
BGD
4, 13–67, 2007

Modelling carbon
overconsumption
and extracellular
POC formation

M. Schartau et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Biogeosciences Discuss., 4, 13–67, 2007
www.biogeosciences-discuss.net/4/13/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Biogeosciences
Discussions

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Modelling carbon overconsumption and
the formation of extracellular particulate
organic carbon

M. Schartau1, A. Engel2, J. Schröter2, S. Thoms2, C. Völker2, and
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Abstract

During phytoplankton growth a fraction of dissolved inorganic carbon (DIC) assimilated
by phytoplankton is exuded in the form of dissolved organic carbon (DOC), which can
be transformed into extracellular particulate organic carbon (POC). A major fraction of
extracellular POC is associated with carbon of transparent exopolymer particles (TEP;5

carbon content = TEPC) that form from dissolved polysaccharides (PCHO). The exu-
dation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable
from utilisation of dissolved inorganic nitrogen (DIN), called carbon overconsumption.
Given these conditions, the concept of assuming a constant stoichiometric carbon-to-
nitrogen (C:N) ratio for estimating new production of POC from DIN uptake becomes10

inappropriate. Here, a model of carbon overconsumption is analysed, combining phyto-
plankton growth with TEPC formation. The model describes two modes of carbon over-
consumption. The first mode is associated with DOC exudation during phytoplankton
biomass accumulation. The second mode is decoupled from algal growth, but leads to
a continuous rise in POC while particulate organic nitrogen (PON) remains constant.15

While including PCHO coagulation, the model goes beyond a purely physiological ex-
planation of building up carbon rich particulate organic matter (POM). The model is
validated against observations from a mesocosm study. Maximum likelihood estimates
of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are
determined. The optimisation yields results with higher rates for carbon exudation than20

for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded
DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained
for coagulation kernels for PCHO transformation into TEPC. Model state estimates are
consistent with observations, where 30% of the POC increase was attributed to TEPC
formation. The proposed model is of low complexity and is applicable for large-scale25

biogeochemical simulations.
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1 Introduction

Marine biogeochemical modelling predominantly aims at quantifying carbon, nitrogen
and phosphorus fluxes within the ocean. For that, understanding the biological transfor-
mation of dissolved nutrients into particulate organic matter (POM) is critical to devis-
ing biogeochemical- or ecosystem models. Yet, typical nitrogen or phosphorus based5

ecosystem models have difficulties in matching equally well in-situ primary production
rates and standing stock observations, such as chlorophyll a (Chla) concentrations,
(Fasham et al., 1993; Fasham and Evans, 1995; Schartau and Oschlies, 2003b). This
becomes evident shortly after phytoplankton growth has run into nutrient depletion.
To some extent these model deficiencies are seen when simulating the magnitude10

and time-depth distribution of particulate organic carbon (POC) formation. The forma-
tion of POC is often modelled proportional to the build-up of phytoplankton nitrogen
or phosphorus biomass; fixed stoichiometric carbon-to-nitrogen (C:N) or carbon-to-
phosphorus (C:P) ratios (Redfield et al., 1963; Takahashi et al., 1985) are prescribed
as a proportionality factor. As a consequence, the modelled transformation of dissolved15

inorganic carbon (DIC) into biomass remains highly correlated with the utilisation of dis-
solved inorganic nitrogen (DIN) and phosphate by phytoplankton.

Today, marine biologists question a strict correlation between nitrogen utilisation and
carbon uptake (e.g. Falkowski, 2000; Sorensen and Siegel, 2001; Geider and LaRoche,
2002), and biogeochemical models with constant C:N and C:P stoichiometric ratios are20

therefore expected to have significant limitations. When a constant molar C:N ratio of
106:16 is applied to derive the uptake of DIC from the utilisation of DIN by phyto-
plankton, differences between derived and observed uptake rates can be obtained that
cannot be explained by physical or chemical dynamics alone (Sambrotto et al., 1993;
Broström, 1998; Körtzinger et al., 2001).25

The uptake of more DIC than expected from nitrate or phosphate removal was
termed carbon overconsumption by Toggweiler (1993). For example, when either ni-
trate or phosphate becomes depleted, photosynthesis can still proceed and carbon

15
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uptake need not automatically cease (e.g. Banse, 1994). In general, an excess DIC
uptake by phytoplankton is assumed to be exclusively channelled through the pool
of labile dissolved organic carbon (DOC) (e.g. Anderson and Williams, 1999; Kaehler
and Koeve, 2001) that is eventually turned over by heterotrophic bacteria. Such a la-
bile fraction of DOC is unlikely to be significant for long-term carbon removal from the5

upper ocean (Carlson et al., 1998). This would entail a negligible impact of carbon
overconsumption on the biological carbon pump. An alternative pathway is the release
of dissolved organic matter (DOM) by phytoplankton followed by the formation of par-
ticulate organic matter (POM) and, at best, the export of carbon to the deeper ocean.
Such a linkage between DOM and POM (linking the release of polysaccharides to the10

formation of larger colloidal particles, which are measured as transparent exopolymer
particles, TEP) has been shown by Mopper et al. (1995), Zhou et al. (1998) and Engel
and Passow (2001). Since TEP is relevant for the dynamics of phytoplankton aggre-
gation, it was presumed to be involved in the removal of DOM and the export of POM.
In the studies of Mopper et al. (1995) and Zhou et al. (1998) a transformation of DOM15

precursors to TEP was investigated qualitatively. Hereupon, different underlying mech-
anisms have been discussed for this transformation (Passow, 2002).

Two mechanisms have been proposed for TEP formation, spontaneous assembly
(Chin et al., 1998) and particle coagulation (e.g. Logan et al., 1995) respectively. A TEP
size spectrum analysis eventually provided evidence that TEP formation from DOM can20

be well described with coagulation dynamics (Mari and Burd, 1998). Subsequent stud-
ies have picked up these preceding ideas but focused on the actual carbon content of
TEP (TEPC) and its biogeochemical conjunction with DIC uptake, gross primary pro-
duction and DOC exudation (Mari et al., 2001; Engel et al., 2002). In a recent study,
the cascade from the exudation of acidic polysaccharides (PCHO) to TEPC formation25

has been quantitatively assessed and the TEPC increase was successfully described
with a simple parameterisation of the PCHO-TEP dynamics (Engel et al., 2004). En-
gel et al. (2004) parameterised the complex process of polysaccharide aggregation
in terms of a two size-class model, which describes the interaction between PCHO

16
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and TEPC. This simplified approach was derived from a full size-class resolved model
(Smoluchowski equations) by assuming that the coagulation dynamics, under typical
PCHO background concentrations, is close to steady state. Our understanding of the
non-linear decoupling between PON and POC formation has improved during the last
decade: We learned that the decoupling does not solely result from stoichiometric5

variations within phytoplankton cells or from differential remineralisation, but can also
result from extracellular PCHO coagulation. We believe that it is deemed necessary to
account for such a process in biogeochemical- and ecosystem models used for carbon
flux studies, in particular since it indirectly affects the aggregation and sinking of phy-
toplankton (Jackson, 2001), and thus mediates organic carbon export in the oceans.10

With this study we propose a model that resolves the cascade from decoupled car-
bon and nitrogen assimilation by phytoplankton to the formation of extracellular POC.
We provide maximum likelihood based estimates of uncertain and unknown model pa-
rameter values. The overall model is kept simple enough to become potentially suited
for large-scale biogeochemical simulations. Here, we validate the model’s ability to15

combine processes that are often regarded separately: 1) phytoplankton acclimation
to nitrogen stress, 2) carbon overconsumption, and 3) exudation and coagulation of
DOC. The model is calibrated with data from a mesocosm experiment, as presented
in Engel et al. (2002). A bootstrapping approach is applied for parameter optimisation,
in order to approximate errors for optimal parameter estimates. Special focus of our20

modelling approach is on simulating the increase of TEPC, and their formation from the
precursors PCHO. With our analysis we approximate the PCHO fraction of total DOC
exudates and obtain maximum likelihood estimates of carbon specific coagulation ker-
nels relevant for TEPC formation.

17
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2 Method

2.1 Model description

The model setup was chosen to reproduce conditions of a mesocosm experiment,
as described in Engel et al. (2002). The mesocosm experiment was performed in
a tank of 0.9 m height that was continuously stirred over a period of 20 days. The5

mean temperature was 12.5◦C. A halogen light source provided a surface irradiance of
26 W m−2 (approx. 115µmol photons m−2 s−1) with a light:dark cycle of 14:10 hours.
1226 liters of water were collected in the Santa Barbara channel at 6 meters depth,
and sand filtered before being filled into the tank. The initial concentration of DIN was
35.5 mmol N m−3. Observations are available at 17 sampling dates, covering a period10

of 20 days.
Phytoplankton growth – For this study we chose to adopt the growth parameteri-

sations of Geider et al. (1998), which is often used as a basis for marine ecosystem
models (e.g. Moore et al., 2001; Lima and Doney, 2004). We only changed the step
function for the maximum nitrate uptake rate (Eq. B7 in the Appendix). The function15

suggested by Geider et al. (1998) is non-mechanistic and was formulated solely to
simulate a rapid decline in nitrate uptake when a maximum cellular nitrogen-to-carbon
(qmax) ratio is reached. Our formulation is also non-mechanistic, but avoids the strongly
non-linear discontinuity in the vicinity of qmax, yet showing the same step characteris-
tics. All other equations for phytoplankton growth remain identical to those proposed20

in Geider et al. (1998). Primary production is regulated by light availability (I), temper-
ature (T ), dissolved nutrient concentrations, and a variable cellular nitrogen-to-carbon
ratio (q). The exact initial phytoplankton biomass was unknown (below detection limit;
<0.1 (mmol N) m−3) but variations of small initial phytoplankton concentrations may
result in biased parameter estimates. Therefore, the initial nitrogen biomass of the25

phytoplankton was optimised in conjunction with the other model parameters. The es-
timated initial nitrogen biomass is converted to carbon units assuming a molar Redfield
ratio of C:N = 106:16. Accordingly, the chlorophyll a concentration (Chla ) is derived by

18
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applying a factor of 1.56 mg Chla (mmol N)−1. We extended the phytoplankton growth
model to a small ecosystem model that resolves nutrients, heterotrophic activity, the
formation of detritus, leakage and exudation of DOM.

