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Abstract

Here we present monthly, basin-wide maps of the partial pressure of carbon diox-
ide (pCO2) for the North Atlantic on a 1◦ latitude by 1◦ longitude grid for years 2004
through 2006 inclusive, constructed using a neural network technique which recon-
structs the non-linear relationships between 3 biogeochemical parameters and ma-5

rine pCO2. A self organizing map (SOM) neural network has been trained using the
SeaWiFS-MODIS chlorophyll a concentration, the NCEP/NCAR reanalysis sea surface
temperature, and the FOAM mixed layer depth. 389 000 such triplets were used. The
trained SOM was labelled with 137 000 underway pCO2 measurements collected in
situ during 2004, 2005 and 2006 in the North Atlantic, which span the range of 208 and10

437µatm. The root mean square (RMS) deviation of the neural network fits from the
data is 11.55µatm, which equals to just above 3 per cent of an average pCO2 value in
the in situ dataset. The seasonal pCO2 cycle as well as the interannual variability es-
timates in the major biogeochemical provinces is presented and spatial and temporal
variability of the estimated fields is discussed. High resolution combined with basin-15

wide cover makes the maps a useful tool for several applications such as monitoring
of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine
CO2 cycles in future model predictions. The method itself is a valuable alternative to
traditional statistical modelling techniques used in geosciences.

1 Introduction20

Globally, natural oceanic sink has absorbed around 30 per cent of the total anthro-
pogenic carbon dioxide (CO2) emissions to the atmosphere since the beginning of the
industrial era (Sabine et al., 2004). This natural buffer slows the effects of anthro-
pogenic interference with the global carbon cycle. The North Atlantic Ocean being a
highly biogeochemically dynamic basin and one of the strongest sinks of carbon in25

the world’s oceans (Takahashi et al., 2002), plays an important role in the world’s car-
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bon cycle. Understanding of the future behaviour of the global natural carbon sinks
and sources as well as related climate development can only be obtained given robust
understanding of the current distribution of carbon sink/source regions.

The magnitude of the ocean sink can be determined using air-sea flux estimates
based on in situ measurements of the sea surface partial pressure of CO2 (pCO2).5

However, while atmospheric pCO2 shows relative homogeneity, marine pCO2 varies
radically both temporarily and spatially (Sarmiento and Gruber, 2002). Monitoring the
marine pCO2 distribution on monthly to interannual time-scales is thus crucial for fur-
ther understanding of the global carbon cycle in the context of current climate dynam-
ics. Due to technical as well as financial restrictions, in situ measurements of ma-10

rine pCO2 are sparse even in the relatively well sampled North Atlantic Ocean. Over
the last decade though, technical improvements and cooperation with the shipping in-
dustry have allowed for installing several autonomous underway systems on board of
commercial vessels routinely crossing the ocean basin. Those instruments perform
quasicontinuous measurements, offering temporal and spatial cover which allows for15

regional analysis of the highly variable spatial and temporal distribution of pCO2 (e.g.
Cooper et al., 1998; Lefèvre et al., 2004; Lüger et al., 2004, 2006; Corbière et al., 2007;
Schuster and Watson, 2007; Olsen et al., 2004, 2008; Schuster et al., 2008). Most of
these authors suggest that the strength of the North Atlantic sink has decreased over
the last decade, with the decline especially significant (up to 50%) in the northern part20

of the basin. This change indicates that increasing fraction of the anthropogenic emis-
sions remains in the atmosphere, which is consistent with some of the recent modelling
results. For instance, Canadell et al. (2007) suggest that around 10 per cent of the re-
cent (2000–2006) rise in the atmospheric CO2 concentrations can be attributed to the
weakening of the ocean sink.25

Despite the huge community effort to increase the network of in situ measurements
in the North Atlantic, the cover still remains unevenly distributed in time and space. The
regional character of the existing estimates poses difficulties when generalized into the
entire basin, therefore a robust and reliable method to spatially and temporarily inter-
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polate available measurements of marine pCO2 has been long sought (e.g. Lefèvre et
al., 1999, 2005; Takahashi et al., 2002, 2008; Olsen et al., 2003; Jamet et al., 2007;
Chierici et al., 2008).

In the work presented here, we seek to map oceanic pCO2 in the North Atlantic at
a monthly timescale. We use an artificial neural network (NN), a powerful non-linear5

modelling tool for mapping performance (Dreyfus, 2005). Neural networks where first
used extensively by the pattern recognition community 20–30 years ago (Kohonen,
2001). Since then NN have made their way into geosciences and over the last decade
there has been a significant increase in their application to environmental problems.
They are now commonly used in atmospheric science (Cavazos, 1999; Hewitson et10

al., 2002; Niang et al. 2006), oceanography (Richardson et al., 2003; Liu et al., 2005
and 2006a; Reusch et al., 2007) and meteorology (e.g. Ali et al., 2007).

The term artificial neural network reflects a mechanistic connection to the processes
found in the human brain and therefore generates some confusion. At present their
data-processing algorithms are well-understood and may be used in parallel with tradi-15

tional statistical tools. There are numerous NN types among which the Self Organizing
Map (SOM) seems to gain the most attention as being well suited to study empirical
relationships in geosciences. It appears to be a particularly powerful tool for the extrac-
tion and classification of features (clustering), such as trends between input variables
or their relative distribution. The SOM is a “black-box” type of model. While its restric-20

tions and limitations need to be considered, it has an essential advantage over more
commonly used knowledge-based models, which are based on equations describing
the physical, chemical and biological phenomena that control the quantity to be mod-
elled. As opposed to the latter, the SOM technique is based solely on observations.
No equation, whether empirical or theoretical, is generated. Instead, the SOM uses an25

unsupervised (no need for a priori description of the input – output relations) learning
algorithm, enabling us to identify relationships among the state variables of the phe-
nomena under analysis, where our understanding of those is insufficient to be fully
described using mathematical equations, and where knowledge-based models appli-
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cations are therefore limited. The SOM technique has already been successfully used
to interpolate marine pCO2 maps from in situ measurements by Lefèvre et al. (2005).
These authors were able to capture a more complex distribution in the northern North
Atlantic using SOM than they could using multiple linear regressions, and also the
residuals determined through the validation against an independent subset of the data5

