1 Supplemental material submitted for the paper

2 The importance of ocean transport in the fate of anthropogenic CO₂

- 3 L. Cao, M. Eby, A. Ridgwell, K. Caldeira, D. Archer, A. Ishida, F. Joos, K. Matsumoto, U.
- 4 Mikolajewicz, A. Mouchet, J. C. Orr, G.-K. Plattner, R. Schlitzer, K. Tokos, I. Totterdell, T.
- 5 Tschumi, Y. Yamanaka, A. Yool

7 Introduction:

8 This supplemental material includes one table and two figures. Table S1 compares parameter

- 9 values used in three versions of the GENIE-1 model. Figure S1 shows the effect of vertical
 10 diffusivity, vertical resolution, and seasonality on modeled oceanic uptake of anthropogenic CO₂.
- diffusivity, vertical resolution, and seasonality on modeled oceanic uptake of anthropogenic CO₂.
 Figure S2 shows the effect of marine biology on modeled oceanic uptake of anthropogenic CO₂.

- _0

- ___

Parameter Name	GENIE8	GENIE16	MESMO	Parameter description and units
Ocean physics ^a				
W	1.93	1.531	2.208	Wind-scale
$\kappa_{\rm h}$	4489	1494	4467	Isopycnal diffusion $(m^2 s^{-1})$
$\kappa_{\rm v}$	0.27	0.25	0.1 to1.2	Diapycnal diffusion (cm ² s ⁻¹)
λ	2.94	2.71	2.21	1/friction (days)
Atmosphere physics ^a				
k _T	4.67×10^{6}	5.20×10 ⁶	3.27×10 ⁶	T diffusion amplitude $(m^2 s^{-1})$
$l_{\rm d}$	1.08	1.41	0.979	T diffusion width (Radians)
<i>s</i> _d	0.06	0.09	0.1700	T diffusion slope
κ _q	1.10×10^{6}	1.17×10^{6}	1.70×10^{6}	Q diffusion ($m^2 s^{-1}$)
β_T	0.11	0.0010	0.0023	T advection coefficient
β_q	0.23	0.165	0.23	Q diffusion coefficient
F_a	0.23	0.73	0.36	FW flux factor (Sv)
Sea-ice physics ^a				
κ _{hi}	6200	3574	5579	Sea-ice diffusion $(m^2 s^{-1})$
Ocean biogeochemistry ^b				
$u_0^{\mathrm{PO}_4}$	1.96	8.99	1.91	maximum PO ₄ uptake rate (µmol kg-1 yr ⁻¹)
K^{PO_4}	0.22	0.89	0.21	PO ₄ half-saturation concentration (µmol kg ⁻¹)
r^{POC}	0.065	0.056	0.055	partitioning of POC export into fraction #2
l^{POC}	550	590	variable	<i>e</i> -folding depth of POC fraction #1 (m)
l_2^{POC}	∞	∞	∞	<i>e</i> -folding depth of POC fraction #2 (m)
$r_0^{\text{CaCO}_3:\text{POC}}$	0.044	0.048	0.046	CaCO ₃ :POC export 'rain ratio' scalar ^c
η	0.81	0.77	1.28	calcification rate power
r^{CaCO_3}	0. 4325 ^d	0.45 ^d	0.49	partitioning of CaCO ₃ export into fraction #2
l^{CaCO_3}	1083	1890	variable	<i>e</i> -folding depth of $CaCO_3$ fraction #1 (m)
$l_2^{\mathrm{CaCO}_3}$	∞	∞	∞	<i>e</i> -folding depth of CaCO ₃ fraction $#2 (m)$

Table S1. Controlling parameters in different versions of the GENIE-1 model.

28

^a See: Edwards and Marsh (2005); Hargreaves et al. (2004); Ridgwell et al. (2007a); Singarayer et al.
 (2008), Matsumoto (2008)

^b See: Ridgwell et al. (2007a,b); Ridgwell and Hargreaves (2007).

