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Abstract

Baroclinic instability modulated by topography leads to the formation of two anticyclonic
eddies in the northern South China Sea: the Hong Kong Southeast Anticyclonic Eddy
(HKSEACE) and the Hainan Island East Anticyclonic Eddy (HIEACE). In these eddies,
downwelling caused by a depressed pycnocline leads to high temperature, low salinity,5

impoverished nutrients, reduced Chl-a concentrations, and picoplankton dominance
of phytoplankton assemblages in the euphotic zone. We tested the hypothesis that
experimental nutrient enrichment would relieve biomass limitation of phytoplankton by
opportunistic response of taxa with low nutrient affinity. Our results confirm that phyto-
plankton samples incubated in vitro under nutrient enriched conditions attained higher10

biomass, change in taxonomic dominance from dinoflagellates to diatoms, and shift
in size class dominance from picoplankton to nanoplankton and netplankton. These
responses were evident only when limitation to more than one nutrient was relieved.
Phytoplankton in HKSEACE appeared to be co-limited by nitrogen and phosphorus,
whereas at HIEACE it was co-limited by nitrogen, phosphorus and also silicon.15

1 Introduction

In large areas of the tropical Pacific Ocean, the standing stock and production of phyto-
plankton are very low, which is the result of impoverished of essential macro-nutrients
and trace metals, induced by phytoplankton consumption and poor supplement from
deep layer, due to the permanent stratification of the water column (Krom et al., 1992;20

Van Haren et al., 2003). Changes in biomass and production of phytoplankton occur
episodically when mesoscale physical phenomena increase or decrease the concen-
tration of nutrients in the euphotic zone. Eddies are mesoscale-isolated ecosystems,
which displayed physical, chemical and biological properties, pronouncedly differen-
tiated from the surrounding waters. In the past decades increasing evidences have25

shown the significant role of eddy dynamics on phytoplankton biomass distribution and
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production in the oceans (e.g. Jeffrey and Hallegraeff, 1980; Angel and Fasham, 1983;
Falkowski et al., 1991; McGillicudy et al., 1998; Garcon et al., 2001; Vaillancourt et al.,
2003).

Recent studies have demonstrated that monsoon-driven baroclinic eddies are one
of the most common mesoscale features in the tropical and subtropical Pacific Ocean5

(Olaizola et al., 1993; McGillicuddy et al., 1998; Seki et al., 2001), including the South
China Sea (SCS) (Chai et al., 2001a; Xu et al., 2001). Baroclinic instability leads to the
formation of cyclonic eddies with a raised thermocline inducing upwelling, and anticy-
clonic eddies with a depressed thermocline inducing downwelling. The enhanced or
decreased phytoplankton production is expected to occur in cyclonic eddies or anticy-10

clonic eddies, respectively, resulting from higher or lower nutrient concentrations in the
cyclonic or anticyclonic eddies than in the surrounding waters (Williams and Follows,
2003; Ning et al., 2004).

The most studied mesoscale processes concern upwelling in cyclonic eddies, be-
cause of its close relationship with high primary production, leading to the formation15

of fishing areas, due to nutrient supplement to euphotic zone from deep layer (Li and
Wang, 1991; Falkowski et al., 1991; Deng et al., 1995). Since the mid 1990’s, studies
on downwelling and its biogeochemical effects have been a concern among marine bio-
geochemists, because of the importance of downwelling in anticyclonic eddies for un-
derstanding the absorption of atmospheric CO2 by the upper ocean and the transport20

to the deep layer and the carbon cycles in the deep ocean (Chao et al., 1996; Williams
and Follows, 2003). However, most of oceanographic studies on anticyclonic eddies in
the tropical ocean, including the nSCS have been focused on physical oceanographic
processes and circulation modeling (Wang et al., 2003, 2005, 2008; Cai et al., 2007;
Li et al., 2007), whereas few were related to chemical oceanography in the SCS (Chen25

et al., 2001, 2004; Dai et al., 2008) or to biological processes related to phytoplankton
biomass and primary production (Ning et al., 2004). The Hainan Island East Anticy-
clonic Eddy (HIEACE) and the Hong Kong Southeast Anticyclonic Eddy (HKSEACE)
have been recognized and their physical features have been described (Guan, 1997;
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Yang et al., 2000; Chai et al., 2001a), but the trophodynamic responses of phytoplank-
ton to physico-chemical coupling, i.e. the bottom-up processes of phytoplankton have
not been documented, and the responses of phytoplankton growth and community
structure to nutrient enrichment in these anticyclonic eddies have not been understood.

