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Abstract

Biogeochemical models of the ocean carbon cycle are frequently validated by, or tuned
to, satellite chlorophyll data. However, ocean carbon cycle models are required to ac-
curately model the movement of carbon, not chlorophyll and due to the high variability
of the carbon to chlorophyll ratio in phytoplankton, chlorophyll is not a robust proxy for5

carbon. Using inherent optical property (IOP) inversion algorithms it is now possible to
also derive the amount of light backscattered by the upper ocean (bb) which is related
to the amount of particulate organic carbon (POC) present. Using empirical relation-
ships between POC and bb, a 1-d biogeochemical model is used to simulate bb at
490 nm thus allowing the model to be compared with either remotely-sensed chloro-10

phyll or bb data. Here I test the hypothesis that using bb in conjunction with chlorophyll
data can help to constrain more model parameters than using chlorophyll alone. This is
done by tuning the parameters of the biogeochemical model with a genetic algorithm,
so that the model is fitted to either chlorophyll or to both chlorophyll and bb data at three
sites in the Atlantic with very different characteristics. There are several IOP algorithms15

available for estimating bb. Four of these are investigated and three of them used for
model tuning. The effect of the different bb datasets on the behaviour of the tuned
model is examined to ascertain whether the uncertainty in bb is significant. The results
show that the addition of bb data can have a large effect on the modelled detritus and
that differences in the IOP algorithms are not particularly significant.20

1 Introduction

Quantifying the global carbon cycle is crucial for predicting our future climate. The
oceans play an important role in the carbon cycle as they absorb CO2 from the at-
mosphere enabling the transport of carbon to the deep ocean through physical and
biological processes. Physical processes enable CO2 rich waters from the ocean sur-25

face to sink downwards only resurfacing hundreds of years later. However, biological
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processes can actually remove carbon from the system by exporting particulate organic
carbon (POC) to the sea-bed (a process termed as “export production”). Thus for cli-
mate change prediction it is crucial to quantify the amount of CO2 that is transferred
from the atmosphere to the ocean through the air-sea interface (the air-sea CO2 flux)
and the amount of carbon that is subsequently exported towards the seabed. Ideally,5

validation of ocean carbon cycle models would involve comparison of the simulated
air-sea CO2 flux and export production with measured data. Unfortunately these data
are not available at the time and space scales necessary. However, chlorophyll con-
centrations inferred from satellite ocean colour data (Chl) are available globally at an
adequate time-space resolution. Chl gives an indication of the amount of living phy-10

toplankton in the ocean. This is useful since it is algal photosynthesis that removes
CO2 from the water allowing more CO2 from the atmosphere to enter the ocean. Ide-
ally, for carbon cycle modelling, we need to know the amount of carbon fixed by the
phytoplankton but this is not directly related to the amount of chlorophyll since the car-
bon to chlorophyll ratio (C:Chl) within phytoplankton is highly dynamic (Geider et al.,15

1997). Therefore, chlorophyll is not a robust proxy for carbon unless there are also data
on phytoplankton physiology (C:Chl). Thus it is perfectly possible to correctly predict
chlorophyll concentrations without correctly predicting carbon concentrations.

However, satellite ocean colour data are simply measurements of the amount of
sunlight (at certain wavelengths) that is scattered back out of the ocean (known as the20

water leaving radiance). Water leaving radiance can be used to estimate the inherent
optical properties (IOPs) of the ocean surface waters – these include the absorption
coefficient, a (m−1), and the backscattering coefficient, bb (m−1). The total backscat-
tering coefficent is the sum of the particulate backscattering coefficient (bbp) and the
backscattering due to seawater (bbw ). There are a number of algorithms available to25

calculate bb or bbp from the water leaving radiance, e.g., Loisel and Poteau (2006);
Smyth et al. (2006), the QAA (Lee et al., 2002), and the GSM (Garver and Siegel,
1997; Maritorena et al., 2002; Siegel et al., 2002). Furthermore, bbp derived from
satellite data has been empirically related to the amount of POC in the surface wa-
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ters (e.g. Loisel et al., 2001, 2002; Stramski et al., 1999). POC is a combination of
the amount of carbon contained within living phytoplankton (CP ) and biological detritus
(CD). Other possible products from ocean colur data are the IOP a and the apparent
optical property Kd (attenuation coefficient for downwelling light). However, in the open
ocean variations in a and Kd will be strongly related to Chl so it is unlikely that there5

is significantly different information here to constrain the models much beyond simply
using Chl.