DOM and TEPC – In this study we focus on DOM exudation and extracellular POC
formation. Apart from the variable C:N stoichiometry during phytoplankton growth,5

we also account for carbon and nitrogen decoupling as a result of TEPC formation.
To accomplish this, the DOM pool represented in the model only consists of freshly
exuded, labile compounds. Refractory DOM remains unresolved. The labile DOM
pool is split up into PCHO, residual dissolved carbon (resDOC), and organic nitrogen
compounds (DON). TEPC is regarded as a separate state variable. Residual DOC and10

DON are unspecified fractions of DOM. Carbon overconsumption by phytoplankton is
not only expressed by changes in cell quota but also in the nitrogen-to-carbon (N:C)
ratio of DOM. The complex process of polysaccharide aggregation is parameterised in
terms of a two size-class model, which describes the interaction between PCHO and
TEPC (Engel et al., 2004). This two-size class model relates the exudation of PCHO15

to the formation of TEPC and hence provides the key to understanding the decoupling
of PON and POC formation, in particular if it is assumed that TEPC becomes largely
detected as POC (Engel et al., 2002). In practice, cell lysis, exudation, and leakage of
organic matter cannot be constrained separately. For this reason we solely distinguish
between a carbon and a nitrogen loss rate. This separation becomes relevant because20

active exudation of cellular carbon happens at times when organic nitrogen is only
passively lost by phytoplankton in smaller quantities.

Dissolved inorganic carbon (DIC), DIN, and total alkalinity (TA) – Assuming thermo-
dynamical equilibrium, the carbonate chemistry is constrained by two state variables,
namely TA and DIC. TA in the model varies with the DIN and phosphorus acquisition25

by phytoplankton and with remineralisation. In the model the unresolved phosphorus
contribution to TA is assumed to be linearly linked to the nitrogen fluxes through the
application of a constant nitrogen-to-phosphorus (N:P) ratio of 16. The flux of carbon
dioxide (CO2) between the mesocosm and the air is calculated from temperature, DIC,

19
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and TA with a routine from the Ocean Carbon-Cycle Model Intercomparision Project
(OCMIP; Orr, 1999), using a parameterisation for gas transfer velocity (Wanninkhof
and Knox, 1996) that takes into account the enhancement of gas exchange by hydra-
tion reactions of CO2 under very low wind conditions. A constant atmospheric pCO2 of
370µatm is prescribed for the entire period of model integration. Measured values of5

DIN, TA, and DIC at the beginning of the experiment were taken as initial conditions.
Detritus – Apart from leakage and exudation, additional phytoplankton nitrogen and

carbon losses are associated with cell lysis due to bacterial activity and grazing by
zooplankton. Fragments of cellular material, as a result of cell death, are described as
a detrital compartment in the model. Also, the biomass of phytoplankton aggregates10

enters the detrital pool, assuming that no significant primary production occurs within
particle aggregates. This assumption has limitations but a detailed description of active
cells among dead cellular material in particle aggregates is beyond the scope of this
study. Similar to the aggregation parameterisation of PCHO and TEPC, we used an ap-
proach for phytoplankton aggregation that has been tested by Ruiz et al. (2002) against15

a multi-size-class model, which in turn was calibrated with coulter counter observa-
tions. In Ruiz et al. (2002) it was shown that a zero order model, with two size class
formulation, already captures the predominant particle dynamics, when compared with
observations. We will use their parameterisation together with their parameter values.
In the model, particulate matter of detritus is linearly degraded until it becomes dis-20

solved, turning into resDOC. The pools of resDOC and DON are mineralised to DIC
and DIN respectively.

Heterotrophs – In the mesocosm experiment, the heterotrophic activity remained
small. This was inferred from oxygen measurements that were used to determine
gross- and net community production. A heterotrophic compartment is included as25

a closure for modelling the nitrogen and carbon fluxes of the mesocosm experiment.
The degree of freedom that is added to the model, by implementing the heterotrophic
compartment, is not critical since it can be constrained by the measured net- and gross
community production rates. An explicit representation of bacteria, protists, and meso-

20
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zooplankton for this modelling study, however, is considered as redundant unless their
respective impact on PCHO exudation and TEPC formation can be well characterised.

The model is run for 22 days. Overall, fourteen state variables simulate the dominant
nitrogen and carbon fluxes within the mesocosm, Fig. 1. An Euler forward scheme was
chosen for numerical integration. A timestep of 5 min turned out to be appropriate.5

Any further decrease in timestep did not yield different model results. A stochastic
parameter optimisation then becomes applicable within reasonable computational time.
The full model equations are listed in the Appendix.

2.2 Data assimilation and maximum likelihood estimation of parameter values

2.2.1 Definition of cost function10

The form of our cost function used for optimisation can be derived from a Bayesian
approach to data analysis. In the context of parameter estimation Bayes theorem reads

prob
(
p|d,H, I

)
= prob

(
d|p,H, I

)
·
prob

(
p|H, I

)
prob

(
d|H, I

)
(1)

where p is the array of unknown model parameters to be estimated from data, d, under15

the hypothesis H (= model equations) and background information I . We apply a flat
prior, i.e. prob

(
p|H, I

)
is a constant over the allowed range of parameter values. In

the context of parameter estimation the denominator prob
(
d|H, I

)
is used as a normal-

isation factor, i.e. it is a constant. Thus the probability distribution for the parameters,
prob

(
p|d,H, I

)
, is proportional to the so-called likelihood20

L(d|p,H, I) = prob
(
d|p,H, I

)
. (2)

Because of this proportionality, an increase of the probability prob(p|d,H, I) becomes
tantamount to maximising the likelihood L(d|p,H, I).

21
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All data are assumed to be independent, therefore the likelihood function is given by
the product of M ·N (M types of observations, N sampling dates) probabilities:

L(d|p, H, I) =
M∏
i=1

N∏
j=1

1

εi

√
2π

exp

−(mi j − di j
)2

2ε2
i

 (3)

A Gaussian distribution is assumed for model variables (mi j ) being able to match ob-

servations (di j ) with variance ε2
i . Maximising the likelihood is equivalent to minimising5

the negative logarithm of the likelihood

− ln(L) =
M∑
i=1

−N · ln
(

1

εi

√
2π

)
+

N∑
j=1

1

2ε2
i

(
mi j − di j

)2
= constant +

M∑
i=1

N∑
j=1

1

2ε2
i

(
mi j − di j

)2
︸ ︷︷ ︸

= J (cost function)

(4)

or minimising the cost function J which simply consists of the sum over the weighted
least square data-model deviations.10

There are M=8 different types of observations available: 1. dissolved inorganic nitro-
gen (DIN), 2. dissolved inorganic carbon (DIC), 3. chlorophyll a (Chla ), 4. particu-
late organic nitrogen (PON), 5. particulate organic carbon (POC), 6. carbon content
of transparent exopolymer particles (TEPC), 7. gross primary production (GPP), 8. net
community production (NCP). The duration of the experiment was T=20 days and sam-15

ples were taken on 17 days (N=17). Finally, we introduce information with respect to
the accuracy of sampling times. The misfit between model results and data are usually
calculated at discrete points in time. In cases where time lags are present in sampling,
the parameter optimisation is then affected, and additional bias is introduced to the
parameter estimates. In order to take into account uncertainties in sampling time, we20

22
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bring in time dependent variance information. The error variance is assumed to be in-
finite at times far away from sampling, which means that the data information remains
infinitely small. But, as time approaches the specified moment of sampling, the data
information of the measurement becomes significant. A Gaussian error distribution is
assumed around the prescribed point in time of the j ’th measurement on date (τj ). A5

sampling uncertainty of one hour is defined as variance (σt=1 h). The time dependency
of the observational error can be described as:

εi j (t)
2 =

σ2
i

E (t, τj )
(5)

with

E (t, τj ) =
1√

2πσ2
t

exp

−(t − τj
)2

2σ2
t

 (6)10

The final cost function, which becomes subject to minimisation, is:

J =
M∑
i=1

N∑
j=1

∫ T
t=0

E (t, τj )

2σ2
i

(
mi (t) − oi j

)2 dt (7)

In the limit σt → 0 the Gaussian Eq. (6) becomes the δ distribution δj (t− τj ). Inserting

the δ distribution into Eq. (7) and integration over t leads us back to Eq. (4), with ε2
i =σ

2
i .

