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Abstract

We examined the temporal and spatial variabilities of phytoplankton absorption coef-
ficients (αph(λ)) and their relationships with physical processes in the northern South
China Sea from two cruise surveys during spring (May 2001) and late autumn (Novem-
ber 2002). A large river plume induced by heavy precipitation in May stimulated a phy-5

toplankton bloom on the inner shelf, causing significant changes in the surface water in
αph values and B/R ratios (αph(440)/αph(675)). This was consistent with the observed
one order of magnitude elevation of chlorophyll α and a shift from a pico/nano dom-
inated phytoplankton community to one dominated by micro-algae. At the seasonal
level, enhanced vertical mixing due to strengthened northeast monsoon in Novem-10

ber has been observed to result in higher surface αph(675) (0.002–0.006 m−1 higher)
and less pronounced subsurface maximum on the outer shelf/slope in November as
compared that in May. Measurements of αph and B/R ratios from three transects in
November revealed a highest surface αph(675) immediately outside the mouth of the
Pearl River Estuary, whereas lower αph(675) and higher B/R ratios were featured in15

the outer shelf/slope waters, demonstrating the respective influence of the Pearl River
plume and the oligotrophic nature of South China Sea water. The difference in spectral
shapes of phytoplankton absorption (measured by B/R ratios and bathochromic shifts)
on these three transects infers that picoprocaryotes are the major component of the
phytoplankton community on the outer shelf/slope rather than on the inner shelf. In20

addition, a regional tuning of the phytoplankton absorption spectral model (Carder et
al., 1999) demonstrated a greater spatial variation than seasonal variation in the lead
parameter a0(λ). These results suggest that phytoplankton absorption properties in a
coastal region such as the northern South China Sea are complex and region-based
parameterization is mandatory in order for remote sensing algorithms.25
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1 Introduction

The absorption and scattering coefficients of various water constituents determine the
optical properties in the ocean (Preisendorfer, 1961). Among them, phytoplankton
absorption coefficient (αph) is a critical component. Characterization of αph and its
chlorophyll-specific counterpart (α*ph ), as well as their sources and scales of variabil-5

ity, is important for a variety of applications such as remote sensing of chlorophyll α
(chlα) concentration and primary production (e.g. Bidigare et al., 1987; Morel et al.,
1996; Carder et al., 1999).

A general trend in oceanic waters is that αph at a specific wavelength (e.g. 440,
675 nm) is well correlated with chlorophyll α concentration (chlα), a major pigment in10

algal cells, while random variation occurs in different regimes (Prieur and Sathyen-
dranath, 1981; Carder et al., 1999; Cleveland, 1995; Lutz et al., 1996). A recent study
in European coastal water revealed that the relationship between αph and chlorophyll
concentration was overall similar to that previously established for open oceanic wa-
ters, although deviation occurred due to peculiar pigment composition and cell size15

(Babin et al., 2003). Similar results were also obtained in the Pearl River Estuary and
the adjacent northeastern South China Sea (Cao et al., 2003; Xu et al., 2004). These
studies generally support that αph should be a good indicator for changes of chl α and
would be tightly associated with different water masses and physical dynamics.

Differences in phytoplankton absorption properties observed between and within20

species grown under various environmental conditions are ultimately governed by pig-
ment composition and pigment package effects (Mitchell and Kiefer, 1988; Stramski
and Morel, 1990; Sosik and Mitchell, 1991; Stuart et al., 1998; Lohrenz et al., 2003).
For example, picoprokaryotes (cyanobacteria and marine prochlorophytes), the small-
est phytoplankton group abundant in open ocean waters, were observed to have high25

α*ph (chlorophyll α-specific absorption coefficient of phytoplankton) at 440 nm and
blue/red (B/R) ratios due to their small cell size and the high zeaxanthin or divinyl
chl b concentration (Kana et al., 1988; Moore et al., 1995). Divinyl chl α/b contained
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in marine prochlorophytes show a ca. 8 nm bathochromic shift of absorption maximum
compared to the normal chl α/b (Chisholm et al., 1988). Thus, variation of αph may
be reflective of the variation in chl α as well as the phytoplankton community structure,
which suggests an alternative optical approach to phytoplankton study especially when
HPLC (high performance liquid chromatography) or flow cytometry data are not avail-5

able (Moore et al., 1995). Most importantly, since αph can be remotely estimated, its
potential application should be powerful.