Here, the potential to use satellite bb data in addition to satellite Chl data to calibrate
a simple 1-D open ocean biogeochemical model is investigated. The model consists of
the Hadley Centre Ocean Carbon Cycle model (HadOCC; Palmer and Totterdell, 2001)10

coupled to the 1-D General Ocean Turbulence Model (GOTM, Burchard et al., 1999).
HadOCC is a simple nutrient-phytoplankton-zooplankton-detritus (NPZD) plus carbon-
ate chemistry model that is used in climate prediction models such as HadCM3. The
model is applied to three sites in the Atlantic ocean that have very different physical and
biological characteristics. The model parameters are tuned to coincident satellite Chl15

and bb data using a genetic algorithm to search the parameter space. The hypothesis
is that by using satellite bb to validate the POC in global 3-D climate prediction mod-
els, the detrital and phytoplankton components of the model may be better constrained
than when simply using Chl. Since there are several IOP algorithms available for esti-
mating bb the model is tuned to each of these different datasets to assess whether the20

uncertainty in the bb data invalidates the hypothesis.

2 Sites

Three sites in the Atlantic are chosen due to the availability of observed data at these
locations (see http://www.noc.soton.ac.uk/animate). They are: the Central Irminger
Sea (CIS) at 60◦ N, 40◦ W, the Estacion Europea de Series Temporales del Oceano,25

Islas Canarias (ESTOC) at 29◦ N, 15.5◦ W and the Porcupine Abyssal Plain (PAP) at
49◦ N, 16◦ W. These sites have diverse characteristics, as demonstrated by SeaWiFS
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satellite measurements of their photosynthetically active radiation (PAR), chlorophyll
concentrations and backscattering coefficients (Fig. 1) thereby providing a range of
conditions on which to test the hypothesis.

3 Satellite data

The ocean colour data were downloaded from ftp://oceans.gsfc.nasa.gov/SeaWiFS/5

Binned/8Day/. These datafiles contain binned normalised water leaving radiances,
nLw (at wavelengths 412, 443, 490, 510, 555 and 670 nm and chlorophyll-a data (from
the OC4v4 algorithm), averaged over 8 days intervals. The remote sensing reflectance
(Rrs) is computed from nLw using

Rrs(λ) =
nLw(λ)

F 0(λ)
(1)10

where F 0(λ) are 173.00, 190.15, 196.47, 188.16, 183.01, 151.14.

4 Methods

4.1 Deriving the particulate backscattering coefficient, bbp

bbp can be derived from nLw or Rrs using a variety of Inherent Optical Property (IOP)
inversion algorithms. Here bbp at 490nm (required for relating to POC) is obtained15

using the following four IOP algorithms:

LP (Loisel and Poteau, 2006; Loisel and Stramski, 2000; Loisel et al., 2001). This
algorithm gives bb (total backscattering coefficient) at 410, 440, 490, 510 and
550 nm. bb(490) is then converted to bbp(490) using

bbp(490) = bb(490) − bbw (2)20
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where bbw=0.001581378 m−1 is the backscattering coefficient due to water.

GSM (The Garver–Siegel–Maritorena semi-analytical algorithm; Garver and Siegel,
1997; Maritorena et al., 2002; Siegel et al., 2002). This algorithm gives bbp(443)
which, for use in this work, is converted to bbp(490) using

bbp(490) = bbp(443)
(

490
443

)−γ
(3)5

where

γ = −0.855 log(Chl) + 1.259 . (4)

(Loisel et al., 2006).

