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Abstract A number of nonlinear microbial models of soil carbon decomposition have been
developed. Some of them have been applied globally but have yet to be shown to
realistically represent soil carbon dynamics in the field. FherefereaA thorough analysis of
their key differences willbe-veryusefulis needed to inform ferthe-futurefuture model
developments-development-of-these-medels. Here we compare two nonlinear microbial
models of soil carbon decomposition: one is-based on reverse Michaelis-Menten kinetics
(model A) and the other on regular Michaelis-Menten kinetics (model B). Using &
combinatien-efanalytic approximations erand numerical solutionss-and-rumerical
simulationsto-both-medels, we find that the oscillatory responses of carbon pools sedel-A
to a small perturbation in their initial pool sizes as-simulated-by-medel-A-dampen faster in

model A than inthan-these-by have-a-higherfrequency-and-dampsfasterthan-model B. a
response-to-seiSoil warmingthe-simulated-sei-carben always decreases carbon storage in

model A,; but in model B it kely-predominantly decreases carbon storage in cool regions
and increases icarbon storage in warm regions-r-edelB. taresponse-to-an-thereased
carbon-inputasinprimingexperiments-For both models, theMaximum CO; efflux from soil

carbon decomposition witreaeh-tsreaches a -maximum value some time after the

increased carbon input (as in priming experiments). This -ard-the maximum CO, efflux

(Fmax) afteraninereased-carbon-addition-decreases with an increase in soil temperature in

both models. However -ard-the sensitivity of Fmax to the increased amount of carbon input
increases with soil temperature in model A; but decreases monotonically with an increase in
soil temperature in model B. These differences in the responses to soil warming and carbon
input between the two nonlinear models can be used to differentiate which model is more

realistic with-when compared to results from field or laboratory experiments. Fhis-These

insights will witHeadcontribute to an improveda-better understanding of the significance of

soil microbial processes in therespenses-ofsoil carbon responses to future climate change.

Key words: soil carbon model, carbon input, warming, nonlinear model, priming
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1. Introduction

The dBynamics of soil carbon in most global biogeochemical models are represented
modelled using first-order kinetics, which assumes that the decay rate of soil carbon is
proportional to the size of soil carbon pool. This approach has been recently questioned on
theoretical grounds (Schimel and Weintraub, 2003; Fontaine and Barot, 2005), and ia-is
contradicted by the observed responses of soil carbon decay to the addition of fresh organic
litter (Fontaine et al., 2004; Sayer et al., 2011) or soil warming (Luo et al., 2001; Mellilo et
al., 2002; Bradford et al., 2008). As a result, a number of nonlinear soil microbial models
have been developed (Allison et al., 2010; Manzoni and Porporato, 2007; Wutzler and
Reichstein, 2008); and a few of them have alse-been applied at global scales (Wieder et al.,
2013; Sulman et al. 2014). Predictions of future soil carbon change by these nonlinear
models can differ significantly from conventional linear models (Fontaine et al., 2007,
Wieder et al., 2013). For example, conventional linear soil carbon models predict that soil

carbon will decrease with glebalwarmingincreased temperature, all else being equal

(Jenkinson et al., 1991), whereas the nonlinear models predict that the soil carbon can
decrease or increase, depending on the temperature sensitivity of microbial growth
efficiency and turnover rates (Frey et al., 2013; Hagerty et al., 2014; Li et al., 2014).
However the nonlinear models have yet to be validated against field measurements as
extensively as the conventional linear soil carbon models (Wieder et al., 2015). They also;
and-have have some undesirable features, sueh-asparticularly the presence of strong
oscillations or bifurcations (Manzoni and Porporato, 2007; Wang et al., 2014) in their

dynamics that are not observed in the real world systems. Therefore it is important ferus-to

improve eur-understanding of the behaviour of these nonlinear models before they are

used in earth system models for informing climate decisions.

Nonlinear microbial models can explain why the decomposition rate of recalcitrant organic
soil carbon varies after the addition of easily decomposable organic carbon to soil-e+;
known as the priming effect (Kuzyakov, Friedel and Stahr, 2000). This response has been
observed in the field (Fontaine et al., 2004, Sayer et al., 2011); but cannot predicted by
conventional linear soil carbon models without modification (Fujita, Witte and Bodegom,
2014). Theoretically, decomposition of soil organic carbon is catalysed by extracellular
enzymes that are produced by soil microbes;. The-and-the- production rate of extracellular

3
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enzymes depends on_the biomass and composition of the soil microbial population and their
local environment. Therefore the decomposition rate of soil organic carbon should depend
on both microbial biomass and substrate concentration (Schimel and Weintraub, 2003),

rather than on substrate concentration only, as assumed in conventional linear models.

This sensitivity of decempesition-ofsoil carbon decomposition to the input of -additional
carbon has important implications for the sink-—capacity-efthe-storage of carbon by the land
biosphere_in response to climate change. irglobalcarben-eyecle-and-carbon-climate
feedbackstudies,because-soit-Soil is the largest land carbon pool intand-biesphere-with-the
lengestresidence-time;-and therefore the direction and magnitude of pesitive-carben-
ehimatethe global carbon-climate feedback strongly deperddepends on the responses of soil

carbon to future warming and-changing-earboen-input(Jones and Fallow, 2009; Hargety et
al., 2014).

A number of nonlinear models have been developed that explicitly account for the dynamics

of the soil microbial community (Parnas, 1978; Smith, 1979; Schimel and Weintraub, 2003;

Woutzler and Reichstein, 2008; Allison et al., 2010; Grant, 2014; Riley et al., 2014; Tang and
Riley 2014). Parnas (1979) explored the mechanism of priming effect-using a nonlinear soil
microbial model ineluding-that included both soil carbon and nitrogen dynamics. Smith
(1979) developed a nonlinear model of soil carbon decomposition ireladinrg-that included
the interactions among carbon, nitrogen, phosphorus and potassium. Smith’s model
represented multiple forms of carbon, nitrogen and phosphorus and their transformation
via abiotic (such as adsorption and desorption) and biological processes by different groups
of soil microbes. The soil models developed by both Parnas (1978) and Smith (1979) were
based on regular Michaelis-Menten kinetics;e¥, in which the rate of carbon decomposition
depends linearly on the concentration of soil enzymes ard-but nonlinearly on substrate
concentration (Roberts 1977). This was challenged by Schimel and Weintraub (2003) who
emphasized the importance of exoenzyme limitation on soil carbon decomposition. Schimel
and Weintraub (2003) used a reverse Michaelis-Menten kinetics formulation to show that
the response of soil carbon decomposition to carbon substrate concentration can be
nonlinear regardless of carbon supply. The reverse Michaelis-Menten kinetics for soil carbon
decomposition assumes that the rate of carbon decomposition depends nonlinearly on

enzyme concentrationand but linearly on substrate concentration.

