2000-2010.	Absolute	values	indicate	the	slope	based	
on	Pearson	linear	regression	and	the	relative	values	are	the	absolute	values	relative	to	
the	average	forest	loss	for	that	country	over	the	full	21-year	time	period.	Asterisks	
indicate	the	significance,	where	*=p>0.25	**=p<0.25	***=p<0.05	
	
 Slope 1990-2010 Slope 1990-2000 Slope 2000-2010 Difference 00s-90s 
 km2yr-2 % km2yr-2 % km2yr-2 % km2yr-2 % 
Argentina 170***	 4.58%	 182**	 6.47%	 109*	 2.37%	 -73	 -2.32%	
Bolivia 49**	 1.92%	 92*	 3.93%	 72*	 2.65%	 -20	 -0.16%	
Brazil -59*	 -0.27%	 1078*	 4.85%	 -765*	 -3.65%	 -1843	 -16.74%	
Chile 9**	 5.23%	 35***	 21.39%	 23**	 12.11%	 -12	 -1.13%	
Colombia -36*	 -1.88%	 -197**	 -9.98%	 10*	 0.58%	 208	 17.57%	
Ecuador -12*	 -2.67%	 -42**	 -9.15%	 -35*	 -8.29%	 6	 2.27%	
Fr. Guiana 0*	 -0.31%	 -8*	 -6.13%	 13***	 11.60%	 21	 10.10%	
Guyana -8**	 -2.72%	 -16*	 -4.98%	 4*	 1.58%	 20	 2.61%	
Peru -23*	 -1.79%	 -85*	 -6.13%	 45**	 3.88%	 130	 6.94%	
Paraguay 98**	 3.99%	 32*	 1.76%	 12*	 0.39%	 -21	 -1.49%	
Surinam 5*	 2.25%	 -21**	 -10.38%	 31***	 12.09%	 53	 9.94%	
Uruguay 60***	 6.99%	 130***	 23.56%	 -23*	 -1.92%	 -152	 -13.99%	
Venezuela -50***	 -3.97%	 -57*	 -3.91%	 -80**	 -7.79%	 -23	 -0.12%	
Total 204*	 0.55%	 1122*	 3.13%	 -584*	 -1.55%	 -1706	 -4.58%	
	
	 	



Table	4.	Average	error	on	a	state-level.	The	error	is	defined	as	the	VOD	minus	GFC	
forest	loss	area	as	a	percentage	of	GFC	forest	loss	for	the	overlapping	time	period	per	
State	in	the	Legal	Amazon.		
State	 (VOD-GFC)	/	GFC	

(mean	%	yr-1)	
Acre		 17		
Amapá		 50	
Amazonas		 399	
Maranhâo		 17	
Mato	Grosso		 35	
Pará		 94	
Rondônia		 37	
Roraima		 705	
Tocantins		 2	
	
	 	



	 	
Figure	1.	Grid	cells	that	were	excluded	from	our	analysis:	VOD	avg:	grid	cells	with	an	
average	VOD	that	is	either	above	1.2	or	below	0.6	and	thus	outside	the	usable	range	
for	our	study.	GLWD:	grid	cells	containing	more	than	50%	open	water,	which	leads	to	
an	unreliable	VOD	signal.	Both:	grid	cells	containing	more	than	50%	open	water	and	
where	VOD	is	outside	the	usable	range.	
	 	



	

Figure	3.	Forest	loss	extent	based	on	the	VODoutliers	for	5-year	epochs.	Grey	areas	
correspond	to	masked	out	grid	cells.	
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Figure	4.	Country-level	comparison	of	calibrated	VOD	and	GFC	forest	losses	based	on	
annual	totals	(2001	-	2010).	The	inset	shows	the	same	data	on	a	linear	scale.	The	red	
lines	depict	the	1:1	line.		
	 	



	

Figure	5.	Country-level	time	series	of	annual	totals	of	forest	loss	according	to	GFC	
(2001	-	2010)	and	VOD	(1990	-	2010).		
	