Algorithms to retrieve absorption coefficients remotely, from empirical to full-spectral
optimization, have as matter of fact been underway (e.g. Lee et al., 1998; Carder et
al., 1999; Lee et al., 2002). Note that the retrieval accuracy of semi-analytical algo-10

rithms is often better than that of empirical algorithms (Bukata et al., 1995; IOCCG,
2000). However, the performance of these algorithms relies on accurate parameteri-
zation in the spectral models for the absorption coefficients of phytoplankton pigments
and other light absorbing constituents. The spectral models for phytoplankton absorp-
tion are subject to spatial and temporal variation due to changing pigment composition15

and package effect. As a consequence, regional in situ studies on the variability of phy-
toplankton absorption properties are fundamental in order to parameterize the spectral
models towards algorithms for remote sensing applications.

The South China Sea (SCS) is one of the major marginal seas. The Pearl River
discharges into its northeast, through which the SCS receives freshwater as well as20

nutrients and pollutants from one of the most industrialized regions of China. Climatic
variations in the atmosphere and the upper ocean of the SCS are primarily controlled by
the East Asian monsoon, which follows closely the variations in the equatorial Pacific
(Liu et al., 2002). Although it is basically an important low latitude marginal sea, its
biogeochemistry has received relatively little attention. Recent arguments emerged25

towards a role of CO2 source the SCS played (Zhai et al., 2005; Cai and Dai, 2004).
Spatial and temporal patterns of phytoplankton are thus essential to understand the
carbonate system. However, knowledge on phytoplankton, including chl α, taxonomy,
primary production and the optical properties, is extremely limited, especially in the
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northern SCS (NSCS) adjacent to the Pearl River Estuary (PRE). There are a couple
of reports found but the spatial and temporal changes are rarely discussed (Huang et
al., 2002; Cao et al., 2003, 2005; Ning et al., 2003, 2004; Zhu et al., 2003; Xu et al.,
2004; Lee Chen, 2005; Wang et al., 2005; Chen et al, 2006).

We obtained αph data during two cruises to the Northern South China Sea in May5

2001 and November 2002. With the absence of pigment and taxonomic data, this pa-
per attempts to apply αph as an alternative parameter for chl α and taxonomy and thus
aims to examine the variation of phytoplankton absorption coefficients associated with
hydrodynamics, in particular the changes in response to a plume event, and changes
between a southwest monsoon season (late spring) and a northeast monsoon season10

(late autumn). Change of the αph spectral model parameterization is also examined to
provide essential information for local semi-analytical remote sensing algorithm.

2 Methods

The NSCS was surveyed during two cruises (14 to 25 May 2001 and 2 to 21 November
2002) on board R/V Yanping II. Figure 1 shows the stations for CTD surveys and ab-15

sorption sampling. The 2001 cruise involved one transect (Transect A, hereafter T-A),
starting from the vicinity of the PRE to the southeast to Dongsha island, and crossing
the shelf to the slope. The 2002 cruise had two more transects: Transect B (here-
after T-B) parallel to and to the east of T-A, and Transect C (hereafter T-C) located
outside the PRE, along the coast. Following Zhai et al. (2005), T-A can be divided into20

two zones, inner shelf with water depths shallower than 100 m and within a range of
ca. 75–130 km from the coast (Stas. 6C, 6 and 5A); and outer shelf/slope with water
depths of 100–1000 m (Stas. 5, 4A, 2, 4, 3 and 3A).