were smaller for SOM.
In the study presented here, we use 137 000 in situ pCO2 measurements collected

in the North Atlantic throughout 2004, 2005 and 2006 as part of the CarboOcean (http:
//www.carboocean.org/), an EU-funded Integrated Project and parallel US projects,
combined with 389 000 satellite, reanalysis and assimilation data, which allows basin-10

wide, continuous mapping over extended periods of time. Here we present basin-
wide, monthly pCO2 maps for 3 consecutive years with a 1◦ latitude by 1◦ longitude
resolution. We show the capacity of the method to synthesize coherent, spatial and
temporal distribution patterns of marine pCO2 fields in the North Atlantic, and propose
the method to be used in conjunction with in situ data collection during future oceanic15

pCO2 monitoring programs.

2 Data and methods

We hypothesise that sea-surface pCO2 can be estimated through the SOM based mul-
tiple non-linear regression with three parameters (Eq. 1): the sea surface temperature
(SST), the wind-mixed layer depth (MLD) and the abundance of photosynthesizing or-20

ganisms in the surface ocean represented by chlorophyll a concentrations (CHL).

pCO2 = SOM(SST,MLD,CHL) (1)

During our SOM analysis three steps are taken in order to estimate basin-wide pCO2
fields: first, no-pCO2 data is used and an unsupervised training takes place; second,
pCO2 data measured in situ is used to label such preconditioned SOM map; third, the25
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trained and labelled SOM neurons are used to assign pCO2 values to the geographical
map of the North Atlantic.

2.1 An overview of the SOM setup

The SOM method is based on a statistical model, introduced by Kohonen (2001). It
is a competitive learning method in which an algorithm learns to classify the samples5

by recognizing existing patterns. It is used to extract pertinent information from the
statistical structure of the multivariate dataset. It performs a non-linear projection from
the highly dimensional input data onto a usually two-dimensional (2-D) grid, as exten-
sively described by Niang et al. (2003). The SOM analysis was carried out using the
SOM Toolbox Version 2 (Vesanto, 2000) for Matlab, developed by the Laboratory of10

Information and Computer Science at the Helsinki University of Technology and freely
available from http://www.cis.hut.fi/projects/somtoolbox. Visualizations of the resulting
North Atlantic pCO2 maps were done using additional procedures in Matlab. For gen-
eral SOM procedures and parameter settings consult Liu et al. (2006b) and Vesanto et
al. (2000). The SOM procedure adopted in this study is outlined below.15

The SOM map consists of 2220 i units (often referred to as neurons) organized on
a regular two dimensional (2-D) grid. Moderately sized maps (in relation to the training
data set) are found to be the most efficient. Too many neurons do not reduce the data
enough for extracting characteristic patterns. Too few neurons do not provide suffi-
cient representation of patterns underlying the in situ observations. A flat sheet map20

shape (60×37) with a hexagonal regional lattice structure was chosen. Each neuron
is represented by a multidimensional weight vector mi (also called reference vector),
made of as many components as the number of input variables in the training dataset
(3 in this study, one for SST, MLD and CHL). Each component is also organized on a
regular 2-D grid (called component plane) “underlying” the actual map. In this way the25

ith element of the map is a 3 dimensional ensemble of the ith elements of component
planes, and can be described as a synthetic sample (Solidoro, 2007). All the values
are linearly normalized to acquire an even weight distribution between variables. Ad-
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ditionally CHL and MLD values are also log10 normalized (to minimize the influence
which their spread throughout 4 and 3 orders of magnitude respectively, would oth-
erwise have on the weight distribution). Initial values of the nodes of the component
planes are determined prior to the training process. In a linear initialization (performed
in this study) their weights are initialized by first calculating the two eigenvectors of the5

covariance matrix of the training data that have the largest eigenvalues. Then the linear
span along the two eigenvectors determines the two dimensional matrix of the weight
vectors. The horizontal and vertical directions of the weight vectors’ matrix should be
proportional to the two largest eigenvalues described above (Kohonen, 2001).

2.2 Training data set (SST, MLD, CHL)10

The training data set consists of 3 subsets, one for each parameter. Basin-scale
SST data were obtained from the NCEP/NCAR Reanalysis Project (Kalnay et al.,
1996; http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html) at daily frequency and
2.5◦ latitude×2.5◦ longitude resolution. The SST analyses were done weekly and in-
terpolated linearly to daily values.15

Basin-wide MLD estimates were obtained from the Forecasting Ocean Assimilation
Model (FOAM, Meteorological Office, Exeter, UK; http://www.nerc-essc.ac.uk/godiva)
at daily frequency and 1◦ latitude×1◦ longitude resolution. FOAM model assimilates
both in situ and remotely sensed ocean observations which are available in near real-
time including temperature and salinity profiles at all depths from sea stations, Argo20

profiling floats and PIRATA moored arrays, as well as sea surface temperature from
Voluntary Observing Ships’ (VOS) reports, buoys, and the satellite mounted advanced
high-resolution radiometer (AVHRR). The FOAM mixed layer depth used in this study
is determined using the density based criterion (the depth where the density increase
of 0.05 kg m−3 from the surface value occurs).25

CHL data were obtained from Aqua-MODIS/SeaWiFS merged Level-3 Standard
maps provided by NASA/GFSC/DAAC at weekly frequency and 9 km resolution (http:
//oceancolor.gsfc.nasa.gov). The use of the merged product was dictated by its 20%
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and 24% improvement in cover in relation to the single mission products (SeaWiFS
and MODIS respectively), when weekly maps are considered.

All three products (SST, MLD, CHL) offer almost full basin-wide cover for the
years 2004 to 2006. All parameters were re-gridded onto weekly frequency and
1◦ latitude×1◦ longitude resolution. The study area stretches latitudinally from 10.5◦ N5

to 75.5◦ N and longitudinally from 9.5◦ E to 75.5◦ W and it is hereafter called the North
Atlantic.