	 	
	 	



	
Figure	6.	Time	series	of	deforestation	(a,	PRODES)	and	forest	loss	area	(b,	VOD)	for	the	
Brazilian	states	in	the	Amazon	(1990	–	2010).	PRODES	has	no	data	for	1993	and	the	
VOD	values	in	1991	are	unreliable	due	to	the	volcanic	eruption	of	Mt.	Pinatubo.	
	 	



	
Figure	7:	Error	estimates	for	each	grid	cell.	The	error	is	defined	as	VOD	minus	GFC	
forest	loss	area	as	a	percentage	of	GFC	for	the	overlapping	time	period.	White	means	
no	forest	loss	is	observed	in	both	datasets.	
	 	



	
Figure	8.	Error	between	GFC	and	VOD	versus	mean	GFC	forest	loss,	where	the	error	is	
defined	as	VOD	minus	GFC	forest	loss	area	as	a	percentage	of	GFC	for	the	overlapping	
time	period.	 	



	
	
In	particular	I	am	slightly	concerned	with	a	circularity	of	argument:	VOD	is	
presented	as	providing	independent	data	on	forest	loss,	but	then	the	results	are	
calibrated	against	the	Hansen	et	al.	forest	loss	product.	This	is	understandable,	as	
ground	truth	data	on	biomass	loss	are	clearly	not	available	at	a	quarter	degree	
resolution.	I	would	have	liked	to	see	this	calibrated	against	biomass	
change	data,	as	might	be	available	from	SAR	or	LiDAR	datasets	in	the	future,	but	
current	data	availability	of	that	type	of	data	in	South	America	is	very	limited.	
However,	more	discussion	of	the	results	of	using	the	Hansen	data	should	be	
considered,	and	spatial	maps	showing	where	it	agrees	and	where	it	disagrees	with	
the	Hansen	dataset	would	be	very	useful.	Equally,	I	think	the	correlation	with	the	
Hansen	dataset	in	the	Abstract,	and	to	a	lesser	extent	elsewhere,	is	overstated	for	
two	reasons.	1.	the	fact	that	the	dataset	is	calibrated	against	the	same	Hansen	
dataset	is	not	revealed	in	the	Abstract,	and	2.	the	comparisons	are	made	as	a	total	
area	of	a	country	that	is	deforested,	not	its	proportion	-	this	inflates	accuracy	as	area	
is	on	both	axes.	–	Will/can	be	done	
	
Major	comments:	
Introduction	section	is	somewhat	short.	I	think	it	should	contain	a	wider	discussion	
of	what	is	actually	detected	by	VOD,	compared	to	active	microwave	and	optical	
sensors	(radar	and	lidar),	and	what	is	seen	by	optical	sensors.	A	discussion	of	the	
different	effects	of	seasonality,	and	differing	definitions	of	deforestation	in	the	
different	products	and	the	effect	of	different	forest	definitions	on	the	abilities	of	the	
different	sensors.	–		
We	agree	with	the	reviewer	and	have	revised	part	of	the	introduction	for	which	the	
relevant	section	now	reads	as	follows	(starting	with	VOD	seasonality):	
	
Page	11502,	line	22:	
‘In	addition	to	the	previously	mentioned	datasets	mostly	based	on	visible	and	infrared	
wavelengths,	passive	microwave	observations	can	also	be	used	to	characterize	
vegetation	dynamics.	Vegetation	optical	depth	(VOD)	is	a	vegetation	attenuation	
parameter	in	the	microwave	domain.	This	parameter	was	first	described	by	Kirdiashev	
et	al.	(1979)	in	a	zero-order	radiative	transfer	model	for	vegetation	canopies.	VOD	is	
primarily	sensitive	to	the	vegetation	water	content	and	also	captures	information	
about	the	vegetation	structure	(Jackson	and	Schmugge,	1991;	Kerr	and	Njoku,	1990;	
Kirdiashev	et	al.,	1979).	
The	longer	wavelengths	of	passive	microwave	enables	sensitivity	of	VOD	not	only	to	
the	leafy	part,	but	also	to	woody	parts	of	vegetation	(Andela	et	al.,	2013),	therefore	
VOD	yields	information	about	both	the	photosynthetic	and	non-photosynthetic	parts	of	
aboveground	vegetation,	based	on	the	water	content	(Jones	et	al.,	2011;	Shi	et	al.,	
2008).	The	VOD	is	shown	to	be	highly	correlated	with	aboveground	biomass	(Liu	et	al.,	
2011,	2015;	Owe	et	al.,	2001),	and	thus	gives	us	information	about	the	net	forest	loss;	
the	balance	between	decreases	in	forest	loss	due	to	deforestation	and	forest	
degradation	and	increases	in	forest	extend	due	to	regrowth	or	thickening.	