^c Note that the rain ratio scalar parameter is not the same as the actual CaCO₃:POC export rain ratio because it is multiplied by $(\Omega - 1)^{\eta}$ where Ω is the surface ocean saturation state (with respect to calcite), as described in Ridgwell et al. (2007a,b). Pre-industrial mean ocean surface Ω is ~5.2 in the GENIE-1 model, so that the global CaCO₃:POC export rain ratio can be estimated using the 8-parameter

36 assimilation^d as being equal to $(5.2 - 1)^{0.81} \times 0.044 = 0.14$.

^d Adjusted compared to formal calibration in order to achieve an improved prediction of mean sediment

surface wt% CaCO₃ compared to observations (Ridgwell and Hargreaves, 2007).

Fig. S1 Model-simulated oceanic uptake of CO_2 in response to a CO_2 pulse emission of 590.2 PgC (corresponding to an instantaneous doubling of atmospheric CO_2 from 278 to 556 ppm). Results from different runs using the GENE16 model are shown: GENIE16 base run as shown in Fig. 1(green), GENIE16 run with vertical diffusivity doubled from 0.25 to 0.5 cm⁻² s⁻¹ (red), GENIE16 run with vertical resolution reduced from 16 to 8 levels (brown), GENIE16 run with the seasonal cycle removed (blue). Other model results as shown in Fig. 1 are presented here in grey lines.

- 58
- 59
- 60
- 61
- 62
- 63
- _ _
- 64
- 65
- 66

Fig. S2 Model-simulated oceanic uptake of CO_2 in response to a CO_2 pulse emission of 590.2 PgC (corresponding to an instantaneous doubling of atmospheric CO₂ from 278 to 556 ppm). Results from two different runs using the GENE16 model are shown: GENIE16 base run as shown in Fig. 1 (green), GENIE16 run without the inclusion of marine biology (red). Other model results as shown in Fig. 1 are presented here in grey lines. The abiotic run absorbs more excess CO₂ than the biotic run because during model spinup the removal of marine biology leads to higher surface alkalinity (a global mean value of 2361.9 µmole/kg in abiotic run compared with 2271.5 µmole/kg in biotic run). Higher surface alkalinity leads to greater buffering capacity of the ocean to absorb excess CO₂.

95 **References:**

- Edwards, N. R., and R. Marsh, Uncertainties due to transport-parameter sensitivity in an efficient
 3-D ocean-climate model, Climate Dynamics, 24 (4) 415 433, 2005.
- Hargreaves, J. C., J. D. Annan, N. R. Edwards, R. Marsh, An efficient climate forecasting
 method using an intermediate complexity Earth System Model and the ensemble Kalman
 filter, Climate Dynamics, 23 (7-8), 745 760, 2004.
- Matsumoto, K. S. Tokos, A. Price, and S. J. Cox, First description of the Minnesota Earth
 System Model for Ocean biogeochemistry (MESMO 1.0), Geoscientific Model
 Development, 1, 1-15, 2008.
- Ridgwell, A., and J. C. Hargreaves, Regulation of atmospheric CO₂ by deep-sea sediments in an
 Earth system model, Global Biogeochem. Cycles, 21, GB2008, doi:10.1029/2006GB002764,
 2007.
- Ridgwell, A., I. Zondervan, J. Hargreaves, J. Bijma, and T. Lenton, Assessing the potential long term increase of oceanic fossil fuel CO₂ uptake due to 'CO₂-calcification feedback',
 Biogeosciences 4, 481-492, 2007a.
- Ridgwell, A., J. Hargreaves, N. Edwards, J. Annan, T. Lenton, R. Marsh, A. Yool, and A.
 Watson, Marine geochemical data assimilation in an efficient Earth System Model of global
 biogeochemical cycling, Biogeosciences 4, 87-104, 2007b.
- Singarayer J. S., D. A. Richards, A. Ridgwell, P. J. Valdes, W. E. N. Austin, J. W. Beck, An
 oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas,
 Geophys. Res. Lett. 35, L14707, doi:10.1029/2008GL034074, 2008.
- 116
- 117
- 118
- 110
- 119