4
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Using-numericatsimulations,variousThe-studies-used-these nonlinear soil carbon models

described above te-have subsequently been used in a variety of studies: to explore different

the fundamental mechanisms controlling soil carbon decomposition (Schimel and
Weintraub 2003 for example), erto investigate the sensitivity of soil carbon and other
biogeochemical processes to warming (Grant, 2014; Tang and Riley, 2014), erto investigate
the response of soil carbon to a small perturbation, such as priming (Wutzler and

Reichsentein, 2013), and to predict soil carbon responses}-and to global change (Wieder et

al., 2013; Sulman et al., 2014). Orly-fewSome studies have explored the mathematical
properties of these nonlinear systems-models anabyticallyin detail ;such-as-dyramic
bifurcations,-oscillation-(Manzoni et al. 2004; Manzoni and Porporato, 2007; Raupach, 2007;
Wang et al., 2014 are examplesforexample). While-However to date these have been

predominantly restricted to obtaining insights for individual models and with a specific

parameterizationnumericatanalyses-have provided-insights for particularmodels,results

In Fthis study we willuse analytietoelsmathematical analysis-te understand-to improve our

understanding of the mathematical-key properties of nonlinear microbial models. For
simplicity and analytic convenience, we choose two simple types of nonlinear microbial
models: one with regular Michaelis-Menten kinetics and other with the reverse Michaelis-

Menten kinetics. These models can be considered as two special cases of the more general

kinetics discussed by Tang (2015). These formulations arend amenable to analytic

approximations, whereas the formulations with more general kinetics, such as the

equilibrium chemistry approximations, are not. We We-only use-represent three soil carbon

pools ferwith each #ype-model and ignore the-abiotic processes for simplicity, despite these

being potentially-that-ean-be-guite-m important under certain conditions (see Tang and
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Riley, 2014 for an example). We wil-address the following questions: (1) how do the
responses of these two models to soil warming differ and why? (2) c€an both models

simulate the response of soil carbon decomposition to increased carbon input as in a litter

manipulation-orlaberatery-priming experiment and what determines the magnitude of the

response in each model?

2 Methods

2.1 Model description

Here-we-analyze-tweWe consider two nonlinear soil microbial models: ere-medel-model A,
which uses reverse Michaelis-Menten kinetics and the-ether-model B, which uses regular
Michaelis-Menten kinetics (specified below). Both models have three carbon pools: litter

carbon, microbial biomass and soil carbon.

Model A is based on a-the nonlinear microbial model of soil carbon as-described Wutzler

and Reichstein (2013; }Htheir model Al). Fhe-eriginabmedelas-deseribed-by-Wutzlerand
Reichstein{2013Their original model} has four pools—Fheirdynamiesis-deseribed-as
follows:, modelled by

ac, C

E_(l_a)anp_MC'CbTbe' (1)
d;s =aF,, +uC, - 1C, ﬁ (2)
0Oy S S @

where tis time in years, G, Cs, G, and Cn, represent the pool sizes of litter carbon, soil
carbon, microbial biomass carbon and assimilable soil carbon in g C m?, respectively; Fapp is

carbon input in g C m? year?, with a-the fraction ef-a going to the soil carbon pool, and (1-a)
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to the litter carbon pool. s, ts, b and um are turreverratesrate constants of litter carbon,
soil carbon, microbial biomass and assimilable carbon in-per year?, respectively (see Schimel

and Weinstraub 2003); gis microbial growth efficiency, K, and Km are two empirical

constants in g C m™*2for the dependence of the consumption of litter carbon or assimilable

carbon by soil microbes-en-seilmicrebialbiomass-and-assimilablecarben.

Beeause-weln this study we are interested in the responses at time scales greater than 1
year. We therefore;we assume that Cn, is at steady state (dCm/dt=0) al-the-time-because of
its relatively fast turnover (less than< a few days). Therefore the dynamics of microbial
biomass, Cy, can be simplified to

dc, c

== — ¢(uC, + u,C,)—2——1,C, - (5)

dt E(M 1T M S)Cb+Kb MLy

Model A as used in this paper consists of eqns (1), (2) and (5) unless otherwise specified. Fhe

This type of formulationtype-efkineties was also used in-thestudiesby-by Schimel and
Weintraub, (2003) and ;-Drake et al., (2013} Sulman-etal{2014).

Model B,-Fhe-ethernonlinearsoil-microbial-carbon-medelused—was based on the model

used by Allison et al, (2010) and Wieder et al., (2013) with one additional assumption that
both enzyme and dissolved organic carbon pools are at steady states—Fhe-egquationsfor

modelB-are, is given by

dG, VC

- (1-a)F,, —C,— 6
dt ( ) npp bC|+K| ’ ( )
dC, V,C,

ot =aF,, + 4G, -C, C5+Ks'and (7)
dc, VC,  V.C

b —C, —s - uC,, 8
dt {Q+K[W%+&] Hoo ®)

where Kiand Ks are Michaelis-Menten constants in g C m?2, and Vj e~and Vs are maximum
rates of substrate carbon (litter or soil) assimilation rate per unit microbial biomass per year.
This type of kinetics was used by Riley et al. (2014), Wieder et al. (2014) and Wang et al.
(2014).
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These two models make different assumptions about the rate-limiting step in carbon

decomposition. Both models assume that microbes have similar access to litter and soil

carbon. In model A, €Ecarbon decomposition is assumed to non-linearly depend on-be

limited-by the number of binding sites or the amount of substrate ren-tinearly-and linearly
depend on the-enzymes aetivities-or microbial biomass linearly-inmedelA-(Schimel and

Weintraub, 2003). In model B, carbon decomposition is assumed to nonlinearly depend on);

and-onby-the enzymes -aetivities-or microbial biomass and -ren-linearly arddepend on the
number of binding sites or the amount of substrate lreary-in-medel-B-(Allison et al., 2010).

When carbon input, Fqpp is equal to zero, the steady state solution is zero for litter and soil

carbon pools for both models (a trivial solution). When Fnpp >0, the steady state solutions to

Model A are:
Cl* _ (1-aa)Fpp + (e7-1)(1-aa)upKp ) )
“ m
C;=—2__ ang (10)
b ety
. _ 1\ Fapp -1 _ HpKp
¢ =(a+—==) W4 (1+a(e™ - 1)KL (11)

The steady state solutions to model B are:

. K,
= 4 12
¢ pr (12)

T efi-a,

C = WP and 13
’ Hy e'-1 1)
[ S (14)
S st & _1
u, e+all—¢)
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CO; efflux from the decomposition of soil organic carbon (Fs), are-is calculated as:

FE=01- s)usCSC;—be formodelA  and (15)
F=(01- s)cb% for model B . (16)

2.2 Parameter values

Exceptparametera-we-We allow all ethermodel parameters to vary with soil temperature
(Ts) with the exception of parameter a. Based on the work of Allison et al., (2010) and

Hagerty et al., (2014); we used-the-felowingeguationste-deseribemodel the temperature
dependence of these-medelparameters—Fhey-are: as

£ =¢eg —x(T, — Tg), and . (17)
Up = :ubRexp(b(Ts - TR)) (18)

for both models, w—A/here Tr is reference soil temperature in °C (=15°C), & and g are the
values of gand g at Ts=Tg, respectively, and x and b are two empirical constants (see Table

1 for their default values).