Our May 2001 cruise was divided into two legs. The first cruise leg was between
14–19 May, and the second was during 24–25May. Stations 6 and 2 were sampled25

in both cruise legs for absorption coefficients (the second sampling is annotated as
Sta. 6’ and Sta. 2’, respectively).
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Our sample collection and measurements strictly followed the Ocean Optics Proto-
cols Version 2.0, distributed by NASA (Mitchell et al., 2000). Briefly, water samples
were collected with 1.7 L Niskin bottles mounted on a rosette equipped with a SBE19
CTD which provides temperature and salinity data. Samples were then filtered onto a
25-mm 0.7µm glass fiber filter (Whatman GF/F) under low vacuum (<17 kPa). Sam-5

ple filters were put into tissue capsules (Fisher HistoprepTM ) and then stored in liquid
nitrogen for subsequent laboratory analysis at Xiamen University.

Absorption was measured on a dual-beam Varian Cary-100 spectrophotometer
loaded with an integrating sphere. Sample filters were first scanned from 250 to 800 nm
relative to a blank filter saturated with 0.2µm filtered seawater to obtain the total par-10

ticulate absorbance spectra (ODp). After pigment extraction with methanol, sample
filters were measured again to obtain the absorbance spectra of the nonalgal particles
(ODd ). ODp(440) and ODd (440) were all less than 0.4 absorbance.

Absorption coefficients of total particles (αp) and nonalgal particles (αd ) were calcu-
lated as:15

α(λ) = 2.303 × [OD(λ) − ODnull] ×
A
V β

,

where A is the area of the sample filter with concentrated particles, V is the volume of
water filtered and β is a parameter to correct for the pathlength amplification effect due
to multiple scattering. A widely accepted β expression given by Cleveland and Wei-
demann (1993) was used for correction. ODnull is the average of the OD between 79020

and 800 nm since it had been found that all aquatic particles generally show negligible
absorption in the near infrared. Phytoplankton absorption coefficients (αph) were then
calculated as the difference between αp and αd .

The absorption of water samples from depths >150 m was too weak to detect, and
so only data for the upper 150 m of water are presented.25
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3 Results and discussion

3.1 Variations of αph magnitude and spectral shapes

3.2 Short term variation in May 2001

The outburst of SCS summer monsoon normally occurs in mid-May, leading to a rainy
season (Qian et al., 2002). This was also the case in May 2001. Heavy precipitation5

appeared on 1 May, 7–9 May, 17–18 May, and 21–22 May, recorded at both Baiyun
(Guangzhou) and Hong Kong weather observatories as described in a parallel study
(Dai et al., 2007). Accumulation of this precipitation caused a river plume extending
to the region near Sta. 6 as evidenced by low salinity between 24 to 25 May (Fig. 2).
Surface water salinity sharply dropped from 34.0 to ∼26.5 at Sta. 6. The plume, which10

apparently diminished at Sta. 5A, brought a significant amount of nutrients into the
region shoreward of Sta. 5A, resulting in a phytoplankton bloom, as revealed by a
parallel study on the carbonate system in this region (Dai et al., 2007).

Correspondingly, the absorption properties experienced significant changes during
this period of observation. Figure 3 shows vertical profiles of αph(675) observed on T-A15

in May 2001. During the first cruise leg between 15 and 19 May, the surface αph(675)

varied from 0.002 m−1 at Sta. 6 to 0.004 m−1 at Sta. 5A (∼37 km apart) on the inner
shelf, and no significant changes were found between the inner shelf and the outer
shelf/slope. A subsurface maximum in αph(675) existed both on the inner shelf and

the outer shelf/slope, with value varying between 0.015–0.019 m−1. During the second20

cruise leg between 24–25 May, however, the horizontal gradient of αph(675) increased
substantially. On the inner shelf, the surface αph(675) became one order of magnitude

higher than that on the outer shelf/slope. αph(675) as high as 0.050 m−1 occurred at