Table A1 summerizes the assumed error variances (σ2
i ) that enter our calculations.15

Under ideal conditions, a perfect model fit to observations would yield a minimum of
the cost function close to the value of expectation of N · M – dim(p) = 122 (number
of independent measurements minus the number of adjustable model parameters).
Nevertheless, this value can only be achieved, if the exact moment of sampling was
known (σt=0), if observations were truly independent, if the assumed error variances20

were true, and if model equations would describe the ecosystem dynamics precisely.
23
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2.2.2 Estimation of parameter values and errors

The model includes 31 parameters. We can assign fixed values to 17 parameters
that are either well constrained or were approximated from other observational studies
(e.g. parameters such as minimum and maximum cell quota), Table 1. Among the
remaining 14 parameters are those that have not been measured directly, such as the5

initial phytoplankton biomass concentration, Table 2. These initial concentrations are
not a priori prescribed for phytoplankton and heterotrophs, in order to further reduce
the bias in our parameter estimates.

Errors of the parameter estimates are determined from 9 additional optimisations
with resampled data sets, which substitute the original observations. The measured10

data are regarded as one realisation, which gives us a total of 10 realisations for the
overall analysis. Thus, with this bootstrapping approach we artificially extend our data
set to a greater number of realisations based on the presumed information about mea-
surement errors. Gaussian noise was generated and added to the original observa-
tional values. The Gaussian noise has a variance (σ2

i ) identical to the one prescribed15

for every observation in the cost function. Hence, resampled data remain fully con-
sistent with original observations. For the calculation of parameter uncertainties the
approach of Schartau and Oschlies (2003a) is adopted. Here we will not only calculate
error variances from all optimisation results ( ˆσSD), but also give explicit information on
the bias. The bias (σ̂B) is given by the deviation of the best parameter estimate (p̂0,20

according to the lowest cost function of all realisations) from the mean value (p). Our
error estimates include uncertainties of the optimisation algorithm, resulting from dif-
ferences in convergence when approaching the minimum of the cost function. These
uncertainties are inversely proportional to the cost function’s sensitivity to parameter
variation. An explicit representation of the bias tells us whether our parameter es-25

timates (mean values and standard deviations) conform to our prior assumptions of
the data-model error distribution and prescribed observational variances. As a conse-
quence, a poor parameter estimate can be identified when the bias is equal, or larger
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than, the determined standard deviation.

2.2.3 Optimisation algorithm

A micro-genetic algorithm (µGA; Krishnakumar, 1989) is used for optimisation. The
algorithm was originally programmed and applied by Carroll (1996). In data assimila-
tion studies in the field of marine science this algorithm has been extensively tested5

(Athias et al., 2000; Schartau, 2001). Stochastic or quasi-stochastic algorithms are
recommended for cases where the cost function may contain a variety of local minima
or has regions with plane-geometry with a very low sensitivity to parameter changes.
Although highest accuracy can be achieved with gradient optimisation techniques (e.g.
Vallino, 2000), they may require a series of individual optimisations in order to find the10

global minimum solution (Schartau et al., 2001). For this reason, a quasi-stochastic
algorithm, such as the µGA, is better suited for our purpose despite the computational
advantage of the gradient technique. The µGA applied here assigns a single set of pa-
rameters to an individual. This individual is coded as a binary string, similar to genes of
a chromosome. A prescribed number of individuals is considered as one generation.15

Within a generation, the algorithm selects individuals, which become eligible for recom-
bination. Generally the best individuals (e.g. the parameter sets with the lowest cost
function values) are selected. After selection, the recombination process (crossover
of genes) generates a new generation of individuals (children) of which each one con-
tains information of two selected individuals (parents). In addition, elitism principles are20

expressed by retaining the best individual, passing him from one to the next offspring
generation. This elitism operation ensures that the best parameter does not get lost
after recombination. If one generation shows less than 5% difference among all indi-
viduals, then a new random population is generated within the prescribed bounds of
parameter values. The best individual is saved. This procedure guaranties a conver-25

gence characteristic where the full parameter space is repeatedly explored while the
algorithm converges towards the lowest point of the cost function. The configuration of
the µGA is presented in Table A2 in the Appendix.
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3 Results

3.1 Optimal parameter and state estimates

The proposed model is validated against observational data from a mesocosm exper-
iment. For this reason, optimal model parameter values are determined, which min-
imise the misfit between model result and data. The misfit is defined as a cost function,5

Eq. (7). Together with resampled data, which are treated as additional realisations,
we performed a total of 10 optimisations. All optimisations converge well to a destinct
minimum of the cost function. In all cases, the minimum of the cost function is iden-
tified after 35 000 iterations. No significant improvements are achieved up to 56 000
iterations (14 individuals x 4000 generations), which is the prescribed total number of10

iterations. Initial cost function values range between 10 000<J<40 000, and the opti-
misations reduce costs by two orders of magnitude, with solutions that range between
J=257 and J=468. Figure 2 shows the probability distribution (PD) of the outcome of
all ten optimisations. According to the PD, the value of expectation for our optimisation
problem is approximately J≈280. This means that any repetition of the optimisation of15

the same model, but with another resampled data set, must be expected to yield cost
function optima close to this value. From the PD we learn that the optimisation prob-
lem is well-posed; parameter values and their approximated errors are reproducible
estimates. Table 3 shows all parameter estimates together with their errors, and the
relative improvements with respect to their initial variational ranges.20

Model results exhibit significant variability on an hourly time scale. Such variability
remains unresolved in data since all measurements were taken once a day, at times
when phytoplankton was exposed to light, Fig. 3. Differences between the ten optimal
model state estimates are small, as indicated by the gray shaded envelope of all fitted
solutions in Fig. 3. Similar model trajectories (state estimates) are obtained, although25

they represent fits to different resampled data. This indicates that the optimisation
procedure is robust and that the model setup was chosen appropriately. The proposed
parameterisations suffice to simulate the predominant dynamics involved in decoupling
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the mesocosm’s carbon and nitrogen fluxes.
Figures 3a and 3b show the observed and modelled drawdown in DIN and DIC.

The modelled uptake of DIC is sensitive to variations of the specific rate parameter
for maximum photosynthesis (µC). Our estimate of µC=2.4±0.6 d−1 falls within the
typical observational range and thereby hardly differs from those values that are gen-5

erally observed under different laboratory- or mesocosm conditions (e.g. Geider et al.,
1998). In contrast to purely nitrogen-based models, photosynthesis continues at times
when phytoplankton growth is DIN limited. Thus, DIC concentrations further decrease
although algal growth has ceased.

The modelled DIN uptake is somewhat slower than the increase in Chla concentra-10

tion, when comparing Figs. 3a and 3c. Better model fits for the observed DIN drawdown
cause a greater data-model mismatch in Chla concentration. This mismatch is asso-
ciated with the purely nitrogen-based parameterisation of Chla synthesis in the model,
described in the discussion section. In spite of the systematic offset, the optimisation
procedure finds a compromise solution between DIN uptake and Chla synthesis. The15

dates of DIN depletion and maximum Chla concentration between days 15 and 16 are
resolved well by the model. The maximum Chla concentration is reached shortly after
DIN becomes depleted, Fig. 3c.

During the decrease in Chla concentration, the model maintains a constant concen-
tration of PON, Fig. 3d, which is primarily caused by the transformation of algal biomass20

into detrital material and a simultaneous rapid degradation of Chla. In our model the
aggregation of cells is regarded as a transformation of phytoplankton biomass into de-
tritus. This transformation is adequately approximated by the quadratic term given in
Eq. (B12). According to our optimisation, the more elaborate parameterisation of Ruiz
et al. (2002) is found to be insignificant for explaining the data. This is stressed by25

estimates of the dimensionless factor that is multiplied with the aggregation parame-
terisation (ΦP D=0.03±0.05). The parameter ΦP D describes the deviation from our a
priori assumption on aggregation. The equation of Ruiz et al. (2002), describing the
coagulation of large detrital particles (marine snow) with phytoplankton cells, does not

27
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support model solutions that are in agreement with our entire data set. Optimal model
solutions suggest that all detrital material during the experiment must have remained
small in size. It can be explained by the gentle but constant stirring within the tank
that seems to have significantly hindered the formation of larger marine snow despite
the tremendous accumulation of biomass. We learned estimates for phytoplankton ag-5

gregation strongly depend on the experimental setup of the mesocosm study. Indeed,
measurements of size spectra are expected to provide the only reasonable constraint
for validating parameterisations of phytoplankton aggregation.

Photo-autotrophic conditions prevail and heterotrophic activity in the optimised model
solutions is small. In contrast to the transformation of algal biomass into detrital mate-10

rial, the phytoplankton loss to herbivores, and thus to the heterotrophic pool, has only
a minor impact on the Chla drawdown in the model. We obtain a small rate constant
for the nitrogen specific loss rate, e.g. a maximum rate of gm=0.18±0.1 d−1. From pre-
liminary studies we found that a model closure, containing a separate compartment
for heterotrophs, is needed to improve fits to gross primary production and net com-15

munity production. Both rate measurements are crucial constraints for determining
the degree of heterotrophic activity during the mesocosm experiment. However, at the
end of the simulation period (day 19 through 22), model results show the tendency
to overestimate heterotrophic conditions, which cause elevated DIC and lowered POC
concentrations, Figs. 3b and 4a. This tendency results from the respiration term of20

the heterotrophic compartment in Eq. (B11). The relaxation towards a constant C:N
ratio of 6.625 strongly enhances heterotrophic respiration at times when carbon-rich
phytoplankton is consumed.

