3307

Biogeosciences Discuss., 5, 3307–3346, 2008 www.biogeosciences-discuss.net/5/3307/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Nitrate retention and removal in Mediterranean streams with contrasting land uses: a ¹⁵N tracer study

D. von Schiller¹, E. Martí¹, and J. L. Riera²

¹Limnology Group, Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes, Spain ²Departament d'Ecologia, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain

Received: 5 August 2008 - Accepted: 5 August 2008 - Published: 27 August 2008

Correspondence to: D. von Schiller (schiller@ceab.csic.es)

Published by Copernicus Publications on behalf of the European Geosciences Union.

5, 3307-3346, 2008

Nitrate retention and removal in

Abstract

We used ¹⁵N-labelled nitrate (NO_3^-) additions to investigate nitrogen (N) cycling at the whole-reach scale in three Mediterranean streams subjected to contrasting land uses (i.e. forested, urban and agricultural). Our aim was to examine: i) the magnitude and relative importance of NO_3^- retention (i.e. assimilatory uptake), and removal, (i.e. denitrification), ii) the relative contribution of the different primary uptake compartments to NO_3^- retention, and iii) the regeneration, transformation and export pathways of the retained N.

The concentration of NO₃⁻ increased and that of dissolved oxygen (DO) decreased from the forested to the agricultural stream, with intermediate values in the urban stream. Standing stocks of primary uptake compartments were similar among streams and dominated by detritus compartments (i.e. fine and coarse benthic organic matter). In agreement, metabolism was net heterotrophic in all streams, although the degree of heterotrophy increased from the forested to the agricultural stream. The NO₃⁻ uptake

- ¹⁵ length decreased along this gradient, whereas the NO_3^- mass-transfer velocity and the areal NO_3^- uptake rate were highest in the urban stream. Denitrification was not detectable in the forested stream, but accounted for 9% and 68% of total NO_3^- uptake in the urban and the agricultural stream, respectively. The relative contribution of detritus compartments to NO_3^- assimilatory uptake was highest in the forested and lowest in
- the agricultural stream. In all streams, the retained N was rapidly transferred to higher trophic levels and regenerated back to the water column. Due to a strong coupling between regeneration and nitrification, most retained N was exported from the experimental reaches in the form of NO_3^- .

This study evidences fast N cycling in Mediterranean streams. Moreover, results indicate that permanent NO₃⁻ removal via denitrification may be enhanced over temporary NO₃⁻ retention via assimilatory uptake in heterotrophic human-altered streams characterized by high NO₃⁻ and low DO concentrations.

BGD

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

1 Introduction

Biogeochemists have traditionally viewed fluvial ecosystems as relatively inactive conduits that transport nutrients from the land to the sea. However, streams and rivers have the ability to store, transform and remove nutrients during downstream transport, which results in variations in the form and amount of nutrients delivered to downstream ecosystems (Alexander et al., 2000; Peterson et al., 2001: Mulholland et al., 2008).

- Nitrate (NO₃⁻), the most abundant form of dissolved inorganic nitrogen (N) found in freshwaters, can be temporarily retained or permanently removed during downstream transport (Bernot and Dodds, 2005). Retention of NO₃⁻ occurs via assimilatory uptake by stream benthic organisms, often referred to as primary uptake compartments (i.e. those compartments that take up dissolved nutrients directly from the water column).
- The relative contribution of autotrophs (i.e. algae, macrophytes, and bryophytes) and heterotrophs (i.e. bacteria and fungi) to assimilatory uptake is influenced by the availability of nutrients, light and organic matter (Webster et al., 2003). The NO_3^- assimilated
- ¹⁵ by the primary uptake compartments is transferred to consumers at higher trophic levels and regenerated back to the water column as ammonium (NH_4^+) via mineralization and excretion. As it is transported downstream, the released NH_4^+ is again taken up by the biota or transformed to NO_3^- via nitrification, thus completing a whole cycle or spiral (Newbold, 1996). Removal of NO_3^- occurs via denitrification, a microbial dissimilatory
- ²⁰ process in which dissolved NO₃⁻ is reduced to gaseous forms of N that are permanently lost from the ecosystem (Seitzinger et al., 1988). Denitrification in streams takes place in the sediments, and is generally controlled by the availability of oxygen, organic carbon and NO₃⁻ (Holmes et al., 1996; Kemp and Dodds, 2002). This simple perspective of the processes involved in the fate of NO₃⁻ in streams can be further complicated by alternative dissimilatory uptake processes (Burgin and Hamilton, 2007), and abiotic N adsorption and burial (Bernot and Dodds, 2005).

Nitrogen pollution in aquatic ecosystems can cause acidification, eutrophication, and impairment of aquatic organisms, as well as problems to human health and economy

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

(Camargo and Alonso, 2006). Understanding N retention and removal in streams is important because these processes can change the form and amount of N delivered to downstream and coastal ecosystems (Alexander et al., 2000; Alexander et al., 2007). Nitrate retention and removal differentially affect downstream N export; thus, it is critical

⁵ to understand these pathways and to evaluate their relative contribution to total NO_3^- uptake. In addition, we know little about the role of streams as a source of N₂O, an intermediary product of denitrification that is considered an important greenhouse gas and a catalyzer of ozone destruction (Beaulieu et al., 2008).

Nitrogen uptake in streams has been mostly studied using nutrient enrichment exper iments (Stream Solute Workshop, 1990; Webster and Valett, 2006), whereas particular processes such as nitrification and denitrification have been mainly investigated using incubation experiments (Holmes et al., 1996; Kemp and Dodds, 2002; Inwood et al., 2005). Both approaches, however, show evident methodological constraints. For instance, nutrient additions may underestimate actual uptake rates at ambient levels

- (Mulholland et al., 2002; Dodds et al., 2002), whereas measurements from incubation experiments are difficult to extrapolate to the whole-reach scale (Dodds et al., 2000). More recently, N retention and removal pathways have been explored using ¹⁵N tracer addition techniques, which allow quantifying processes simultaneously occurring in a stream at the whole-reach scale and at ambient conditions, while avoiding the limi-
- tations of enrichment experiments and incubations. Various studies have used ¹⁵N tracer additions to investigate N retention and removal in reference headwater streams (e.g. Peterson et al., 1997; Hall et al., 1998; Peterson et al., 2001; Mulholland et al., 2004). More recent studies have expanded our knowledge on these processes using ¹⁵N tracer additions in streams influenced by various human activities (e.g., Boehlke et al., 2004).
- al., 2004; Grimm et al., 2005; Bernot et al., 2006; Simon et al., 2007; O'Brien et al., 2007; Mulholland et al., 2008). Although results from these studies have emphasized the importance of N retention and removal in streams, both the relative contribution of each of these pathways to total N uptake and the regeneration, transformation and export of the retained N remain widely unknown. Moreover, most previous studies have

BGD 5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. **Title Page** Abstract Introduction Conclusions References **Tables Figures |**◀ Close Back Full Screen / Esc

Printer-friendly Version

Interactive Discussion

been conducted in streams from temperate regions of North America, yet studies in different bioclimatic regions are needed for a global understanding of N dynamics in streams.

To our knowledge, this is the first study reporting results from ¹⁵N tracer additions in
 Mediterranean streams. Catchments in the Mediterranean region are primarily characterized by a long history of human development and a natural deficit of water resources, which makes them highly susceptible to human impacts (Alvarez-Cobelas et al., 2005). Because these catchments are relatively small and located next to the sea, headwater streams are of greatest importance for the retention and removal of N that is quickly
 exported to downstream coastal ecosystems.

In this study, we used ${}^{15}NO_3^-$ tracer additions to investigate N cycling at the wholereach scale in three headwater streams situated within the same Mediterranean catchment but subjected to contrasting land uses. Specifically, we aimed to examine i) the magnitude and relative importance of NO_3^- retention (i.e. assimilatory uptake), and removal, (i.e. denitrification), ii) the relative contribution of the different primary uptake compartments to NO_3^- retention, and iii) the regeneration, transformation and export pathways of the retained N.

2 Methods

15

- 2.1 Study sites
- ²⁰ This study was conducted in the catchment of the river La Tordera (Catalonia, NE Spain), with an area of 868.5 km² and dominated by siliceous geology. Climate in this region is typically Mediterranean, with warm, dry summers and mild, humid winters. Within this catchment, we selected an experimental reach with a relatively unmodified channel from each of three streams bordered by contrasting land use types (Table 1).
- ²⁵ From the stream Santa Fe (hereafter referred to as the forested stream) we selected a reach located within a beech (*Fagus sylvatica*) forest in the Montseny Natural Pro-

tected Area. From the stream Gualba (hereafter referred to as the urban stream) we selected a reach located in a park of a town with ~1000 inhabitants. Finally, from the stream Sant Celoni (hereafter referred to as the agricultural stream) we selected a reach bordered by a mixture of olive tree (*Olea europaea*) and pine (*Pinus halepensis*)
⁵ plantations. Although this agricultural reach is intermittent, water flow did not cease until after the end of the experiments. In the forested stream riparian vegetation was dominated by beech, with some stems of common elder (*Sambucus nigra*) and a poorly developed herbaceous understory. In the other streams riparian vegetation consisted mainly of alder (*Alnus glutinosa*) and sycamore (*Platanus hispanica*), with a denser
¹⁰ herbaceous understory, especially in the agricultural stream. The experiments were conducted from July to August 2004, a period characterized by base flow and full riparian cover.