Furthermore,	the	advantage	of	low	frequency	(<20	GHz)	microwave	remote	sensing	is	
that	aerosols	and	clouds	have	a	negligible	effect	on	the	observations,	so	even	areas	
with	regular	cloud	cover	are	observed	frequently,	which	makes	it	suitable	to	use	for	
global	vegetation	monitoring	at	daily	time	steps.		
Comparing	the	AVHRR	NDVI	and	passive	microwave	based	VOD	datasets	with	a	record	
longer	than	20	years,	Liu	et	al.	(2011)	showed	that	both	datasets	had	similar	seasonal	
cycles.	VOD	however	also	shows	interannual	variations	in	regions	with	water	stress,	
which	corresponds	for	a	large	part	to	variations	in	precipitation.	VOD	was	more	
sensitive	to	changes	in	woody	vegetation	compared	to	NDVI,	whereas	NDVI	was	more	
sensitive	to	herbaceous	changes	(Andela	et	al.	2013).	This	is	the	result	of	NDVI	being	
more	sensitive	to	canopy	greenness	(Myneni	et	al.,	1995)	and	VOD	being	more	sensitive	
to	water	content.	Thus,	when	forest	is	converted	to	large-scale	cropland,	the	canopy	
greenness	not	necessarily	drops,	whereas	the	total	water	content	of	the	aboveground	
biomass	does	show	a	drop	(Liu	et	al.,	2011).’	
	
Add	to	Page	11502	line	6:	
‘Other	widely	used	satellite	products	for	vegetation	mapping	are	derived	from	the	
Advanced	Very	High	Resolution	Radiometer	(AVHRR),	where	the	NDVI	derived	from	
AVHRR	is	sensitive	to	canopy	greenness	(Anyamba	and	Tucker,	2005;	Tucker	et	al.,	
2005;	Zhu	et	al.,	2013).’	
	
Other	revised	parts	(mentioning	LiDar	and	Radar):	
Added	at	Page	11502,	Line	9:	
‘Other	vegetation	datasets	that	can	capture	vegetation	dynamics	are	for	example	the	
observations	based	on	long-wavelength	radar	backscatter	(Joshi	et	al.,	2015)	and	
observations	from	the	SeaWinds	Ku-band	scatterometer	(Frolking	et	al.,	2012),		where	
deforestation,	forest	degradation	and	the	follow-up	vegetation	cover	could	be	
captured	in	the	tropics.	Also	LiDar	data	can	be	used	to	estimate	forest	biomass,	and	
can	thus	capture	vegetation	dynamics	(Mitchard	et	al.,	2012).	Data	availability	for	
Radar	and	LiDar	datasets	is	usually	from	1998	onwards.’	
	
Added	at	Page	11503,	Line	22:	
‘Guan	et	al.	(2012),	compared	QuickScat	Ku-band	backscatter	coefficients	(dB)	with	
VOD	and	NDVI	and	noted	that	the	three	datasets	are	comparable,	but	that	dB	shows	
abnormal	high	values	when	more	bare	soil	is	present	in	the	pixel.’	
	
Added	at	Section	2,1	Vegetation	Optical	Depth	(VOD)	
‘VOD	can	be	used	as	a	measure	for	biomass	(Liu	et	al.,	2015)	,	which	is	in	terms	of	
forest	loss,	the	net	forest	loss	(equals	the	net	sum	of	deforestation,	degradation	and	
regrowth)	in	a	0.25	degree	grid	cell.’	
	