The aims of the present study at better understanding were: 1) How are the phys-5

ical, chemical and biological oceanography coupling features, especially the nutrients
dynamics of the two anticyclonic eddies? 2) What are the responses of phytoplankton
community to nutrient enrichment in the anticyclonic eddies of the nSCS?

2 The study area

The South China Sea (SCS) is the largest semi-enclosed marginal sea in Southeast10

Asia with an area of about 3.5×106 km2, constituting one of the world’s 50 Large Marine
Ecosystems (Sherman, 2001). Our study area is the northern SCS (nSCS), bounded
by the mainland of China on the north and northwest sides, Taiwan Island and Bashi
Strait on the east side, Hainan Island on the west side, and south to 18◦ N. The nSCS is
connected to the East China Sea through Taiwan Strait and to the open ocean through15

Luzon Strait, where a deep sill (>2000 m) allows effective water exchange with the
western Pacific. The topography of the area is characterized by the incline from the
coast of China mainland towards the southeast, with a gradient from the coastal zone
(<50 m), continental shelf (<200 m), the slope and open sea (>200 m), to the deep sea
(>3000 m) (Fig. 1).20

The Pearl River, the largest one in this region, from China mainland with a discharge
of 3.3×1011 m3 a−1 occupying about 80% of total river runoff (Han et al., 1998), carries
a large quantity of suspended solids (8.3×107 t y−1, Han et al., 1998) and dissolved nu-
trients (N=8.6×104 t y−1; P=1.2×104 t y−1; Si=184.3×104 t y−1, Wang and Peng, 1996)
into the nSCS.25

The meteorological forcing over the nSCS is dominated by the East Asian Monsoon
(Sadler et al., 1985), and the upper ocean circulation follows closely the alternating
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monsoons (Wyrtki, 1961). During the summer southwest monsoon, the Guangdong
coastal current flows eastward along the southern coast of China mainland, which
eventually flows into the East China Sea through Taiwan Strait. The southwesterly
winds induce Ekman transport toward offshore and coastal upwelling, including Guang-
dong coastal upwelling and Leizhou Peninsular and Hainan east upwelling (Chai et al.,5

2001a). The deep water upwells and mixes with the upper water to form the SCS
intermediate water, which flows out of the nSCS into the northwestern Pacific Ocean
through Luzon strait (Gong et al., 1992). On the contrary, during winter northeast mon-
soon, along the northern boundary, the warm and saline Kuroshio current water with
oligotrophic properties intrudes through Luzon strait and flows westward along the con-10

tinental margin of China to become the deep-water mass of the nSCS (Nitani, 1972;
Shaw, 1991). The coastal water of the East China Sea flows southwestward through
Taiwan strait into the nSCS, the northeasterly winds also induce Ekman transport to-
ward inshore and coastal downwelling (Fang et al., 1998; Xue et al., 2004).

Meanwhile, it has been found that due to the combined effects of monsoons, topog-15

raphy, coastal line shape and the inertial force, the mesoscale eddies (i.e. the cyclonic
cold eddies and anticyclonic warm pools) are formed in the SCS (Zeng et al., 1989;
Xu et al., 2001; Chen et al., 2004), particularly the two permanent anticyclonic eddies:
Hong Kong Southeast Anticyclonic Eddy (HKSEAE) and Hainan Island East Anticy-
clonic Eddy (HIEAE), caused by frontal instability and modulated by topography in the20

nSCS (Chai et al., 2001a, b).