2.2 Field methods

Tracer ¹⁵NO₃⁻ addition experiments followed procedures adapted from Mulholland et ¹⁵ al. (2004). A solution of ¹⁵NO₃⁻ (as 99% enriched K¹⁵NO₃⁻) in conjunction with chloride (as NaCl) was injected at the top of the reach at a constant rate (20 mL min⁻¹) using a Masterflex (Vernon Hills, Illinois, USA) L/S battery-powered peristaltic pump. Additions started at midnight (00:00) and lasted for ~12 h. The amount of K¹⁵NO₃⁻ added to each stream was calculated to produce a target δ^{15} N enrichment of 10 000‰ of the NO₃⁻ in ²⁰ the stream water.

The passage of the conservative tracer (i.e. chloride) was automatically recorded at the bottom of the reach every 10 s using a WTW (Weilheim, Germany) 340i portable conductivity meter connected to a Campbell Scientific (Logan, Utah, USA) data logger. We measured conductivity and collected water samples at six stations along the reach

²⁵ before the addition (i.e. background sampling). During the addition, we measured conductivity and collected water samples at the same stations at 06:00 (i.e. first plateau sampling) and 11:00 (i.e. second plateau sampling) to determine NO_3^- uptake param5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

eters for night and day, respectively. One day after the addition was stopped (i.e. post-24 h sampling), we measured conductivity and collected water samples at the same stations and an additional upstream station. In the agricultural stream, we decided to bring forward the post-24 h sampling to 7 h after the end of the addition to avoid an

- ⁵ imminent rain event. Nonetheless, conductivity along the reach was at background levels at the time of sampling, indicating that the conservative tracer had already left the experimental reach. Finally, we measured conductivity and collected water samples at the upstream and the most downstream station two days (i.e. post-48 h sampling) and three days (i.e. post-72 h sampling) after the addition was stopped.
- All water samples were immediately filtered through ashed Albet (Barcelona, Spain) FVF glass fiber filters. Filtered samples for nutrient chemistry (40 mL, two replicates per station) and ¹⁵NO₃⁻ for isotopic analysis (0.5 L, two replicates per station) were stored on ice in the field, and then refrigerated at 4°C or frozen in the laboratory until further processing and analysis. Following procedures adapted from Holmes et al. (1998),
 filtered samples for ¹⁵NH₄⁺ analysis (3 to 4 L, one sample per station) were amended with 3.0 g of MgO, 50 g of NaCl, and a Teflon filter packet, and brought to the laboratory for further processing. The Teflon filter packet was constructed by sealing a 1-cm diameter ashed Whatman (Kent, UK) GF/D glass fiber filter, acidified with 25 μL of
- 2.5 M KHSO₄, within a packet made of two pieces of Teflon plumbing tape.
 Background and plateau samples of dissolved ¹⁵N₂ and ¹⁵N₂O (two replicates per station) were collected at 10 stations along the reach coinciding in time with water sampling following procedures by Hamilton and Ostrom (2007). Water samples (40 mL, two replicates per station) were collected in 60-mL plastic syringes fitted with stopcocks, taking care not to include bubbles in the samples. With the sample syringe submersed
- ²⁵ under water, 20 mL of high purity He were added to each syringe. Syringes were then shaken for ~10 min to allow equilibration of the N-gas into the He space. Afterwards, the He space was collected in evacuated 12-mL Labco (High Wycombe, UK) Type 3 exetainers. The exetainers were stored in water-filled centrifuge tubes and sent to the stable isotope laboratory.

BGD 5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. **Title Page** Abstract Introduction Conclusions References **Figures Tables |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Standing stocks of primary uptake compartments were estimated using patchspecific samplings at the seven (six downstream+one upstream) water sampling stations two days after the end of the $^{15}\mathrm{NO}_3^-$ addition. Coarse benthic organic matter (CBOM), mostly consisting of leaves and small wood sticks, and water-submerged ⁵ alder roots were sampled by collecting all material found within a 0.04 m² metal frame. Surface and sub-surface fine benthic organic matter (FBOM) was sampled using a syringe to collect an aliguot of the material suspended by manual agitation of the surface $(\sim 1 \text{ cm})$ and subsurface $(\sim 3 \text{ to } 5 \text{ cm})$ sediment in a known volume within a 0.05 m² plastic corer. Collected FBOM samples were filtered onto ashed pre-weighted FVF glass fiber filters. We sampled suspended particulate organic matter (SPOM) by filtering 10 a known volume of water onto ashed pre-weighted FVF glass fiber filters. Bryophytes and filamentous algae were sampled by scraping material found within a 0.002 m² plastic frame. Epilithon was sampled by scraping randomly collected cobbles and filtering onto ashed pre-weighted FVF glass fiber filters. The cobble surface was estimated by covering with aluminum foil and applying a weight to area relationship. Compos-

- ¹⁵ by covering with aluminum foil and applying a weight to area relationship. Composite samples for ¹⁵N analysis (three to six replicates per station) were collected from all compartments at the seven water sampling stations during the post-24 h sampling using the same methods as for standing stock sampling. To follow the transfer of the retained N to higher trophic levels, we collected composite samples for the analysis of the samples for the analysis of the samples for the samples
- ²⁰ ¹⁵N in the freshwater limpet Ancylus fluviatilis (~10 individuals per station), a scraper commonly found on rocks in these streams. Limpets were collected at the seven water sampling stations during the post-24 h sampling. Additional SPOM samples for ¹⁵N analysis were collected from the upstream and the most downstream station during the post-48 h and the post-72 h sampling.
- ²⁵ Whole-stream metabolism was estimated in each stream on the day of the ¹⁵NO₃⁻ addition using the open-system, single station approach (Bott, 2006). Dissolved oxygen (DO) concentration and temperature were recorded at the bottom of the study reach at 10-min intervals during a 24-h period with a WTW (Weilheim, Germany) 340i portable oxygen meter. During the same period, photosynthetically active radiation (PAR) was

BGD 5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. Title Page Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc

Printer-friendly Version

Interactive Discussion

3315

measured every 10 min with a Skye (Powys, UK) SKP215 quantum sensor connected to a Campbell Scientific (Logan, Utah, USA) data logger.

On the day before the addition we determined the wetted width (w) and percent reach coverage of the different substrate types using cross-sectional transects located

every 25 m along the reach. The percent reach coverage of stream habitats (riffle, run, and pool) and primary uptake compartments was visually estimated on the same date at 5-m intervals along the reach.

2.3 Laboratory methods

Stream water samples were analyzed for NO₃⁻, NO₂⁻, and soluble reactive phosphorus (SRP) concentrations on a Bran+Luebbe (Nordersted, Germany) TRAACS 2000 Autoanalyzer. The concentration of NH₄⁺ was analyzed on a Skalar (Breda, The Netherlands) San⁺ Auto-analyzer. All nutrient analyses were performed following standard colorimetric methods (APHA, 1995). The concentration of DOC was determined on a Shimadzu (Tokyo, Japan) TOC-VCSH analyzer.

- The ¹⁵N content of stream water NO₃⁻ was determined using an adaptation of the method by Sigman et al. (1997). Dissolved NH₄⁺ was removed and stream water samples were concentrated (volume depending on the N content of each sample) by adding 3.0 g of MgO and 5.0 g of NaCl and boiling. Resulting samples (~0.1 L) were then transferred to acid-washed plastic bottles to which 0.5 g MgO and 0.5 g Devarda's alloy and a Teflon filter packet were added. The samples were incubated at 60°C for 48 h to
- reduce NO₃⁻ to NH₄⁺, and then placed on a shaker for seven days to allow for diffusion of ammonia (NH₃) onto the acidified filter. Water samples for the determination of the ¹⁵N content of stream water NH₄⁺, to which the MgO, NaCl, and Teflon filter packet had already been added in the field, were incubated in a shaker at 40°C for three to four weeks to allow for diffusion of NH₃ onto the acidified filter. At the end of the processing,
- filters from ${}^{15}NO_3^-$ and ${}^{15}NH_4^+$ samples were removed from the bottles, placed in scintillation vials, dried in a desiccator for four days, encapsulated in tins, and sent to the

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

stable isotope laboratory. Various sets of blanks and standards of known concentration for ${}^{15}NO_3^-$ and ${}^{15}NH_4^+$ samples were run for each addition.

Samples for standing stocks of all primary uptake compartments were oven-dried at 60°C, weighted to the nearest 0.1 mg on a Sartorius (Göttingen, Germany) MC1
 analytical balance, and combusted at 450°C to estimate ash free dry mass (AFDM). To calculate whole-reach standing stocks (g AFDM m⁻²) of the different primary uptake compartments, we corrected the patch-specific estimates by the percent reach coverage of each compartment. Bryophytes (only the tips), filamentous algae, root, and CBOM samples for ¹⁵N analysis were oven-dried at 60°C, ground to a fine pow-der, weighted to the nearest 0.001 mg on a Mettler-Toledo (Greifensee, Switzerland) MX5 microbalance, encapsulated in tins, and sent to the stable isotope laboratory. For FBOM, SPOM and epilithon samples (on pre-weighted glass fiber filters), discs of a known surface area (diameter=1 cm) were cut out from the previously oven-dried filters and processed as the rest of samples. Limpets were left in fresh stream water

¹⁵ overnight to allow emptying their gut contents, and the fresh tissue was then separated from the shell and processed as the rest of samples.