Added	at	Section	2.2	Global	Forest	Change	(GFC)	
‘Forest	loss	is	defined	as	a	change	from	forest	to	non-forest	state,	comprising	
deforestation	and	degradation.	This	means	regrowth	is	not	included	in	our	analysis	of	
GFC.’	



In	the	Methods	section	it	would	be	useful	to	display	a	figure	from	one	of	the	cited	
VOD	papers	showing	the	relationship	between	VOD	and	canopy	cover	based	on	real	
data.	This	would	allow	the	reader	to	make	more	of	an	assessment	of	the	validity	to	
cut	off	at	0.6	and	1.2.	
We	added	at	page	11507,	line	15:	
‘This	value	was	based	on	the	comparison	between	VOD	and	MODIS-based	Vegetation	
Continuous	Fields	(VCF),	which	provides	information	about	the	fraction	tree	cover	in	a	
pixel	(Figure	below).	Our	VOD	threshold	of	0.6	corresponds	to	10%	tree	cover	for	two-
third	of	the	pixels,	a	number	more	often	used	to	define	forest	(Saatchi	et	al.,	2011;	
UNFCCC,	2006)	although	there	is	no	consensus	about	this	definition.’			
	

	
Vegetation	Continuous	Fields	(VCF)	versus	VOD	averaged	over	2001-2012	for	30N-30S	
globally	(left)	and	the	same	latitude	band	over	Central	and	South	America	(right).	
	
Either	in	the	Methods,	or	Discussion,	more	should	be	made	of	the	difference	
between	what	VOD	and	Hansen	are	actually	detecting.		
We	agree	with	the	reviewer	and	added	at	page	11504,	line	20:	
‘VOD	can	be	used	as	a	measure	for	biomass	(Liu	et	al.,	2015),which	is	net	forest	loss	in	
terms	of	forest	loss.	Net	forest	loss	equals	the	net	sum	of	deforestation,	degradation	
and	regrowth	in	a	0.25	degree	grid	cell	within	a	year.’	
	
Furthermore	we	changed	page	11505,	line	22	to:	
‘Forest	loss	is	defined	as	a	change	from	forest	to	non-forest	state,	comprising	
deforestation	and	degradation.	This	means	regrowth	is	not	included	in	our	analysis	of	
GFC.’	
	 	



While	the	VOD	changes	have	been	calibrated	against	Hansen	et	al.	data	to	give	forest	
loss	per	0.25	degree	grid	cell,	that	is	just	due	to	an	empirical	calibration,	with	error.	I	
think	more	should	be	made	of	this	error	-	e.g.	I	would	love	to	see	RMSE	values	at	a	
grid	scale,	plotted	on	a	map	and	with	statistics	given	in	a	table.	VOD	is	really	seeing	
something	similar	to	net	biomass	change	-	i.e.	an	integration	of	deforestation,	
degradation,	and	regrowth	(both	natural	within	forests,	and	after	previous	
clearance	-	as	well	as	artefacts	due	to	for	example	moisture	changes).		
We	appreciate	this	comment	and	have	modified	our	approach	to	switch	from	country-
scale	to	grid-scale	analysis,	please	see	the	revised	Figures	at	the	top	of	this	reply.	We	
also	added	a	new	Figure	7,	which	depicts	the	spatial	difference	between	VOD	and	GFC	
forest	loss	area	estimates	on	a	grid-scale,	where	red	indicates	areas	where	VOD	
exceeds	GFC	and	blue	means	VOD	is	lower	than	GFC.	The	relative	errors	are	large,	but	
that	is	mostly	in	grid	cells	with	dense	vegetation	and	little	change,	see	Figure	8.	
However,	we	therefore	recommend	throughout	the	paper	that	our	approach	is	most	
suitable	for	regional	estimates.		
	
Furthermore	we	calculated	the	RMSE	for	both	the	grid-scale	and	country-scale	
analysis	and	these	results	are	shown	in	the	revised	Table	1a	(grid-scale)	and	Table	1b	
(country-scale).	The	main	result	is	that	the	bin	with	the	lowest	average	VOD	values	
(0.6-0.7)	has	the	highest	error	compared	with	GFC.		
	