3 Materials and methods

3.1 Satellite remote sensing observations

The studied sea area is located between 18◦00′ and 23◦00′N in latitude and 110◦00′

and 118◦00′E in longitude, covering a major area of the nSCS. Satellite remote sensed25

sea surface chlorophyll-a (Chl-a) data were derived from MODIS and processed using
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the ENVI 4.3 software, with resolution of 4×4 km. They were validated by synchronous
in situ oceanographic observations (Hao et al., 2007). A global SSH anomaly dataset,
compiled by the CLS Space Oceanographic Division of Toulouse, France, was used.
The CLS SSH dataset has a 7-day temporal resolution and a 1/3◦×1/3◦ spatial res-
olution. Both satellite remote sensed Chl and SSH datasets were used for exploring5

mesoscale eddies and confirming the positions of HKSEAE and HIEAE over the nSCS
in summer.

3.2 In situ oceanographic survey

A summer cruise was conducted (from 26 August to 6 September 2004) on board
R/V “Haijian 74”, belonging to South China Sea Branch, State Oceanic Administration,10

China. Two major transects (S1 and S2) were designed approximately perpendicular
to the coastline, including 8 stations for Transect S1 and 6 stations for Transect S2, and
2 stations were added between each end of the 2 transects (Fig. 1).

Seawater samples were taken with a Rosette of Niskin bottles attached to a CTD
(Conductivity-Temperature-Depth system, Niel Brown Mark III) probe frame. Water15

samples for nutrients and chlorophyll-a (Chl-a) determination were taken at surface,
10, 25, 50, 75, 100 and 150 m. Sea surface (at the depth of 2 m) water samples
for nutrient enrichment experiments were taken using a Houskin water sampler with
ball cap and 30 L volume at Stations S1008 and S2007, located at the Hong Kong
Southeast Anticyclonic Eddy (HKSEAE) and at the Hainan Island East Anticyclonic20

Eddy (HIEAE), respectively.
Nutrients (NH−

4 , NO−
2 , NO−

3 , PO3−
4 and SiO2−

3 ) were analyzed by standard spec-
trophotometric methods (Strickland and Parsons, 1972), with the detection limits being
0.04, 0.01, 0.05, 0.03 and 0.1µmo L−3, respectively. Photosynthetic pigments (Chl-a)
were measured by the acetone extraction fluorescence method (Holm-Hansen et al.,25

1965) using a Turner Designs Fluorometer, Model 10, and calibrated by spectropho-
tometry using standard pure Chl-a reagent (Sigma Co.).

Before dispensing, all water samples were pre-filtered through a 200 µm mesh to
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remove large zooplankton. Water samples for the determinations of size-fractionated
Chl-a were filtered through a 20µm mesh (for retention of netplankton), a Nuclepore
filter of 2.0µm in pore size (for retention of nano- and net-plankton) and a Whatman
GF/F filter (for retention of pico- (0.2–2.0µm), nano- (2.0–20µm) and net-plankton (20–
200µm)) (Ning, et al., 1996). After analyzing the content of each filter, the three frac-5

tions could be calculated. Identification of phytoplankton species and cell counts were
made from 500 ml of seawater samples fixed with neutral formalin (Sournia, 1978),
using an inverted microscope.

3.3 Nutrient enrichment experiments

The experiments were conducted on deck of the R/V with natural light. At each station10

S1008 and S2007, 12 bottles were filled with 4 L seawater for each, and divided into 6
groups: a – control, and tests b – addition of NO−

3 (0.2 mol L−1), c – addition of PO3−
4

(0.01 mol L−1), d – addition of SiO2−
3 (0.2 mol L−1), e – combining addition of NO−

3 and

PO3−
4 at the same molarity as b and c, respectively, f – addition of NO−

3+PO3−
4 +SiO2−

3
at the same molarity as b, c and d, respectively, with 2 mL solution of each nutrient15

added in each bottle. Duplicate incubation bottles were set for each group. After
shaking each bottle, all bottles were placed in an incubator equipped with a seawater
circulation system maintaining samples at temperature same as in situ.

Subsamples were taken for measuring size-fractionated Chl-a, phytoplankton
species identification and cell counts for each test and control bottles at time 0 h, 12 h,20

24 h, 48 h, 72 h, 96 h and 108 h for the samples taken at Station S2007, and 0 h, 12 h,
24 h, 48 h and 60 h at Station S1008.