A key element of the model is the linkage between carbon assimilation by phytoplank-
ton, loss of organic matter that replenishes the labile DOM pool, and the subsequent25

formation of TEPC from DOC. Besides reasonable estimates for algal growth, we also
find highly resolved rate constants for describing phytoplankton exudation of nitrogen
and carbon (γN=0.15±0.08 d−1 and γC=0.29±0.17 d−1). Standard deviation and bias
remain small for both parameters. The carbon exudation rate is significantly larger than
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nitrogen leakage. This stresses the importance of assigning distinct rates for nitrogen
and carbon losses by phytoplankton. The amount of organic carbon released by phy-
toplankton largely depends on two factors: the photosynthetic rate and on the existing
phytoplankton biomass respectively. In our study both factors are well constrained by
DIC and Chla data, together with PON observations.5

With our data-assimilative approach we are able to indirectly determine the amount
of PCHO exudation as a fraction of the overall DOC loss by phytoplankton. The op-
timisation yields results where the PCHO fraction of total exuded organic carbon is
close to 63% (fP CHO=0.63±0.20). This is a substantial fraction, suggesting that the
vast majority of exuded carbon can become subject to coagulation and can thus be10

transformed into extracellular POC. Modelled POM concentrations reveal only small
variations among the ten model runs, as indicated by the shaded area in Figs. 3d and
4a. The decoupling between PON and POC formation becomes expressed during DIN
depletion around day 16, coinciding with the initial decrease in Chla. Uncertainties
in modelled PON and POC remain less than 10% during nitrogen-limited conditions.15

Significantly lower POC concentrations are obtained if TEPC was omitted, and if a
constant C:N conversion factor of 6.625 was multiplied with the modelled PON. As a
consequence, the high POC concentration can only be explained by the carbon content
of TEP, Fig. 4b, in combination with detrital carbon and phytoplankton biomass.

In Engel et al. (2004) the parameters describing the interaction between PCHO and20

TEP were determined on the basis of an individual data set obtained during a meso-
cosm bloom experiment with the coccolithophore Emiliania huxleyi. In this study we
adopt their a priori parameter estimates. However, in order to test the use of these
parameter estimates for a more general situation, we define two dimensionless factors
(ΦPCHO and ΦTEPC) that describe deviations of our parameter optimisation from the25

prior assumption. In this way, we directly relate our new optimal guesses to the pa-
rameter values determined in Engel et al. (2004). Because of the absence of explicit
PCHO data for this mesocosm experiment, we find the a priori product of attachment
probability and collision kernel for PCHO-TEPC coagulation better constrained than the
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PCHO-PCHO interaction (σ̂ΦPCHO
>σ̂ΦTEPC

). The parameter uncertainty in PCHO-PCHO
coagulation thus directly translates into uncertainties in PCHO state estimates, Fig. 4c.
Despite of the described uncertainty, the mean value for PCHO-PCHO coagulation is
in agreement with the values proposed in Engel et al. (2004).

A significant deviation from the a priori estimate is identified for TEPC-PCHO coag-5

ulation. The model produces its best fit to the TEPC data when coagulation rates are
half of those assumed a priori (ΦTEPC=0.55±0.24). Note that this estimate refers to
a product of two parameters. We cannot specify how the 55% deviation is distributed
between attachment probability and collision kernel. Although our optimal values for
TEPC-PCHO coagulation are 55% smaller than presumed, the modelled transition of10

PCHO to TEPC still depends primarily on the TEP concentration that has already been
formed. This model result agrees with observations, showing no significant TEPC for-
mation before day 10 of the experiment. Once a sufficient amount of TEP has formed,
larger particles capture smaller particles more rapidly, which eventually initiates the
distinct increase in TEPC concentration. It is at this transitional phase of accelerated15

TEP formation where we also find the largest uncertainties in modelled PCHO concen-
tration, Fig. 4c.

The POC:PON ratio does not reveal any luxury consumption of nitrogen during the
growth phase under DIN replete conditions, Fig. 4d. Observational and model errors
in POC:PON ratio at the beginning of the experiment follow from the division of small20

biomass concentrations. We find diel variations in POC:PON ratio, as a consequence
of variable light-dark conditions, because the C:N assimilation ratio increases while the
phytoplankton is exposed to light. DIN is continuously taken up in the model, including
the dark time periods. Around day 16, the POC:PON ratio rapidly increases from values
around 7 to a maximum of 12 at day 22.25

A fraction (37%) of the total DOC exudation replenishes the residual DOC pool (res-
DOC) in the model. All dissolved organic carbon that is not specified as PCHO is as-
signed to this compartment. Interestingly, our model results show how concentrations
in resDOC can vary between 19 to 85 mmol C m−3 without altering TEPC concentra-
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tion. It suggests that a portion of total DOC can, in principle, fuel microbial activity while
TEPC formation happens simultaneously. Two major sinks for DOC removal can exist
in parallel. Variations in resDOC and DON in Fig. 5 result from uncertainties in linear
remineralisation rates (ρN=0.21±0.12 and ρC=0.20±0.18). Moreover, our estimation
of the carbon remineralisation rate for resDOC is hardly improved with our optimisation,5

if compared with the initial range of variation, Table 3. Similar to the remineralisation
rates for DOM, the estimates for degradation and remineralisation of detritus remain
uncertain (ωN=0.03±0.02 d−1 and ωC=0.02±0.02 d−1). However, our estimates show
that the rate of detritus degradation must have been one order of magnitude smaller
than the direct mineralisation of DOM. Thus, heterotrophic activity in the model is sus-10

tained by DOM mineralisation. A sensitivity analysis (results not shown) reveals that
the estimates of DOM mineralisation support phytoplankton growth during the nitrate-
depleted phase and prevent a more drastic drawdown in phytoplankton biomass. Our
optimal estimate of the DON turnover is largely constrained by the standing stock mea-
surements of PON and Chla during the post-bloom period (day 15 through 19).15

Primary productivity in the mesocosm was determined from measured oxygen util-
isation rates, which allows the distinction to be made between gross- and net com-
munity production rates. In the model, total carbon assimilation by phytoplankton is
the counterpart to observed gross primary production (GPP). Whereas modelled net
community production (NCP) is set equal to the carbon assimilation minus respira-20

tion of phytoplankton and heterotrophs, and minus remineralisation of resDOC, Fig. 6.
The consideration of NCP data for parameter optimisation turned out to be essential
for constraining the dominant carbon and nitrogen closures in the model. Uncertain-
ties in modelled productivity are comparable to observational errors. The best model
trajectory of GPP matches measurements well. Observed NCP rates show large fluc-25

tuations. Model results underestimate NCP at the beginning of the experiment, but
eventually become consistent with maximum rates at days 15 and 16. In general,
the data-model comparison of productivity indicates that net phytoplankton growth and
respiration are well resolved, thereby supporting a reliable rate estimate of PCHO exu-
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dation.
According to our model results, carbon overconsumption can be split up into two

dominant modes. In the absence of luxury nitrogen consumption, all carbon assimi-
lated by phytoplankton leads to an accumulation of carbon in biomass and a concomi-
tant increase in DOC. Biomass accumulation in phytoplankton continues as long as5

growth exceeds all losses due to grazing by herbivores or particle aggregation. Dur-
ing this phase of new production, the exuded organic carbon remains linearly linked
to the nitrogen loss by phytoplankton, Fig. 7a. The linearity may already allow for
a carbon exudation that exceeds the nitrogen loss multiplied by a carbon-to-nitrogen
ratio of C:N = 6.625 (compare black with gray lines in Fig. 7a). Any excess in or-10

ganic carbon exudation above Redfield during growth can be interpreted as the first
mode of carbon overconsumption. The second mode is associated with an excessive
carbon release by phytoplankton under nutrient limited conditions, at times when no
biomass accumulates further. Figure (7b) shows organic carbon exudation relative to
DIN assimilation by phytoplankton (DOC exudation normalized to DIN uptake). The15

plot demonstrates how the increase in carbon loss during the first mode results from
phytoplankton biomass accumulation, as indicated by a constant value of carbon loss
per N-uptake. The correlation between N and C loss by phytoplankton lapses when
new production has ceased. A decline in phytoplankton biomass initiated by nutrient
limitation is associated with a maximum release of organic carbon (maximum carbon20

overconsumption). If the proceeding growth phase allows a noticeable accumulation of
PCHO (during mode one), then a significant portion of overconsumed carbon is likely
to be rapidly transformed into POC (during mode two), which is eventually exported
with fast sinking particle aggregates.