Hansen	et	al.	is	just	gross	deforestation.	In	areas	where	deforestation	is	the	
dominant	change,	the	correlation	will	work,	but	in	areas	where	it	isn’t	this	is	not	
necessarily	because	they’re	seeing	different	levels	of	deforestation,	as	reported,	but	
because	other	processes	may	dominate.	I	don’t	think	there	is	much	that	can	be	done	
about	it,	but	this	must	be	discussed.		
We	have	now	included	this	in	a	section	in	the	discussion	at	page	11516,	line	26:	
‘This	could	be	caused	by	the	difference	in	what	both	GFC	and	VOD	measure.	GFC	
measures	gross	forest	loss	while,	due	to	our	methodology,	VOD	yields	net	forest	loss.	In	
areas	with	much	regrowth,	VOD	will	therefore	underestimate	forest	loss	compared	to	
GFC.	This	also	has	the	consequence	that	VOD	is	more	reliable	in	areas	where	
deforestation	is	the	dominant	change.	Another	reason	could	be	the	different	spatial	
resolutions	of	both	satellite	products	where	both	datasets	are	based	on.	GFC	is	based	
on	Landsat,	which	has	a	spatial	resolution	of	30	meters	and	can	capture	more	small-
scale	forest	loss	events,	which	will	be	missed	in	our	dataset	based	on	VOD	with	its	much	
coarser	0.25° resolution.’	
	
I	strongly	feel	a	spatial	map	displaying,	at	a	0.25	degree	grid	scale,	some	metric	of	
difference	between	PRODES,	Hansen	and	VOD	would	be	very	useful	in	interpreting	
these	datasets.	Summing	everything	by	country	or	by	state	is	quite	frustrating	in	this	
regard.		
We	agree	with	the	reviewer	and	we	calculated	the	errors	per	grid-cell	(Figure	7	
above).			 	



Figure	1	should	be	changed	to	display	which	pixels	were	cut	off	due	to	being	above	
1.2,	and	which	cut	off	due	to	being	below	0.6.		
This	has	been	done.	Please	see	the	revised	Figure	below.	No	pixels	were	excluded	based	
on	the	combination	of	VODAVG	>1.2	and	the	presence	of	more	than	50%	according	to	
the	GLWD,	therefore	this	class	is	not	present	in	the	legend.	
	
Figure	4	displays	a	somewhat	spurious	correlation.	As	it	is	in	terms	of	gross	forest	
loss,	the	area	of	each	country	is	a	significant	factor	on	both	axes.	This	increases	the	
likelihood	of	a	strong	fit,	even	if	there	is	little	correlation	between	variables.	I	would	
like	to	see	this	reploted	with	forest	loss	in	terms	of	proportion	of	country	deforested	
per	year.	Only	the	area	of	the	country	considered	by	the	analysis	should	be	included	
in	the	area	figure	here,	so	it’s	somewhat	similar	to	detectable	forest	area	at	the	start	
of	the	period.	It	is	okay	for	Figure	5	to	be	in	terms	of	total	area	-	though	it	would	be	
interesting	to	see	a	deforestation	rate	figure	like	Figure	4	for	PRODES	vs	VOD,	
separated	by	state.		
We	replotted	the	forest	loss	in	terms	of	proportion	of	the	country	deforested	per	year.	
The	Pearson	r=0.46,	where	the	biggest	proportion	of	forest	is	lost	in	Paraguay	and	the	
biggest	differences	are	in	Chile	(-0.18%	when	VOD	is	compared	to	GFC),	Suriname	
(0.22%	difference)	and	Uruguay	(0.65%	difference).	These	areas	correspond	to	the	
regions	with	the	highest	errors,	see	Figure	7.	Although	regionally	the	differences	
between	GFC	and	VOD	are	large,	the	general	trend	between	GFC	and	VOD	forest	loss	
(in	dotted	red)	is	almost	the	same	(slope=1.005).	We	added	these	percentages	to	Table	
2	and	added	a	description	at	Section	4.2	Calibration	with	GFC.		
	