Encapsulated samples of ¹⁵NO₃⁻, ¹⁵NH₄⁺, and primary uptake compartments were analyzed at the UCDavis Stable Isotope Facility (Davis, California, USA). The content (as a percent of dry mass) and the stable isotope ratios of C and N were measured by continuous flow isotope ratio mass spectrometry (20-20 mass spectrometer;

- ²⁰ sured by continuous flow isotope ratio mass spectrometry (20-20 mass spectrometer; PDZEuropa, Northwich, UK) after sample combustion in an on-line elemental analyzer (PDZEuropa ANCA-GSL). We estimated the C content of wood and root samples, for which the detection limit of the mass spectrometer was exceeded, as 45% of dry mass based on unpublished data from nearby streams. One set of N-gas samples was an-
- ²⁵ alyzed for ¹⁵N₂O on a Finnigan (Sacramento, California, USA) MAT 251 Isotope Ratio Mass Spectrometer at the same stable isotope laboratory. The other set of N-gas samples was analyzed for ¹⁵N₂ on a multi-collector CV Instruments (Manchester, UK) Isoprime Mass Spectrometer at the MSU Stable Isotope Laboratory (Lansing, Michigan, USA).

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

2.4 Parameter calculations

Breakthrough curves of conductivity at the bottom of the reach were analyzed by visual inspection with a one-dimensional transport with inflow and storage model (OTIS; Runkel, 1998) to estimate stream hydraulic characteristics, including discharge, crosssectional area (A) and cross-sectional transient storage zone area (A_s). Mean reach 5 depth was calculated as A/w. Water transient storage was reported as the ratio A_s/A We calculated daily rates of gross primary production (GPP) and ecosystem respiration (ER) by integrating the DO measurements at the bottom of the reach during the 24-h period following Bott (2006). Percent DO saturation was estimated using DO and temperature together with a standard altitude-air pressure algorithm to correct for site 10 altitude. Reaeration coefficients were estimated based on the surface renewal model (Owens, 1974). Instantaneous respiration rates at night were extrapolated to 24 h to estimate ER. We computed GPP by integrating the difference between the measured net DO change (corrected by the reaeration flux) and the extrapolated day-time respiration. GPP and ER were multiplied by the mean reach depth to obtain areal estimates. 15 The fractional NO₃⁻ uptake rate per unit distance (k_W NO₃⁻, m⁻¹) was estimated from the regression of the In-transformed tracer ¹⁵NO₃⁻ flux versus distance downstream with data from the plateau samplings (Mulholland et al., 2004). The tracer $^{15}\mathrm{NO}_{2}^{-}$ flux at each station was calculated by multiplying the background-corrected ${}^{15}NO_3^{-1}$ concentration by discharge at each station. Station-specific discharge was calculated 20 from the dilution of the conservative tracer along the reach. The inverse of $k_W NO_3^-$ is the NO₃⁻ uptake length (S_w NO₃⁻; m), which was converted to the NO₃⁻ mass transfer velocity ($V_f NO_3^-$; cm s⁻¹) as the stream specific discharge (Q/w) divided by $S_w NO_3^-$. The areal NO₃⁻ uptake rate ($U \text{ NO}_3^-$; $\mu \text{gm}^2 \text{s}^{-1}$), the mass of NO₃⁻ taken up from the water column per unit streambed area and time, was calculated as $V_f NO_3^-$ multiplied 25 by the mean ambient NO₃⁻ concentration. Data from the first and the second plateau sampling were used to calculate night and day k_W NO₃, respectively. Differences

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

between day and night $k_W NO_3^-$ were tested with a *t*-test for the comparison of slopes (Fowler and Cohen, 1990). Mean $k_W NO_3^-$ for each stream was calculated as the mean of night and day values.

- The fractional denitrification rates per unit distance via N₂ (k_{DEN} N₂; m⁻¹) and N₂O
 (k_{DEN} N₂O; m⁻¹) production were estimated by separately fitting the longitudinal tracer flux of ¹⁵N₂ and ¹⁵N₂O from the plateau samplings to the denitrification model proposed by Mulholland et al. (2004) using the Microsoft (Redmond, Washington, USA) Excel 2003 Solver tool. The tracer flux of ¹⁵N₂ or ¹⁵N₂O at each station was calculated by multiplying the background-corrected ¹⁵N₂ or ¹⁵N₂O concentration by discharge at
 each station. Only data from stations with a significant tracer ¹⁵N in N₂ or N₂O (defined as δ¹⁵N values greater than the upper 97.5% confidence interval of background values) were used (Mulholland et al., 2008). The reaeration rates of N₂ and N₂O were estimated based on the surface renewal model (Owens, 1974) correcting for the re-
- spective Schmidt numbers. Total fractional denitrification rate per unit distance (k_{DEN} ¹⁵ Total; m⁻¹) was calculated as the sum of k_{DEN} N₂ and k_{DEN} N₂O. The denitrification length (S_{DEN} ; m), the denitrification mass transfer velocity (V_{fDEN} ; cm s⁻¹) and the areal denitrification rate (U_{DEN} ; μ g N m⁻² s⁻¹) were calculated from k_{DEN} as previously indicated for k_W NO₃⁻¹. Data from the first and the second plateau sampling were used to calculate night and day k_{DEN} , respectively. Mean k_{DEN} for each stream was calculated ²⁰ as the mean of night and day values.

The compartment-specific NO₃⁻ assimilatory uptake rate of each primary uptake compartment at each station was calculated as the reach-weighted mass of ¹⁵N tracer per m² of each compartment divided by the time of the addition (~12 h) and the fraction of ¹⁵N in the stream water NO₃⁻ flux. The areal NO₃⁻ assimilatory uptake rate by all primary uptake compartments together (U_{BIO} ; μ g N m⁻² s⁻¹) was calculated as the sum of the mean compartment-specific NO₃⁻ assimilatory uptake rates. We used the mean reach NO₃⁻ concentration and Q/w to convert U_{BIO} to the assimilatory uptake mass transfer velocity (V_{fBIO}), the assimilatory uptake length (S_{BIO}) and the fractional

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

assimilatory uptake rate per unit distance (k_{BIO}). Finally, we estimated the proportion of the total NO₃⁻ assimilatory uptake (i.e. the difference between k_W NO₃⁻ and k_{DEN}) accounted for by k_{BIO} .

We calculated the N turnover rate (s⁻¹) for each primary uptake compartment by ⁵ dividing the compartment-specific NO₃⁻ assimilatory uptake rate (μ g N m⁻² s⁻¹) by the mass of N per m² of each compartment. This measure allows for comparisons of the role of the different primary uptake compartments in N regeneration. However, we should take this measurement as an approximation to real N turnover for several reasons: this measurement does not take into account uptake of dissolved N forms other than NO₃, the additions were not long enough to reach a steady state, and much 10 of the pool of N, especially in the CBOM compartments, is not involved in N cycling. Because the post-24 h longitudinal tracer fluxes of ${}^{15}NH_4^+$ and ${}^{15}NO_3^-$ showed a similar tendency, the fractional N regeneration rates per unit time via NH_4^+ release (k_{AM} ; s⁻¹) and its subsequent transformation to NO₃⁻ via nitrification (K_{NIT} ; s⁻¹) were estimated by separately fitting both fluxes to an ammonification-nitrification model, based 15 on the nitrification model proposed by Mulholland et al. (2000). We used the rate of decline in total biomass ¹⁵N with distance as the N source. The tracer flux of ¹⁵NH₄⁺ and $^{15}NO_3^-$ at each station was calculated by multiplying the background-corrected $^{15}NH_4^+$ and ${}^{15}NO_3^-$ concentration by discharge at each station. Because NH_4^+ is expected to be taken up preferentially over NO₃⁻, we optimized a solution for k_{AM} with the Solver 20 Tool using the condition of a fractional NH_4^+ uptake rate $(k_W NH_4^+) \le k_W NO_3^-$. To estimate $K_{\rm NIT}$, the mean $k_W NO_3^-$ value calculated from the ¹⁵NO₃⁻ decline at plateau was used. We assumed that all labeled ¹⁵NO₃⁻ at the post-24 h sampling must originate from nitrification of the labeled ${}^{15}NH_4^+$ released by the biota; thus the total fractional regeneration rate per unit distance (k_{BEG} ; s⁻¹) was calculated as the sum of k_{AM} and 25 $k_{\rm NIT}$.

Export of the added ¹⁵N from the experimental reach as NO₃⁻, NH₄⁺, and SPOM

BGD 5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. **Title Page** Introduction Abstract Conclusions References **Figures Tables |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

was calculated using data from the post-24 h, post-48 h, and post-72 h samplings. The total export tracer ¹⁵N flux for each sampling date was estimated as the sum of NO_3^- , NH_4^+ , and SPOM ¹⁵N fluxes. A linear regression was fitted to the log-transformed export tracer ¹⁵N flux versus time of sampling. The slope of this regression allows the comparison among streams of the velocity at which the reach was losing or exporting the retained N.

3 Results

3.1 Physical and chemical characteristics

Physical and chemical characteristics of the study streams during the ¹⁵NO₃⁻ additions are summarized in Table 1. Selected reaches were riffle-run dominated and cobbles 10 were the most abundant substrate type. Hydrological characteristics were typical of the summer base flow period in all streams, but the agricultural stream showed the lowest discharge, velocity, width and depth. Transient water storage was generally low, but higher in the forested stream than in the other streams. The lower temperature in the forested stream was due to its location at a higher altitude. Solar radiation (as PAR) 15 was generally low and similar among streams reflecting the influence of the relatively well developed riparian canopies. Dissolved inorganic nitrogen (DIN) concentration, predominantly in the form of NO₃, was moderately low in the forested, intermediate in the urban and highest in the agricultural stream. Conversely, the daily mean DO concentration showed the inverse pattern among streams. The concentration of SRP 20 was highest in the agricultural stream, whereas both conductivity and DOC concentration were highest in the urban stream. Physical and chemical characteristics were relatively constant during the experiments, although diel changes (i.e. lower discharge and higher temperature during the day) were observed, especially in the agricultural stream. 25

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

3.2 Stream metabolism and standing stocks

Results from stream metabolism measurements showed the importance of heterotrophic activity in these well shaded streams (Table 1). Both GPP and ER increased from the forested to the agricultural stream. All streams, however, were net heterotrophic (GPP:ER ratio<1), and the degree of heterotrophy increased (i.e. the GPP:ER ratio decreased) from the forested to the agricultural stream.