3.2 Sensitivity analysis25

The model’s sensitivity to variations of parameter values can be directly deduced from
Figs. 3-6. In addition, we performed a sensitivity analysis, where the initial DIN con-
centration has been varied between 5 and 50 mmol N m−3. Varying initial DIN concen-

32

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/13/2007/bgd-4-13-2007-print.pdf
http://www.biogeosciences-discuss.net/4/13/2007/bgd-4-13-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
4, 13–67, 2007

Modelling carbon
overconsumption
and extracellular
POC formation

M. Schartau et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

trations can be interpreted by analogy to winter DIN concentrations for different ocean
regions. DIN concentrations between 1 and 20 mmol N m−3 simulate open ocean win-
ter concentrations whereas higher values are more representative for coastal waters.
In Fig. 8 we find a persistent pattern of DOC exudation versus DON loss, where the
two modes of DOM production described above are consistently well-defined. With5

initial concentrations of DIN0=5 mmol m−3 the modelled maximum exudation rate of
DOC becomes approximately 6 mmol C m−3 d−1 whereas a rate of 30 mmol C m−3 d−1

is reached for DIN0=50 mmol m−3. Modelled DOC exudation normalised to DIN assimi-
lation by phytoplankton exhibit a ratio around 2.3 mol C (mol N)−1 under nutrient replete
conditions that is invariant with changes in initial DIN concentration (as in Fig. 7b).10

As we consider two modes for carbon overconsumption we will also find two modes
if we relate Chla to TEPC concentration. In Fig. 9, a linear relationship exists between
Chla increase and the build up of TEPC during the growth phase, at times when PCHO
exudation is linearly linked with biomass accumulation. We find a nonlinear response
in the TEPC:Chla ratio during the post-bloom period, which we could not specify. The15

concurrence of the rapid increase in TEPC concentration during a phase of massive
Chla degradation causes large uncertainties for deriving TEPC from Chla . Our sensi-
tivity study indicates that a reasonable TEPC:Chla ratio for the post-bloom period can
be derived if the amount of new production was known together with the maximum
Chla concentration.20

4 Discussion

A clear distinction must be made between primary produced biomass and POM that
is formed from extracellular DOM. This differentiation becomes particularly relevant
when biogenic changes in carbon budgets are investigated on the basis of nitrogen
or phosphorus fluxes, because of differences in stoichiometry (C:N:P ratio). So far,25

overconsumed carbon and an excessive DOC exudation was accounted for only in few
modelling studies (e.g. Anderson and Williams, 1998, 1999), but TEP formation has
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been largely neglected. Observational studies, however, clearly demonstrated the rel-
evance of TEPC production for correctly assessing organic carbon fluxes (e.g. Mari
et al., 2001; Engel and Passow, 2001). A basic modelling approach was presented
by Mari and Burd (1998). They applied a size-class model to explain observed TEP
concentrations. Their model approach, focused on the coagulation process, with TEP5

given in units of volume concentration. The rather descriptive character of TEP mea-
surements made biogeochemical modellers disregard it. This arose out of the situation
that TEP is generally measured either microscopically or colorimetrically as stained
particles (Passow, 2002), which does not provide a direct quantitative measure in car-
bon or nitrogen units. Although the potential role of TEP for the biological pump has10

been discussed before, many questions on how it can mediate oceanic carbon fluxes
remain unanswered.

A qualitative connection between DOC exudation, TEPC formation and the export
of marine snow (aggregates of POC) is now better understood (e.g. Jackson, 1998;
Engel et al., 2004). It is the connection between carbon overconsumption with TEPC15

formation that attracts our attention. In a global, biogeochemical steady-state model,
sensitivities in the biological pump are determined while varying POC:PON export ra-
tios (Schneider et al., 2004). In their study, they assumed a CO2 sensitive TEPC forma-
tion that instantly translates into an elevated POC:PON export ratio when atmospheric
CO2 rise. They found a considerable increase in carbon export for small variations in20

the C:N elemental ratio of POM. Their model is based on a steady-state assumption,
which limits the applicability of their model. In reality the variability in TEPC concen-
trations is high in space and time and largely depends on the seasonal dynamics of
gross primary production and the actual accumulation of phytoplankton biomass. The
model described here is capable of simulating a cascade from DIC uptake, through25

DOC exudation to TEPC formation while resolving associated nitrogen fluxes. It has
been shown that the formulated link between carbon overconsumption and extracellu-
lar POC formation is reasonable and that the model provides a good starting point and
tool for biogeochemical simulations.
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4.1 Modelling limitations

The model applied here includes simplified parameterisations of complex biological
processes. From a biogeochemical point of view, any decision on whether an additional
zooplankton or bacteria compartment is needed in order to better match observed POC
and Chla concentrations, has to be well justified and must not distract from other sub-5

stantial problems, such as modelling extracellular POC formation (a source for POC
and a sink for DOC). If a single important process is neglected, the associated bias
can mask benefits that are achieved elsewhere in the model, for example by having
a mechanistic description of bacterial utilisation of DOM. Among marine biologists the
decoupling of nitrogen from carbon utilisation by phytoplankton is already a well es-10

tablished physiological attribute (e.g. Smetacek and Pollehne, 1986). But only during
the last decade, biogeochemical modellers started to appreciate biological models with
variable carbon-to- nitrogen or carbon-to-phosphorus stoichiometry (e.g. Doney et al.,
2002; Hood et al., 2006). Also, variable stoichiometric assimilation ratios should be
coherent with the synthesis of Chla. We applied the parameterisation of Geider et al.15

(1998), where Chla synthesis is directly coupled to nitrogen utilisation of the phyto-
plankton. By no means were we able to exactly simulate the observed DIN drawdown
together with the rise in Chla concentration. In the model we find high nitrogen uptake
rates during dark conditions of the light cycle, at times with a minimum in carbon as-
similation and photosynthesis. The modelled Chla synthesis clearly overestimates the20

observed increase in concentration. This is a model deficiency, which leads to a sys-
tematic error, although small. More elaborate descriptions for modelling Chla synthesis
account for an optimal allocation of carbon within the cell, in order to either further in-
crease the cross-section for light absorption (high Chla:C and Chla:C ratio) or to invest
more into cellular growth (Pahlow, 2005, R. Armstrong, personal communication). It25

is worthwhile modifying and testing our model version with the parameterisation sug-
gested by Pahlow (2005).

Our model includes a crude closure for grazing and remineralisation. For simula-
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tions of the mesocosm experiment, the simple closures suffice to account for the little
heterotrophic activity observed during the experiment. Under more realistic oceanic
conditions, a separate model compartment for bacteria can be regarded. A potential
difficulty in constraining a separate bacteria compartment must be expected, if TEPC
formation is regarded as an additional sink for DOC, other than mineralisation. Graz-5

ing by micro-zooplankton is oversimplified in the model and certainly needs refinement
when attempting to simulate seasonal cycles in the ocean. The aggregation parame-
terisation remains unconstrained and a true assessment of the equations proposed by
Ruiz et al. (2002) is lacking for realistic oceanic conditions. A more detailed validation
study is therefore desired, in particular since TEPC formation interacts with phytoplank-10

ton aggregation. Alternative formulations for size- based marine snow formation were
proposed (e.g. Kriest and Evans, 1999). A model assessment of different approaches
to simulate marine snow formation would be helpful. Overall, upgrading the mesocosm
model setup to a more generic model version, which can be used for large-scale simu-
lations, is feasible. For this, one can choose from the variety of proposed and published15

biogeochemical closures.

4.2 Modelling primary production: What does it mean?

For prognostic studies in marine biogeochemistry, the assimilation of primary produc-
tion data into ecosystem models is substantial since it often provides the only flux
constraint besides much more uncertain sediment trap observations. A difficult task,20

however, is to specify the correct model-counterpart to observed primary production
rates, especially if data of 14C-incubation measurements are used for data assimilation
experiments (e.g. Evans, 1999; Spitz et al., 2001; Schartau and Oschlies, 2003b). Con-
cerning 14C-incubations measurements the answers remain controversial (e.g. Banse,
2002; Marra, 2003). Whether measured rates are closer to gross- than to net produc-25

tion is still unclear. For example, the possibility of TEP14C formation affecting measured
PO14C production has not been discussed yet.

Our optimal estimate of the PCHO fraction of exuded DOC is close to 64±20%. It
36
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stresses how a major part of the freshly exuded DOC (which is a significant fraction
of the gross production) can form colloidal particles that become large enough to be
retained on filters used for the quantification of POC. We find carbon exudation rates
that are higher than the loss of DON, which suggests that from DON alone it is difficult
to directly infer an accumulation of labile DOC. This clarification, allowing one to better5

distinguish between net and gross primary production, will help modellers in assessing
their simulation results. If net primary production is simply understood as the trans-
formation of DIC to POC, and given that extracellular POC formation happens, then
all nitrogen- or phosphorus based ecosystem-models are biased. Such bias seems
negligible in regions where little primary produced biomass accumulates (e.g. in olig-10

otrophic provinces). In eutrophic regions, on the other hand, most carbon will be trans-
ferred through higher trophic levels before being exported and phytoplankton biomass
will be top-down controlled. A bias is likely to become significant in temperate waters,
if ecological conditions allow a substantial phytoplankton biomass accumulation before
either nitrogen or phosphorus becomes depleted. The post-bloom period would then15

be the typical timeframe for systematic data- model misfits in primary production, if
TEPC formation were disregarded. Regions with iron limitation are a possible excep-
tion, because photosynthetic rates, DIC uptake and thus DOC exudation are limited
there.