Previously tFhere has been a-debate about the temperature sensitivities of sand s (see
Frey et al., 2013; Hargety et al., 2014). The microbial models as developed by Allison et al.
(2010), and used by Wieder et al. (2013) and Wang et al. (26452014) assumed that £was
temperature-sensitive and w, was temperature-insensitive (or b=0). This assumption was
recently challenged by Hargety et al. (2014) who found that 4 was temperature sensitive
and g was temperature-insensitivenot, based on a_laboratory soil warming experiment-n-the
laberatery. Here we will explore the consequence of different assumptions about the
temperature sensitivities of £and 4 on the simulated response of soil carbon to warming

by the two models (see Section 3.2).

We also assume that three additional model parameters in model A, Ky, 4 and s depends

on soil temperature exponentially—Fhey-are:, with

Ky = Kprexp(ai(Ts — Tg)), (19)
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w = wrexp(ay(Ty — Tg)) (20)
and HUs = :usRexp(as(Ts - TR)) (21)

where Ko, tir and g are the values of Ky, 14 and g when soil temperature (Ts) is equal to
the reference temperature, Tr (=15 °C in this study), and ok, @ and s are three empirical

constants with their default values listed in Table 1.

For model B, we assumed that K|, Ks, Vi and Vs increase with soil temperature exponentially-

Thaeis

K, = Kigexp(Bia(Ts = To)) , (22)
Ks = Kspexp(Bis(Ts — Tr)) , (23)
and

Vy = Vigexp(Bu(Ts — Ta)), (24)
Vi = Vigexp(Bus (T — Tr)) (25)

where Kig, Ksr, Vir and Vir are the values of Ki, K, Vi, and V; at reference-the reference soil
temperature (Tr), respectively; and S, fs, S and fis are four empirical constants for model

B (see Table 1).

As found by Wang et al., (2014), the microbial biomass as simulated by model B using the
parameter values of Wieder et al., (2013) was guite-low (<1% of total soil carbon). W;-we
therefore reduced the turnover rate of microbial biomass to 1.1 year™ in-thisstudy-by
assuming that 2% of total soil organic carbon is microbial biomass carbon at a soil
temperature of 15 °C. Some pParameter values in model A at the reference temperature
were obtained by calibrating the equilibrium litter and soil carbon pool sizes against those
from model B for a soil temperature of 15 °C and carbon input of 400 g C m year?, as used

in Wang et al., (2014).
2.3 Analytic solutions and numerical simulations

Ia-thisstudy-wWe derived and used analytic solutions whenever possible for comparing
two-nenlinearour modelsa
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carben-input. Specifically, we mathematically analyzed the temperature dependence of
steady state soil carbon pool size;, ardwe derived an analytic approximation of {tegrii}te

selve-for-the-soil temperature at which equilibrium soil carbon is at a minimum (e.g. eqn B4

for model B), and we derived derived-an approximate solutions te-for the maximum CO; loss

from soil carbon decomposition after the increased carbon input for each model (£ (eg.

Egn C12 for model A and C15 for model B). When an analytic solution is-was not possible or

too cumbersome, we used numerical simulations to show the differences between the two
models in their responses of carbon pools to a small perturbation in litter or microbial

carbon pool sizes, and the responses of CO; efflux from soil carbon decomposition to litter

addition at a tropical forest site_(Sayer et al. 2011);-ertherespenses-of Fa.to-different
N o ) _

3. Results

Before comparing the responses of our thesetwe-models to soil warming and increased

carbon input, we willfirst analyse Fo-understand-how-theresponses-ofthe-two-modelstoa

ep-change-in-soil-temperature-orcarbon-input-differ-weanalysed-some key properties of

their responses efthe-twe-medels-to a small perturbation, i.e. whether both models
oscillate in response to a small change in their initial pool sizes and what determines the

period and amplitude of the oscillation. As a step-change in soil temperature or carbon input

can be considered to be a as-perturbation, identifying difference in those key properties will

help us understand the differences in the responses of the two models to soil warming and

increased carbon input.

The rResponse of model B to perturbation has already been analysed by Wang et al., (2014),

and will not be elaborated here, ealy-but the results from that analysis will be used to

compare the period and amplitude of the response to perturbation to that of are-cempared
with-these-efmodel A.

3.1 Comparison of the perturbation responses of twe-both models

Perturbation analysis is a standard mathematical technique for analysing the behaviour of a

dynamic system near theiits equilibrium states (see Drazin 1992 for further details). There

11
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are two kinds of perturbation responses: stable or unstable. The system states, or carbon
pool sizes in eureasethis study will always approach their equilibrium states for a stable
response, or otherwise for an unstable response. For both stable and unstable responses,
the transient change of a carbon pool size over time can be oscillatory or monotonic. As

shown in Appendix A, the response of a carbon pool to a small perturbation always-is stable

always, and fermedelA,-and-theresponse-overtime-willbe-oscillatory only if
(l—g)z y,yszb . . . . g o
Fopp <4 =2 >, or monotonic otherwise. This region of oscillation in the two-

e (#-m
dimensional space of carbon input and soil temperature is shown in black in Figure 1.
TFherefore-theThe response of model A to a small perturbation is oscillatory under most
conditions-sei-rempembureihin 20" Cand 20 Cmpedencedh emresdalecasyshoras; 5
as-the conditions with low soil temperature and high carbon input are uncommon in

terrestrial biesphereecosystems.

Results-The results of a singular perturbation analysis are strictly are-applicable only when

the perturbation is small-. However our simulations show that the predictions from the

perturbation analysis approximate well the responses of our two models to irgeneralbut

are-good-approximationsforany realistic perturbation fereurtwo-meodelsin-this-study-(see
Appendix A of this paper, and Appendix B in Wang et al., (2014)). Therefore we can predict

how soil carbon or other carbon pools change over time in response to a change in carbon
inputs or soil warming (i.e. a perturbation of the external environment) and explain why the

responses of the carbon pools are different between the two models.

To illustrate how the responses of carbon pools to a small perturbation differ between the
two models, we numerically simulated the recovery of all three carbon pools in each model
after a 10% reduction at time t=0 in both litter and microbial carbon from their respective
steady state values, while no perturbation was applied to soil carbon at t=0 (see Figure 2).
The amplitude of the initial oscillation is about 70 g C m™ for the litter pool (see Figure 2B)
and 7 g C m for the microbial carbon pool (see Figure 2D) in model B, as-compared to
about 25 g C m2 (see Figure 2A) for the litter pool and 4 g C m for the microbial pool (see
Figure 2C) in model A. After 20 years, bBoth the litter and microbial carbon pools are very
close to their respective steady state values in model A, but continue to oscillate in model B

after 20-years.

12
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The oscillatory response can be mathematically characterized by its half-life (to.s) and period
(p). For a stable oscillatory response, the amplitude of the oscillation decays exponentially.
The time for the amplitude to reach 50% of its initial value a+#=6-is defined as_the half-life
time (to.s). The smaller tos, -is-the faster the oscillation darmpdampens. As explained in the
Appendix A, values of tos and p ef-for model A are much smaller than model B for any given
soil temperature and perturbation. This explains;thatis why the oscillatory responses of

model A dampens much faster than model B.

There are significant differences in the response of soil carbon between the two models.
While there is no response of soil carbon to a small perturbation in iritiatsizesoflitter
carbon and microbial biomass in model B, soil carbon in model A decreases initially to a
minimum value at 5 years after the perturbation, then gradually increases to its steady state
value. These differences in the response of soil carbon between the two models can be
explained by the differences in the structure of eigenvectors for litter carbon and microbial

biomass between the two models (see Appendix A for further details).