The	revised	text	is	as	follows:	
‘In	Fig.	4	the	country-level	VOD	and	GFC	forest	loss	area	estimates	are	plotted	against	
each	other	along	with	the	1:1	line.	Most	data	points	were	reasonably	close	to	this	line,	
although	VOD	overpredicted	forest	loss	towards	the	lower	end	of	the	spectrum.	
Especially	in	the	countries	with	the	lowest	forest	loss,	including	Surinam,	Uruguay,	
French	Guiana	and	Guyana,	our	method	yielded	more	forest	loss	than	GFC.	As	a	
percentage	of	the	available	area	per	country	(Table	2)	Uruguay	(0.65%),	Suriname	
(0.22%),	French	Guiana	(0.14%)	and	Guyana	(0.13%)	also	show	higher	forest	losses	
based	on	VOD.	Chile	is	on	the	other	hand	the	country	where	VOD	provides	lower	
estimates	(-0.18%)	compared	to	GFC.	The	country	with	the	largest	relative	forest	
losses	is	Paraguay	for	both	VOD	(1.05%)	and	GFC	(0.98%).	In	Fig.	5	we	show	these	
derived	annual	forest	losses	from	VOD	for	the	full	time	period,	along	with	GFC	for	2001	
trough	2010.	Obviously	the	average	forest	loss	area	for	the	overlapping	period	agrees	
between	both	datasets	because	our	approach	was	tuned	to	match	GFC,	but	the	spatial	
and	temporal	variability	can	still	yield	differences	and	new	insights.’	
	



	
Figure.	Country-level	comparison	of	calibrated	VOD	and	GFC	forest	losses	based	on	
annual	totals	as	a	percentage	of	the	total	country	(2001	-	2010).	The	red	lines	depict	
the	1:1	line	and	the	dotted	red	line	shows	the	trend	line	based	on	Pearson	linear	
regression	(VOD=1.005	x	GFC)	
	
	 	



The	same	scatter	plot	as	Figure	4	but	with	VOD	forest	loss	area	and	PRODES	
deforestation	on	a	state-level	gives	similar	results	as	Figure	6;	Amazonas	and	Roraima	
show	higher	forest	losses	compared	to	PRODES	and	the	states	with	relatively	high	
forest	losses	(Para	and	Mato	Grosso)	have	lower	estimates	based	on	VOD	compared	to	
PRODES	deforestation.	In	our	opinion	the	scatter	does	not	provide	new	insights	
compared	Figure	6,	therefore	we	prefer	not	to	include	this	plot	in	the	final	manuscript.	

	
	 	



	
The	conclusions	could	state	more	grounds	for	further	work.	It	could	cover	ways	in	
which	VOD	could	be	converted	to	net biomass	change,	rather	than	loosely	correlated	
with	gross	deforestation	which	is	a	somewhat	frustrating	way	to	display	these	very	
interesting	results.	Maybe	comparisons	with	LiDAR	and	SAR-based	biomass	change	
maps	would	be	an	interesting	route	for	the	future?	VOD	has	great	potential	for	
largescale	monitoring	of	whole-country	net	changes	in	carbon	stocks,	e.g.	for	
REDD+:	but	that	would	
We	added	to	the	Conclusions:	
‘This	was	a	first	approach	towards	a	better	forest	loss	product	using	VOD	to	better	
understand	forest	loss	dynamics.	The	added	value	of	our	analysis	is	mostly	providing	
new	annual	forest	loss	estimates	during	the	1990s,	a	period	not	covered	by	GFC,	MODIS	
and	other	satellite	datasets.	Regarding	future	opportunities,	more	research	is	needed	
to	know	exactly	what	VOD	represents,	potentially	comparing	with	existing	LiDAR-
based	benchmark	datasets	datasets	(Baccini	et	al.,	2012;	Saatchi	et	al.,	2011).’	
	