4.3 Linkage between carbon overconsumption, particle formation and export20

Many biogeochemical modelling studies refer to the concept of new production, cal-
culated from the phytoplankton’s uptake of freshly entrained nitrate within the upper
ocean’s light-lit layers (Dugdale and Goering, 1967). If nitrogen fixation is negligible,
this new production must equal the vertical export of organic matter because of mass
conservation (Eppley and Peterson, 1979). Whether this assumption is appropriate for25

deriving marine carbon cycles solely from nitrogen or phosphorus fluxes is question-
able. Our model approach provides a link from phytoplankton growth and its variable
stoichiometry to TEPC formation. Modelling the source of TEP (preferentially given
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in carbon units rather than xanthan gum equivalents) will subsequently improve the
modelling of marine snow formation (Passow et al., 1994; Logan et al., 1995; Pas-
sow, 2002). For example, in the presence of TEP the overall coagulation rate is not
only affected by increasing total effective particle concentration but also by enhancing
the probability of two particles sticking together after collision (Jackson, 1998; Engel,5

2000). Resolving physiological acclimation of phytoplankton and accounting for the
origin and fate of freshly exuded organic matter will likely alter simulations of biogenic
carbon export.

Imbalances between nitrogen uptake and carbon based primary production are of-
ten explained with local biological processes, such as DON utilisation by phytoplank-10

ton or nitrogen fixation. Furthermore, excessive DIC uptake during apparent N or P
depletion is believed to locally accumulate in DOC. But to identify conditions for carbon
overconsumption is not straightforward and must not be confused with purely physical
reasons that cause local excessive DIC drawdown. For example, Michaels et al. (1994)
noted carbon imbalances near Bermuda at the site of the Bermuda Atlantic Time series15

Study (BATS). At the BATS site the measured excess DIC drawdown can be explained
largely by a southward advection of water masses from regions with higher biological
productivity. But a local, non-advective biological effect appears to be important as well
(Toggweiler, 1994). The time derivative of DIC was analysed and Toggweiler (1994)
found the fastest drawdown of DIC during May, at a time when oceanographic condi-20

tions are identified to have a minimum effect on DIC changes. A biological contribution
to the overall carbon imbalance must be expected and it becomes maximal at a time
when nitrate concentrations have just run below the detection limit.

Our study supports the idea of Anderson and Pondaven (2003) that biology does
provide a significant contribution to carbon overconsumption, with carbon being chan-25

nelled through the DOC pool. However, we propose not to omit alternative sinks for
DOC other than bacterial degradation. In our model solution a large fraction of phyto-
plankton carbon overconsumption goes into TEPC and the smaller portion accumulate
as residual, labile DOC. The model sensitivity study shows that several factors control
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TEPC formation. At oligotrophic sites the accumulation of phytoplankton biomass re-
mains low while bacteria have relative high abundance (e.g. around 0.3 mmol N m−3 at
the BATS site). Therefore all fresh DOC is likely to be consumed. If we reduce the initial
concentration of DIN in our model from 35 mmol N m−3 to 1 mmol N m−3 (comparable
with maximum possible surface concentrations near Bermuda), the TEPC concentra-5

tion reaches no more than 15 mmol C m−3 at day 22. To what extent such low TEPC
concentration can contribute to POC export is unclear. A relationship between carbon
overconsumption and POC export will depend on the amount of biomass accumulation
that promotes the second mode of carbon overconsumption, as shown in our sensitivity
study.10

In the paper of Wells (1998) the importance of marine colloids and their aggregation
to form larger particles was stressed. His discussion primarily referred to the findings
of Chin et al. (1998), who investigated the transformation of dissolved organic sub-
stances to form large, sinking conglomerates. They used ideas of polymer gel theory
to interpret the colloidal formation dynamics in terms of a self-assembling process. The15

term “self-assembly” is rather broad and applies to spontaneous aggregation and for-
mation of ordered structures when pre-existing components (separate or distinct parts
of a disordered structure) are mixed in correct proportions (Evans and Wennerström,
1999). The process is reversible and involves systems that are at thermodynamic equi-
librium. “Self-assembly” is thus not synonymous with formation of structures during an20

irreversible growth process proceeding in a steady state away from the thermodynamic
equilibrium. For a kinetic growth process, such as coagulation, the components must
be able to move with respect to one another. If the components attach irreversible when
they collide, they form fractal-like aggregates (Mari and Burd, 1998) rather than reg-
ular structures, which are formed by self-assembly. Nevertheless, coagulation of pre-25

existing components can involve self-assembling processes. This can be the case if
components are able to equilibrate between aggregated and non-aggregated states, or
to adjust their positions relative to one another in the space of an aggregate. Both spon-
taneous self-assembly (Chin et al., 1998) and particle coagulation (e.g. Mari and Burd,
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1998) have been proposed for the mechanism of formation of TEP. Chin et al. (1998)
demonstrated the formation of self-assembled nano-aggregates under laboratory con-
ditions. However, the particle size spectra and the fractal geometry of TEP observed in
more natural environment suggest a kinetic growth process, where TEP is formed via
coagulation of either individual polysaccharides or small-sized, self-assembled precur-5

sors.

5 Conclusions

A simple model is proposed for simulating carbon overconsumption in conjunction with
TEPC formation. Our comparison of simulation results with data from a mesocosm
experiment demonstrates how the model fits the rapid increase in TEPC concentration10

shortly after algal growth has ceased, while associated nitrogen fluxes are resolved.
This study suggests that the cascade from DIC uptake, through DOC exudation to
TEPC formation can be described with simple parameterisations, by combining dy-
namical equations for algal growth with a model of extracellular PCHO-PCHO and
PCHO-TEPC aggregation. The formulated link between carbon overconsumption and15

extracellular POC formation is reasonable and the model provides a starting point for
subsequent biogeochemical simulations.

In this study, the optimised parameters describing the PCHO-TEP dynamics are
consistent with the parameters derived from data from a different experiment with coc-
colithophores Engel et al. (2004). This suggests that two size classes are sufficient20

to describe the complex coagulation process involved in TEP formation. This simple
parameterisation of PCHO coagulation is useful to take into account the PCHO-TEP
dynamics into higher-scale ecosystem models.

According to our simulations of the mesocosm experiment, carbon overconsumption
is split up into two dominant modes. Any excess in organic carbon exudation above25

Redfield during the growth phase can be interpreted as the first mode of carbon over-
consumption. The second mode causes an excessive carbon release by phytoplankton
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under nutrient limited conditions. During the first mode of carbon overconsumption, the
release of DOC by phytoplankton is linearly linked to the loss of DON. The exudation
of labile DOC during the second mode exhibits a nonlinear relationship with the loss
of DON. The total amount of exuded DOC depends on the phytoplankton biomass that
could accumulate during the growth phase.5

Our data-assimilative approach demonstrates how an adequate model can be used
for estimating rate parameters that could not be measured during an experiment. With
a bootstrapping approach we generated synthetic data that are consistent with obser-
vations. The synthetic data sets are regarded as additional realisations of the experi-
ment in order to estimate errors of the optimal parameter values. We conclude that this10

primitive approximation suffices to determine the robustness of our optimal estimates.
Thus, a repetition of the optimisation, for example with another synthetically resampled
data set but with the same model, is expected to produce estimates that fall within the
range of uncertainties listed here.

Appendix A15

Carbon and Nitrogen Regulated Ecosystem Model (CN–REcoM)

Parameterisations for phytoplankton growth are mainly adopted from Geider et al.
(1998). One minor modification in modelling phytoplankton growth has been done
for the cell quota step function (RN

C ), which regulates N acquisition down when the20

maximum cellular N:C ratio is reached. The modelled closure for mass fluxes includes
heterotrophic activity. The heterotrophic compartment combines bacteria and herbivo-
rous microplankton. Biogeochemical mass fluxes within the simplified ecosystem are
primarily regulated by the nitrogen-to-carbon (N:C) quota of phytoplankton, as well
as by C and N specific rates for respiration, remineralisation, and degradation of or-25

ganic matter. Therefore, we simply refer to the following set of equations as Carbon
and Nitrogen-Regulated Ecosystem Model (CN–REcoM). In the following, the model’s
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sources minus sinks (sms) equations for nitrogen and carbon fluxes are listed.

A1 Dissolved inorganic compounds

DIC sms = net carbon uptake by phytoplankton + heterotrophic maintenance respira-
tion + remineralisation of residual dissolved organic carbon (resDOC) + carbon dioxide
CO2 air-water exchange (FC):5

DICt = (rphy − Cphot) · PhyC + rhet · HetC

+ ρC · Tf · resDOC + FC (A1)

Initial condition: DIC0=2200 mmol C m−3.

DIN sms = nitrogen utilisation by phytoplankton + remineralisation of dissolved organic10

nitrogen (DON):

DINt = −
V N
C

q
· PhyN + ρN · Tf · DON (A2)

Initial condition: DIN0=35.5 mmol N m−3.