3.2 Minimum-soil-carbon-temperatureResponse of soil carbon to warming

Here we explore how soil carbon responds to an-instanta step increase in soil temperature,
as- in many soil warming experiments (Luo et al., 2001; Mellilo et al., 2002), and we-ignore

the response of carbon input to warming.

As explained in Appendix A, the response of soil carbon to warming is always is-stable in
both models; and is likely to be weakly oscillatory in model A and monotonic in model B. ;
and the-The transient change in soil carbon after warming can be predicted using the

generalised solution te-for soil carbon for each model (see Eqn B1 of Wang et al.

(2014)Appendix-A). Therefore the directional change of soil carbon in response to warming,
i.e. increasing or decreasing enly-only, depends on the sensitivity of the equilibrium soil

carbon pool to soil temperature in both models.

As shown in Appendix B, the equilibrium pool size of soil carbon of model A always
decreases with soil warming if carbon input does not increase with warming. For model B,
the equilibrium pool size of soil carbon can increase or decrease in response to warming,

depending on soil temperature and model parameter values. In Appendix B, we showed that
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a soil temperature (7x) may exist at which the equilibrium soil carbon is at a minimum for
model B. Identifying Txis important for predicting the directional change of soil carbon by
model B in a warmer world, because soil carbon will decrease if the warmed soil

temperature is below Ty, and will increase otherwise.

The value minimum-soil-carbontemperature;of Ty for model B depends on three medel

parameters: the fraction of carbon input directly into the soil pool (a), microbial biomass
turnover rate (i or its temperature sensitivity b) and microbial growth efficiency (¢ or its

temperature sensitivity x). Figure 3a shows that Tx for model B decreases with an increase in
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experienced by most terrestrial ecosystems. For example, Ty is >40 °C, wMthen x<0.005°Ct "0« %
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and a<0.5., F-is>40-°Ctherefore -erthe simautated-equilibrium -soil carbon inbypredicted by
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model B witldecreases with warming when the warmed soil temperature is below 40 °C. W;
when ¢>0.4 and x > 0.02 °C%, Ty is <0 °C (the black region on the top left corner of Figure 3a),

therefore the simulated equilibriumes soil carbon byin model B wilkincreases with warming

if the warmed soil temperature is above 0 °C.

Figure 3b shows that T for model B decreases with an increase in b or x. When the turnover
rate of microbial biomass is not sensitive to soil temperature (b=0) and x=0.016 °C* as the

default values-used for model B, Tx is about 35°C. When-For b=0.063, as estimated by

Hagerty et al., (2014), Tx deesnetexist< 0 °C, therefore irrespective-ef thevalueofx [Formatted: Superscript

therefore-the equilibrium soil carbon pool size as simulated by model B always increases

with soil warming for most terrestrial ecosystems, irrespective of the value of x. [Formatted: Font: Italic

Therefore the simulated responses of the eguilibrivmm-soil carbon pool to warming by the

two models can be quite different: the equilibrium soil carbon pool size always decreases

with soil warming in model A, but can increase or decrease in model B, depending on its-the
temperature sensitivities of microbial growth efficiency and microbial turnover rate and the

fraction of carbon input entering soil carbon pool directly.
3.3 The reResponse of soil carbon to an increased litter input

Here-weWe compare the simulated responses of soil carbon to litter addition by the two

models with field measurements from an experiment as-described by Sayer et al., (2011).
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The experiment used three treatments: litter removal with aboveground litter being

removed regularly (L); increased litter input (L*) with the addeditienal litter from the litter

removal treatment; ~litterremeveremeval bl vithabsvesreundlittarbalngrermevead
regularlys-and a control (C). Measurements of CO; efflux from soil were made; and the

contribution of root-rhizosphere respiration to soil respiration was estimated using a 6*3C
technique. Sayer et al. (2011) found that the CO; efflux from the decomposition of soil
organic carbon in the L* treatment was 46% higher than in the control. £Therefore,
increased litter addition accelerated the decomposition of soil organic carbon. Here we

assess whether the observed response of soil carbon decomposition to increased litter input

can be reproduced by running both models for L* and C treatments.- iFormatted: Superscript

Inputs to each model, including the monthly data of soil temperature and;sei-eisture;
litter input from 2002 to 2008 for two treatments (C and L*) at the site, were compiled from
Sayer, Power and Tanner; (2007); and Sayer and Tanner (2010a, 2010b; }see Figure 4 for
monthly litter input as an example). We also assumed that the contribution of fine-root
respiration to total soil respiration (root respiration plus heterotrophic respiration) was 35%
for the control treatment and 21% for the litter addition treatment, based on the estimates

by Sayer et al., (2011).

The initial sizes of all pools were obtained by running each model by-with the reusing-the
monthly inputs for the-ferthe first two years repeated until all pools reached steady state

(i.e. the change is-in pool size between two successive cycles is less than 0.01%).

Using the initial pool sizes for each model and the monthly input from 2002 to 2008, we
numerically integrated both models and calculated the average contributions to total soil
CO; efflux from the decomposition of litter and soil organic carbon for the last 2 years
(2007-8); and compared the simulated results with the estimates from field measurements

by Sayer et al., (2011).

By tuning values of two model parameters (g and Kir) (see Table 1), we obtained anFhe [Formatted: Subscript

1 Formatted: Font: Italic

simulated initial microbial biomass carbon by-beth-rmedelsis240 g C m%- for both models

‘ 1 Formatted: Subscript

which-is-very close to the measured microbial biomass carbon of 219 g C m2 by Sayer et al.,
(2007). The simulated initial soil carbon is 6715 g C m2 for model A and 6945 g C m™ for

model B, which is higher than the estimated soil carbon of 5110 gC m™ in the top 25 cm

15



411

412

413
414
415
416
417

418

419
420
421
422

423
424
425
426
427
428
429
430
431
432

433

434
435
436
437
438
439

(Cavelier et al., 1992) and lower than the estimated soil carbon of 9272 g C m2in the top 50
cm soil (Grimm, 2007).

The estimated total soil CO; efflux from the control treatment by Sayer et al., (2011) was
1008 g C m2 year™ from 2007 to 2008, which was closely simulated by both models (1004 g
C m?year? by model A and 1008 g C m2 year?! by model B). However both models
overestimated the total soil CO; efflux from the litter addition treatment. The estimated
efflux by Sayer et al., (2011) was 1380 g C m? year™, as compared with the simulated flux of

1425 g C m2 year® by model A and 1502 g C m2 year® by model B (see Figure 5).

The additional CO; efflux from the decomposition of soil carbon in the litter addition
treatment was estimated to be 180+50 g C m2 year by Sayer et al., (2011), which was quite
well simulated by model B (105 g C m™ year) (see Figure 5B), but was underestimated by

model A (29 g C m™? year?) (see Figure 5A).

