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Abstract

The past environment is often reconstructed by measuring a given proxy (e.g. δ18O)
in an environmental archive, i.e. a species which gradually accumulates mass and
records the current environment during this mass formation (e.g. corals, shells, trees,
etc. . . ). When such an environmental proxy is measured, its values are known as5

a function of distance. However, to relate the data to environmental variations, the
date associated with each measurement, i.e. the time base, should be known. This
is not straightforward solved, since species usually do not grow at constant rates. In
this paper, we investigate this problem for annually resolved archives, which exhibit a
certain periodicity. Such signals are often found in clams or corals. Due to variations10

in accretion rate the data along the distance axis have a disturbed periodic profile.
A method is developed to extract information about the accretion rate, such that the
original (periodic) signal as function of time can be recovered. Simultaneously the exact
shape of the periodic signal is estimated. The final methodology is quasi-independent
of choices made by the investigator. Every step in the procedure is described in detail15

and finally, the method is exemplified on a real world example.

1 Introduction

A problem often encountered in proxy-records is the reconstruction of the time-series,
starting from measured distance series. Variations in accretion rate squeeze and
stretch the distance series. This distortion results in the lengthening and shortening20

of individual features present in the signal, a broadening of spectral peaks, as well as
the appearance of extraneous spectral peaks (see e.g. De Ridder et al., 2004). Such
a distortion may occur during the recording (natural or artificial) of a signal or during
its passage through certain kinds of filtering media. In some cases the accretion rate
itself is of more interest than the recovered signal. In other cases it may be of interest25

to remove the distortion. Often, distortions of the type we are considering are removed
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by correlating by eye. This, however, works only in the simplest cases, is not readily
quantified and is generally limited to low resolution. What makes things worse is that
two investigators, who are dating the same record with such an identical method, will
come to different conclusions, because they may have selected different tuning points.
In the early ’80s Martinson et al. (1982) proposed an inverse approach to signal cor-5

relating. They have presented a quantitative method for correlating a distance series
with a given time series. In this paper, we go one step further and will estimate not only
the accretion rate, but also the shape of the time series. To do so, we had to assume
that the “true” time series is periodic. A second difference is that an automated model
selection procedure is implemented, which chooses the model complexity using more10

objective, statistical rules. As will be shown, this allows us to extract the maximum
amount of significant information from noisy data.

For the scope of this paper, we have assumed that when a measured proxy record
is compared with a model, three types of errors occur:

1. Stochastic noise: models and data will never match perfectly. This has two rea-15

sons: (i) the measurements are disturbed by an unknown number of small effects,
like instabilities in the measurement instrument etc. . . , and (ii) the modeled sys-
tem can have a chaotic component. Fortunately, both effects can quite easily be
described by an additional stochastic component in the model expression.

sn = smodel(tn) + e (1)20

where n is the sample number, s the measured signal, smodel the model, tn the
date of observation n and e the error term, describing the difference between
measurements and model. The main characteristics of this component are that it
is zero on the average and that it can usually be described by a normal distribution
with a standard deviation, σ.25

Stochastic errors can be reduced by

(i) refining the measurement set-up, which is in general expensive;
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(ii) repeated measurements, which is time consuming. Here the model and sys-
tematic errors are deterministic and will be identical in each measurement
set, while the stochastic errors will differ from measurement set to measure-
ment set and can thus be averaged out;

(iii) a parametric model, which can introduce additional model errors. The5

stochastic errors inherent in each measured sample will average out when
the parameters are estimated. The improved precision is mainly determined
by the ration measured observation to number of parameters.

2. Model errors are non-stochastic components that are not described by the model
and which are not hidden by the stochastic noise. Identifying these is possible10

only after analyzing the stochastic properties. Systematic errors can occur due
to inaccurate measurements or by un-modeled effects in the studied system and
can thus be avoided by improving the accuracy of the measurement or by refining
the model.

3. A special type of systematic errors, which is specific for proxy records and sedi-15

ment analysis are dating errors (Martinson et al., 1982; Paillard et al., 1996; Yu
and Ding, 1998; Lisiecki and Lisiecki, 2002; Ivany and Wilkinson, 2003). In the
scope of this paper, these are catalogued as a separated third class. In this paper
a strategy to remove this type of errors systematically is proposed, by refining the
model.20

The methodology proposed is based on the next remarks: in the measurement
set the values of the observations are given, but the corresponding dates are
missing. On the other hand, we often have a model, containing time. However,
notice that each model consists of some model parameters, which can only be
tuned by matching the model on the measurement set. So, in this context neither25

the experimentalist, nor the modeler has enough information to work isolated.
Here, both are combined. The focus is on annually resolved archives, which often
have a clear periodic component, so the discussion can be limited to periodic
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signal models. Still, in general even climate models (Martinson et al., 1982) or
other signal models1 can be used. First the signal and time base models are
explained and next solutions are given for two particular problems, i.e.