Sta. 6. This was equivalent to an increase of chl α from 0.1 to 2.6 mg m−3 using the
model of Carder et al. (1999) ([chl α] =56.8×[αph(675)]1.03), which was consistent with25

the observed one order of magnitude elevation of chl α as reported by Dai et al. (2007).
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The occurrence of a phytoplankton bloom around Sta. 6 was thus evident. In contrast,
the outer shelf/slope maintained a low surface αph(675) around 0.002 m−1 and a sub-

surface/deep maximum varying between 0.005–0.014 m−1. For the two stations we
revisited, significant changes were solely found at Sta. 6, where surface αph(675) in-

creased from 0.002 to 0.050 m−1.5

B/R ratios on the inner shelf also showed significant changes (Table 1). During
the first cruise leg, the surface B/R ratios, both on the inner shelf and on the outer
shelf/slope, were greater than 3.0. This implies the predominance of picoprocaryotes
in the phytoplankton community (Stramski and Morel, 1990; Partensky et al., 1993;
Moore et al., 1995). However, during the second leg, surface B/R ratio at Sta. 610

dropped from 3.9 to 2.5, suggesting a decrease in the proportion of picoprocaryotes in
the phytoplankton community. This can be confirmed by the finding in the parallel car-
bonate system study, which demonstrated that the phytoplankton community structure
in terms of size-fractionated chl α significantly shifted from a pico/nano-phytoplankton
dominated community to a structure dominated by micro-algae in surface water at15

Sta. 6 during the second cruise leg (Dai et al., 2007). Moreover, the shape of the
αph spectrum changed substantially (Fig. 4). Strong absorptions were found at 636
and 485 nm, suggesting abundance of chl c and fucoxanthin, typically contained in di-
atoms (Bidigare et al., 1990). The absorption maximum in the blue region shifted from
440 to 432 and 410 nm, indicating increasing levels of phaeopigments (Lorenzen and20

Downs, 1986). It is thus suggestible that a diatom bloom at its late stage occurred
around Sta. 6 when the second cruise leg took place. It should be noted that similar
features in the αph spectra were observed at Sta. 6C (shoreward of Sta. 6, Fig. 4) with a
B/R ratio as low as 2.1. On the outer shelf/slope, however, B/R ratios remained greater
than 3.0 throughout the cruise.25
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3.2.1 Seasonal variation in the outer shelf on Transect A

The inner shelf water on T-A was clearly subject to significant short term variations in
May (a high flow season of the PRE). Comparisons of αph between May and November,
southwest and northeast monsoon seasons, will thus focus on the outer shelf/slope of
T-A.5

On average, the transition from the northeast to southwest monsoon in the SCS
occurs in May and that from the southwest to the northeast occurs in October (Lau et
al., 1998). Figure 5 displays the monthly mean distribution of QuikSCAT wind stress in
the region under study in May 2001 and November 2002. The maximum northeasterly
wind stress in November 2002 could be up to 0.25 N m−2. The wind stress in May10

2001 was much smaller (mostly <0.1 N m−2) and variable in direction. The effect of
wind forcing superimposed on surface cooling convective overturn in the northeast
monsoon season would lead to enhanced vertical mixing, resulting in a deepening of
mixed layer depth (MLD). Deepening of MLD in the region of interest in November 2002
as compared to May 2001 was obvious (Fig. 6). Except for Sta. 5, which was located15

at 100 m isobath, MLD on the outer shelf/slope of T-A varied between 60–100 m in
November, while it was less than 20 m in May. This suggests that the nutrients in the
upper nutricline are more readily for primary production, leading to elevated chl α and
primary productivity, as had observed at a SCS time series station (SEATS) located in
the NSCS (Tseng et al., 2005).20

Concomitantly, both the surface value and the vertical structure of αph(675) on the
outer shelf/ slope of T-A in November 2002 differed from that in May 2001 (Fig. 7).
For example, surface αph(675) along T-A varied from 0.005 to 0.009 m−1 in November,

higher by 0.002–0.006 m−1 than those observed at the same stations in May 2001.
Although subsurface maxima also existed in November, they were far less prominent25

than those in May. The differences between the subsurface maxima and the surface
values were typically less than 0.003 m−1 in November for most stations, whereas in
May they were higher by at least a factor of two as compared to the November values.
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On the outer shelf of T-A, B/R ratios were generally greater than 3.0 in the upper
water in both seasons, although the values were slightly higher in May than in Novem-
ber (Table 2). Below the surface, B/R ratios at most of the sampling stations were
less than 2.5 in November but greater than 2.5 in May. Difference between these two
seasons may be primarily a result of photoacclimation since higher light condition is5

usually observed in May.