The difference in the simulated response of soil organic carbon decomposition to the
increased litter input by the two models can be explained by differences in their
substrateMichaelis-Menten kinetics. The rate of carbon loss from the decomposition of soil
carbon depends on both soil carbon and microbial biomass in both models. Because soil
carbon is unlikely to change significantly within a few years, the rate of CO, emission from
soil carbon decomposition will largely depend on microbial biomass, and that dependence is
nonlinear following the reverse Michaelis-Menten equation in model A (see eqn 2), anrd-but
is linear in model B (see eqn 7). Therefore the simulated response of soil organic carbon
decomposition to increased litter input by model B is more sensitive to microbial biomass;

aneHs-higherthan-thatby than model A.
3.4 Response to priming: maximum CO; efflux from soil carbon decomposition

Results from the above comparison of the responses of two models to the increased litter
input are likely dependent on soil temperature, carbon input, and model parameter values.
To understand the differences of the responses of our two models to litter addition at
different rates aeressarange-efearboninputsand soil temperatures forat any parameter
values, we use the analytic approximations to maximum CO, efflux from the priming

treatment for each model to identify key differences in their response to priming.
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Priming is defined as the change of organic carbon decomposition rate after the addition of
an easily decomposable organic substance to soil (Kuzyakove, Friedel and Stahr, 2000). In
lab priming experiments, a given amount of isotopically labelled C substrate is added to the
primed treatment only at the beginning of the experiment (t=0); and no substrate is added
to the control. CO; effluxes from soil carbon decomposition are estimated from
measurements for the following weeks or longer (Cheng et al., 2014). The effect of priming,
p, is calculated as (Rp-Rc)/Rc, where Rc and R are the CO; efflux from the decomposition of
soil organic carbon in the control and primed treatments, respectively. Maximum values of
p are usually reported in most priming studies (see Cheng et al., 2014).

However analytic approximations to p for both models are quite cumbersome for analysing
their differences in the responses to priming. Another way to quantify the priming effect is
by measuring the maximum CO, efflux from soil organic carbon decomposition after carbon

addition at time t=0 frem-the-primed-treatment(Jenkinson et al., 1985; Kuzyakova, Friedelb
and Stahr, 2000). This quantity can be easily measured in the laboratory or field.

In both models, the equilibrium soil microbial biomass is proportional to carbon input (see
eqns 11 and 13). In the primed treatment, the amount of carbon added at t=0 usually is well
above the rate of the carbon input under natural conditions, and no further carbon is added.
at+>0: Therefore the microbial biomass will increase until reaching a maximum value, then

decreases with time after t=0.

As shown in Appendix C, the maximum CO; efflux from soil carbon decomposition in the
primed treatment, Frax, isafunetien-efdepends on the maximum microbial biomass after

t=0and; microbial growth efficiency for both models, and also onaré soil carbon turnover

rate for model A (see eqn €11-C12 for Fa), ane-and on themaximum-micrebialbiemass;

rmicrobialgrowth-efficieney-and- microbial turnover rate aftert=0-for model B (see eqn €14
C15 for Fs).

Figure 6 shows that Fmax (or Fa for model A, Fg for model B) increases with carbon input, and

decreases with an increase in soil temperature for both models.

However, the sensitivity of Fmax to carbon input at different soil temperatures is different
between the two models. For model A, the sensitivity of Fmax to carbon input is greatest

around a-sei-temperatureof25 °C, and is quite small at asei-temperature< 5 °C. For model
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B, the sensitivity of Fmax to carbon input decreases with an increase in soil temperature (see

Figure 6).

The sensitivity of Fmax to soil temperatures in both models can be explained by the analytic
approximations (eqn €11-C12 for model A and €14-C15 for model B). Maximum CO; efflux is
proportional to soil carbon in model A, and to the maximum microbial biomass in model B.
B;-both soil carbon and maximum microbial biomass in both models decrease with an
increase in soil temperature for the parameter values we used (see Figure 6c), therefore

Fmax also decreases with an increase in soil temperature.

Differences in the sensitivity of Fmax to carbon input at different soil temperatures in the two
models can also be explained by their respective analytic approximations, particularly the

dependence of maximum microbial biomass on both carbon input and initial microbial

biomass in model A (see eqn C11) and on equilibrium litter carbon pool size in model B (see

egn C14-), because Fmax depends on the maximum microbial biomass in both models. In

model A, Fa nonlinearly varies with maximum microbial biomass (see Eqn €11C12), which

increases linearly with isprepertienal-te-carbon addition at t=0 (AC) and varies-nonlinearly

with the initial pool size of microbial biomass (C}) (see Eqn €26C11). Because €, increases with

a decrease in soil temperature or an increase in AC (see Figure 6¢), Fa increases with an increase in

AC (either directly Egn C11 or via the effect on C}), and with a decrease in soil temperature (via the

temperature dependence of C;). Fherefore-thesensitivity-of Fa-to-AC-varies-with-ACtselfand

% . %

In model B, the sensitivity of Fg to carbon input is determined by the maximum microbial

biomass (Comax,s), Which -that-varies with equilibrium litter pool size (C;’) following the

regular Michaelis-Menten equation (Comax,s oc M in eqn €43C14) for a given amount of
carbon input (4G). The equilibrium litter carbon pool size increases with soil temperature,
and is independent of carbon input based on eqn (12) (see Figure 6d). When soil

temperature is low, C; is low, therefore sensitivity of Fs to carbon input is high. When;-er
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when soil temperature is high, C;" is high_and; the sensitivity of Fg in model B to carbon input

is low because of saturating response in the regular Michaelis-Menten equation.

4. Discussion

Here we analysed the responses of different carbon pools to perturbation, soil warming and
increased carbon input in two nonlinear microbial soil carbon models. Table 2 fisted

theirlists the key differences of those responses.

Some of these-the differences between the two models also depend on the chosen

parameter values in-for each model. For example, there has been a debate about the
temperature sensitivities of microbial biomass turnover rate and microbial growth efficiency

(Frey et al., 2013; Hargety et al., 2014), and the simulated sensitivity of soil carbon to

warming (Hagerty et al. 2014). Regardless of the temperature sensitivity of microbial growth

efficiency, model A always simulates a decrease in the equilibrium soil carbon under

warming, whereas model B can simulate an increase or a decrease in the equilibrium soil

carbon under warming, depending on the temperature sensitivities of microbial growth
efficiency and turnover rate. If microbial growth efficiency is micrebia-turroverrateisnot
sensitive to soil temperature and microbial turnover rate is notmicrebialgrowth-efficiency

is, as found by Frey et al (2013), the simulated responses of equilibrium soil carbon to

warming by the two nonlinear models are quite similar in the direction of response over

temperate and boreal regions, but different in the tropical regions. This is because the

minimum soil carbon temperature, Tx for model B is about 25 °C for x= 0.015 K* and a=0.05,
the values that-used by Allison et al., (2010) and German et al., (2012) (see Figure 3a);then-.

In that case the equilibrium soil carbon, as simulated by model B, will decrease over most

temperate and boreal regions, for which the where-mean soil temperature within the
rooting zone is below 25 °C for most time-of the growing season, and will increase in tropical
regions, for which where-the mean soil temperature efin the top 100 cm of soil is close to

25 °C for most time-of the year-with-seibwarming. Therefore the simulated responsesof

regions—However if microbial turnover rate is sensitive to soil temperature and microbial

growth efficiency is not, as found by Hargety et al., (2014), then Ty is < 0°C at & >0.055 (°C)
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1 for model B, causing -therefore-equilibrium soil carbon wil-to increase in model B with

warming, but decrease in model A with warming. Therefore, -therefere-the predicted
responses of soil carbon to warming by the two nonlinear models differ significantly across
all major global biomes where mean rooting zone soil temperature over the growing season

is above 0 °C.