Growth rate (g, d−1) of phytoplankton communities during the nutrient enrichment
experiments was calculated by using equation (1) (Landry, 1993):

g = ln(Ct/C0)/t (1)25

Where biomasses C0 and Ct were measured before start (0) of incubations and at
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time (t), respectively, given in term of Chl-a unit (µg L−1).

4 Results and discussion

4.1 Physical-chemical-biological properties of the two anticyclonic eddies, HKSEACE
and HIEACE

Only a brief description of major oceanographic features in the nSCS, especially dis-5

tributions of physical, chemical and biological parameters relevant to the HKSEACE
and HIEACE is provided. Details about the physical features can be found else where
(Chai et al., 2001a, b; Xu et al., 2004). Furthermore, the observed results at the depth
of 50 m are presented, since this layer represents a mixture of the SCS surface and
subsurface waters (Liu et al., 2001), which is relatively stable and better reflects the10

mesoscale eddies forcing on phytoplankton dynamics.
The results obtained by satellite and in situ observations show that there were two

pronounced patch areas with high temperature (>25.5◦C and >26◦C, respectively) in
the east of Hainan Island (HIEACE: around 18.5–20◦ N, 112–113.5◦ E) and in the south-
east of Hong Kong (HKSEACE: around 19.5–21◦ N and 115–117◦ E). In the north-15

ern coastal area, the water temperature was low (<23◦C) (Fig. 2a) and salinity was
high (>34.45) (Fig. 2b), reflecting the coastal upwelling, related to Ekman Transport
induced by summer southwest monsoon (Xue et al., 2001a). The two anticyclonic ed-
dies, i.e. HIEACE and HKSEACE, were clearly confirmed by satellite remote sensed
sea surface altimetry (CLS SSH dataset) with average sea surface dynamic height20

(SSDH) larger than 10 cm (Fig. 3), and satellite remote sensed sea surface chlorophyll
(<0.1µg L−1, MODIS, Fig. 4). The two anticyclonic eddies were also characterized by
lower salinity (<34.25, Fig. 2b), nutrient concentration (e.g. TIN<2.5 mol L−1, Fig. 2c),
and phytoplankton standing stock (Chl-a<0.2 g L−1, Fig. 2d) than those of the surround-
ing waters, as showed by their horizontal distribution at the 50 m layer (Fig. 2). In the25

two anticyclonic eddies, phytoplankton communities were dominated by non-diatoms,
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e.g. dinoflagellates, Cyanophytes and Chrysophytes (Fig. 5), as well as relatively high
abundance of picophytoplankton – Synechococcus sp. (>8×103 cell mL−1 in HIEACE,
and >12×103 cell mL−1 in HKSEACE, Fig. 6). For the latter, its importance has been
revealed on the trophic link with bacteria (Ning et al., 2005). Similar horizontal dis-
tribution patterns as T, S, DIN and Chl-a were also observed for PO4, SiO3 and DO5

(dissolved oxygen), i.e. with low concentrations of PO4 and SiO3, and high concen-
trations of DO in the two anticyclonic eddies (PO4<0.15µmol L−1, SiO3<4µmol L−1

and DO>380–400µmol L−1). The transect profiles of these parameters unfolded pro-
nounced downwelling in the two anticyclonic eddies with low nutrient concentration,
as an example with DIN, which was <3µmol L−1 for HKSEACE and <2µmol L−1 for10

HIEACE. A strong upwelling along the coast was also seen from the profile (Fig. 7).
Properties of the two anticyclonic eddies, i.e. high temperature, low salinity, low nu-
trient, high DO concentrations, and low phytoplankton standing stock were coincid-
ing with the warm pools, formed by local convergence and downwelling (Su et al.,
1999). The two anticyclonic eddies were formed by topography and front shearing15

force between the eastward Coastal Current and westward Northern Shelf Slope Cur-
rent (NSSC) which was strengthened by a westward current branch separated from a
current ring near Luzon strait (Chai et al., 2001b).