We have excluded coastal (<500 m depth) and ice covered waters (<−1.8◦C) from
the training data set, which therefore consists of 389 000 pixels with assigned SST,
MLD and CHL values (used in training) as well as additional information such as time10

and position, bottom-depth and other ancillary information which is used during map-
ping and analysis of the results.

The division into seasons was decided as follows: winter includes December, Jan-
uary and February, spring includes March, April and May, summer includes June, July
and August and fall includes September, October and November.15

2.3 The self organizing process – training the SOM

During the self-organizing process, 389 000 elements from the 3-dimensional training
data matrix, referred to as input vectors xp, are presented to the SOM (Fig. 1a). The
activation of each neuron’s 3-dimensional weight vector, yp, for the presented input
vector is computed. For a given input, the “winning” neuron (the one with the high-20

est activation) is considered to be the one whose weight vector is the closest to the
presented input vector in Euclidean distance, defined as:

D(x, y) = ((xSST − ySST)2 + (xMLD − yMLD)2 + (xCHL − yCHL)2)0.5 (2)

The weight vector of the winning neuron is updated by adjusting it towards the input
data vector by a certain fraction of the difference between the two, as indicated by25

a linear, monotonically time-decreasing learning rate function α . Thus the winner’s
activation will be even higher the next time a similar input vector is presented. In
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addition to the winning-neuron, the weight vectors of units in the neighbourhood of
the winner are also stretched towards the input sample, according to a neighbourhood
function, H, decreasing spatially away from the winner:

Hci (t) = α(t) × exp
(
d2
ci/2σ(t)2

)
(3)

where σ(t) is the neighbourhood radius at time t, and dci is the distance between5

map units c and i on the map grid. The neighbourhood radius σ(t) decreases as a
function of time along with the learning rate α (t). The learning rule which incorporates
such a neighbourhood function distinguishes the SOM from other vector quantization
algorithms. The learning procedure leads to a topologically ordered mapping of the
input vectors.10

The training is performed in two phases: the rough training which accounts for an
approximate ordination of neurons (map space) in the input data space, followed by
the fine-tuning when the convergence between the map space and the data space is
sought. The length of each phase, which depends on the ratio between the number
of neurons and the number of input vectors, has been set to 20 and 15 repetitions,15

respectively (Fig. 1b). In the fine-tuning phase relatively small α and H are set right
from the beginning. The neighbourhood radius and the shape of the neighbourhood
function have to be decided before the training starts. In this study the neighbourhood
radius decreases from 8 to 2 neurons during the rough training and further to 0 during
the fine-tuning phase. The shape of the neighbourhood function dictates the extent20

to which the neighbours of the winning-neuron are updated, and how it changes with
increasing distance from the winning-neuron. A Gaussian shape has been used in this
study.

By virtue of the neighbourhood function the winning-neuron is not a mean of the
data it accounts for, but rather an expression of the local ordination of patterns ex-25

tracted from the input data set (Dreyfus et al., 2005). Similar patterns are mapped onto
neighbouring regions on the map, while dissimilar patterns are mapped further apart.
After the training, each neuron becomes a synthetic sample with an associated 3 di-
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mensional reference vector. It expresses the local relationship between its 3 compo-
nents in the 2-D map space. Every weight vector (neuron) has a different combination
of components, therefore the SOM can account for strong non-linearities in the real
system. Figure 2a–c show the distribution of neurons within the input data space, vi-
sualizing how the SOM accounts for the non-linear relations between the components.5

The SOM is well equipped for such a complicated setup, e.g. the distribution of the
neurons closely follows the data distribution, even in such an extreme case as MLD
versus SST (Fig. 2b). Each neuron represents a relationship between two components
within its neighbourhood. The SOM estimates are therefore based on 2220 relation-
ships between each pair of components, and as such can resolve highly non-linear10

relationships.

2.4 Labelling data (pCO2 with SST, MLD, CHL)

In order to estimate pCO2 fields in the North Atlantic, the trained SOM neurons need
to be labelled with the pCO2 values. In the labelling set, in situ pCO2 measurements
are used, each coincided with SST, MLD and CHL according to their time and space15

coordinates. For the purpose of this work, we used a subset of the North Atlantic data
set compiled under auspices of the CarboOcean, an ongoing EU-funded Integrated
Project (http://www.carboocean.org). 137 000 data points were collected onboard sev-
eral vessels routinely crossing the North Atlantic between June 2004 and October 2006
(Fig. 3). This provides a reasonable representation of the spatial and temporal variabil-20

ity of the sea surface pCO2 field. We match each in situ pCO2 measurement from the
labelling set with the coinciding (in terms of time and space) pixel from the training data
set. This way each labelling datum contains pCO2 information and corresponding SST,
MLD and CHL values.
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2.5 Data distribution

The data available in the labelling set is not evenly distributed in time. Many more mea-
surements are available in spring and summer than in fall and winter (Fig. 4). Difficulties
related to sampling in stormy winter waters make the labelling data set skewed towards
the calmer mid-year months. For the three years there are less than 3500 measure-5

ments between November and January, with November and December only sampled
in 2005. Relatively few data are available for 2004. Apart from a major contribution in
June, only 2 days of sampling in July and 7 days in October makes this year’s input
rather imbalanced.