Some of the key differences in the responses of the two nonlinear models can be used to
differentiate which model is more applicable to the real world-using-field-measurements.
For example, the oscillatory response of model A generally is quite small (<1%), which is
quite consistent with the results from litter removal experiments (Sayer, Powers and
Tanner, (2007) for example). The relatively large and more persistent oscillation in model B
has not been observed in the field, and the insensitivity of soil carbon to a perturbation in
the litter or soil microbial carbon pool in model B also needs to be assessed against long
term field experiments such as the DIRT experiment (Nadelhoffer et al., 2004). Model B atin

its present form may not be applicable te-under field conditions. It has been argued that the

influences of microbial community structure and their activities on mineral soil carbon
decomposition at field scale may be much smaller than at the rhizosphere scale (Schimel
and Schaeffer, 2012), because substrate concentration rather microbial activity is the rate-
limiting step for the decomposition of soil organic matter in mineral soils. A recent study by
Sulman et al., (2014) clearly showed the importance of physical protection of microbial by-
products in forming stable soil organic matter, and its implications ea-for the response of
global soil carbon to carbon inputs. This mechanism has been recently incorporated into a
nonlinear soil microbial carbon model (Wieder et al., 2014). Whether the large oscillatory
responses of model B will be significantly dampdampened with-by the addition of the-such

physical protection mechanism is yet to be studied.

The two models also have quite different seasitivity-sensitivities to soil warming (see Table
2), particularly in the-warm regions. Results from a decade-long soil warming experiment
showed that warming did not reduce soil carbon, because plant carbon production
increased as a result of the increased availability of soil mineral nitrogen in £hat-a nitrogen-
Hmiting-limited forest (Melillo et al., 2002). However this is quite a different mechanism as
becauserepresentedin- model B in our study that-does not include a nitrogen cycle aré-nor
the response of carbon input to warming-in-eurstudy.
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Overall both models can simulate the priming response to a change in carbon inputs,
although model A simulates a lower response than model B and has-differentthe

sensitivities to carbon input at different soil temperature are different between the two

modelsfrerm-medelB, particularly under cool climate conditions (see Table 2). So far, results
from litter manipulation experiments in the field have not been analysed for their sensitivity
to soil temperature. The differences in the responses of soil carbon decomposition to an
increased carbon input we identified between the two models can also be used to assess
which model is more applicable in the field using experiments with different carbon input
under cool (mean annual air temperature <10 °C) and warm (mean annual temperature >20
°C) conditions. If the sensitivity of soil carbon decomposition to an increased carbon input
under cool conditions is greater than that under warm conditions, then model B is more

appropriate than model A. This has yet to be tested.

Our analysis here does not include some other key processes, such as the transformations of
different forms of organic carbon substrates by different microbial communities as included
in some models (see Grant 2014; Riley et al. 2014 for example). Ttherefore the conclusions
from this study about the two nonlinear models should be interpreted with some caution.
As shown by Tang and Riley (2014), interactions among soil mineral sorption, carbon
substrate and microbial processes can generate transient changes in the apparent sensitivity

of soil carbon decomposition to soil temperature, therefore the static dependence of

microbial processes on soil temperature as used in our study may not be applicableA&nd

ebservations. Our simplification of differentseilthe soil microbial community and variable
gualityof seilcarbon-as-ebservedsoil carbon fractions inthe-field-is necessary for analytic

tractability, but may also limit the applicability of our results to field experiments. For

example, Allison (2012) showed that the apparent kinetics of soil carbon decomposition can
vary with the spatial scale: the regular Michaelis-Menten kinetics at microsites coupled with
an explicit representation of different strategies for facilitations and competitions among
different microbial taxam ean-generated litter carbon decomposition kinetics with-a-kineties
similar to the reverse Michaelis-Menten equation. Therefore the identified differences

between the two models should vary with the-spatial scale.
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The regular and reverse Michaelis-Menten kinetics can be considered as two special cases of

a more general kinetics, as discussed by Tang (2015). Both models use different mass

balance constraints (see Tang 2015), which are unlikely to hold across a wide range of

conditions. In real world, the kinetics and parameter values of carbon decomposition likely

depend on a number of other factors, such as soil physical properties, substrate quality and

soil nutrient availability (Manzoni and Porporato, 2009). Future studies of soil carbon [Formatted: Not Highlight

decomposition kinetics need to include those factors and the role of root growth dynamics

and photosynthetic activities in rhizosphere priming (see Kuzyakov 2002).

Finally both models have a number of parameters, and their values are largely based on
laboratory studies (Allison et al., 2010). The values of those parameters may be quite
different under field conditions. Evaluation of their applicability under a wide range of field
conditions will require an integrated approach, such as applications of model-data fusion
using a range of field experiments (Wieder et al., 2015). This will eventually lead a better
understanding of the significance of microbial activity on soil carbon decomposition and &

more accurate predictions of carbon-climate interactions-uhderfutureclimate-cenditions.

5. Conclusions

This study arabyzedanalysed the mathematical properties of two nonlinear microbial soil
carbon models and their responses to soil warming and carbon input. We found that the
model using the reverse Michaelis-Menten kinetics (model A) has short and more frequent
oscillations than the model using regular Michaelis-Menten kinetics (model B) in response

to a small perturbation.

The responses of soil carbon to warming can be quite different between the two models.

Under global warming, model A always simulates a decrease in soil carbon, but model B will
likely simulate a decrease in soil carbon in temperate and boreal regions, and an increase in
soil carbon in tropical regions, depending on the sensitivities of microbial growth efficiency

and microbial biomass turnover rate-in-+redel-B.

The response to carbon input varies with soil temperature in both models. The simulated

maximum response to priming by model A generally is smaller than that by model B.;
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decomposition (Fmax) to carbon input in the primed treatment decreases with an increase in

soil temperature in both models, and the sensitivity of Fmax to the amount of carbon input

increases with soil temperature in model A; but decreases monotonically with an increase in

soil temperature in model B. depends-eninitialmicrobial-biomass-at-steady-state-inmodel

Based on those differences between the two models, we can design laboratory or field

experiments to assess which model is more applicable in the real world_and,; therefore,
advance our understanding of the importance of microbial processes at regional to global

scales.
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Appendix A: Stability analysis of model A

The Jacobian at the equilibrium pool sizes, J, is given by

—-a, —as 0

J= (sa1 s(as +ay) — sa2> (A1)
0 Hp — Ay )
_ _ _ « 0g _ « 0g

where a; = g, a; = psg, az = (G ac, lcy=c; » aa = usCs ac, lcyp=c;;

[ 9 K PR, T . .
g = c*+bz< , % |Cb=Cb* = m, and Cy, C; and Cy are the equilibrium pool sizes of litter

b b b b b

carbon, microbial biomass and soil carbon in g C m?, respectively.