4.2 Responses of phytoplankton community to nutrient enrichment in the two anticy-
clonic eddies20

4.2.1 Initial concentrations of nutrients

In the two anticyclonic eddies, HKSEACE and HIEACE, represented by Stations S1008
and S2007, respectively, the initial Chl-a concentrations were very close (0.28 and
0.26µg·L−1), but the nutrient concentrations were very different. At Station S2007,
DIN was less than 2µmol·L−1, PO3−

4 undetectable, and SiO2−
3 was only 1.1µmol·L−1,25

which were lower than the low limit concentrations of N (5.71µmol L−1, Chu, 1949),
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P (0.48µmol L−1, Zhao et al., 2000) and Si (4.40µmol L−1, Harvey, 1957), be-
ing suitable for diatom growth. At Station S1008, DIN was 2.84, PO3−

4 0.01, and

SiO2−
3 6.81µmol·L−1; but except for Si, concentrations of N and P were lower than the

low limits of suitable concentration for diatom growth. On the whole, except for Si
concentration in HKSEACE, all the other key nutrients were limiting factors for diatom5

growth in the two anticyclonic eddies. Concentrations of both these nutrients and Chl-a
were lower than in the surrounding waters of the two anticyclonic eddies (Fig. 2).

4.2.2 Responses of Chl-a concentration to nutrient enrichments

For the experimental series at Station S2007, Chl-a increased after a potential period of
72 h only in the N+P+Si enriched nutrients test group, and it reached up to 3.84µg·L−1

10

in 96 h, and 14.40µg·L−1 in 108 h, which was about 50 times higher than the initial
concentration, while the growth rate was 2.67 d−1. Chl-a concentrations in control and
other nutrient test groups did not change much (Fig. 8a). At Station S1008, only in
the two N+P and N+P+Si enriched nutrients test groups, Chl-a increased after 48 h
potential period, reaching up to 1.07µg·L−1 and 1.19µg·L−1in 60 h, respectively, which15

was about 3 times higher than the initial concentration. The growth rates were 2.68 d−1

and 2.9 d−1, respectively, similar to results (3.0 d−1) obtained by Yin et al. (2000) in the
water nearby Hong Kong, whereas Chl-a concentrations in control and other experi-
mental groups did not change pronouncedly (Fig. 8b). Although the incubation period
for Station S1007 was short, the growth trend of phytoplankton for each group was20

clear. From these experimental results we concluded that phytoplankton was limited
by N, P and Si at the HIEACE and by N and P at the HKSEACE.

4.2.3 Responses of size structure of Chl-a to nutrient enrichments

Size fractionated measurements of Chl-a led to significant results. In the initial water
samples phytoplankton size structure was dominated by picoplankton (0.2–2.0µm),25

which occupied 84.6% of the total biomass at Station S2007 and 86.5% at Station
4600
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S1008. Nanoplankton (2–20µm) only occupied 11.9% and 11.0%, and netplankton
(20–200µm) 3.5% and 2.5%, respectively, at Stations S2007 and S1008 (Fig. 8).
Within the Station S2007 experimental series, phytoplankton biomass developed only
in the N+P+Si combining nutrients enriched group, in which proportions of nanoplank-
ton and netplankton increased up to 55.3% and 35.4%, respectively, whereas pi-5

coplankton decreased to 9.3% at the end of the experiment (Fig. 9a). Within the Sta-
tion S1008 experimental series, phytoplankton biomass developed well in both N+P
and N+P+Si enriched groups, in which the proportion of nanoplankton increased up
to 46.6% and that of picoplankton decreased down to 51.5%, respectively, in N+P en-
riched group; they were 56.6% and 37.7%, respectively, in N+P+Si enriched group;10

whereas that of netplankton remained at a low level (1.9%) in N+P group, and in-
creased one time (5.7%,) in the N+P+Si group at the end of the experiments (Fig. 9b).
From these results we concluded that nutrient enrichments led phytoplankton size to
shift from picoplankton to nanoplankton and netplankton in the two anticyclonic eddies,
due to high nutrient half saturation constant, i.e. Michaelis-Menten constant of the nu-15

trient responses for the large-size phytoplankton (Parsons and Takahashi, 1973). How-
ever, there was a major difference in the proportion of netplankton in the N+P+Si group
between the two stations, i.e. the proportion of netplankton was about 6 times higher
at S2007 than at S1008. It probably resulted from the shorter experimental period at
S1008, so that netplankton had not developed adequately.20