Such an uneven distribution would make this data very difficult to analyse using10

traditional statistics. Most linear methods would be biased towards summer waters,
and the exceptionally high volume of data from June 2004 would increase mapping
discrepancies. In contrast, SOM estimates depend solely on the input values, hence
ranges of input parameters are more relevant than the temporal and spatial distribution
of the in situ measurements. The training data set offers wide ranges for all parameters,15

providing sufficient information about their variability as summarized in Table 1. SST
varies between −1.8◦C and 30◦C, the depth of the mixed layer ranges from ∼10 m to
more than 2.5 kilometres and chlorophyll a concentrations vary from 0 to ∼65 mg/m3.
The variability in the labelling data set should not be significantly smaller than that of
the training set in order for the SOM to give optimal mapping results (Kohonen, 2001).20

In this study the labelling data set capture most of the variability in the training data
set (Table 1). The temperature ranges are 2.8◦C to 8.2◦C smaller than those in the
training set. Most of this difference is due to the fact that there are very few in situ
measurements from ice-melting zones where water temperature drops to below 0◦C.
Those regions are negligible in terms of the area covered, and also the number of below25

zero measurements accounts for less than 1% of the training data; hence the lack of
the lowest temperature labels in the labelling data set is unlikely to have a significant
effect on the basin-wide pCO2 maps.
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The mixed layer depth is well represented in the labelling set. In winter and spring
however, the maximum mixed layer depth in the labelling set is substantially lower than
that in the training set. This has two causes, firstly commercial vessels avoid storm
regions and therefore measurements in deep vertical mixing areas are rare, especially
in winter when the ocean is generally under-sampled (Fig. 4); secondly, the highest5

MLD’s in the training data occur in two very specific regions (Labrador Sea and the
Greenland-Norwegian Sea) where deep water formation takes place. Those two rel-
atively small basins are not extensively sampled, therefore the maxima measured are
smaller. As a result the SOM output is potentially biased towards shallower mixed layer
depths in all regions and seasons where the actual depth of the mixed layer is greater10

than ∼850 m. This affects a small fraction (between 0.4% and 1.8%) of the training data
as indicated in Table 1. However the exponential character of the relationship between
sea surface pCO2 and MLD found in the subpolar North Atlantic (Olsen et al., 2008)
suggests that the MLDs deeper than around 500 m have little influence on changes in
the sea surface pCO2 (their Fig. 9a). Similar relationship was found for the subtropical15

North Atlantic in our labelling data set (not shown) with the threshold value of around
200 m.

The chlorophyll a concentrations in the labelling data capture most of the variability
observed between 2004 and 2006. The seasonal maxima between 2 mg m−3 in win-
ter and 27 mg m−3 in fall suggest that some strong blooms are not resolved by SOM.20

Nonetheless more than 99% of the training data falls within the range of the labelling
data (Table 1), meaning that the SOM is labelled with a sufficient fraction of the ob-
served variability. Cloud cover and the distribution of the ships’ tracks, seem to be the
main reason for lower ranges in the labelling data set with regards to the training data
set. Additionally, winter chlorophyll a data are affected by the lack of satellite cover25

north of ∼45◦ N in December and January.
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2.6 Labelling the trained SOM with the pCO2 data

At this point of the mapping procedure, each in situ pCO2 measurement associated
with a three-dimensional vector consisting of SST, MLD and CHL components is pre-
sented to the already trained SOM as input data (Fig. 1c). Instead of updating the
winning neuron and its neighbourhood, such input vector labels the winning neuron5

with its pCO2 value. Consequently each pCO2 measurement is assigned to one of the
neurons. Most of the neurons are labelled more than once and the ultimate pCO2 value
of the neuron is an average of all the labels it accounts for. Relationships between in
situ pCO2 measurements and each individual component (SST, MLD and CHL) of as-
sociated vectors are strongly non-linear from the basin-wide, year long perspective.10

Figure 2d–f shows how the density distribution of the SOM neurons follows the den-
sity distribution of the pCO2 data. Most neurons concentrate where the data density
is highest, giving a highly discriminative representation of the data. Neurons outside
the data cloud mean that for a certain value of the property (x-axis) the SOM will esti-
mate a pCO2 value other than that measured (y-axis). This suggests that parameters15

other than those considered in this study control the distribution of pCO2 in the North
Atlantic. Adding sea surface salinity (SSS) as an additional variable in the training data
matrix is suggested to improve SOM estimates, especially in subtropical and tropical
North Atlantic (J. Boutin and N. Lefèvre, personal communication, 2008). SSS could
act as a water mass tracer and a proxy for water parcel history, which would enable20

the SOM to account for the sea surface pCO2 variability not determined by changes in
SST, MLD and CHL.

2.7 Estimating basin-wide pCO2 fields

In order to estimate the geographical distribution of pCO2 for a certain time period, the
training input data are used. Each of the 389 000 input vectors has a time coordinate25

and two space coordinates. June 2005 has been chosen to visualize this step, and is
shown in Fig. 1d. All the input vectors with a certain time stamp (month and year in
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this study) are presented to the preconditioned (trained and labelled) SOM. The input
vector is labelled with the winning-neuron’s pCO2 label. Using the space coordinates
of the input vector, this pCO2 value is then associated with the appropriate pixel on the
geographical map. As a final result of the SOM analysis, each pixel used as SOM input
data has an estimated pCO2 value assigned to it. In this study we produce 36 monthly,5

basin-wide pCO2 maps between January 2004 and December 2006.

3 Results and discussion

3.1 Monthly pCO2 maps

For each in situ pCO2 measurement available, the corresponding SOM estimate was
found based on spatial (1◦ longitude×1◦ latitude grid box) and temporal (8 daily inter-10

vals between 1 January 2004 and 31 December 2006) coordinates. The residual r
value was calculated as a difference between the two. The arithmetic mean of the ab-
solute values of residuals for the entire dataset r̄=0.0125, indicating random disparity
between measurements and SOM estimates. Root mean-square (RMS) of residuals
calculated as:15

RMS =

√√√√√ n∑
i=1

r2
i

n
(4)

for the whole dataset (n), provides an estimate of the uncertainty of the method in re-
producing the available in situ measurements, and equals to 11.55µatm, which trans-
lates to 3.2% of an average pCO2 value in the in situ dataset.

Scatter plots (one for each year) of estimated values, versus pCO2 measured in situ20

are shown in Fig. 5. The correlation coefficient for the whole data set R=0.93 and
varies from 0.96 in 2004, through 0.89 in 2005 to 0.93 in 2006. Presented distribution
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in all 3 years indicates that no systematic bias exists in the method. The values are
scattered well around the identity line (for which the correlation coefficient=1).