Minor	points:	
-	Brazil	-	comparison	to	PRODES	not	just	Hansen	should	be	mentioned	in	the	
Abstract.	This	is	very	relevant	because	the	calculations	are	not	independent	of	the	
Hansen	et	al	dataset,	being	calibrated	again	it.	
We	changed	the	abstract	and	the	relevant	section	now	reads:	
‘Our	results	compare	reasonably	well	with	the	newly	developed	Global	Forest	Change	
(GFC)	maps	based	on	Landsat	data	and	available	for	the	2001	onwards	period	
(r2=0.90	when	comparing	annual	country-level	estimates),	which	allowed	us	to	
convert	our	results	to	forest	loss	area	and	compute	these	from	1990	onwards.	We	also	
compared	these	calibrated	results	to	PRODES	(r2=0.60	when	comparing	annual	state-
level	estimates).’	
	
-	Page	11501	Line	27	-	erroneously	suggests	that	Landsat	has	had	30	m	data	since	
1972.	
We	changed	this	to:	‘Landsat	satellite	imagery	is	the	longest	operative	option	for	
monitoring	vegetation.	Starting	in	1972,	through	January	1999,	the	Landsat	
Multispectral	Scanner	(MSS)	has	continuous	data	on	relatively	high	spatial	resolution	
of	90	meter.	From	1972	the	Landsat	(Enhanced)	Thematic	Mapper	((E)TM)	provides	
vegetation	cover	from	1982	onwards	on	a	an	even	higher	spatial	resolution	of	30	
meter,	with	a	16	day	revisit	time.’	
	
-	Page	11502	line	7	-	I	feel	that	MODIS	should	be	mentioned	here,	as	halfway	
between	say	AVHRR	and	Landsat.	Products	such	as	TerraI	and	the	MODIS	LCC	
product	could	be	mentioned.	Also	spelling,	coarser.		
We	changed	this	to:	
‘Over	the	past	years,	the	number	of	datasets	quantifying	vegetation	dynamics,	carbon	
stocks	and	other	relevant	vegetation	quantities	on	both	global	and	regional	scale	has	
increased	substantially,	often	using	Landsat	data	but	also	other	data	sources	including	
datasets	based	on	Moderate-resolution	Imaging	Spectroradiometer	(MODIS,	launched	
in	1999	on	board	of	Terra	and	in	2002	on	Aqua),	Medium	Resolution	Imaging	



Spectrometer	(MERIS,	2002-2012)	and	Satellite	Pour	l’Observation	de	la	Terre	
Vegetation	Program	(SPOT	VGT,	from	1986	onboard	different	satellites)	(Achard	et	al.,	
2014;	Baccini	et	al.,	2012;	Broich	et	al.,	2011;	Ernst	et	al.,	2013;	Eva	et	al.,	2012;	
Frolking	et	al.,	2012;	Jones	et	al.,	2011;	de	Jong	et	al.,	2013;	Kim	et	al.,	2015;	Koh	et	al.,	
2011;	Mayaux	et	al.,	1998;	Morton	et	al.,	2005;	Potapov	et	al.,	2012;	Saatchi	et	al.,	
2011;	Verbesselt	et	al.,	2012;	Verhegghen	et	al.,	2012;	Wasige	et	al.,	2012).’	
	
-	line	18	-	PRODES	uses	other	datasets	too	to	help	with	cloud	cover,	e.g.	CBERS	and	
DMC.	
We	changed	this	to:	
‘One	of	the	regions	most	closely	monitored	is	the	Brazilian	Legal	Amazon,	where	the	
Brazilian	Space	Agency	(INPE)	developed	the	Monitoring	the	Gross	Deforestation	in	
the	Amazon	Project	(PRODES)	yielding	annual	deforestation	estimates	since	1988	
based	on	a	multi-data	approach	using	mostly	Landsat	data	aided	by	the	China-Brazil	
Earth	Resource	Satellite	(CBERS-2B)	and	UK-DCM2	from	the	Disaster	Monitoring	
Constellation	International	Imaging	(DMCii)	satellites	to	help	with	detecting	cloud	
cover	in	order	to	identify	cloud-free	pixels	(Shimabukuro	et	al.,	1998).’	
	