The three eigenvalues of J are given by

—Cp(up+up+ [ChFa

A 2(Cj+Kp)
112 il R CpFa (A2)
3 2(Cj+Kp)
—HUsg

where Fy = Cy (1 — 11)* — 41 Kp (1 — €).

These three-eigenvalues-correspond to three carbon pools (A1 for litter carbon, A, for
microbial biomass and A3 for soil carbon). If the eigenvalue of a carbon pool is complex, then
the response of that pool to a small perturbation is oscillatory, or monotonic otherwise. If

the real part of the eigenvalue is negative, then the response is stable.

Therefore, the responses of all three carbon pools to a small perturbation are monotonic if

S 40-9° iy

Fa > 0,01 Fapp € (up—m)?

K, or oscillatory otherwise (or F, < 0). The responses of

—Cp(up+
»(kp u1)<

all carbon pools are always are-stable because -
2(Cp+Kp)

The corresponding eigenvectors of J are given by

A+BJCF, A—BJCF, o\
vy VU, V3) = | ~Coluptm—2us)+ [CoFa  —Cplup+ui—2us)— [CpFa A3
(1 vz v3) R DT, (A3)
2upCp 2upCp
1 1 1
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where 4 = — #o—#Gu-s) (e1-1)=2
2epupiy Cp
— Hi—HUs
2eupiCy’

When the responses of carbon pools to a small perturbation are oscillatory and stable, the
amplitude of oscillation decreases exponentially after t=0. The oscillatory response can be
characterized by its half-life (to.s) and period (p) (both in years) calculated from their
eigenvalues-ef3. The amplitude of a stable oscillation decreases exponentially over time,
and time when the amplitude is half as much as the amplitude at t=0 is defined as tos. tos

and p are calculated as

_ @ _ 2In(2)(Cp+Kp)
tos = =ColptrD) T Cj(up+rD) (A4)
2(cp+Kp)
p= 2m =2n(c;+lq,) (A5)
J—Ci,FA \/—Cb*FA
2(Cy+Kp)

for model A. Wang et al. (2014) gave the formulae for to s and p for model B (their eqns 24
and 25).

As shown in Figure Al, the half-life is longest for both models when soil temperature is high
and carbon input is low, conditions often experienced in arid ecosystems, implying a strong
oscillation at these conditions. At a given soil temperature and carbon input, the half-life for
model A is about half as much as that for model B (see Figures A1A and A1B). When carbon
input is > 1000 g C m2 year™, as in tropical rainforests, the half-life is less than 1 year for
model A at a soil temperature between 20 °C and 30 °C, and for model B at a soil

temperature between 0°C and 20 °C only.

Over the range of realistic carbon inputs and soil temperatures, the values of both tos and p
of model A are less than half as much as those of model B (See Figure Al). Therefore the
responses of carbon pool sizes to a small perturbation in model A oscillate faster and those

oscillations also edampdampen faster than model B.

) { Formatted: Font: Italic

,,,,,,,,,,, ~ . — | Formatted: Subscript

eigenvector), the evolution of each carbon pool after a small perturbation can be .| Formatted: Font: Italic

ﬁ\ Formatted: Subscript

(D N/ W

30



819
820
821
822
823
824
825
826
827

828
829
830
831

832
833

834
835

836
837
838

839
‘840

841

842

843

mathematically represented using the eigenvalues, eigenvectors and initial pool sizes (ean

B1lin Appendix B of Wang et al. (2014)). The third elements of the eigenvectors

corresponding to litter carbon (v1 in eqn A3) and microbial biomass (v, in eqn A3) represent | Formatted: Font: Italic

"\ 1| Formatted: Subscript

the influences of those two carbon pools at any time -+on soil carbon. Because those N
- (Formatted: Font: Italic

elements are nenzereequal to 1 (see the matrix in Egn A3), therefere-the oscillation of litter  ‘1\ Formatted: Subscript

o A )

carbon and microbial biomass will also cause the response of soil carbon to be oscillatory,
although the oscillation is small and dampdampens very quickly. In model B, the third
elements of the eigenvectors corresponding to litter carbon and microbial biomass zero (see

the bottom row of the matrix in A4 of Wang et al. (2014)), therefore oscillatory responses of

litter carbon and microbial biomass have no effect on the response of soil carbon, and the
eigenvalue of the soil carbon in model B is negative real, therefore the response of soil
carbon to a small perturbation always is monotonic and stable in model B (see Appendix A

in Wang et al. 2014).

Appendix B: Soil temperature at which equilibrium soil carbon pool is minimum (Ty)

The steady state soil carbon pool size of model A is

€ = (a+ =) ™2+ (1+a(et - 1) (81)

e~1-1

The first term on the right-hand side of eqn (B1) always decreases with an increase in Ts, and

the second term has two parts: (1 +a(e7t - 1)) and ”Z—Kb. Because Both Ky and p increase
S

with Ts exponentially, and the sensitivity ug to Ts is much greater than Ky, therefore X

Us

always decreases with an increase in Ts, and that decrease is much greater than the increase
in (1 +a(e™t - 1)) with Ts-. As a result, therefere-the second term also decreases with an

increase in soil temperature, independent of temperature sensitivity of 1. In summary for

dct
dTs

<0.

model A,

The steady state pool of soil carbon in model B is

31



844

845

846

847

848

849

850

851

852

853

854

855

856
857

858
859

860

861

c o : (B2)

-1
u, s+all—¢)

. Vs
Assuming that —

———— >>1, we can therefore approximate C ; as
u s+all-g)
. K Kty 1 (B3)
Clag— =R b-B)T.-T.)|1+a ———-1
T m et (TR [ |
u e+all—g)

It can be easily shown that Ty can only exist only when S, +b— £, <0 and 0<a<1

And

£0—2

T, =Tr + (B4)

X

z=-05-"+ 0.5J(ﬁ)2 —4 (:—a)m (B5)

When a=0, T does not exist and

dct
T

< 0; when £ +b—p,<0; (B6)

ac:

— > 0; when B, +b—p,>0 (87)

for model B.

Appendix C. Derivation of an analytic approximation for the timing and magnitude of the

maximum microbial biomass after priming

Both models can be used to simulate the response of soil carbon to priming by specifying

different initial pool sizes for the primed and control treatments. The initial values are
Ci(t =0) =C +AC; Cp(t =0) = C and C,(t = 0) = C; for the priming treatment;

C(t=0)=C;C,(t =0)=Cy and C;(t = 0) = C; for the control.
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Here we assume that all pools are at equilibrium just before the priming treatment at t=0.
C/, C; and C; are equilibrium pool sizes, and AC; is the amount of litter carbon added at

time t=0. No carbon is added to both treatments after t=0.

The CO; efflux from soil carbon decomposition is calculated using eqn (15) for model A and
eqn (16) for model B. Therefore we need to solve the three equations for C, and C; for t>0.
Observations show that maximum priming response occurs soon after priming treatment
(Kuzyakova, Friedelb and Stahr, 2000), therefore maximum priming response can be
considered as a short-time scale phenomenon. At short-time scale, Cs can be considered as
being constant, and the maximum CO; efflux from the priming treatment will occur when
the microbial biomass reaches a maximum after t=0. Therefore we will use a second-order
Taylor expansion to obtain the approximate solutions to the timing and magnitude of
maximum CO, efflux from the soil carbon decomposition in the priming treatment for each

model.