Out of 36 monthly pCO2 maps generated, one representing each season for the
3 years is shown in Fig. 6. In the columns are 3 full seasonal cycles and in the rows
maps for 2004, 2005 and 2006 presenting SOM estimates of the interannual variability.5

Signatures of physical and biological medium-to-large scale processes can be identi-
fied in the basin-wide context. In the subtropical gyre (∼20–40◦ N), high pCO2 values
are found during spring and summer (Fig. 6d–i), with around 20µatm lower values
during fall and winter (Fig. 6a–c and j–l) which confirms the mainly temperature driven
variability of pCO2 in this region (Takahashi et al., 2002; Santana-Casiano et al., 2007).10

In the subpolar gyre (∼40–60◦ N), massive biological CO2 drawdown (Takahashi et al.,
2002) is reflected in low pCO2 levels during spring and summer (Fig. 6d–i). Mixing in
the fall counteracts the effect of biological carbon uptake on pCO2, which is visible as
strong local maxima and minima in the subpolar waters with values of about 60µatm
apart (Fig. 6j–l). Relatively high pCO2 values in the northern part of the basin in winter15

(Fig. 6a–c) are attributed to wind driven deepening of the mixed layer during storms
in fall and winter, which brings CO2 rich waters to the surface (Corbière et al., 2007).
The lack of satellite measurements of chlorophyll a during late fall and winter in the
northern (>60◦ N) North Atlantic (Kaufman, 1989; Moulin et al., 2001) makes it impos-
sible to estimate the pCO2 distribution in those regions using the presented SOM set20

up (Fig. 6a–c and j–l). As discussed in the following section, CHL introduces an impor-
tant seasonal variability in the pCO2 field in the northern North Atlantic, however the
phytoplankton activity during late fall and winter in that part of the basin is low. In order
to cover the region with the “missing” pCO2 estimates, an additional SOM can be per-
formed where only SST and MLD are used as the training data variables. Such a SOM25

fails to reproduce the seasonal cycle in most of the basin’s sub-regions (not shown) but
its winter estimates agree well with those obtained when biology is accounted for.

The influence of seasonally changing oceanographic features on the pCO2 variability
in the North Atlantic can also be distinguished from the maps. Intense upwelling of cold
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waters along the coast off Northwest Africa serves as an example. The main upwelling
centre follows the seasonal cycle of the belt of northeast trade winds (Hagen, 2001),
reaching its northern-most position in summer and its southern-most position in winter.
The increased pCO2 values in this region induced by this upwelling (Pelegri et al.,
2005) are recognized by high pCO2 estimates at around 20◦ N to 25◦ N in summer5

(Fig. 6g–i), and at around 10◦ N to 15◦ N in winter (Fig. 6a–c).

3.2 Seasonal cycles in the main biogeochemical provinces

In such a heterogeneous basin as the North Atlantic, a coherent interpolation method
ought to accurately extract the seasonal cycles of its most prominent sub regions.
We first compare SOM estimates in 2 boxes within 2 biogeochemical provinces to10

an independent in situ data set. We then compare the SOM results to climatological
results for 5 biogeochemical provinces.

Five months of data collected between the UK and Caribbean on board of MV Santa
Maria during 2006 were not included in the labelling data set. Monthly means of this
independent data for the boxes are shown in Fig. 7. The data used for labelling the15

SOM for these boxes in 2006 are also plotted. SOM estimates are area weighted
means for the boxes. In both cases SOM reproduces the labelling data set well.

In the tropical North Atlantic (15◦ N to 25◦ N and 50◦ W to 60◦ W, Fig. 7a), the ab-
solute value of the mean monthly residual between SOM estimates and independent
data ranges from 0.3 to 13.2µatm (mean 4.3µatm). The independent data for one20

(April) month, out of five, falls outside the 1-σ standard deviation of the SOM-predicted
values within the box. Given that, based on Gaussian probability distribution, 68% of
independent values should fall within such defined error bars, SOM performs well in
this direct validation exercise. Interestingly labelling data averaged for April is 25µatm
lower than the independent data. Both voyages used for calculating averages took25

place between 18 and 30 April 2006, within the same 10◦ longitude by 10◦ latitude box.
Tracks also crossed (4 days apart) and measured values were around 20µatm different
at the crossing. Such high spatial and temporal sub-pixel variability complicates com-
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paring relatively few in situ data from specific sampling region and period, to results
obtained with interpolation methods designed for a much larger area.

In the subtropical North Atlantic (26◦ N to 38◦ N and 35◦ W to 60◦ W, Fig. 7b), the
absolute value of the mean monthly residual between SOM estimates and independent
data ranges from 0.2 to 31.5µatm (mean 15.5µatm). The SOM tends to underestimate5

the pCO2 values with regards to the independent data set in late summer and fall and
also fails to reproduce exceptionally high April values for the region. Sparse in situ data
distribution (not shown) within the box may introduce sampling bias and may explain
some of these differences. In addition, we need to suggest using SOM maps with
caution when fine scale features and processes are analyzed.10

The robustness of SOM estimates is further analyzed for five biogeochemical regions
similar to those proposed by Longhurst (2007), shown in Fig. 8. The subpolar North
Atlantic is represented by two provinces. The first combines the western part of the
sub-Arctic (SARC) and the eastern part of the Arctic (ARCT) and stretches from 58◦ N
to 66◦ N and from 10◦ W to 40◦ W. The second, the North Atlantic Drift Region (NADR)15

stretches between 46◦ N and 58◦ N and 10◦ W and 40◦ W. The North Atlantic Subtropical
Gyre is divided into a western (NAST(W)) part, between 26◦ N and 38◦ N and 35◦ W
and 70◦ W, and an eastern (NAST(E)) part between 26◦ N and 42◦ N and 10◦ W and
35◦ W part. The North Atlantic Tropical Gyre (NATR) stretches from 10◦ N to 26◦ N and
from 20◦ W to 75◦ W (with a different latitudinal extent of the province of 20◦ N to 26◦ N,20

between 60◦ W and 75◦ W). For each province we show the number of data points
available for training and labelling of the SOM. The mid-latitude North Atlantic has the
smallest number of in situ measurements, whereas the northern provinces were by far
the most sampled. The number of points in the training data depends mainly on the
size of the province. The chosen data sources offer full year- around cover except for25

the occasional lack of the chlorophyll measurements in the SARC/ARCT region.
In Fig. 9, we compare SOM estimates for a reference year 2005 (mean of the monthly

SOM estimates for 2004 to 2006) in these provinces, to a climatological distribution of
the sea surface pCO2 constructed for a reference year 2000 based on in situ pCO2
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measurements obtained from 1970 to 2006 (Takahashi et al., 2008). For compari-
son purposes we show Takahashi’s climatological mean distribution (constructed for a
reference year 2000) adjusted to a reference year 2005 assuming an annual rate of
increase of 1.8µatm as proposed in Takahashi et al. (2008).