3.2.2 Spatial variation in November 2002

The survey of November 2002 covered a broader regions, T-B and T-C, in addition to
T-A. Figure 8 displays their different hydrological properties. T-C was within ∼50 km
distance from the coast, highly impacted by YueDong Coastal Water. This water mass,10

low in salinity, is rich in nutrients and thus maintains a relatively high level of chl α and
primary productivity (Li and Su, 2001). T-B and T-A were on the shelf. T-B was located
east of the PRE. Since the Pearl River plume went southwestward under the forcing
of the northeast monsoon in November (Su, 2004), T-B was beyond the impact of the
Pearl River plume. T-A, on the contrary, was right outside the PRE. Nutrient loadings15

from the river plume to T-A was thus expected. On the other hand, it was suggested
that vertical turbulence might have been reinforced on T-A due to the input of the Pearl
River plume (Mann and Lazier, 1996), leading to a deeper MLD on T-A than on T-B
(Fig. 8). This implies that nutrients might be more available for phytoplankton growth in
the upper layer on T-A.20

Corresponding to the different physical regimes, a clear spatial pattern of αph(675)
appeared. As Fig. 9 shows, surface αph(675) was much higher on T-C than that on

T-A and T-B. It ranged between 0.010–0.018 m−1 on T-C, corresponding to a range of
chl α between 0.49–0.91 mg m−3 according to the algorithm of Carder et al. (1999).
The highest value occurred at Sta. C4, which was located facing and closest to the25

PRE, demonstrating that the Pearl River plume in this low flow season could still be
influential to the area around 21.8◦ N (see Fig. 1 for the location). There was no distinct
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subsurface/deep maximum in αph(675) on T-C, although αph(675) was slightly higher
in deeper water than at the surface.

Surface αph(675) of T-B was relatively low compared to that of T-A, either on the
inner shelf or on the outer shelf/slope. It was nearly homogenous, staying around
0.005 m−1 over the entire T-B. In contrast, it had a greater horizontal gradient along5

T-A, varying between a minimum of 0.005 m−1 on the outer shelf/slope and a maximum
of 0.015 m−1 on the inner shelf. Vertical structures of αph(675) were also different. A
prominent subsurface αph(675) maximum was present on T-B, with a maximum level of

0.021 m−1, especially on the outer shelf/slope. For T-A, although a subsurface αph(675)
maximum was visible, the values were lower. These variations of αph(675) between two10

shelf transects, T-A and T-B, partly proved that the Pearl River plume affected the inner
shelf of T-A by supplying more nutrients for phytoplankton growth, either through direct
input or by enhancing vertical mixing.

B/R ratios also changed among the three transects (Table 1). Generally, T-C had
the lowest value (<2.5 for most stations) and T-B had the highest (>2.5 for most sta-15

tions) (Table 1). On T-A, B/R ratios were higher on the outer shelf/slope than on the
inner shelf, especially surface B/R ratios were close to or greater than 3.0 on the outer
shelf/slope. Typical eukaryotic phytoplankton studied in the laboratory has not been
observed with peak B/R ratios in excess of 2.5 (Cleveland et al., 1989), while pico-
prokaryotes can exhibit B/R ratios much greater than that (Stramski and Morel, 1990;20

Partensky et al., 1993; Moore et al., 1995). It seems that picoprocaryotes dominated
on T-B and the outer shelf/slope of T-A, while this was not the case for T-C and the inner
shelf of T-A, where the impact of Pearl River plume and coastal water might be severe.
Another evidence was bathochromic shifts phenomena especially for Prochlorococcus.
Bathochromic shifts from 440 nm were observed in the entire water column of T-B and25