-	11503	line	11-12:	given	actual	resolution	given	for	Landsat,	for	comparison	
suggest	give	actual	resolution	of	VOD	sensors.		
We	added	this	to	line	16-18	on	page	11503	and	changed	the	sentence	to:		
‘The	observations	retrieved	from	the	Advanced	Microwave	Scanning	Radiometer	
(AMSR-E)	and	Special	Sensor	Microwave	Imager	(SSM/I)	have	been	merged	to	one	
dataset	on	a	spatial	resolution	of	0.25-degree,	based	on	Cumulative	Distribution	
Function	(CDF)	matching.’	
	
-	11505	section	2.2.	I	assume	you	did	not	filter	the	’loss’	dataset	by	the	2000	Canopy	
Cover	layer	as	performed	by	Hansen	et	al.	in	their	analysis?	I	do	not	think	this	is	a	
problem,	but	it	should	be	mentioned	in	2.2.	and	discussed	later,	as	some	of	the	’loss’	
changes	thus	compared	to	the	VOD	data	will	happen	in	pixels	that	were	not	forest	in	
2000.	
We	added	the	following	to	section	2.2,	page	11505,	line	24:	
‘We	did	not	include	the	2000	forest	cover	map	to	avoid	missing	areas	that	were	
deforested	before	2000.’	
	
-	11516	-	I	do	not	agree	with	your	argument	particularly	at	the	bottom	of	page	
11516.	This	would	be	fine	if	VOD	provided	an	independent	metric	of	deforestation,	
but	in	fact	it	was	calibrated	by	GFC,	so	biases	due	to	differing	scales	should	be	
corrected	for	in	your	dataset.	The	only	possible	difference	could	be	due	to	Brazil	
having	more	small-scale	deforestation	than	the	rest	of	South	America,	but	field	
experience	suggests	in	fact	the	opposite	is	true.	I	think	you	need	to	at	the	least	
caveat	this	section	more,	or	else	think	of	some	other	possible	explanations	for	this	
(interesting)	discrepancy.	I	believe	this	could	be	due	to	the	differences	in	gross	
deforestation	(Hansen)	vs	gross	forest	biomass	change	(VOD),	with	there	being	
extensive	regrowth	in	some	areas	of	Brazil.	



We	have	changed	this	to:	
‘This	could	be	caused	by	the	difference	in	what	both	GFC	and	VOD	measure.	GFC	
measures	gross	forest	loss	while,	due	to	our	methodology,	VOD	yields	net	forest	loss.	In	
areas	with	much	regrowth,	VOD	will	thus	underestimate	forest	loss	compared	to	GFC.	
This	also	has	the	consequence	that	the	regions	where	VOD	is	most	reliable	are	areas	
where	deforestation	is	the	dominant	change.	Another	reason	could	be	the	different	
spatial	resolutions	of	both	satellite	products	where	both	datasets	are	based	on.	GFC	is	
based	on	Landsat,	which	has	a	spatial	resolution	of	30	meters	and	can	capture	more	
small-scale	forest	loss	events,	which	will	be	missed	in	our	dataset	based	on	VOD	with	
its	much	coarser	0.25° resolution.’	
	
-	Somewhere	in	the	general	introduction	might	be	good	to	mention	active	
microwave	remote	sensing	of	vegetation	change	-	mostly	to	avoid	confusion	among	
non-specialists.		
We	added	to	page	11504	line	11	the	following	sentence:	
‘Passive	microwave	remote	sensing	differs	from	active	microwave	remote	sensing	
(Radar)	in	the	sense	radar	transmits	a	long-wavelength	microwave	through	the	
atmosphere	and	then	records	the	amount	of	energy	backscattered,	whereas	passive	
systems	record	electromagnetic	energy	that	was	reflected	or	emitted	from	the	surface	
of	the	Earth.’	
	
Various	papers	exist	giving	change	based	on	L-band	satellites,	especially	ALOS	
PALSAR	-	a	recent	example	in	South	America	would	be	Joshi	et	al.	2015	
(Environmental	Research	Letters).	–	This	paper	is	mentioned	in	the	revised	
introduction	including	description	of	Radar	and	LiDAR	efforts	of	detecting	vegetation	
dynamics.	 	
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