In the SARC/ARCT region (Fig. 9a), SOM estimated pCO2 values of 330–340µatm5

during late spring and summer and of around 370µatm during fall and winter agree
with earlier findings showing that disequilibrium with the atmospheric pCO2 (not shown
here) exists throughout most of the year in this region, with the CO2 air-sea flux directed
into the ocean (Omar and Olsen, 2006; Olsen et al., 2008). Low summer pCO2 due
to strong biological carbon uptake (Takahashi et al., 2002), together with higher win-10

ter values (caused by deepening of the mixed layer supplying CO2 rich waters to the
surface) dominate the seasonal cycle. SOM estimates resolve such a pattern for the
region. SOM values for the summer months are around 20µatm higher than the long
term climatological mean. However, according to Corbière et al. (2007), who analyzed
data from 1993 to 2003 in the Western SARC, the seasonal amplitude can be as low as15

20 µatm and as high as around 60 µatm, depending on the year. A variable intensity
of the phytoplankton bloom, generally occurring in June, is given as an explanation by
Corbière and co-workers. They also show that, at least for the mid-nineties, the climato-
logical distribution proposed by Takahashi et al. (2002), may overestimate the strength
of the summer biological carbon uptake and thus underestimate the pCO2 values in the20

region. SOM estimates for the region are moreover consistent with those of Chierici
et al. (2008) (Fig. 10). These authors estimated sea surface pCO2 for 2005 in a re-
gion with a slightly smaller latitudinal extent than our SARC/ARCT (Fig. 10 shows SOM
estimates for a region matching the one used in Chierici et al., 2008). Using measure-
ments obtained onboard MV Nuka Arctica, together with remotely sensed data, they25

applied algorithms based on multiple regression. The in situ measurements used by
Chierici and co-workers represent a fraction of the dataset used for the same region
of the North Atlantic in this study. The resulting seasonal cycle for 2005 agrees well
with SOM estimates for 2005 (Fig. 10). Neither method shows pCO2 values below
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325µatm during the 2005 bloom. Both methods also produce an annual amplitude in
pCO2 of around 50µatm. Obtaining similar results to a method designed for regional,
high-resolution estimates, increases our confidence in the basin-wide SOM estimates,
despite the fact that the pCO2 data used have a large overlap.

In the NADR (Fig. 9b), the SOM estimates a relatively weak seasonal pCO2 cy-5

cle, with an amplitude of 26µatm. This is in line with results from Schuster and Wat-
son (2007). These authors report an average annual amplitude of around 20µatm in
the eastern temperate region (35◦ N to 50◦ N and 5◦ W to 30◦ W) for years 2002 to 2005,
50% smaller than the amplitude found for years 1994 to 1995 (Fig. 3b in Schuster and
Watson, 2007). This strong decrease in the amplitude over the last decade might also10

explain the difference in amplitude between the SOM estimates and the climatology in
our region, which is shifted slightly to the North-West.

The seasonal cycle in the subtropical North Atlantic, represented here by two
provinces (Fig. 9c–d), has an opposite shape to that further north. SOM pCO2 es-
timates in the NAST(W) are characterized by one strong summer maximum in August,15

which agrees with the peak of the seasonal temperature cycle in the region (Takahashi
et al., 2002; Phillips and Joyce, 2007). The annual amplitude of 41µatm results from
generally low primary production (Bates et al., 2002), having a small counteracting
effect on the thermo-dynamically driven surface water pCO2 variability (Bates, 1998,
2001). SOM estimates for the NAST(E) have a relatively low annual amplitude mainly20

due to a likely underestimation of the summer maximum in August by 10–15µatm.
Santana-Casiano et al. (2007) report summer maxima of 380 to 400µatm at the ES-
TOC station (29◦10′ N, 15◦30′ W) for years 1995 to 2004. Also Schuster et al. (2008)
report summer maxima of 400 and 390µatm (for years 2005 and 2006 respectively)
in a 5◦ latitude×5◦ longitude grid box centred at 27.5◦ N, 17.5◦ W (Fig. 2 in Schuster et25

al., 2008). This is in line with the Takahashi climatology adjusted to 2005, which esti-
mates a summer maximum of 386µatm (Fig. 9d). The SOM, however has a summer
maximum of 371µatm. The SOM’s inability to resolve the full annual amplitude of the
pCO2 cycle in NAST(E) requires further investigation. An increase in the spatial and
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temporal resolution of the training data to reduce the effect that averaging might have
on the SOM’s estimates as well as better pCO2 in situ cover has been proposed to
address this local “smoothing” effect of the SOM.

In the NATR (Fig. 9e) the SOM estimates a fairly flat seasonal cycle coupled to the
temperature variability, which agrees well with the climatology. These warm, homo-5

geneous waters do not support much primary production, and lack of strong winds
excludes mixed layer deepening as a control for pCO2 variability. Values are relatively
high throughout the year and vary between 355 and 380µatm. West African upwelling
brings CO2 rich waters to the surface, thus increasing sea surface pCO2 values, spe-
cially during summer. Overall the SOM proves a robust method for reconstructing10

seasonal pCO2 cycles in a diversified suite of biogeochemical provinces of the North
Atlantic.