4.2.4 Shifts of dominant group, species and abundance in phytoplankton communities
after nutrient enrichment

Initial phytoplankton communities in both Stations S2007 and S1008 were mainly dom-
inated by dinoflagellates, which occupied 62.5% and 60% of total phytoplankton abun-
dance. Phytoplankton dominant species were Prorocentrum dentatum, Nitzschia sp.,25

etc. at Station S2007 and Gyrodinium spirale, Nitzschia sp., Prorocentrum dentatum,
etc., at Station S1008, respectively (Tables 1 and 2). At the end of experiments, di-
atoms became the most dominant phytoplankton in the N+P+Si groups of both Sta-
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tions S2007 and S1008 test series, reaching up to 90.3% and 94% of the total phy-
toplankton abundance, respectively (Table 1). The major species were Cylindrotheca
closterium, Leptocylindrus minimus, Chaetoceros curvisetus, Pseudonitzschia deli-
catissima, etc. for the N+P+Si group of the Station S2007 series, and Cylindrotheca
closterium, Pseudonitzschia delicatissima, etc. for that of the Station S1008 series (Ta-5

ble 2). In the N+P group samples of the Station S1008 series, the dominant species
were Pseudonitzschia delicatissima, Scrippsiella trochoidea, Gyrodinium spirale, Cylin-
drotheca closterium, Nitzschia sp. etc. (Table 2). However, for N+P group of the Station
S2007 series, phytoplankton could not grow. Comparing field and experimental results
suggested that initial nutrient conditions in the field at both Stations S2007 and S100810

were not suitable to diatom growth, rather more favorable to dinoflagellates, which are
known to be not Si limited.

Nutrient enrichment induced both shifts of dominant group and species and cell
abundance of phytoplankton (Tables 1 and 2). Diatom abundance increased 45 times
in the N+P+Si group of the S2007 series after 108 h incubation. It increased 7 and 4515

times in the N+P and N+P+Si groups, respectively, of the S1008 series after 60 h in-
cubation, which suggested that diatoms at Station S1008 water were still limited some-
what by Si, induced by that the original Si was much consumed by diatoms without
any supplementation. Dinoflagellates abundance increased only 1.4 times in N+P+Si
group of S2007 series, and increased 0.4 times in N+P and decreased about one half20

in N+P+Si groups, respectively, of the S1008 series, for the latter case, it was probably
resulted from species competition between diatoms and dinoflagellates in phytoplank-
ton community, i.e. addition of Si combining N and P promoted diatoms fast growth,
inhibiting dinoflagellates.

Comparing the results on shift of size fractionated Chl-a with that of dominant25

group and species after the nutrient enrichment experiments, it was found that the
most dominant fraction of Chl-a was always nanoplankton (Fig. 8), which did not fit
the results obtained from identification and cell counting in the phytoplankton dom-
inated by diatoms, which belong mostly to netplankton. After checking the size of
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the diatom species, we found that the most dominant species belonged to Nitzschia
genus with cell shape-like needle, or other genus with very thin and fragile cells.
Cell size (width×length) was 2–6µm×40–80µm for Cylindrotheca closterium, 1.5–
2.5µm×59–140µm for Pseudonitzschia delicatissima, 1.5–5µm×12–40µm for Lep-
tocylindrus minimus, and 7–30µm×35–150µm for Chaetoceros curvisetus. These5

could very easily pass through the 20µm mesh into nanoplankton fraction, when size-
fractionation was performed, although without any vacuum, resulting in the overestima-
tion of nanoplankton and underestimation of net plankton biomasses.