Total alkalinity (TA) sms = N and P uptake by phytoplankton – N and P remineralisation:15

TAt = (1 + 1/16) ·
(

V N
C

q

)
· PhyN

−(1 + 1/16) · ρN · Tf · DON (A3)

Initial condition: TA0=2440 mmol m−3.
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A2 Phytoplankton

Phytoplankton carbon sms = Photosynthesis – respiration – exudation/leakage – ag-
gregation of phytoplankton cells – grazing/lysis:

PhyCt =
(
Cphot − rphy − γC

)
· PhyC −

(A + G)
q

(A4)

Initial condition: PhyC0=PhyN0· Redfield.5

Phytoplankton nitrogen sms = N-uptake – leakage – aggregation of phytoplankton cells
– grazing/lysis:

PhyNt =

(
V N
C

q
− γN

)
· PhyN − (A + G) (A5)

Initial condition: PhyN0 = 0.1 ·f ini
PON, see parameters for optimisation.10

Phytoplankton Chla sms = Chla synthesis – decay – aggregation of phytoplankton cells
– grazing/lysis:

Chlat = (Schl − γchl) · Chla −
θC

q
· (A + G) (A6)

Initial condition: Chla0 = PhyN0· 1.56 mg Chla (mmol N)−1.15

A3 Heterotrophs (microzooplankton+bacteria)

Heterotrophs carbon sms = grazing/lysis – maintenance respiration – carbon loss clo-
sure:

HetCt =
G
q

− (rhet + γhet) HetC (A7)20
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Initial condition: HetC0 = HetN0· Redfield.

Heterotrophs nitrogen sms = grazing/lysis – nitrogen loss closure:

HetNt = G − γhet · HetN (A8)

Initial condition: HetN0 = 0.45 ·f ini
PON.5

A4 Detritus

Detritus carbon sms = aggregation of phytoplankton cells – breakdown of detrital car-
bon:

DetCt =
A
q
−ωC · Tf · DetC (A9)10

Initial condition: DetC0 = DetN0· Redfield.

Detritus nitrogen sms = aggregation of phytoplankton cells - breakdown of detrital ni-
trogen:

DetNt = A −ωN · Tf · DetN (A10)15

Initial condition: DetN0 = 0.45 ·f ini
PON, see parameters for optimisation.

A5 Dissolved organic compounds

Residual dissolved organic carbon sms = exudation/leakage of residual organic car-
bon + breakdown of detrital carbon + degradation of transparent exopolymer particles
(TEPC) – remineralisation:20

resDOCt = γC · (1 − fPCHO) · PhyC + γhet · HetC

+ ωC · Tf · DetC + ρC
∗ · Tf · TEPC

− ρC · Tf · resDOC (A11)
44
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Initial condition: resDOC0 = DON0· Redfield.

Dissolved organic nitrogen sms = exudation/leakage of organic nitrogen by phytoplank-
ton + breakdown of detrital nitrogen – remineralisation:

DONt = γN · PhyN + γhet · HetN5

+ ωN · Tf · DetN − ρN · Tf · DON (A12)

Initial condition: DON0 = 0.01 mmol N m−3.

Polysaccharides sms = exudation by phytoplankton – aggregation with other PCHO
particles - aggregation of PCHO with transparent exopolymeric particles (TEPC):10

PCHOt = γC · fPCHO · PhyC

− ΦPCHO · αPCHOβPCHO · PCHO2

− ΦTEP · αTEPCβTEPC · PCHO · TEPC (A13)

Initial condition: PCHO0 = f ini
PCHO, see parameters for optimisation.

15

A6 Transparent exopolymer particles

Carbon content of transparent exopolymer particles sms = aggregation with other small
PCHO + aggregation of small PCHO with larger TEPC:

TEPCt = ΦPCHO · αPCHOβPCHO · PCHO2

+ ΦTEPC · αTEPCβTEPC · PCHO · TEPC20

− ρC
∗ · Tf · TEPC (A14)

Initial condition: TEPC0 = 4.0 mmol C m−3.
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Appendix B Details

Arrhenius relation for describing temperature dependence:

Tf = exp
[
−AE ·

(
1
T
− 1

Tref

)]
(B1)

During the mesocosm experiment the mean temperature was 285.15◦ Kelvin (12◦C),
yielding a constant factor for all temperature dependent rates of Tf≈0.85.5

Carbon assimilation and respiration of phytoplankton:

CP hot = µmax
C ·

[
1 − exp

(
−
θC · α · I
µmax
C

)]
(B2)

The maximum rate of carbon-specific photosynthesis is regulated by temperature and
the cell quota:10

µmax
C = µC · RPhot · Tf (B3)

Regulation as a function of the cellular nitrogen-to-carbon ratio (q)

RPhot =
(q − qmin)

(qmax − qmin)
(B4)

with the phytoplankton’s actual nitrogen-to-carbon ratio (q = N:C quota), together with
the prescribed minimum and maximum quotas (qmin and qmax).15

Phytoplankton respiration is the sum of biosynthetic costs and the maintenance
metabolic rate:

rphy = rC + ζ · V N
C (B5)

20
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Nitrogen assimilation:

V N
C = µmax

C · qmax · R
N
C · DIN

DIN + kN
(B6)

The maximum rate of carbon-specific nitrate uptake is controlled by the cell quota and
related to the maximum rate of photosynthesis. The regulation function depends on
the cellular nitrogen-to-carbon ratio:5

RN
C = 1 − exp

[
−σN

C ·
(
|q − qmax| − (q − qmax)

)2]
(B7)

with the slope parameter (σN
C ) and the maximum cellular nitrogen-to-carbon ratio

(qmax).

Chla synthesis:10

SChl =
V N
C

θC
· RChl (B8)

The regulation is a function of maximum chlorophyll a-to-nitrogen ratio and light (en-
ergy) utilisation, according to Geider et al. (1998):

RChl = θmax
N

(
CPhot

θC · αChl · I

)
(B9)

15

Grazing/general loss to heterotrophs:

G = gm ·
PhyN2

ε + PhyN2
· HetN (B10)

The search activity of herbivores is enhanced when prey density (PhyN) increases. It
describes the functional response of a Holling Type III function.20
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Heterotrophic respiration:

rhet = τhet · Tf ·
(
q−1

het − Redfield
)

(B11)

with respiration relaxing towards the Redfield C:N ratio. The relaxation implies
homeostasis (qhet→Redfield). Thus, the heterotrophs are assumed to respire more
carbon when the food source, phytoplankton, becomes rich in carbon (phytoplankton5

with low quota q).

Aggregation of phytoplankton cells:

A = ΦP P · PhyN2 +ΦP D · β · PhyN · DetN (B12)

Aggregation is determined by a quadratic loss of phytoplankton (interaction among10

small phytoplankton cells) and a product of phytoplankton with detrital biomass. The
latter is parameterized with a coagulation kernel, which describes the interaction be-
tween large detrital aggregates and small individual phytoplankton cells. The coag-
ulation kernel (β) is controlled by particle stickiness, which partially depends on the
amount of TEPC produced. For this model version we adopt the approach described15

in Ruiz et al. (2002):

β =
2.736 l (mg C)−1 d−1 · 12 (mg C) (mmol C)−1

q · 1000 l m−3

· TEPC
kβ + TEPC

= 0.033 m3 (mmol N)
−1

d−1 · TEPC
kβ + TEPC

(B13)

The conversion factor of Engel and Passow (2001) is applied to convert stained TEP20

to carbon units (TEPC)

TEPC = 0.75(
(mg C) m−3

µg Xan. equiv. L−1
) · TEP (B14)
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Thus, the half-saturation constant according to Ruiz et al. (2002) can be expressed in
carbon units. It then becomes

kβ = 53.125 mmol C m−3 (B15)

The parameter ΦP D is a dimensionless factor for optimisation (Table 2 and Table B). It
simply expresses the uncertainty of our a priori assumptions for phytoplankton aggre-5

gation (Eqs. B12–B15).
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Table 1. Model parameters, which remain fixed and do not enter the optimisation procedure.

Fixed parameters Symbol Value & Unit

Chla -specific photosynthetic efficiency αChl 0.3 mmol C (mg Chla )−1 m2 W−1 d−1

Half-saturation constant for DIN uptake kDIN 1.0 mmol N m−3

Biosynthetic costs ζ 2.3 mmol C mmol N−1

Chla degradation γchl 0.001 d−1

Maintenance respiration rate rphy 0.01 d−1

Phytoplankton quadratic aggregation loss ΦP P 0.02 m6 mmol N−2 d−1

Degradation of TEPC ρC
∗ 0.01 d−1

Molar C:N ratio Redfield 6.625
Minimum molar cellular N:C ratio qmin 0.043
Maximum molar cellular N:C ratio qmax 0.171
Maximum cellular Chla :N ratio θmax

N 4.2 mg mmol−1

Slope parameter for DIN-uptake regulation σN
C 1000 mmol N2 (mmol C)−2

Relaxation for heterotrophic respiration τhet 0.05 d−1

Loss rate for heterotrophs γhet 0.001 d−1

Half-saturated phytoplankton loss to herbivory ε 1.0 mmol N2 m−6

Slope of Arrhenius relation AE 4500 K
Reference temperature for AE relation Tref 288.15 K
C-specific collision kernel PCHO-PCHO βPCHO 0.86 m3 (mmol C)−1 d−1

C-specific collision kernel PCHO-TEPC βTEPC 0.064 m3 (mmol C)−1 d−1

Particle stickiness PCHO-PCHO αPCHO 0.87×10−3

Particle stickiness PCHO-TEPC αTEPC 0.4
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Table 2. Model parameters used for optimisation. Some parameters describe only a multiplica-
tive factor by which an initial value is modified (ΦP D, ΦPCHO, ΦTEPC). The initial values are
taken from literature and are described in the Equation section of in the Appendix.