(i) gathering initial values for the parameters; and

(ii) due to the parametric representation of the time base, neighboring observa-5

tions can be altered, which would mean that the time is locally inverted. This
artifact is circumvented.

The approach is finally illustrated on two proxy records measured in clams.

2 The signal and time base model

In this and the next paragraph the formal set-up of the methodology (i.e. the equations10

used) are briefly explained. The signal under investigation is assumed to be periodic,
sampled along an equidistant distance grid. Formally, this translates to the assumption
that the discrete-time signal, smodel(tn), is given by

smodel(tn) = A0 +
h∑

k=1

Ak cos(kωtn)+Ak+h sin(kωtn) (2)

where tn is the unknown time variable at sample position, n ∈ {1, . . . , N}, A0 the off-15

set, Ak and Ak+h are the unknown amplitudes of the kth harmonic, ω is the unknown
fundamental angular frequency and h the number of harmonics, yet to be identified.
Changing the number of harmonics will change the complexity of the model (Fig. 1).
Although the samples are equidistantly spaced along the distance axis, the time in-
stance between two subsequent samples is not constant, because of variations in the20

1A signal model is a black box or empirical (versus physical) model describing the variation
of the proxy, e.g. a sinusoidal or polynomial model.
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accretion rate. These distortions of the time base are modeled by a function, δn, called
the time base distortion (T.B.D.)

δn =
b∑

m=1

Bmφm(n) (3)

where φ is a set of b basis functions, B is a vector of length b, yet to be identified, with
the unknown time base distortion parameters. The parameter b defines the complexity5

of the time base (vide infra). Note that it is practically impossible to estimate the time
base distortion directly, by comparing the measurements with the signal model (Eq. 2),
because

(i) the measured record is disturbed by stochastic noise, which would be propagated
into the time base distortion; and10

(ii) the signal model’s parameters and complexity are unknown (so we can only as-
sume that it is periodic, without knowing its precise shape).

The first problem is circumvented by the introduction of basis functions. We have
tested trigonometric functions, Legendre polynomials and splines as basis function
(Abramowitz and Segun, 1968; Dierckx, 1995). The latter seems to work best.15

The time instances, tn, are given by

tn = (n + δn)Ts (4)

where Ts is the average sample period.
In order to overcome the second problem, all the unknowns, the model parameters

and the time base distortion, are represented by some unknown parameters. For fixed20

values of h and b, these can be grouped in a vector

θ = [ω,AT , BT ]T (5)

The optimal set of parameters can be calculated by a numerical minimization algorithm,
which minimizes a least squares cost function. For this task a Levenberg-Marquardt
algorithm was implemented (e.g. Pintelon and Schoukens, 2001).25
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3 Starting value problem and optimization strategy

Minimizing this cost function will only be successful, if one can start from a reasonable
set of initial values. Otherwise the local optimization method will possibly not be able to
converge towards a good minimum. In order to minimize the risk of converging towards
a bad local minimum, the optimization strategy is performed in five steps (for a structure5

of the algorithm, see Fig. 2):

1. Initializing the frequency, ω: a non-parametric time base distortion and the cor-
responding frequency can be gathered for periodic signal records, following the
guidelines of (De Ridder et al., 2004);

2. Initialization of the T.B.D. parameters, B: initial values for the T.B.D. parameters10

can be gathered by matching Eq. (3) on the non-parametric T.B.D. This can easily
be done, because Eq. (3) is linear in the parameters, B. Next, Eq. (4) is used to
get more precise dates of the observations.

3. Initialization of the signal parameters, A: these are gathered by matching Eq. (2)
on the observations employing the previously estimated time base. An efficient15

algorithm is described in (Pintelon and Schoukens, 1996).

4. Relaxation: alternating, the T.B.D. parameters and the signal parameters are op-
timized, while the other set is remained fixed. Note that optimizing the T.B.D. pa-
rameters, while the signal parameters are constant is, in fact, the parametric or-
bital tuning method proposed by Martinson et al. (1982). This relaxation algorithm20

is stopped when the largest relative variation in the parameter vector, θ, is lower
than a numerical stop criterion (typically 10−3). This step in the optimization is
implemented to increase the calculation speed but it will not influence the final
results.

5. Final estimation of parameters: all parameter values are estimated together em-25

ploying a Levenberg-Marquardt.
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4 Local time reversal problem

The method seems to have a major weakness: it is sensitive to time reversal problems,
especially when the number of time base distortion parameters is relatively high (an
example is given in Fig. 3). This is not surprising, because the noise sensitivity is larger
in this case. However, we know that such time reversals are physically impossible,5

so the algorithm has to be extended: to avoid this unrealistic behavior an inequality
constraint optimization was implemented (e.g. Fletcher, 1991): in each step of the
Levenberg-Marquardt algorithm a check is performed to verify if any time reversals
have occurred: is the minimal sample period lower than 20% of the average sample
period? If so, the constraints become active and the time base distortion at these10

samples is fixed at this minimum for this step of the optimization routine. The dotted
line in Fig. 3 shows the result after the implementation of the inequality constraint
optimization.