5 Conclusions

In the present studies the existence and location of the Hong Kong Southeast An-10

ticyclonic Eddy and Hainan Island East Anticyclonic Eddy formed by front shearing
force and topography were confirmed. The physico-chemical and biological oceano-
graphic coupling properties of the two eddies were revealed by satellite and in situ
observations. The two eddies exhibited higher temperature, lower salinity, oligotrophic
property, and lower phytoplankton stock than the surrounding waters. Picoplankton15

and non-diatom species were dominant in these phytoplankton communities, resulting
from multi-key nutrients limitation, probably induced by convergence of the sea sur-
face water and downwelling driven by pycnocline depression. Simulated in situ nutrient
enrichment experiments resulted in succession of dominant species of phytoplankton
communities from non-diatoms to diatoms, and shifts of the dominant size fraction from20

picoplankton to netplankton and nanoplankton, due to high Michaelis-Menten constant
of the nutrient responses for the large sized phytoplankton. For better understanding
of the temporal and spatial variations of phytoplankton trophodynamics in these anticy-
clonic eddies, longer periods for experiments and seasonal observations are needed
in the future.25
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Table 1. Shifts of dominant group in phytoplankton communities after nutrient enrichment
for the water samples collected at Stations S1008 and S2007, representing HKSEACE and
HIEACE, respectively.

S2007 S1008

Original +NPSi Original +NP +NPSi
cells·L−1 (%) cells·L−1 (%) cells·L−1 (%) cells·L−1 (%) cells·L−1 (%)

Diatoms 128 37.5 5915 90.3 255 40 2042 73.9 11660 98.6
Dinoflag. 213 62.5 511 7.8 383 60 553 20 170 1.4
Others – – 128 1.9 – – 170 6.1 – –
Total 341 6554 638 2765 11830
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Table 2. Shifts of dominant species and abundance (cells·L−1)in phytoplankton communities
after nutrient enrichment for the water samples collected at Stations S1008 and S2007.

S2007 S1008

Original +NPSi Original +NP +NPSi

Prorocentrum
dentatum

170 Cylindrotheca
closterium

2043 Gyrodinium
spirale

213 Pseudonitzschia
delicatissima

1617 Cylindrotheca
closterium

10851

Nitzschia sp. 85 Leptocylindrus
minimus

1702 Nitzschia sp. 128 Scrippsiella
trochoidea

212 Pseudonitzschia
delicatissima

723

Chaetoceros
curvisetus

1702 Prorocentrum
dentatum

85 Gyrodinium
spirale

170

Pseudonitzschia
delicatissima

255 Cylindrotheca
closterium

85

Nitzschia sp. 85
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Fig. 1. Locations of transects and sampling stations and topography of the northern South China Sea. “★” 
shows the sampling stations for nutrients enrichment experiments. Station S1008 is located in the Hong 
Kong Southeast Anticyclonic Eddy (HKSEACE), and Station S2007 is located in the Hainan Island East 
Anticyclonic Eddy (HIEACE). 
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Fig. 1. Locations of transects and sampling stations and topography of the northern South
China Sea. “?” shows the sampling stations for nutrients enrichment experiments. Station
S1008 is located in the Hong Kong Southeast Anticyclonic Eddy (HKSEACE), and Station
S2007 is located in the Hainan Island East Anticyclonic Eddy (HIEACE).
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Fig. 2. Horizontal distributions of environmental features at 50m depth of the nSCS in summer 2004. 
a- Water temperature (℃), b- Salinity, c- TIN (μmol L-1), and d- Chl a (μg L-1), showing the 
oceanographic features of the 2 anticyclonic eddies, HKSEACE and HIEACE. 
 

Fig. 2. Horizontal distributions of environmental features at 50m depth of the nSCS in summer
2004. (a) Water temperature (◦), (b) Salinity, (c) TIN (µmol L−1), and (d) Chl-a (µg L−1), showing
the oceanographic features of the 2 anticyclonic eddies, HKSEACE and HIEACE.
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Fig. 3. Satellite image of average sea surface dynamic height (SSDH) derived from 