Parameters for variation Symbol Unit

1) Parameter for carbon-specific photosynthesis µC d−1

2) Phytoplankton linear nitrogen loss rate γN d−1

3) Phytoplankton linear carbon loss rate γC d−1

4) Remineralisation of DON ρN d−1

5) Remineralisation of rDOC ρC d−1

6) Deviation from a priori guess on Phy-Det aggregation ΦP D 1
7) Remineralisation of detrital nitrogen ωN d−1

8) Remineralisation of detrital carbon ωC d−1

9) Nitrogen specific grazing rate gm d−1

10) Polysaccharide fraction of total DOC exudates fPCHO 1
11) Deviation from a priori guess on PCHO-PCHO coagulation ΦPCHO 1
12) Deviation from a priori guess on PCHO-TEPC coagulation ΦTEPC 1
13) Initial concentration of PON f ini

PON mmol N m−3

14) Initial polysaccharide concentration f ini
PCHO mmol C m−3
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Table 3. Parameter estimates after optimisation: The standard deviations σ̂std are approximated
from bootstrapping. The bias (σbias) is derived from the deviation of the best parameter estimate
(p̂best) from the mean parameter value (p). The last column relates the standard deviation to
the prior variational range of parameter values (4p).

Parameter Unit p̂best p σ̂std σbias = p̂best − p σ̂std/4p

1) µC d−1 2.300 2.370 0.629 –0.070 0.10
2) γN d−1 0.180 0.153 0.079 0.027 0.13
3) γC d−1 0.250 0.293 0.166 -0.043 0.26
4) ρN d−1 0.240 0.210 0.119 0.030 0.31
5) ρC d−1 0.372 0.202 0.184 0.170 0.48
6) ΦP D 1 0.000 0.030 0.048 –0.030 <0.01
7) ωN d−1 0.018 0.033 0.024 –0.015 0.39
8) ωC d−1 0.004 0.018 0.019 –0.014 0.31
9) gm d−1 0.230 0.176 0.096 0.054 0.15
10) fPCHO 1 0.640 0.634 0.201 0.006 0.20
11) ΦPCHO 1 2.000 1.190 1.199 0.810 0.10
12) ΦTEPC 1 0.500 0.550 0.237 -0.050 0.02
13) f ini

PON mmol N m−3 0.800 1.095 0.659 –0.295 0.05
14) f ini

PCHO mmol C m−3 4.000 4.050 3.000 –0.050 0.02
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Table A1. Observational error variances (σ2
i ) assigned to the cost function. Some variances

(σ̂2
obs) are derived from triplicate samples of the mesocosm experiment. For Chla , gross pri-

mary production (GPP), and net community production (NCP) an uncertainty proportional to
the measured value is added to as background error.

Type of observation Assigned observational errors

1) DIN 12+σ̂2
obs (mmol N)2 m−6

2) DIC 102 (mmol C)2 m−6

3) Chla 22+(0.1·Chla obs)2 mg2 m−6

4) PON 12+σ̂2
obs (mmol N)2 m−6

5) POC 52+σ̂2
obs (mmol C)2 m−6

6) TEPC 12+σ̂2
obs (mmol C)2 m−6

7) GPP 52+(0.1·GPPobs)2 (mmol C)2 m−6 d−2

8) NCP 52+(0.1·NCPobs)2 (mmol C)2 m−6 d−2
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Table A2. Setting for the µGA. Each parameter is represented by a discrete binary string
of a certain length. One individual combines all strings of all parameters (one parameter set).
The number of possibilities expresses the number of binary digits that describes the number of
possible values within the prescribed upper and lower limits for parameter variation.

No.& Symbol Variational range [min/max] Increment No. of possibilities

1) µC 0.100/6.400 0.1 64
2) γN 0.010/0.640 0.01 64
3) γC 0.010/0.640 0.005 64
4) ρN 0.003/0.384 0.003 128
5) ρC 0.003/0.384 0.003 128
6) ΦP D 0.000/12.700 0.1 128
7) ωN 0.002/0.064 0.002 32
8) ωC 0.002/0.064 0.01 32
9) gm 0.0000/0.630 0.01 64
10) fPCHO 0.0000/min(1.0,1.27) 0.01 128
11) fΦPCHO 0.100/12.800 0.1 128
12) fΦTEPC 0.100/12.800 0.01 128
13) f ini

PON 0.050/12.800 0.05 256
14) f ini

PCHO 0.500/128.000 0.5 256
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Fig. 1. Structure of the model for simulations of nitrogen- and carbon fluxes, as observed
during a mesocosm experiment. The model splits dissolved organic carbon (DOC) into two
fractions, polysaccharides (PCHO) and the residual dissolved organic carbon (resDOC). From
dissolved inorganic carbon (DIC) and total alkalinity (TA) the actual partial pressure of carbon
dioxide (pCO2) is determined, which provides gradient information for the air-water gas ex-
change. Phytoplankton carbon (PhyC) is distinguished from the nitrogen biomass (PhyN) and
chlorophyll a (Chla ). Phytoplankton leaks dissolved organic nitrogen (DON), which is min-
eralised. Transparent exopolymeric particles (TEP) are formed by coagulation of PCHO. All
TEP is modelled in carbon units (TEPC). Phytoplankton cells can aggregate, forming detrital
nitrogen (DetN) and carbon (DetC).
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Fig. 2. A priori and a posteriori probability distribution of the data-model misfits (initial values
and minima of cost function J). Repeating the optimisation with any other resampled data will
probably yield a minimum of J in the range shown in the zoomed subplot. Most likely the
minimum will be distributed close around J=280. The value of expectation is J=122, which
can only be achieved if the exact moment of sampling was known and if the assumed model
equations were free of error.
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Fig. 3. Optimised model results. All solid black lines indicate the best solution obtained from
optimisation with the original data set. Circles represent observations together with their corre-
sponding error standard deviations, as assigned for the weighting of the cost function. The gray
shaded area enfolds all model trajectories obtained from the additional optimisations performed
with resampled data, see text for details. The upper panel shows a) dissolved inorganic nitro-
gen (DIN) and b) the carbon counterpart, dissolved inorganic carbon (DIC). The lower panel
displays c) chlorophyll concentration (Chla ) and d) particulate organic nitrogen (PON).
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Fig. 4. Optimised model results of particulate organic matter and polysaccharides (PCHO).
The upper left panel (a) resolves particulate organic carbon (POC) as it is regarded in the
model, but also as it would be derived from cellular carbon and from PON with a constant mo-
lar carbon-to-nitrogen (C:N)ratio of 6.625. (b) PCHO is the precursor of the carbon found in
(c) transparent exopolymeric particles (TEPC). All TEP in the model is given in carbon units
(TEPC) and is assigned to the POC pool. (d) Modelled C:N ratio of particulate organic matter
(POC:PON) increases rapidly after day 16 when phytoplankton production becomes nitrogen
limited. The large uncertainties are associated with the division of small biomass concentra-
tions.
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Fig. 5. Modelled dissolved organic matter that is not associated with PCHO or TEP. DON is well
constrained whereas resDOC shows largest variations of all model state variables. The best
model solution is biased with a much higher remineralisation rate for resDOC (ρC = 0.37 d−1)
than for DON (ρN = 0.24 d−1), whereas the mean rate estimates are similar (ρC≈ρN = 0.2 d−1).
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Fig. 6. Modelled phytoplankton productivity. Gross primary production (GPP) remains high
during an efficient three days growth period, from day 13 to day 16. Net community production
(NCP) accounts for all net carbon uptake by phytoplankton minus community respiration.
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Fig. 7. DOM losses by phytoplankton: (a) DOC exudation in relation to DON loss by phy-
toplankton; (b) specific DOC loss (normalised to DIN uptake) in relation to DON loss. The
two modes of carbon overconsumption are depicted. DOC and DON losses during the growth
phase (N repletion) are linear functions of biomass accumulation. During post-bloom conditions
(N limitation) the release of DOC by phytoplankton depends on photosynthetic rates and thus
on DIC uptake.
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Fig. 8. : DOC exudation in relation to DON loss by phytoplankton. The initial concentration of
DIN (DIN0) has been varied between 5 and 50 mmol m−3. Model solutions are based on our
best parameter estimate. During the growth phase (N-replete conditions) the daily mean DOC
exudation is linearly linked to DON loss by phytoplankton. Diurnal variations (loops) during
mode one result from variations in carbon-to-nitrogen uptake ratio. According to this model
version, the initial DIN concentration only determines the total amount of biomass accumulation
an thus the maximum DOC loss rate during the growth phase.
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Fig. 9. Results of a sensitivity analysis: The initial concentration of DIN (DIN0) has been varied
between 1 and 15 mmol m−3. The two modes of carbon overconsumption translate into two
modes of TEPC formation. During phytoplankton growth the model shows a linear dependence
between TEPC formation and Chla increase. During the post-bloom period, degradation of
Chla falls together with the distinct increase in TEPC concentration.
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