3.3 SOM estimates and the interannual variability of the training data

Medium-to-large scale processes and features of the seasonal pCO2 cycle are mod-
ified in terms of size, strength and to some extent location, by interannual variability.15

The SOM’s basin-wide estimates of such variability for each season are presented in
Fig. 6. Visual inspection of this relatively short period (3 years) reveals apparent year-
to-year changes. In the western subtropics summer (represented by August) values
(Fig. 6g–i), are highest for 2005. Also the region of high (∼400µatm) pCO2 values
covers larger area than in either 2004 or 2006. Similarly in the North Atlantic Drift20

Region, fall (represented by October) pCO2 values (Fig. 6j–l) in 2006 are higher and
wider spread than those in the two previous years.

According to Eq. (1), SOM predictions are entirely data-based, and therefore the in-
terannual variability in the SOM estimates can only be forced by the interannual variabil-
ity of the three controlling parameters: SST, CHL and MLD. Their variability affects the25

pCO2 distribution in a non-uniform manner, varying with each region’s spatio-temporal
dependence on the given parameter. Figures 11 and 12 show these relationships for
NADR and NAST(W), respectively. Monthly mean values of estimated pCO2 in each
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province for 2004, 2005 and 2006 are represented by red, green and blue curves re-
spectively. Error bars represent standard error of the mean calculated as:

SEM =
s
√
n

(5)

where s represents the standard deviation of the sample, and n is the sample size.
In the NADR (Fig. 11), during months with high mean CHL concentrations, the inter-5

annual variability of this parameter controls the variability in the estimated pCO2 field.
High mean CHL values (0.55–0.75 mg/m3) during June–August 2004 correspond to
the pCO2 values around 8µatm lower than during these months in later years; also a
comparatively high chlorophyll concentration in March 2005 has decreased the pCO2
values by ∼15µatm in comparison to other years. The interannual pCO2 variability10

in the pre- and post-bloom periods appears to be controlled by variations in the MLD.
However, significantly higher MLD values during January–May 2006 are not translated
to similarly substantial increase in the pCO2. This is explained by the non-linear char-
acter of the relationship between sea surface pCO2 and MLD in the subpolar North
Atlantic proposed by Olsen et al. (2008) and confirmed for our data (not shown). These15

authors found that MLDs deeper than around 300 m have no or little influence on the
increase in the sea surface pCO2 (their Fig. 9a), whereas an MLD increase between
0 and 200 m corresponds to the pCO2 increase of up to 100µatm. This relationship is
to some extent influenced by the variability in the remaining two parameters, but SOM
estimates appear coherent with their findings. It is also worth noting that the significant20

increase in the SST between May and August (almost uniform for 2005 and 2006 and
1.5◦C lower for 2004) does not translate into a corresponding increase in estimated
sea surface pCO2. The biological CO2 drawdown dominates the thermodynamical ef-
fect during the bloom period (Olsen et al., 2008), and SOM estimates represent this
relationship correctly.25

In the NAST(W) (Fig. 12) the estimated interannual pCO2 variability for the years
2004 to 2006 appears to be controlled by the variations in the MLD field. The sea-
sonal pCO2 cycle in those regions is controlled by the combination of SST and MLD as
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mentioned earlier, but the SST interannual variability for the years under investigation
is very weak, hence the MLD dominance in controlling the interannual variability. The
strongly non-linear relationship between the sea surface pCO2 and MLD found in the
subpolar North Atlantic is also apparent in the subtropical part of the basin. An opposite
sign of this relationship (pCO2 decreases with increasing MLD) found in the subtropics5

(not shown) is due to the opposite shape of the, temperature-controlled, seasonal cy-
cle. The deepening of the MLD takes place during the cooling-related pCO2 decrease,
and MLD shallowing occurs during seasonal, warming-related pCO2 increase. SOM
estimates resolve this relationship, which can be observed especially during late winter
and early spring, when SST and CHL vary very little.10

During January–March period of 2004 the MLD was variable and shallow in the
subtropics (55 m decrease, from 96 m in January to 41 m in March), and the SOM
predicts variable pCO2 as a result (9.3µatm increase). During February–April period
of 2005 the MLD was similarly shallow and variable (62 m decrease), and SOM predicts
12.3µatm increase in the pCO2. Contrary to that, greater variability (53 m increase15

followed by 109 m decrease) of the deep MLD during February-April period of 2006
translates to less than 1.5µatm variability in the predicted pCO2. The SOM reproduces
the pattern previously noted by Olsen et al. (2008) for the northern North Atlantic, and
confirmed in our data for the subtropics.

4 Summary and conclusions20

A self organizing neural network has been applied to construct 36 basin-wide, monthly
pCO2 maps over the North Atlantic for 2004 to 2006. Estimates of three full sea-
sonal cycles and interannual variability between 2004 and 2006 show that the method
can account for medium-to-large scale biological and physical processes. The choice
of training parameters has resulted in a powerful mapping performance. The esti-25

mated seasonal pCO2 cycles in five major biogeochemical provinces mostly agrees
with other data analyses. The distribution of monthly sea surface pCO2 for a reference
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year 2005 in the northern provinces of the North Atlantic suggests that current pCO2
values are 20 to 30µatm higher than the 35-year climatology (Takahashi et al., 2008)
indicates. The difference is especially profound in the phytoplankton bloom period
(June–September). The lack of estimates in the northern part of the basin in the winter
months is a disadvantage of the current SOM set-up for several applications. However,5

this important issue can be resolved by combining two SOM runs and covering the
missing regions with no-biology predictions.

Discrepancies identified in the eastern subtropics reveal the method’s tendency to
“smooth” highest and lowest values. This behaviour is to some extent expected from
the method which is supposed to robustly estimate basin-wide values. An introduction10

of basin-wide sea surface salinity field as an additional training parameter is suggested
to improve SOM estimates. This will be possible following the launch of ESA’s Soil
Moisture and Ocean Salinity (SMOS) sensor, planned between July and October 2009.
However the influence of the smoothing effect on the overall performance seems to be
minimal and mainly related to the analyses of features of sub-pixel to a few pixels in15

size. Very high spatial and temporal natural pCO2 variability makes the SOM estimates
too coarse for such a small-scale analysis and they should be considered as designed
for analyses over larger regions.