5 Model selection criterion

If we would stop developing the algorithm at this point, the complexity of the signal15

model and time base model, quantified by h and b, respectively, are still chosen by the
user. Figure 4 shows the accretion rate and Fig. 5 the signal models, estimated from
the same measurement record, with identically the same algorithm, but with different
levels of complexity. So, two types of problems can occur:

(i) if two investigators would process the same record with the same algorithm and20

based on the same assumptions, it is still possible that they come to different
conclusions;

(ii) Maybe the true time base and/or signal models are more complex than defined by
the investigator. This would mean that not all useful information is extracted from
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the data. On the other hand is the risk also present that the chosen complexity
was too high. This would result in conclusions that are not supported by the data.

What is happening? And can we do anything about it? The fact that the model and
time base parameters can be optimized does not tell us anything about the significance
of these parameters. It is very well possible that e.g. too much time base parameters5

are used, which would all be insignificant. These redundant parameters are only used
to model the measurement noise. In this paragraph we tell how to find the optimal
values for the number of harmonics, h, and for the number of T.B.D. parameters, b. To
begin, we define the model complexity by the number of parameters, which are opti-
mized. Increasing the model complexity will decrease the systematic errors, however,10

at the same time the model variability increases2. Hence, it is not a good idea to se-
lect the model with the smallest cost function within the set because it will continue
to decrease when more parameters are added. At a certain complexity the additional
parameters no longer reduce the systematic errors but are used to follow the actual
noise realization on the data. As the noise varies from measurement to measurement,15

the additional parameters increase only the model variability. However, usually we do
not have repeated measurements and we would still like to draw conclusions from a
model. For this reason, the cost function is extended with a model complexity term that
compensates for the increasing model variability. Summarized, the model selection cri-
terion, called MDLc

3, should be able to detect undermodeling (= too simple model) as20

well as overmodeling (= too complex model). This model complexity term is dependent
upon the signal-to-noise ratio and the availability of a noise model. In the examples of

2This means that if one would redo the measurement and match the same model, with the
same model complexity again, the difference between the old and new model will be larger.

3We have followed the “minimum description length” nomenclature proposed by Rissanen
(1978), which is also called the BIC criterion (Schwartz, 1978).
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this paper the criterion to be minimized had the following expression

MDLc(θ̂, nθ, nc, N) =
K (θ̂)

N
exppc(nθ, nc, N) (6)

with penalty pc(nθ, nc, N) =
ln(N)(nθ − nc + 1)

N − (nθ − nc) − 2

with K (θ̂) the residual cost function, N the total number of observations and nθ the
number of parameters, reduced by the number of active constraints, nc. Notice that5

introducing a model selection criterion eliminated interferences from the user, which
makes the proposed method more objective and user independent.

Practically, the user chooses the maximum values for h and b, i.e. (h, b)max. Next, all
models with a model complexity from (h, b)=(0,0) till this maximum are optimized and
Eq. (8) is used to select the best model within this set (lowest MDLc value). A detailed10

description of the model selection criteria can be found in (Akaike, 1974; Rissanen,
1978; Schwartz, 1978; De Ridder et al., 2005, de Brauwere et al., 2005).

6 Application: saxidomus giganteus

As an example, the δ18O-signals measured in Saxidomus giganteus are processed.
Two specimens were sampled from the West coast of the USA in Washington state,15

named Clam 1 and Clam 2. The large winter-summer variations are reflected in these
signals (Figs. 6a and 7a) and this periodicity will be used to date the observations. The
two clams lived under identical environmental conditions, so the correlation between
the signals can be used to validate the method. In addition, the estimated accretion
rates are compared.20

To test the algorithm, the maximum model complexity was limited to
(h, b)max=(4,20), i.e. four harmonics can be used to describe the signal model and
20 parameters can be used for the time base distortion. For some model complexities,
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the constraints became active. This was mostly the case when the number of time
base distortion parameters, b, became high. The results are summarized in Table 1:
the lowest model selection criteria, MDLc, values were twice found for a signal model
consisting of only one harmonic (see Figs. 6 and 7). Both samples were collected in
2001 and the most recent observation was dated as 1 April, so that annual maxima5

in δ18O correspond to winter situations. The corresponding correlation between both
records is 84% (see Fig. 8).