The total standing stock of primary uptake compartments was similar among streams and dominated by detritus compartments (i.e. FBOM and CBOM), in agreement with the metabolism results (Table 2). The standing stock of FBOM, especially the subsurface fraction, was the largest compartment in all streams. Leaves were the largest CBOM fraction in the forested and urban stream, whereas the wood fraction was larger in the agricultural stream. The standing stock of compartments dominated by primary producers, such as epilithon, bryophytes (only found in the forested stream), and filamentous algae (only found in the forested and urban streams), as well as the standing

- stock of submersed alder roots (only found in the urban and agricultural streams), were relatively small. In all streams, the %N content was highest for filamentous algae followed by roots, bryophytes, and leaves, whereas the remaining compartments showed an N content ≤2% (Table 2). The C:N ratio was higher for detritus compartments and alder roots than for compartments dominated by primary producers (bryophytes,
 filamentous algae, and epilithon) (Table 2). For each compartment, the C:N ratio con-
- sistently decreased from the forested to the agricultural stream.

3.3 Nitrate removal and retention pathways

Results from the ¹⁵N tracer additions showed considerable variation in total NO₃⁻ uptake among streams (Fig. 1, Table 3). Mean k_w NO₃⁻ increased (i.e. mean S_w NO₃⁻ decreased) from the forested to the agricultural stream. However, mean V_f NO₃⁻ and mean U NO₃⁻ were highest in the urban stream. Significant differences in NO₃⁻ uptake

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

between day and night were only found in the agricultural stream, in which $k_W NO_3^-$ was three-fold higher during the day than during the night (Fig. 1).

The ¹⁵N₂ and ¹⁵N₂O tracer fluxes observed in the urban and the agricultural stream were relatively well fitted by the denitrification model (Fig. 2), whereas no evidence of denitrification was observed in the forested stream. Mean k_{DEN} increased from the forested stream, in which it was below detection, to the urban and agricultural streams, in which denitrification accounted for 9% and 68% of NO₃⁻ uptake, respectively (Table 3). Similarly, both mean V_{fDEN} and mean U_{DEN} increased along this gradient. Denitrification tended to be higher at day than at night in the two streams where denitrification was measurable (Fig. 2). Overall, N₂O production accounted for <3% of total denitrification (Table 3). However, the ¹⁵N tracer was only detected in the form of N₂O in the urban stream at night.

The ¹⁵N tracer was detected in all primary uptake compartments collected during the experiments. However, in the urban stream k_{BIO} accounted for only 15% of the total assimilatory uptake calculated from the difference between k_W NO₃⁻ and k_{DEN} , whereas it accounted for 92% and 100% in the forested and agricultural stream, respectively (Table 3). U_{BIO} was similar among streams, but the relative importance of the different primary uptake compartments varied considerably among streams (Fig. 3). The contribution of detritus compartments to NO₃⁻ uptake decreased from the forested

²⁰ to the agricultural stream. Conversely, the contribution of epilithon and alder roots showed the opposite pattern, together accounting for up to 60% of U_{BIO} in the agricultural stream. The CBOM was relatively unimportant with respect to FBOM except in the urban stream, in which leaves accounted for 26% of U_{BIO} . Both bryophytes (only found in the forested stream) and filamentous algae (only found in the forested and urban streams) represented <0.1% of U_{BIO} .

Epilithon showed the highest N turnover rate in all streams, exceeded only by alder roots in the urban stream (Fig. 3). Where present, bryophytes and filamentous algae presented the lowest N turnover rates. Detritus compartments tended to show intermediate N turnover rates in all streams.

BGD 5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. **Title Page** Abstract Introduction Conclusions References **Figures Tables** 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

The ¹⁵N tracer was detected in primary consumers (i.e. *Ancylus fluviatilis* limpets) in all streams (Fig. 4). The δ^{15} N signal of the limpets tended to follow the δ^{15} N signal of epilithon along the experimental reach, especially in the agricultural stream. The mean proportion of δ^{15} N in epilithon over δ^{15} N in consumers was similar among streams ranging from 10 in the forested to 18 in the agricultural stream.

3.4 Nitrogen regeneration pathways

The ¹⁵N tracer was detected in the form of NH_4^+ and NO_3^- in all streams during the post-24 h sampling (Fig. 5). The longitudinal data of ¹⁵ NH_4^+ and ¹⁵ NO_3^- were well fitted by the ammonification-nitrification model, especially in the forested and urban streams.

¹⁰ The Solver tool gave the best fit for k_{AM} when k_W NH⁺₄ and k_W NO⁻₃ were identical. In all streams, k_{NIT} was over one order of magnitude greater than k_{AM} . The highest k_{AM} was found in the urban and the lowest in the agricultural stream, whereas k_{NIT} was highest in the agricultural and lowest in the urban stream. As a result, k_{REG} was highest in the agricultural and lowest in the urban stream, with k_{NIT} accounting for 95% to 100% of k_{REG} in all streams (Table 4).

3.5 Nitrogen export pathways

Results from the post-addition samplings at the most downstream station showed that the regenerated N was being exported out of the experimental reaches (Fig. 6). The tracer ¹⁵N flux as NO₃⁻ accounted for >90% of exported ¹⁵N in all reaches except in the urban stream, in which NH₄⁺ became the most important ¹⁵N export pathway over time, accounting for up to 96% of total export 72 h after the addition was stopped. Conversely, in the forested and agricultural stream the tracer ¹⁵N flux as NH₄⁺ accounted for <9% of total ¹⁵N export throughout the experiment. SPOM was a relatively unimportant export pathway, accounting for <0.4% of total ¹⁵N export in all study reaches. The slope of the regression of total export versus time since the end of the addition Nitrate retention and removal in Mediterranean streams

increased from the forested to the agricultural stream.

4 Discussion

4.1 Total NO₃⁻ uptake

The study streams were moderately efficient in taken up NO_3^- , with $S_W NO_3^-$ ranging from a few hundred to a few thousand meters. Values of $V_f NO_3^-$, a measure of nutrient demand that is commonly used to compare uptake among streams because it corrects for differences in stream size (Webster and Valett, 2006), were in the lower range of values reported from 72 streams subjected to various land uses across USA and Puerto Rico (Mulholland et al., 2008). Our $V_f NO_3^-$ values, however, were generally above those reported from streams affected by wastewater treatment plant inputs (e,g., Ruggiero et al., 2006; Gücker and Pusch, 2006) and below those reported from reference headwater streams (e.g., Davis and Minshall, 1999; Simon et al., 2005; Hoellein

et al., 2007).

Significant diel changes in NO_3^- uptake were only found in the agricultural stream, ¹⁵ which showed higher $k_W NO_3^-$ at day than at night. Previous studies in reference streams showed similar findings and attributed higher NO_3^- uptake during daylight to higher photoautotrophic activity (Fellows et al., 2006; Mulholland et al., 2006). This was likely the case in the agricultural stream, which showed the highest GPP among the study streams. In addition, the agricultural stream showed higher temperature

- ²⁰ and lower discharge during the day, a common pattern in Mediterranean streams in summer due to high evapotranspiration by riparian trees (Butturini et al., 2002). These diel changes in temperature and discharge likely contributed to higher $k_W NO_3^-$ at day by respectively enhancing metabolic activity (Kaplan and Bott, 1989) and providing a greater ratio of streambed area to water volume (Butturini and Sabater, 1998).
- ²⁵ Although the number of streams in our study was limited, we expected $S_W NO_3^-$ and $U NO_3^-$ to increase and $V_f NO_3^-$ to decrease along the gradient of increasing NO₃⁻ con-

centration due to saturation processes (O'Brien et al., 2007). However, the observed pattern was nearly opposite: $S_W NO_3^-$ decreased along the NO₃⁻ concentration gradient, whereas both V_f NO₃⁻ and U NO₃⁻ were higher in the urban than in the other streams. The considerably lower discharge in the agricultural stream in comparison to the other streams may have contributed to the observed pattern in $S_W NO_3^-$ by increas-5 ing the contact surface between the sediments and the water column. However, results from $V_f NO_3^-$ and $U NO_3^-$, which correct $S_W NO_3^-$ for differences in stream size and $NO_3^$ concentration, respectively (Webster and Valett, 2006), indicate that other factors were influencing NO₃⁻ uptake in these streams. The notably lower water temperature in the forested stream may have contributed to the low GPP and ER, which may in turn have reduced biological N demand in this stream (Fellows et al., 2006). Based on temperature and metabolism rates, however, we would have expected a higher N demand in the agricultural stream than in the urban stream, which was not observed. A relatively greater standing stock of primary uptake compartments and higher solar radiation in the urban stream may partially explain its higher NO₃⁻ demand relative to the agricul-

15 tural stream.