The estimated interannual pCO2 variability provides confirmation of the SOM’s pat-
tern extraction capabilities. There is no need for implementing a mathematical descrip-20

tion of governing relationships a priori, as long as sufficient data are available. This
validates the possibility of using the method to examine the interannual variability in
the North Atlantic over the last decade or so, during which the region seem to have
weakened as a net CO2 sink (Schuster and Watson, 2007). The estimates of the inter-
annual variability could also add significant value to future model predictions. Current25

models either lack the interannual variability or disagree with in situ measurements.
The sparse nature of in situ observations is often given as an explanation; therefore
basin-wide maps should serve as a better input.

As a whole, this is a major improvement over historical efforts to map the pCO2 in
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the entire basin, eliminating the need to divide the basin into several regions in order
to derive biogeochemical relationships for each one separately. The SOM’s ability to
extract numerous existing relationships simultaneously provides an equally good fit to
the data and allows for basin-wide analysis over several years.

The continuation of large scale in situ marine pCO2 measurements will improve our5

understanding of the actual spatial and temporal variability in the real ocean, and al-
low us to interpret estimated values with more confidence. It is our current intention
that SOMs be used in conjunction with these measurements during the future oceanic
pCO2 monitoring programs.
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Table 1. Ranges of sea surface temperature, mixed layer depth and chlorophyll a in the training
(T) and labelling (L) data sets by season.

Season Data Temperature (◦C) Mixed Layer Depth (m) Chlorophyll a (mg/m3)

Min Max L cover(%)a Min Max L cover(%)a Min Max L cover(%)a

WINTER T −1.80 29.2 99.7 10.0 >1000b 98.2 0.04 35.8 98.5
(Dec–Feb) L 0.45 28.5 – 17.9 571.9 – 0.05 2.0 –

SPRING T −1.80 29.7 97.8 10.0 >1000c 99.2 0.02 64.6 99.8
(Mar–May) L 0.17 28.9 – 10.0 834.5 – 0.03 9.6 –

SUMMER T −1.80 30.3 95.7 8.4 387.5 99.5 0.02 57.9 99.6
(Jun–Aug) L 1.92 29.1 – 10.0 337.7 – 0.03 12.7 –

FALL T −1.80 30.7 97.9 9.0 484.9 99.6 0.02 32.4 99.1
(Sep–Nov) L 5.85 30.1 – 12.0 360.4 – 0.04 26.8 –

a Percentage of the training data within the range of the labelling data set.
b 0.2% of data are above 1000 m.
c 0.4% of data are above 1000 m.
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Fig. 1. Visualization of the procedures for the self organizing map (SOM). Three main steps
are necessary: first (a and b), an unsupervised training takes place, and no pCO2 data is used;
second (c), preconditioned neurons are labelled with pCO2 data measured in situ; third (d), the
trained and labelled SOM is used to assign pCO2 values to the geographical map for the whole
basin.
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Fig. 2. Property – property plots for pCO2, MLD, CHL and SST. The distribution of the density of
the data of all the 389 000 training data points within each 2-dimensional data space are shown
in grey. Overlaid in red is the distribution of 2220 SOM neurons after the training. To account
for the non-linearity in the system the distribution of the neurons matches the distribution of the
data.
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Fig. 3. The spatial distribution of the pCO2 measurements used in this study. Data constitute
the subset of the CarboOcean dataset for 2004 through 2006.
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Fig. 4. Number of in situ pCO2 measurements in the North Atlantic used for labelling the
preconditioned SOM, versus month, for 2004, 2005 and 2006.
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Fig. 5. Scatterplots of the pCO2 estimated by the SOM, versus the measured pCO2 (binned
into 1◦×1◦×week) for 2004, 2005 and 2006. Root mean-square of residuals (RMS) for each
year provides the accuracy of the method.
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                          a)                                                      b)                                                      c) 

     
                          d)                                                      e)                                                      f) 

     
                          g)                                                      h)                                                      i) 

     
                          j)                                                      k)                                                      l) 

     

 

Fig. 6. Seasonal (in columns) and interannual (in rows) variability of the sea surface pCO2 in
the North Atlantic for years 2004 to 2006.
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Fig. 7. Monthly mean pCO2 versus month in 2006 estimated by SOM for 2 regions where
independent (not used in SOM training or labelling) data from MV Santa Maria are available.
The regions are well within (away from provinces’ borders) the tropical North Atlantic (a, 15◦ N
to 25◦ N and 50◦ W to 60◦ W) and the western subtropical North Atlantic (b, 26◦ N to 38◦ N and
35◦ W to 60◦ W). For comparison, monthly pCO2 means from the labelling data of 2006 are also
shown. The vertical bars extend from −1σ to +1σ of the area weighted distribution for the given
region.
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Fig. 8. The biogeochemical provinces of the North Atlantic proposed by Longhurst (2007) as
used here for an analysis of SOM estimates. nT and nL represent the number of data points
available for training and labelling of the SOM, respectively.
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Fig. 9. Seasonal cycle of the sea surface pCO2 in five biogeochemical provinces of the North
Atlantic. The vertical bars extend from −1σ to +1σ of the area weighted distribution for the
given region.
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Fig. 10. Monthly, area weighted pCO2 fields during 2005 in the subpolar North Atlantic (58◦ N
to 63◦ N, 10◦ W to 40◦ W) estimated by SOM, compared to the multiple regression estimates for
2005 in the same region performed by Chierici et al. (2008).
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Fig. 11. SOM estimates of the pCO2 interannual variability during 2004 (red), 2005 (green)
and 2006 (blue) in the NADR province (46◦ N to 58◦ N and 10◦ W to 40◦ W) compared to the
variability of SST, CHL and MLD.
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Fig. 12. SOM estimates of the pCO2 interannual variability during 2004 (red), 2005 (green)
and 2006 (blue) in the NAST(W) province (26◦ N to 38◦ N and 35◦ W to 70◦ W) compared to the
variability of SST, CHL and MLD.

3414

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/3373/2009/bgd-6-3373-2009-print.pdf
http://www.biogeosciences-discuss.net/6/3373/2009/bgd-6-3373-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