For model A, eqn(1) and (2) for both treatments after t>0 becomes

dc, C

=—uC, —=b Cc1
dt M C, +K, (€1)
dCs _ _ b

E_/lbcb #scs Cot+Kp

As the litter pool size at time t=0 is above its equilibrium value, therefere-the microbial

biomass will likely increase after t=0 and then reaches its maximum value,and-then-declne.
Eqns (C1), (2) and (3) can be simplified using variable substitution.
Let

R VY TR Yo
PTKy Y Kemy' C Kpmy ' Kp iy T T T Ky

Then those three equations can be written as

dc,; _ ~ Cp

dr b Cp+1 (CZ)
dCs = ~ C
= =aC, G ?31) (C3)
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ﬂ =¢(C +C ) -G, (c4)

with the initial pool sizes of

C,(0) = C o)=% ( ie + a) +1+ a% for both treatments, and €,(0) = (1 —
a)(? + %s) + AC,, for the primed treatment; and ;(0) = (1 — a)(? + ?) for the
1 1
control treatment.
At relatively short-time scales, a,<<1, thereforeCs(t) — Cs(t = 0). Microbial biomass

carbon after t=0 can be approximated using the second-order Taylor expansion

(Abramowitz and Stegun 1972)—Fhatis:

Cp () = Cp(0) + tCH(0) + 5 C,;’(O) (cs)

Differentiating both sides of eqn (C5) with respect to t, we have

Cp(t) = 0+ C5(0) + €' (0) (C6)

Assuming that £=tua, 4-Cp, is maximum at t=tya. s, then C~};(tmax,A) = 0. Egn (£5C6) becomes

CZIJ (tmax,A) = él; (0) + tmax,AélI)’(O) =0 (csC7)

Both €}, (0) and C}'(0) can be obtained differentiating eqn (C4) at t=0-We-have-, giving | Formatted: Font: Italic
A1 O

Ci(0)=¢ a0 AG (e7C8)

A1 _ Cb(o) _ Cp(0)  eng

Cy'(0) = RETTA (0)A (@ a) T A+a) 1+Cp(0) (1+c,,(o))2) (€8C9)

Substituting eqns (€7C8) and (€8C9) into (€6C7), and solving for tmaxa, we have

1 G, (0) 1
t =———= o €9C10
max,A b ¢ ©) (1-a) Fnpp , . + Cp eKpAC ( _)
b Y ac, TbHH G TR (Cp+Kp)?

Substituting eqn (€9C10) into eqgn (C5), we have the maximum microbial biomass at tmax,a, Or

Cbmaxa for the primed treatment as follows:

5 « | tmax Cpy
Cbmax,A = Kbcb(tmax,A) = Cb + %MC;‘_Z[) WAC, (c20C11)
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The maximum rate of CO; release from decomposition of soil organic carbon, Fco2 at t=tmax,a

is given by

Com
Fa = (1= e)usCs el (exic12)

Similarly we derived the approximations for the timing (tmax,8) and magnitude of maximum

microbial biomass (Comax,g) in the primed treatment at t>0—Fhey-are as

1

bmaxp = €K Cpy (Ci"ACz)(Vz)z (C12C13)
(&M -(1-0)(1-8) p) (C} +AC,+K3 (eM=(1-a)(1-)up)

Comans = C5 (14 05tmaxs(eM, — (1 — a)(1 — £)y)) (€13C14)

where

V(€] +AC)
YT+ AG + K,
The rate of CO; release from decomposition of soil carbon, Fg, for model B at time t=tmaxs is

given by

VC

FB = (1 - g)Cbmax,BCST’;S = (1 - s)ubC (&4%)

bmax,B :

Comparison with numerical simulations show that the relative error of eqn (€31C12) is <3%
across soil temperature and carbon input within their realistic ranges. However errors in
eqn (€34C15) for model 2 can be quite large, particularly at high carbon input. Eqn (€24C15)

is only reasonably accurate (relatively error <10%) at low carbon input <700 g C m=.
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Table 1.Default values of model parameters and their temperature sensitivities (°C1). Four

parameters were tuned: !: tuned using the microbial biomass data measured from a tropical

: Superscript

model B by Wang et al. (2014).

: Superscript

Default value

Source

Temperature sensitivity

Source

&=0.39 Allison et al. (2010) x=0.016 Allison et al. (2010)
tpr=1.1 year? Thisstudy: b=0.063 ~ Hagertyetal. (2014) { Formatted: superscript
1r=0.84 year Thisstudy’ ~  @=0.063 ~  Hagertyetal. (2014) { Formatted: Superscript
15r=0.028 year™ Thisstudy? ~ =0063 ~ Hagertyetal. (2014) [Formatted: Superscript
Kbr=100 g C m? Thisstudy*  a=0007 Allison et al. (2010) : Superscript
Kir=67275 g C m™ Wang et al. (2014)  54=0.007 Allison et al. (2010)
K&=363871gCm?2 Wangetal. (2014) fss=0.007 Allison et al. (2010)
Vir=172 year? Wang et al. (2014)  3,4=0.063 Allison et al. (2010)
Vr=32 year Wang et al. (2014)  f3,=0.063 Allison et al. (2010)

Table 2. Key differences between the two nonlinear soil microbial models

Response to

Model A

Model B

Pool size

perturbation

Warming

Carbon input

More frequent and faster
dempdampened oscillations in
litter and microbial carbon pools
Soil carbon pool may oscillate

Soil carbon pool always decreases

Sensitivity of maximum CO; efflux

increases with soil temperature

36

Less frequent and slower

dempdampened-oscillations in

litter and microbial carbon pools

Soil carbon pool does not oscillate

Soil carbon may increase or

decrease

Sensitivity of maximum CO; efflux

decreases with soil temperature
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Figure 2. Dynamics of litter carbon (A,B), microbial carbon (C,D) or soil carbon (E,F) for model A (A,C
and E) or model B (B,D and F) after a 10% reduction of initial pool size in litter and microbial carbon.
The unit is g C m™ for carbon pool on y-axis and year for time. All initial pools are steady state values
for a carbon input of 200 g C m™ year™ at a soil temperature is 25 °C.
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decomposition due to additional litter input.
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Figure 6. Dependence of maximum rate of CO2 efflux from the decomposition of soil carbon in the

primed treatment (Fmax) as a function of soil temperature and carbon addition at time t=0 for Model

A (a) or B (b). At each soil temperature, the carbon input was varied from 100 g Cm2to 1000 g C m-

2, and Fmax increases with an increase in carbon input as shown by the arrow in each plot. (c)

variation of equilibrium soil microbial biomass with soil temperature and carbon input at 200 (solid
black), 600 (long shaded) and 1000 (short-dashed) g C m? year for beth-modelsModel A; and (d)
variation of equilibrium litter carbon with soil temperature in M#odel B.
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Figure Al. Half-time (A and B) or period (C and D) for model A (panels A and C) or B (panels B and D).
The unit is year for both half-time and period. Note the difference scales used for Model A from
model B for both half-time and period. The purple region represents non-oscillatory region for
model A in Panel C, and a period greater than 30 years for model B in Panel D. We assumed that a=0
for all calculations.
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