Results from a previous study using NH_4^+ enrichments during spring, at conditions of higher discharge and light availability than in the present study, showed that, in contrast to NO_3^- , the efficiency to take up NH_4^+ decreased from the forested to the agricultural stream (von Schiller et al., 2008). In addition, values of V_f for NH⁺₄ were greater than 20 those found for NO_3^- in this study, indicating that demand for NH_4^+ is higher than demand for NO₃⁻ in these streams. However, a comparison of both studies indicates that the magnitude of the preference for NH₄⁺ over NO₃⁻ may decrease in more N polluted streams with higher NO₃⁻ and lower DO concentrations. In these conditions, relative demand for NO₃⁻ may increase because it may be used as an electron acceptor in dis-25

similatory uptake processes such as denitrification. This is further supported by results from nutrient diffusing substrata experiments conducted in these streams during the same period as the present study (von Schiller et al., 2007).

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

4.2 Comparison of NO₃⁻ removal and retention pathways

The importance of NO_3^- retention over removal decreased from the forested to the agricultural stream along the gradient of increasing NO_3^- and decreasing DO concentrations. Assimilatory uptake accounted for all or most of total NO_3^- uptake in the forested

- ⁵ and the urban streams, respectively, whereas denitrification dominated total NO₃⁻ uptake in the agricultural stream. However, similarly to V_f NO₃⁻, values of V_{fDEN} were in the lower range of values reported from streams subjected to various land uses across USA and Puerto Rico (Mulholland et al., 2008). In that study, denitrification accounted for a median of 16% of total NO₃⁻ uptake and exceeded 45% of total uptake in a quarter
- ¹⁰ of them (Mulholland et al., 2008). Despite a narrower NO_3^- concentration range, denitrification was highly variable among streams in our study, accounting for 0% to 68% of total NO_3^- uptake.

The decrease in S_{DEN} and the increase in V_{fDEN} and U_{DEN} from the forested to the agricultural stream were likely due to differences in physicochemical characteristics ¹⁵ among streams. Low temperature, DIN, and DOC, and high oxygen availability did not favor denitrification in the forested stream (Piña-Ochoa and Álvarez-Cobelas, 2006). Variation among streams in these parameters enhanced denitrification as a NO₃⁻ retention pathway in the urban and agricultural stream. An increase in ER and its relative importance over GPP from the forested to the agricultural stream indicates that het-²⁰ erotrophic activity may promote dissimilatory uptake pathways in streams (Christensen et al., 1990). In contrast to our results, Mulholland et al. (2008) showed that V_{fDEN}

decreased with increasing NO_3^- concentration; however, their study covered a much wider range of NO_3^- concentrations and other stream physicochemical parameters. Denitrification rates tended to be higher at day than at night in both streams in

²⁵ which denitrification was detected, this difference being more important in the urban stream. O'Brien et al. (2007) found the opposite pattern (i.e. higher denitrification at night than at day) in prairie streams located in Kansas (USA), likely due to the inhibitory effect of high algal photoautotrophic oxygen production during daylight in open-canopy

5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. **Title Page** Abstract Introduction Conclusions References **Figures Tables |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

BGD

streams. In contrast, our streams were well shaded and photoautotrophic activity was relatively unimportant, as indicated by the low GPP:ER ratios. Nevertheless, Mulholland et al. (2008) found no difference in denitrification between day and night, and a recent review of denitrification in aquatic ecosystems found no significant differences 5 between light and dark conditions (Piña-Ochoa and Álvarez-Cobelas, 2006).

The main end product of denitrification was N_2 , except in the urban stream at night, when denitrification was detected only in the form of N_2O . On average, N_2O production accounted for <3% of total stream denitrification, supporting results from previous studies indicating that stream denitrification consumes nearly the entire N_2O intermediary (Mulholland et al., 2004; Mulholland et al., 2008; Beaulieau et al., 2008).

10

15

The proportion of total NO₃⁻ assimilatory uptake (i.e. the difference between k_W NO₃⁻ and k_{DEN}) accounted for by k_{BIO} was high in the forested and the urban stream, whereas only a small proportion of total NO₃⁻ assimilatory uptake was accounted for by k_{BIO} in the urban stream. This underestimation was likely due to either errors in the sampling of standing stocks, alternative dissimilatory NO₃⁻ uptake pathways (e.g.,

DNRA), rapid transfer of the retained N to higher trophic levels, or high regeneration rates of the retained N (Tank et al., 2000; Burgin and Hamilton, 2007). For this reason, results from NO_3^- assimilatory uptake should be viewed with great caution, especially in the urban stream.

The relative contribution of the different primary uptake compartments to U_{BIO} varied considerably among streams. Detritus compartments, especially FBOM, dominated standing stocks and NO₃⁻ assimilatory uptake in the forested and urban stream as has been previously reported in studies from well-shaded streams with low autotrophic activity (e.g., Mulholland et al., 2000; Tank et al., 2000). Despite its small standing stocks,
 epilithon was the most important NO₃⁻ uptake in the other streams. Previous studies have emphasized the high N uptake capacity of epilithon even in well-shaded streams (e.g., Tank et al., 2000; Merriam et al., 2002). Although leaves were an important standing stock compartment in both the forested and the urban stream, they contributed

BGD 5, 3307-3346, 2008 Nitrate retention and removal in Mediterranean streams D. von Schiller et al. **Title Page** Abstract Introduction Conclusions References **Figures Tables |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

considerably more to NO_3^- uptake in the urban stream. An important part of leaf litter found in the urban stream was fresh due to the summer leaf fall, which is characteristic of Mediterranean streams affected by hydric stress (Sabater et al., 2001). Conversely, leaves found in the forested stream were old (i.e. from the previous autumn leaf fall) and highly decomposed at the time of study (ven Schiller percent). This ob-

- ⁵ highly decomposed at the time of study (von Schiller, personal observation). This observation was confirmed by the C:N ratios of leaves, which were higher in the forested than in the urban stream. Small wood standing stocks characteristic of Mediterranean streams with young riparian vegetation (Sabater et al., 2001) were reflected in low uptake by this detritus compartment. Similarly, autotrophic organisms such as bryophytes
- ¹⁰ and filamentous algae showed small standing stocks and low uptake rates. In these streams, filamentous algae were in a decaying state during the experiments and are usually more abundant in spring, when light availability is higher, whereas bryophytes are relatively scarce during the whole year (von Schiller, personal observation).
- Despite their small standing stock, submersed alder roots were an important uptake compartment, especially in the agricultural stream. Because we did not sample nonsubmersed parts of the alders, we could not determine if NO₃⁻ was taken up by the trees or by biofilms growing on the root surface. Even if trees were taking up NO₃⁻, we would not know whether it was directly for nutrient use or indirectly through water transport. However, the role of riparian vegetation in stream N retention has been pre-
- viously demonstrated using long-term ¹⁵N tracer additions in both arid (Schade et al., 2005) and temperate streams (Ashkenas et al., 2004). Results indicate that riparian vegetation may not only act as an effective filter for nutrients moving from the surrounding catchment to the stream (Naiman et al., 1997), but it may also contribute to nutrient movement in the opposite direction by taking up and retaining dissolved nutri-
- ents that are being transported in the stream water, thereby increasing whole-stream N retention. This stream-riparian linkage may be enhanced in arid and semi-arid regions, where riparian vegetation is strongly limited by water availability.

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

4.3 Fate of retained NO₃⁻

The tracer ¹⁵N was found in the limpets growing on the epilithon only a few hours after the addition was stopped, indicating that the NO₃⁻ assimilated by primary uptake compartments was being rapidly transferred to higher trophic levels, as has been reported in other streams (e.g., Mulholland et al., 2000; Dodds et al., 2000). The similar longitudinal pattern in the ¹⁵N signal along the experimental reaches confirms that epilithon was the most likely food source for the limpets in these streams (Tank et al., 2000; Ashkenas et al., 2004). Moreover, a similar proportion of δ^{15} N between epilithon and limpets indicates that the assimilated N was transferred with a similar efficiency in all streams.

Labeled NH⁺₄ released from stream benthic compartments was found shortly after the end of the addition, indicating that regeneration of the assimilated NO⁻₃ was rapid in these streams. This NH⁺₄ was likely released via excretion by aquatic organisms and mineralization of organic matter and labile organic molecules like aminoacids (New-¹⁵ bold, 1996). Total regeneration was greatest in the agricultural stream, intermediate in the forested stream, and lowest in the urban stream. Results from the N turnover rates indicate that epilithon was the primary uptake compartment that most contributed to N regeneration in these streams. The low C:N ratio of epilithon in comparison with detritus compartments, which indicates high metabolic activity and highly labile N, may

- explain the observed result (Dodds et al., 2000). We also expected a high N turnover in other compartments dominated by primary producers showing a low C:N ratio (i.e. filamentous algae and bryophytes). However, these compartments generally showed the lowest turnover in the study streams, likely due to their decaying state. In contrast, alder roots showed a high N turnover rate, but this probably reflected N allocation from the roots to other parts of the plant rather than N regeneration back to the water
- column.