CLS dataset with a 7-day temporal resolution and a 1/3° × 1/3° spatial resolution, 

compiled by the CLS Space Oceanographic Division of Toulouse, France, was used 

for exploring HIEACE and HKSEACE of the nSCS during 25-31 August 2004. 
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Fig. 3. Satellite image of average sea surface dynamic height (SSDH) derived from CLS
dataset with a 7-day temporal resolution and a 1/3◦×1/3◦ spatial resolution, compiled by the
CLS Space Oceanographic Division of Toulouse, France, was used for exploring HIEACE and
HKSEACE of the nSCS during 25–31 August 2004.
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Fig. 4. Satellite image of average sea surface chlorophyll (μg L-1) derived from 
MODIS during 24 d (from 14 August to 7 September 2004) in the nSCS, with a 
spatial resolution of 4×4 km. White areas were cloud coverage. 
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Fig. 4. Satellite image of average sea surface chlorophyll (µg L−1) derived from MODIS during
24 d (from 14 August to 7 September 2004) in the nSCS, with a spatial resolution of 4×4 km.
White areas were cloud coverage.
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Fig. 5. The species group composition of phytoplankton communities at the various sampling 
stations of the nSCS during summer 2004, showing the shifts of the dominant group from diatoms 
nearshore to non-diatoms offshore, and the proportions of dinoflagellates in the two anti-cyclonic 
eddies, at Stations S1008 and S2007. 
 

S2007 

S1008 

Fig. 5. The species group composition of phytoplankton communities at the various sampling
stations of the nSCS during summer 2004, showing the shifts of the dominant group from
diatoms nearshore to non-diatoms offshore, and the proportions of dinoflagellates in the two
anti-cyclonic eddies, at Stations S1008 and S2007.

4615

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/4591/2008/bgd-5-4591-2008-print.pdf
http://www.biogeosciences-discuss.net/5/4591/2008/bgd-5-4591-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
5, 4591–4619, 2008

Nutrient limitation of
phytoplankton in

nSCS anticyclonic
eddies

X. Ning et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 
 
 
 
 
 
 
 

111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0

19.0

20.0

21.0

22.0

23.0

24.0

Synechococcus, 50m

 
Fig. 6. Horizontal distribution of Synechococcus abundance (× 103 cell mL-1) at 50 m 
depth of the nSCS during summer 2004, showing that the highest value was 
encountered in the two anticyclonic eddies. 
 

Fig. 6. Horizontal distribution of Synechococcus abundance (×103 cell mL−1) at 50 m depth of
the nSCS during summer 2004, showing that the highest value was encountered in the two
anticyclonic eddies.
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Fig. 7. Vertical distribution of total inorganic nitrogen (TIN) along the Transects S1 
and S2 during summer 2004 in the nSCS, showing the high concentration (> 5μmol 
L-1) in the coastal upwelling and low concentration (< 3 μmol L-1) occurring in the 
two anticyclonic eddies. 
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Fig. 7. Vertical distribution of total inorganic nitrogen (TIN) along the Transects S1 and S2
during summer 2004 in the nSCS, showing the high concentration (>5µmol L−1) in the coastal
upwelling and low concentration (<3µmol L−1) occurring in the two anticyclonic eddies.
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Fig. 8. Responses of Chl a to nutrient enrichments. a- at Station S2007, only increase 
in Chl a appeared in N+P+Si combining addition group; b- at Station S1008, only 
increase in Chl a appeared in N+P and N+P+Si combining addition groups. 
Significant changes were not detected for other groups. 
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Fig. 8. Responses of Chl-a to nutrient enrichments. (a) at Station S2007, only increase in
Chl-a appeared in N+P+Si combining addition group; (b) at Station S1008, only increase in
Chl-a appeared in N+P and N+P+Si combining addition groups. Significant changes were not
detected for other groups.
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Fig. 9. Shifts of dominant size class of phytoplankton biomass following the nutrient 
enrichment. a- At Station S2007 the shift was from picoplankton to nanoplankton and 
netplankton fractions, with the proportion rank being nano> net> pico in the N+P+Si 
combining addition group, and b- At Station S1008 the shift was from picoplankton to 
nanoplankton fraction, with the proportion rank being nano> pico> net in N+P and 
N+P+Si combining addition groups. 
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Fig. 9. Shifts of dominant size class of phytoplankton biomass following the nutrient enrichment.
(a) At Station S2007 the shift was from picoplankton to nanoplankton and netplankton fractions,
with the proportion rank being nano>net>pico in the N+P+Si combining addition group, and (b)
At Station S1008 the shift was from picoplankton to nanoplankton fraction, with the proportion
rank being nano>pico>net in N+P and N+P+Si combining addition groups.
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