on the outer shelf of T-A in November (Fig. 10a). Such a shift increased in intensity
from 4–6 nm to 40 nm in the deeper water while approaching the slope (Fig. 10b).
Bathochromic shifts of ∼7 nm, consistent with the presence of Prochlorococcus, were
found in the deep layer of the Sargasso Sea (Bricaud and Stramski, 1990). A simi-
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larly strong shift of ∼40 nm has been observed in the tropical North Atlantic (Lazzara
et al., 1996). The shifts we encountered in November strongly suggested the pres-
ence of Prochlorococcus in this season. This is partly supported by a parallel study
on phytoplankton community structure on T-A based on HPLC pigment analysis (Chen
et al., 2006). It was revealed that diatom dominated in the Pearl River Estuary and5

the adjacent coastal area. However, the proportion of Prymnesiophyta, cyanobacte-
ria and Prochlorococcus were main groups in the offshore water. The contribution of
cyanobacteria and Prochlorococcus to chl α was 16–33% and 14–26% respectively on
the outer shelf (Sta. 5 was marked as SCS04 in Chen et al., 2006).

3.3 Variations in the absorption spectral model parameters10

Among the SEADAS list of MODIS Level 3 products, there are absorption and
backscatter coefficients derived from Carder et al. (1999) and QAA (Lee et al., 2002).
Carder et al. (1999) chose a hyperbolic tangent function to model the relationship be-
tween αph(λ) versus αph(675) for high-light subtropical regimes as follows:

αph(λ) = a0 × exp(a1 × tanh(a2 × ln(αph(675)/a3))) × αph(675).15

Table 2 show the NSCS regional tuning results of the Carder model for the MODIS
wave bands centered at λ = 412, 443, 488, 510, 531 and 551 nm. Parameters a2 and
a3 were set to the same values proposed by Carder et al. (1999).

For T-A, there appeared to be minor variation of the model parameters between
the two seasons (Table 2). The lead parameter a0 was slightly higher in May 200120

than in November 2002. The largest difference between them occurred at 551 nm,
corresponding to a change of ∼30%. Variations of a0 at the other bands were <10%.

Differences of the model parameters between the coastal transect T-C and the shelf
transects T-A and T-B in November 2002 were relatively significant (Table 2). For the
three bands 412, 443 and 488 nm, the lead parameter, a0, was about 20% lower on25

T-C than on T-A and T-B. For 510 and 551 nm, a0 was similar along these transects.
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It is thus suggested that a regional tuning (i.e., from the coastal water adjacent to the
PRE to the NSCS shelf water) may be important for semi-analytical model parameter-
ization. Tuning between the two seasons under study seems less important although
a full seasonal cycle of the absorption spectral model is desirable. In addition, the pa-
rameters in this region deviated from those originally proposed in Carder et al. (1999),5

further demonstrating that a single parameterization is not applicable globally, and re-
gional tuning is often required.

4 Summary

Variability of the phytoplankton absorption coefficients (αph) in the northern South
China Sea (NSCS) adjacent to the Pearl River estuary (PRE) was examined based10

upon two cruise surveys (May 2001 and November 2002). Significant temporal and
spatial variations of αph(675) have been found. Short-term variability in May 2001
revealed the influence of a phytoplankton bloom downstream of a large river plume
induced by heavy precipitation. Seasonal differences indicated the deeper mixing in
November 2002 due to the stronger winter monsoon. Because αph(675) is highly cor-15

related with chl α, these variations of αph(675) are expected to reflect the pattern of
chl α, knowledge of which is still rather limited in this region. Furthermore, variations
in the absorption characteristics, such as blue/red (B/R) ratio and bathochromic shift,
inferred change of phytoplankton community structure. For example, picoprocaryotes
were probably an important component of the phytoplankton community on the outer20

shelf/slope of T-A in November, while this seemed not the case for its inner shelf por-
tion, where the impact of Pearl River plume and coastal water was high. The results
here show the potential of applying αph, a parameter relatively easy to determine, to
obtain some information about the phytoplankton standing stock and community struc-
ture. In addition, fitting the measured data to the spectral model of αph of Carder et25

al. (1999) found greater spatial variations than seasonal variations in the model param-
eters, suggesting that separate models or parameters for coastal and shelf waters are

1567

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/1555/2007/bgd-4-1555-2007-print.pdf
http://www.biogeosciences-discuss.net/4/1555/2007/bgd-4-1555-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
4, 1555–1584, 2007

Phytoplankton
absorption

coefficients in the
northern SCS

J. Wu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

required in order to accurately derive αph remotely for developing local semi-analytical
algorithms.