Most released NH_4^+ was rapidly transformed to NO_3^- via nitrification within the experimental reach, indicating that NH_4^+ release and nitrification were strongly coupled in

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

these streams. However, the proportion of NH_4^+ transformed differed among streams, being lowest in the urban stream. The produced NO₃⁻ was then transiently retained again via assimilatory uptake by primary uptake compartments, permanently removed via denitrification, or exported downstream. As a result of rapid nitrification, most retained N was exported from the study reaches in the form of NO_3^- . Export as NH_4^+ was 5 more important in the urban than in the other streams due to the lower nitrification rate in the urban stream. Export as SPOM was relatively unimportant in the study streams, as has been observed in previous studies (Tank et al., 2000; Ashkenas et al., 2004). However, we must highlight that SPOM is expected to be retained for a longer time within the reach because it is subjected to more physical retention mechanisms than DIN. In fact, our results indicate that the proportion of retained N exported as SPOM tended to increase with time after the addition was stopped. We did not measure export as dissolved organic nitrogen (DON), although previous studies using ¹⁵N tracer additions have demonstrated that export of retained N as DON may exceed that of NH_4^+ or SPOM, but not that of NO₃⁻ (Merriam et al., 2002; Ashkenas et al., 2004). The slopes 15

of the regressions of total export versus time since the end of the addition increased from the forested to the agricultural stream, indicating that the velocity by which the reach was exporting the transiently retained N increased along this gradient.

5 Conclusions

- Despite relatively small differences in stream physicochemical characteristics and standing stocks of primary uptake compartments, we found large differences in N uptake, regeneration, transformation and export pathways among Mediterranean streams subjected to contrasting land uses. This study provides evidence of fast N cycling in Mediterranean streams through a strong coupling among uptake, regeneration and and transformation and export pathways among fast N cycling in Mediterranean streams through a strong coupling among uptake, regeneration and transformation processes. Moreover, our results indicate that permanent NO₀⁻ removal
- transformation processes. Moreover, our results indicate that permanent NO₃⁻ removal via denitrification may be enhanced over temporary NO₃⁻ retention via assimilatory uptake in heterotrophic human-altered streams characterized by high NO₃⁻ and low DO

concentrations. Changes in the relative importance of retention and removal may substantially influence the amount and form of N delivered to downstream and coastal ecosystems. Further studies addressing N retention, transformation and removal processes in streams located in different biomes and subjected to various human alterations are required to gain a complete understanding of N cycling and its controlling factors in fluvial ecosystems.

Acknowledgements. The authors would like to thank the LINX group for their help with the ¹⁵N addition procedures. Special thanks are due to W. H. McDowell and his research group for training D. von Schiller during his stay in Puerto Rico, to S. K. Hamilton for providing sampling
 material and analyzing the ¹⁵N₂ samples, and to P. J. Mulholland and S. A. Thomas for helping with some of the calculations. We also thank M. Martí, C. Dinter, R. Ricart, M. Ribot, and. S. Pla for field and laboratory assistance. Financial support was provided by the Spanish Ministry of Education and Science, RENITRAC (ref: REN2002-03592/HID) and NICON (ref: CGL2005-07362-C02) projects, and the European Commission, EURO-LIMPACS (ref: GOCE-

¹⁵ CT-2003-505540) project. The Laboratori d'Enginyeria Química i Ambiental (LEQUIA) provided additional financial support for the purchase of the ¹⁵N labeled nitrate. The Direcció del Parc Natural del Montseny (Diputació de Barcelona) allowed access to one of the sites during the experiment. D. von Schiller was supported by an I3P Ph.D. scholarship from the Consejo Superior de Investigaciones Científicas (CSIC).

20 References

25

Alexander, R. B., Smith, R. A., and Schwarz, G. E.: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico, Nature, 403, 758–761, 2000.

Alexander, R. B., Boyer, E. W., Smith R. A., Schwarz, G. E., and Moore, R. B.: The Role of Headwater Streams in Downstream Water Quality, J. Am. Water Resour. Assoc., 43, 41–59, 2007.

- Alvarez-Cobelas, M., Rojo, C., and Angeler, D. G.: Mediterranean limnology: current status, gaps and the future, J. Limnol., 64, 13–29, 2005.
- APHA: Standard methods for the examination of water and wastewater, American Public Health Association, Washington, USA, 1995.

- Ashkenas, L. R., Johnson, S. L., Gregory, S. V., Tank, J. L., and Wollheim, W. M.: A stable isotope study of nitrogen uptake and transformation in an old growth forest stream, Ecology, 85, 1725–1739, 2004.
- Beaulieu, J. J., Arango, C. P., Hamilton, S. K., and Tank, J. L.: The production and emission of
- nitrous oxide from headwater streams in the Midwestern United States, Glob. Change Biol., 14, 878–894, 2008.
 - Bernot, M. J. and Dodds, W. K.: Nitrogen retention, removal, and saturation in lotic ecosystems, Ecosystems, 8, 442–453, 2005.
 - Bernot, M. J., Tank, J. L., Royer, T. V., and David, M. B.: Nutrient uptake in streams draining agricultural catchments of the Midwestern United States, Freshw. Biol., 51, 499–509, 2006.
- Böhlke, J. K., Harvey, J. W., and Voytek, M. A.: Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, midcontinent United States, Limnol. Oceanogr., 49, 821–838, 2004.

Bott, T. L.: Primary productivity and community respiration, in: Methods in stream ecology,

- edited by: Hauer, F. R. and Lamberti, G. A., Academic Press, San Diego, USA, 663–690, 2006.
 - Burgin, A. J. and Hamilton, S. K.: Have we overemphasized the role of denitrification in aquatic ecosystems?: a review of nitrate removal pathways, Front. Ecol. Environ., 5, 89–96, 2007.Butturini, A. and Sabater, F.: Ammonium and phosphate retention in a Mediterranean stream:
- hydrological versus temperature control, Can. J. Fish. Aquat. Sci., 55, 1938–1945, 1998. Butturini, A., Bernal, S., Sabater, S., and Sabater, F.: The influence of the riparian-hyporheic zone on the hydrological responses in an intermittent stream, Hydrol. Earth Syst. Sci., 6, 515–525, 2002,

http://www.hydrol-earth-syst-sci.net/6/515/2002/.

10

- ²⁵ Camargo, J. A. and Alonso, A.: Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environ. Int., 32, 831–849, 2006.
 - Christensen, P. B., Nielsen, L. P., Sorensen, J., and Revsbech, N. P.: Denitrification in nitraterich streams: diurnal and seasonal variation related to benthic oxygen metabolism, Limnol. Oceanogr., 35, 640–651, 1990.
- ³⁰ Davis, J. C. and Minshall, G. W.: Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams, Oecologia, 119, 247–255, 1999.
 - Dodds, W. K., Evans-White, M. A., Gerlanc, N. M., Gray, L., Gudder, D. A., Kemp, M. J., López, A. L., Stagliano, D., Strauss, E. A., Tank, J. L., Whiles, M. R., and Wollheim, W. M.:

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	►I						
Back	Close						
Full Scre	en / Esc						
Printer-frier	Printer-friendly Version						
Interactive	Interactive Discussion						

Quantification of the Nitrogen Cycle in a Prairie Stream, Ecosystems, 3, 574–589, 2000.
Dodds, K. D., López, A. L., Bowden, W. D., Gregory, S. V., Grimm, N. B., Hamilton, S. K., Hershey, A. E., Martí, E., McDowell, W. H., Meyer, J. L., Morrall, D., Mulholland, P. J., Peterson, B. J., Tank, J. L., Valett, H. M., Webster, J. R., and Wollheim, W. M.: N uptake as a function of concentration in streams, J. North Am. Benthol. Soc., 21, 206–220, 2002.

- ⁵ of concentration in streams, J. North Am. Benthol. Soc., 21, 206–220, 2002.
 Fellows, C. S., Valett, H. M., Dahm, C. N., Mulholland, P. J., and Thomas, S. A..: Coupling nutrient uptake and energy flow in headwater streams, Ecosystems, 9, 788–804, 2006.
 - Fowler, J. and Cohen, L.: Practical statistics for field biology, Wiley and Sons, Chichester, UK, 1990.
- Grimm, N. B., Sheibley, R. W., Crenshaw, C. L., Dahm, C. N., Roach, W. J., and Zeglin, L. H.: N retention and transformation in urban streams, J. North Am. Benthol. Soc., 24, 626–642, 2005.
 - Gücker, B. and Pusch, M. T.: Regulation of nutrient uptake in eutrophic lowland streams, Limnol. Oceanogr., 51, 1443–1453, 2006.
- Hall, R. O., Peterson, B. J., and Meyer, J. L.: Testing a nitrogen-cycling model of a forest stream by using a nitrogen-15 tracer addition, Ecosystems, 1, 283–298, 1998.
 - Hamilton, S. K. and Ostrom, N. E.: Measurement of the stable isotope ratio of dissolved N₂ in ¹⁵N tracer experiments, Limnol. Oceanogr. Meth., 5, 233–240, 2007.

Hoellein, T. J., Tank, J. L., Rosi-Marshall, E. J., Entrekin, S. A., and Lamberti, G. A.: Controls

- on spatial and temporal variation of nutrient uptake in three Michigan headwater streams, Limnol. Oceanogr., 52, 1964–1977, 2007.
 - Holmes, R. M., Jones, J. B., Fisher, S. G., and Grimm, N. B.: Denitrification in a nitrogen-limited stream ecosystem, Biogeochem., 33, 125–146, 1996.

Holmes, R. M., McClelland, J. W., Sigman, D. M., Fry, B., and Peterson, B. J.: Measuring ¹⁵N-

- ²⁵ NH⁺₄ in marine, estuarine and fresh waters: an adaptation of the ammonia diffusion method for samples with low ammonium concentrations, Mar. Chem., 60, 235–243, 1998.
 - Inwood, S. E., Tank, J. L., and Bernot, M. J.: Patterns of denitrification associated with land use in 9 midwestern headwater streams, J. North Am. Benthol. Soc., 24, 227–245. 2005.
 - Kaplan, L. A. and Bott, T. L.: Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat, Limnol. Oceanogr.,

30

- 34, 718–733, 1989. Kemp, M. J. and Dodds, W. K.: The Influence of ammonium, nitrate, and dissolved oxygen
 - Kemp, M. J. and Dodds, W. K.: The Influence of ammonium, nitrate, and dissolved oxygen concentrations on uptake, nitrification, and denitrification rates associated with prairie stream

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

Title	Title Page							
Abstract	Introduction							
Conclusions	References							
Tables	Figures							
I	۶I							
•	•							
Back	Close							
Full Scre	en / Esc							
Printer-frien	Printer-friendly Version							
Interactive	Discussion							

substrata, Limnol. Oceanogr., 47, 1380–1393, 2002.