The accretion rates of both clams are shown in Fig. 9. Note that

1. Maybe annual variations in the accretion rate did occur, but such a time base
distortion model was too complex according to the model selection criteria. So,10

the quality of the data is not sufficient to support annual variations in the time base
distortion;

2. The estimated accretion rates decrease slowly with age, which can be expected;

3. most variation occurs at more or less the same moments in both clams. This is
reflected in the correlation of 63% between the two accretion rate profiles. The15

mismatch between the two peaks around 1996 can be due to errors still present
in the time base, which is used to construct and date the accretion rate. An
alternative explanation can be found in the fact that the accretion rate is a non-
linear function of the time base distortion parameters. Consequently, small errors
on these parameters can have a large influence on the accretion rate than on the20

time base distortion itself.

The relatively high correlation illustrates that these variations are relevant (do not reflect
the stochastic noise) and that they are determined not only by the age of the spec-
imens, but also by external forcing. Otherwise, accretion rate would decrease much
smoother with age or in a random manner. Such precise estimations of the accretion25

rates open the possibility to use this information for climate reconstruction purposes.
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7 Conclusion

We have presented a new method to reconstruct the time base for periodic archives. It
is based on (Martinson et al., 1982) and (De Ridder et al., 2004). The novelty of this
approach is that it estimates the time base together with the signal, describing the time
series. The method is build around an identification approach and which has several5

advantages:

(i) it is combined with a statistically-based model selection criterion, to choose the
most appropriate model complexity;

(ii) which makes it is robust to overmodeling in the signal and time base model; and

(iii) which makes it robust to undermodeling;10

(iv) it is robust to stochastic measurement errors, since parametric signal and time
base models are used,

(v) it is robust to non-sinusoidal periodic signals, because overtones are modeled
too.

The combination of (i), (iv) makes it possible to separate largely the stochastic noise15

from the significant variations. The combination of (i), (ii) and (iii) allows the user to
extract the maximum amount of significant information, hidden in the record. In addition
all tuning is done by the algorithm, which makes the method user-friendly and more
objective. On the other hand, the algorithm does assume that the “true” record is
periodic, which may not be true. A violation of this assumption may bias the final result.20

Note that the strategy proposed here is not limited to this specific periodic signal model,
although gathering initial values for arbitrary models can become a hard task.

The method has been exemplified on two records of δ18O, measured in clams. Both
clams lived in the same environment, so the time series of δ18O could be used to check
the robustness of the method. After optimization, the correlation between both records25
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was 84%. Furthermore, the correlation between the independently estimated accretion
rates was 63%. This could indicate that also the accretion rate is changing with varying
environmental conditions in a deterministic manner.

A matlab version of the algorithm is available on request.
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Table 1. Summary of the selected models used in the Saxidomus giganteus examples.

Clam 1 Clam 2

Residual cost function (per mil)2, K (θ̂) 3.48 4.64
Automated model selection criterion (per mil)2, MDLc 0.045 0.048
Number of observations, N 133 123
Selected number of harmonics, h 1 1
Selected number of T.B.D. parameters, b 9 10
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Fig. 1. Several signals are shown in the time and frequency domain. All signals are periodic,
which is best seen in the frequency domain: the only non-zero amplitudes are found at integer
frequencies. Notice further that with only one harmonic, h=1, the time signal is sinusoidal,
while more complex periodic signals can be described using multiple harmonics.
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Fig. 2. Structure of the algorithm.
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Fig. 3. Around 35 mm from the Umbo, the estimated time is constant (full line), which would
correspond to an infinite accretion rate. In order to avoid this type of un-physical solutions, an
inequality constraint optimization is implemented: if negative accretion rates occur, the time
base is forced to remain slightly positive (dotted line).
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Fig. 4. The accretion rates are shown for different sets of model complexity (all matched on
clam 1 (vide infra)): in black (h=1, b=5), in blue (h=2, b=10), in red (h=3, b=15) and in green
(h=4, b=20). The variations increase with increasing complexity, but so far, we are not able to
tell which of these accretion rates describes best reality. Note that the accretion rate of about
70 mm/year for the two most complex models is fixed at these levels due to the constraints,
which have become active.
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Fig. 5. One period of the periodic signals is shown (matched on clam 1 (vide infra)): in black
(h=1, b=5), in blue (h=2, b=10), in red (h=3, b=15) and in green (h=4, b=20). Note that the
amplitude of the black signal is different from that of the green signal. Further, the minima of the
signals correspond quite well (June), but the maxima changes with about one month. Which of
these models is closed to reality?
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Fig. 6. Clam 1: (a) raw data and (b) signal on the constructed time base (full line) and the
signal model (dotted line).
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Fig. 7. Clam 2: (a) raw data and (b) signal on the constructed time base (full line) and the
signal model (dotted line).
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Fig. 8. δ18O-records from the two clams after time base correction.
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Fig. 9. Estimated accretion rate in both clams.
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