The NSCS is a complex water body subject to local river plumes and coastal waters
modulated by monsoon and other factors. Therefore, the limited data obtained from the
two cruises are insufficient to provide the full scenario of temporal (event to non-event,5

seasonal) and spatial (shelf to slope) variability of αph in this water, and more intensive
investigation is required. Nevertheless, our results provide for the first time a sketch
of the spatial and temporal variations of αph associated with physical processes in this
region.
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Table 1. B/R ratios (αph(440)/αph(675)) in the Northern South China Sea in May 2001 and
November 2002.

2001-5 2002-11
station depth(m) B/R ratio station depth(m) B/R ratio station depth(m) B/R ratio

3 1 3.4 3A 1 3.4 C1 1 2.6
3 37 2.6 3A 40 2.9 C1 5 2.9
3 50 2.6 3A 80 2.3 C1 39 2.2
3 75 3.8 3A 110 2.4 C2 1 2.8
2 1 3.4 3 1 3.2 C2 10 2.6
2 10 3.1 3 10 3.5 C2 35 2.1
2 30 2.3 3 50 2.8 C3 1 2.1
2 60 2.5 3 100 2.1 C3 7 2.3
2 100 3.4 3 120 2.3 C3 31 2.2
4A 1 3.6 4 1 3.1 C4 1 2.3
4A 20 3.8 4 20 3.0 C4 10 2.3
4A 40 2.3 4 80 2.3 C4 20 2.2
4A 100 3.6 2 1 2.6 C4 42 1.9
5A 1 3.3 2 10 2.6 C5 1 2.0
5A 10 3.1 2 50 2.7 C5 40 2.3
5A 40 2.7 2 75 2.3 B1 1 3.7
5A 50 2.6 2 100 2.5 B1 20 3.4
5A 70 2.3 4A 1 3.1 B1 40 2.5
5A 85 2.5 4A 10 2.9 B1 70 2.5
6 1 3.9 4A 40 2.9 B1 120 2.7
6 10 3.4 5 1 2.7 B2 1 3.5
6 20 3.9 5 15 3.1 B2 20 2.2
6 33 3.2 5 30 3.2 B2 50 2.9
6 45 2.6 5 45 2.5 B2 80 3.6
6 60 2.5 5 60 2.0 B2 100 2.4
6 66 2.4 5 80 3.0 B2 140 2.2
2’ 1 3.2 5 100 2.9 B3 1 3.5
2’ 10 3.4 5A 1 2.4 B3 10 3.3
2’ 37 3.2 5A 5 2.5 B3 60 2.5
2’ 75 2.3 5A 10 2.4 B3 80 2.4
2’ 100 2.7 5A 25 2.2 B3 100 3.3
6’ 1 2.5 5A 50 2.3 B4 1 3.5
6’ 5 2.6 5A 84 2.4 B4 20 3.0
6’ 20 2.6 6 1 2.5 B4 50 2.2
6’ 50 2.4 6 15 2.4 B4 80 3.8
6’ 65 2.5 6 25 2.6 B5 1 3.4
6C 1 2.1 6 35 2.6 B5 60 2.4
6C 45 2.3 6 65 2.3
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Table 2. Parameters of the phytoplankton absorption spectral model.

Wavelength (nm) parameters May-2001 T-A Nov-2002 T-A Nov-2002 T-B Nov-2002 T-C Carder et al (1999)

a0 2.00 1.85 1.94 1.53 2.2
a1 0.45 0.29 0.55 –0.21 0.75

412 a2 –0.5 –0.5 –0.5 –0.5 –0.5
a3 0.0112 0.0112 0.0112 0.0112 0.0112
R2 0.96 0.90 0.89 0.78 \

a0 2.39 2.38 2.53 1.96 3.59
a1 0.49 0.26 0.29 0.26 0.8

443 a2 –0.5 –0.5 –0.5 –0.5 –0.5
a3 0.0112 0.0112 0.0112 0.0112 0.0112
R2 0.99 0.94 0.92 0.66 \