- Merriam, J. L., McDowell, W. H., Tank, J. L., Wollheim, W. M., Crenshaw, C. L., and Johnson, S. L.: Characterizing nitrogen dynamics, retention and transport in a tropical rainforest stream using an in situ ¹⁵N addition, Freshw. Biol., 47, 143–160, 2002.
- ⁵ Mulholland, P. J., Tank, J. L., Sanzone, D. M., Wollheim, W. M., Peterson, B. J., Webster, J. R., and Meyer, J. L.: Nitrogen cycling in a forest stream determined by a ¹⁵N tracer addition, Ecol. Monogr., 70, 471–493, 2000.
 - Mulholland, P. J., Tank, J. L., Webster, J. R., Bowden, W. D., Dodds, K. D., Gregory, S. V., Grimm, N. B., Hamilton, S. K., Johnson, S. L., Martí, E., McDowell, W. H., Merriam, J.
- L., Meyer, J. L., Peterson, B. J., Valett, H. M., and Wollheim, W. M.: Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study, J. North Am. Benthol. Soc., 21, 544–560, 2002.
 - Mulholland, P. J., Valett H. M., Webster, J. R. Thomas, S. A., Cooper, L. W., Hamilton, S. K., and Peterson, B. J.: Stream denitrification and total nitrate uptake rates measured using a field ¹⁵N tracer addition approach. Limnol. Oceaonogr., 49, 809–820, 2004.
- field ¹⁰N tracer addition approach, Limnol. Oceaonogr., 49, 809–820, 2004.
 Mulholland, P. J., Thomas S. A., Valett H. M., Webster, J. R., and Beaulieu J. J.: Effects of light on NO₃⁻ uptake in small forested streams: diurnal and day-to-day variations, J. North Am. Benthol. Soc., 25, 583–595, 2006.

Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank,

- J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E., Gregory, S. V., Grimm, N. B., Johnson, S. L., Mcdowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., Arango, C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Johnson, L. T., Niederlehner, B. R., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M.: Stream denitrification across biomes and its response to anthropogenic nitrate loading, Nature, 452, 202–205, 2008.
 - Naiman, R. J. and Decamps, H.: The ecology of interfaces: riparian zones, Annu. Rev. Ecol. Syst., 28, 621–658, 1997.
 - Newbold, J. D.: Cycles and spirals of nutrients, in: River flows and channel forms, edited by: Petts, G. and Calow, C., Blackwell, Oxford, UK, 130–159, 1996.
- O'Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., and Eichmiller, J.: The saturation of N cycling in Central Plains streams: ¹⁵N experiments across a broad gradient of nitrate concentrations, Biogeochem., 84, 31–49, 2007.

Owens, M.: Measurements on non-isolated natural communities in running waters, in: A man-

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

3335

ual on Methods for measuring primary production in aquatic environments, edited by: Vollenweider, R. A., Blackwell, Oxford, UK, 111-119, 1974.

- Peterson, B. J., Bahr, M., and Kling, G. W.: A tracer investigation of nitrogen cycling in a pristine tundra river, Can. J. Fish. Aguat. Sci., 54, 2361-2367, 1997.
- 5 Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., Martí, E., Bowden, W. D., Valett H. M., Hershey, A. E., McDowell, W. H., Dodds, K. D., Hamilton, S. K., Gregory, S. V., and Morrall, D.: Control of nitrogen export from watersheds by headwater streams, Science, 292, 86–90, 2001.
- Piña-Ochoa, E. and Álvarez-Cobelas, M.: Denitrification in aquatic environments: a crosssystem analysis, Biogeochem., 81, 111-130, 2006. 10
- Ruggiero, A., Solimini, A. G., and Carchini, G.: Effects of a wastewater treatment plant on organic matter dynamics and ecosystem functioning in a Mediterranean stream, Annal. Limnol., 42, 97-107, 2006.

Runkel, R. L.: One dimensional transport with inflow and storage (OTIS): a solute transport

- model for streams and rivers, Water Resources Investigations Report 98-4018, US Geologi-15 cal Survey, Denver, USA, 1998.
 - Sabater, S., Bernal, S., Butturini, A., Nin, E., and Sabater, F.: Wood and leaf debris input in a Mediterranean stream: the influence of riparian vegetation, Arch. Hydrobiol., 153, 91–102, 2001.
- Schade, J. D., Welter, J. R., Martí, E., and Grimm, N. B.: Hydrologic exchange and N uptake 20 by riparian vegetation in an arid-land stream, J. North Am. Benthol. Soc., 24, 19–28, 2005. Seitzinger, S. P.: Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance, Limnol. Oceanogr., 33, 702-724, 1988.

Sigman, D. M., Altabet, M. A., Michener, R., McCorkle, D. C., Fry, B., and Holmes, R. M.: Natu-

- ral abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an 25 adaptation of the ammonia diffusion method, Mar. Chem., 57, 227-242, 1997.
 - Simon, K. S., Townsend, C. R., Biggs, B. J., and Bowden, W. D.: Temporal variation of N and P uptake in 2 New Zealand streams, J. North Am. Benthol. Soc., 24, 1-18, 2005.

Simon, K. S., Niyogi, D. K., Frew, R. D., and Townsend, C. R.: Nitrogen dynamics in grassland

- streams along a gradient of agricultural development, Limnol. Oceanogr., 52, 1246-1257, 30 2007.
 - Stream Solute Workshop: Concepts and methods for assessing solute dynamics in stream ecosystems, J. North Am. Benthol. Soc., 9, 95-119, 1990.

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

- Tank, J. L., Meyer, J. L., Sanzone, D. M., Mulholland, P. J., Webster, J. R., Peterson, B. J., Wollheim, W. M., and Leonard, N. E.: Analysis of nitrogen cycling in a forest stream during autumn using a ¹⁵N-tracer addition, Limnol. and Oceanogr., 45, 1013–1029, 2000.
- von Schiller, D., Martí, E., Riera, J. L., and Sabater, F.: Effects of nutrients and light on peri phyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses, Freshw. Biol., 52, 891–906, 2007.
 - von Schiller, D., Martí, E., Riera, J. L., Ribot, M., Marks, J. C., and Sabater, F.: Influence of land use on stream ecosystem function in a Mediterranean catchment, Freshw. Biol., doi:10.1111/j.1365-2427.2008.02059.x, in press, 2008.
- Webster, J. R., Mulholland, P. J., Tank, J. L., Valett, H. M., Dodds, W. K., Peterson, B. J., Bowden, W. B., Dahm, C. N., Findlay, S. E., Gregory, S. V., Grimm, N. B., Hamilton, S. K., Johnson, S. L., Martí, E., Mcdowell, W. H., Meyer, J. L., Morrall, D. D., Thomas, S. A., and Wollheim, W. M.: Factors affecting ammonium uptake in streams – an inter-biome perspective, Freshw. Biol., 48, 1329–1352, 2003.
- ¹⁵ Webster, J. R. and Valett, H. M.: Solute dynamics, in: Methods in stream ecology, edited by: Hauer, F. R. and Lamberti, G. A., Academic Press, San Diego, USA, 169–185, 2006.

BGD

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	ÞI					
•						
Back	Close					
Full Scre	en / Esc					
Printer-frien	dly Version					
Interactive Discussion						
	Discussion					

Table 1. Geographical, physical, chemical, and metabolism characteristics of the stream reaches during the ${}^{15}NO_3^-$ additions.

		Santa Fe (forested)	Gualba (urban)	Sant Celoni (agricultural)
Geographical				
	Latitude (41° N) Longitude (2° E)	46' 37" 27' 42" 1120	44' 02" 30' 17"	42' 44" 27' 41" 246
	Drainage area (km ²) Reach length (m)	2.6 262	13.5 400	9.3 400
Physical	0 ()			
	Pool/Riffle (m ² m ⁻²) Dominant substrate type	0.19 cobbles	0.40 cobbles	0.28 cobbles
	Discharge (L s ⁻¹)	8.8	11.6	1.2
	Velocity (cm s ⁻¹) Width (m)	5.1 3.7	6.7 3.0	2.4 2.0
	Depth (cm)	4.6	5.8	2.5
	A_s/A	0.29	0.06	0.08
	Temperature (°C)	12.2	19.7	19.8
Chomical	PAR (moles $m^{-2} d^{-1}$)	1.8	2.6	2.3
Chemical	Conductivity (μ S cm ⁻¹)	62	156	101
	Dissolved oxygen (mg L^{-1})	9.0	8.2	5.7
	NO_{3}^{-} (μ g N L ⁻¹)	172	394	601
	NO_{2}^{-} (µg N L ⁻¹)	2	4	3
	NH_4^{+} (μ g N L ⁻¹)	7	9	8
	SRP (μ g P L ⁻¹)	16	8	22
	DOC (mg L^{-1})	1.2	2.4	2.0
Metabolism	$CPR(a O m^{-2} d^{-1})$	0.7	2.0	4.6
	$GFF(yO_2 m d)$	0.7	2.U 5 1	4.0 22.0
	GPP:ER	0.54	5.1 0.39	32.9 0.14

BGD

5, 3307-3346, 2008

Nitrate retention and removal in Mediterranean streams

BGD

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

D. von Schiller et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	N					
	•					
Back	Close					
Full Scre	en / Esc					
Printer-friendly Version						
Interactive Discussion						

Table 2. Reach-weighted standing-stock (g AFDM m^{-2}), percent nitrogen (%N of dry mass), and carbon to nitrogen ratio (C:N by mass) of primary uptake compartments in the study reaches. Data reported are means with SE in parenthesis.

	Santa Fe (forested)					Gualba (urban)				Sant Celoni (agricultural)								
	A	-DM	9	%N	С	:N	A	-DM		%N	С	:N	A	-DM		%N	C	D:N
Leaves	10.8	(7.8)	1.5	(0.1)	29.6	(1.7)	11.4	(2.6)	1.9	(0.2)	24.5	(2.6)	1.8	(0.9)	2.0	(0.02)	19.5	(0.2)
Wood	0.4	(0.2)	0.8	(0.1)	58.4	*	5.8	(0.03)	0.9	(0.1)	49.0	•	6.9	(4.2)	1.3	(0.05)	33.6	*
Surface FBOM	26.1	(11.6)	1.3	(0.1)	17.7	(0.8)	19.7	(5.3)	0.4	(0.02)	12.1	(0.1)	10.2	(1.6)	0.6	(0.01)	11.5	(0.05)
Subsurface FBOM	39.7	(16.4)	1.0	(0.2)	17.0	(0.4)	46.9	(16.9)	0.4	(0.1)	12.3	(0.4)	59.4	(17.7)	0.5	(0.02)	10.3	(0.1)
Epilithon	1.2	(0.2)	1.4	(0.1)	7.5	(0.1)	2.0	(0.4)	1.2	(0.1)	6.5	(0.1)	0.6	(0.5)	0.7	(0.02)	5.8	(0.03)
Bryophytes	0.2	(0.2)	2.1	(0.2)	18.4	(0.9)	-		-		-		-		-		-	
Filamentous	0.04	(0.01)	4.5	(0.1)	8.8	(0.1)	0.1	(0.04)	5.3	(0.1)	7.5	(0.1)	-		-		-	
Roots		. ,		. ,		. ,	0.6	(0.1)	2.2	(0.1)	20.9	•	0.4	(0.3)	2.4	(0.04)	18.4	•
Total AFDM	78.5	(36.3)					86.0	(25.3)					78.9	(25.1)				

* %C assumed to be 45% of dry mass

Table 3. Summary of total NO_3^- uptake, denitrification and NO_3^- assimilatory uptake in the study reaches. Parameters of total NO_3^- uptake and denitrification were calculated from the mean of night and day values shown in Figs. 1 and 2. Parameters of NO_3^- assimilatory uptake were calculated from the NO_3^- uptake rates of primary uptake compartments shown in Fig. 3.

Santa Fe

Gualba

_	_	_
_	$\mathbf{}$	

5, 3307–3346, 2008

Sant Celoni

Nitrate retention and removal in Mediterranean streams D. von Schiller et al. Title Page

Title	Title Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	۶I						
•	•						
Back	Close						
Full Scre	en / Esc						
Printer-frier	Printer-friendly Version						
Interactive Discussion							

	Ó
(cc)	(•)
	BY

		(forested)	(urban)	(agricultural)
Total NO ₂ uptake				
Desthifteetter	$k_{W} NO_{3}^{-} (m^{-1})$ $S_{W} NO_{3}^{-} (m)$ $V_{f} NO_{3}^{-} (cm s^{-1})$ $U NO_{3}^{-} (\mu g N m^{-2} s^{-1})$	3.82×10^{-4} 2620 9.07×10^{-5} 1.56×10^{-1}	7.05×10 ⁻⁴ 1419 2.71×10 ⁻⁴ 1.07	1.25×10^{-3} 802 7.47 × 10 ⁻⁵ 4.49 × 10 ⁻¹
Denimication	(, N) (m = 1)	0	F 00 40 ⁻⁵	0.04 40 ⁻⁴
	$K_{\text{DEN}} N_2 (\text{m})$	0	5.98×10	8.24×10
	$k_{\text{DEN}} N_2 O (m^{-1})$	0	1.48×10 ′	1.85×10 °
	k_{DEN} Total (m ⁻¹)	0	5.99×10 ⁻⁵	8.42×10 ⁻⁴
	S _{DEN} Total (m)	_	16681	1187
	$V_{\rm fDEN}$ Total (cm s ⁻¹)	0	2.30×10 ⁻⁵	4.50×10 ⁻⁵
	U_{DFN} Total (μ g N m ⁻² s ⁻¹)	0	8.68×10 ⁻²	2.70×10 ⁻¹
	% of total NO ₃ uptake	0	8.5	67.6
Assimilatory uptake	3			
	$k_{\rm BIO} ({\rm m}^{-1})$ $S_{\rm BIO} ({\rm m})$ $V_{\rm fBIO} ({\rm cm s}^{-1})$ $U_{\rm BIO} (\mu {\rm g N m}^{-2} {\rm s}^{-1})$ % of total NO ₃ ⁻ uptake	3.50×10^{-4} 2860 8.30×10^{-5} 1.43×10^{-1} 91.6	9.92×10 ⁻⁵ 10077 3.82×10 ⁻⁵ 1.50×10 ⁻¹ 14.1	4.27×10^{-4} 2342 2.50×10^{-5} 1.50×10^{-1} 34.3

BGD

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

D. von Schiller et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	۶I					
•	•					
Back	Close					
Full Scre	en / Esc					
Printer-friendly Version						
Interactive Discussion						
	\bigcirc					

ВУ

Table 4. Summary of N regeneration rates in the study reaches estimated with results from the ammonification-nitrification model shown in Fig. 5.

		Santa Fe (forested)	Gualba (urban)	Sant Celoni (agricultural)
Ammonium release				
Nitrification	$k_{AM} (s^{-1})$	5.48×10 ⁻⁵	7.59×10 ⁻⁵	1.88×10 ⁻⁵
Numeaton	$k_{\rm NIT} ({\rm s}^{-1})$	4.89×10^{-3}	1.52×10 ⁻³	8.21×10 ⁻²
Total N regeneration				
	$k_{\rm REG} ({\rm s}^{-1})$	4.94×10 ⁻³	1.59×10 ⁻³	8.22×10 ⁻²
	% as NH_4^+	1.1	4.8	2.3×10 ⁻²
	% as NO_3^-	98.9	95.2	100

Fig. 1. Plot of the ln tracer ¹⁵NO₃⁻ flux versus distance downstream from the addition point. The slopes of the linear regression lines are the fractional NO₃⁻ uptake rates per unit distance (k_W NO₃⁻; m⁻¹). Closed symbols represent samples from the night plateau; open symbols represent samples from the day plateau. Solid lines (for night plateau) and dashed lines (for day plateau) show the best fit of linear regressions. Significant differences between night and day were only found in the agricultural stream as shown by the *t*-tests for the comparison of slopes. Missing points are either lost samples or outliers.

Fig. 2. Plot of the tracer ¹⁵N₂ (left) and tracer ¹⁵N₂O (right) flux versus distance downstream from the addition point in the two streams were denitrification was detected. Closed symbols represent samples from the night plateau; open symbols represent samples from the day plateau. Solid lines (for night plateau) and dashed lines (for day plateau) show the best fit of the denitrification model to the tracer ¹⁵N-gas flux data using the estimated reaeration coefficients (k_2 ; m⁻¹) and the fractional NO₃⁻ uptake rate per unit distance (k_W NO₃⁻; m⁻¹) shown in Fig. 1. Notice the different units of the tracer ¹⁵N₂ and tracer ¹⁵N₂O fluxes.

BGD

5, 3307–3346, 2008

Nitrate retention and removal in Mediterranean streams

Fig. 3. Nitrate assimilatory uptake rates (mean+SE) and N turnover rates (mean+SE) of the different primary uptake compartments within each stream calculated with ¹⁵N content data from the post-24 h sampling. Asterisks (*) represent uptake rates <0.001 μ g m⁻² s⁻¹. Uptake compartments not found in a stream are marked as not available (n/a). Notice the same scale on the y-axes to facilitate comparisons among streams.

Fig. 4. Plot of the δ^{15} N of epilithon and consumer (*Ancylus fluviatilis* limpet) versus reach distance with data from the post-24 h sampling. Dashed lines separate upstream from downstream of the addition point. Closed symbols represent epilithon samples (scale on the left axis); open symbols represent limpet samples (scale on the right axis). Limpets were not found in two sampling stations of the forested stream.

Fig. 6. Plot of the tracer ¹⁵N export as NO₃⁻, NH₄⁺ and suspended particulate organic matter (SPOM) versus time since the end of the addition with data from the post-24 h, post-48 h, and post-72 h samplings. Notice that the post-24 h sampling was performed 7 h after the end of the addition in the agricultural stream. Dashed lines show the best fit of a linear regression of the log-transformed total export versus time for the forested stream (log Total export=-0.0232×Time-0.1690; r^2 =0.99; p=0.035), the urban stream (log Total export=-0.0245; r^2 =0.95; p=0.146), and the agricultural stream (log Total export=-0.0285×Time+0.9792; r^2 =0.95; p=0.113).

Full Screen / Esc

Printer-friendly Version

Interactive Discussion