a0 1.73 1.62 1.78 1.39 2.27
a1 0.36 0.27 0.35 0.27 0.59

488 a2 –0.5 –0.5 –0.5 –0.5 –0.5
a3 0.0112 0.0112 0.0112 0.0112 0.0112
R2 0.99 0.97 0.97 0.77 \

a0 1.02 0.89 0.96 0.86 1.4
a1 0.33 0.32 0.51 -0.43 0.35

510 a2 –0.5 –0.5 –0.5 –0.5 –0.5
a3 0.0112 0.0112 0.0112 0.0112 0.0112
R2 0.97 0.92 0.93 0.94 \

a0 0.38 0.30 0.34 0.33 0.42
a1 –0.66 0.06 0.39 –1.88 –0.22

551 a2 –0.5 –0.5 –0.5 –0.5 –0.5
a3 0.0112 0.0112 0.0112 0.0112 0.0112
R2 0.87 0.68 0.64 0.87 \
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Fig. 1 

 

Fig. 1. CTD and sampling stations in the northern South China Sea. +: CTD and sampling
stations in May 2001; ×: stations only for CTD in May 2001; ©: CTD and sampling stations in
November 2002; PRE: the Pearl River Estuary; Dongsha Is.: Dongsha island.
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 Fig. 2. Changes of salinity between the two cruise legs. (a) 14–19 May; (b) 24–25 May.
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(b) 

Fig. 3  

 
Fig. 3. Vertical distribution of αph(675) during the two cruise legs in May 2001. (a) 14–19 May;
(b) 24–25 May.
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Fig. 4. Surface αph normalized at 440 nm at Sta. 6 and Sta. 6C. Sta. 6C was sampled during
the second cruise leg when Sta. 6 was revisited (annotated as Sta. 6’).
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(a) 

Fig. 5 

 

(b) 

Fig. 5 
 

Fig. 5. Monthly mean wind stress as observed by QuikSCAT during May 2001 (a) and Novem-
ber 2002 (b). The unit is N m−2.
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(b) 

Fig. 6 
 

Fig. 6. Temperature (a) and salinity (b) profiles on the outer shelf/slope of transect A. The solid
and dash lines represent observations in May 2001 and November 2002, respectively.

1580

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/1555/2007/bgd-4-1555-2007-print.pdf
http://www.biogeosciences-discuss.net/4/1555/2007/bgd-4-1555-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
4, 1555–1584, 2007

Phytoplankton
absorption

coefficients in the
northern SCS

J. Wu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Sta. 5 Sta. 4A Sta. 2 Sta. 4 Sta. 3 Sta. 3A

0 0.008 0.016

160

120

80

40

0

D
ep

th
 (m

)

0 0.008 0.016 0 0.008 0.016
aph(675) (m-1)

0 0.008 0.016 0 0.008 0.016 0 0.008 0.016

Sta. 5 Sta. 4A Sta. 2 Sta. 4 Sta. 3 Sta. 3A

0 0.008 0.016

160

120

80

40

0

D
ep

th
 (m

)

0 0.008 0.016 0 0.008 0.016
aph(675) (m-1)

0 0.008 0.016 0 0.008 0.016 0 0.008 0.016

 
 

Fig. 7 
 

Fig. 7. Vertical distribution of αph(675) on the outer shelf/slope of transect A. Observations in
May 2001 and November 2002 are represented with bold and open circles respectively.
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(b) 
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Fig. 8. Salinity (a) and temperature (b) distribution on Transect-A, B and C (from left to right) in
November 2002.
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Fig. 9. Vertical profiles of αph(675) in November 2002 on T-A (a), T-B (b) and T-C (c).
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Fig. 10 
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(b) 

Fig. 10 
 

Fig. 10. αph normalized at 440 nm in November 2002. (a) Surface distribution on Transect A;
(b) Vertical distribution at Sta. 3. The legend in (b) shows the sampling depths in meters. The
dotted vertical line in the graphs highlights the normal absorption peak at 440 nm.
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