PML (Plymouth Marine Laboratory; Smyth et al., 2006). This gives bbp at 412, 443,
490, 510, 555 and 670 nm.10

QAA (The Quasi-Analytical Algorithm, Lee et al., 2002). This gives bbp at 410, 440,
490, 510, 555 and 670 nm.

Where the solar zenith angle is a necessary input (e.g., for LP and PML) it is
set to 0◦. The code for computing the LP and QAA algorithms was obtained from
http://www.ioccg.org/groups/software.html and the algorithms were driven by eight-day15

averages of nLw or Rrs (Eq. 1) from SeaWiFS. The results of the GSM (v4) algo-
rithm for bbp(443) (using SeaWiFS 5.2) were downloaded from http://www.science.
oregonstate.edu/ocean.productivity/inputBbpGsmData.php. And finally, the PML algo-
rithm results were provided by Tim Smyth.

The different IOP algorithms can give quite different values of bbp(490) as shown20

in Figs. 2 and 3. In Fig. 3 it is clear that the QAA and LP results agree very well
(Fig. 3c) but there is considerably less agreement between the other algorithms, with
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the largest discrepancies between PML and GSM (Fig. 3e). However, the intention
here is not to compare these algorithms but rather to investigate whether the bb data
from the different algorithms are similar enough to each other to constrain the ocean
biogeochemical model in a consistent way.

4.2 Biogeochemical model5

The biogeochemical model used here is the NPZD Hadley Centre Ocean Carbon Cycle
model (HadOCC; Palmer and Totterdell, 2001) coupled to the 1-D General Ocean Tur-
bulence Model (GOTM, Burchard et al., 1999) (henceforth denoted GOTM-HadOCC).
For further details and model equations please refer to Kettle and Merchant (2008).
The difference in the model used here is the calculation of C:Chl, for which the mainly10

physically-based equation of Cloern et al. (1995) is used rather than that of Geider
et al. (1997) which is largely determined by biological parameter values (further details
are given in Sect. 4.2). In the application here underwater light and photosynthesis
are modelled using 6 wavebands, with the downwelling attenution coefficient modelled
according to Morel and Maritorena (2001) and the absorption of light by phytoplank-15

ton from Bricaud et al. (1998) (see Kettle and Merchant, 2008 for more detail). The
remineralisation of detritus (D) back to nutrient (not described by Kettle and Merchant,
2008) is computed as follows: below 100 m the amount of detritus remineralised is

γ
depthD (see Table 1 for γ); above 100 m is it fixed at 0.1D (mmol N m−3 d−1). The model
is driven with ERA-40 reanalysis meteorological data from ECMWF at 6 hourly resolu-20

tion and the physical model (GOTM) is tuned to reproduce the observed temperatures
in the ANIMATE dataset (see Kettle and Merchant, 2008). At CIS the shortage of satel-
lite data caused by its high latitude means it was necessary to tune the model to 2
years of data (2003–2004), but at ESTOC and PAP the model is only tuned to 2003
data due to computation time constraints.25
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4.2.1 Model set-up

The initial profiles of inorganic nutrient are taken from the Levitus climatology (Levitus
et al., 1993) and concentrations of phytoplankton and zooplankton are both initialised
at 0.01 mmol N m−3 and detritus is started at zero. Initial conditions for dissolved in-
organic carbon (DIC) and alkalinity are 2058 µmol l−1 and 2396 µmol l−1, respectively,5

representing typical global values. Since for parameter optimization the model must
be runs thousands of times, the vertical grid is reduced to 25 layers with geometrical
zooming towards the surface (surface layer has thickness 5cm going to thicknesses of
900 m at abyssal depths). GOTM-HadOCC requires some “spin-up” time to remove
sensitivity to the initial conditions so the model is run for 12 months before the results10

are compared with the satellite data. The driving data for the spin-up year is simply
a copy of the 2003 data.

4.2.2 Computing Chl within GOTM-HadOCC

Chlorophyll concentration (mg m−3) is computed using

Chl =
MC(C:N)P

C:Chl
Phyto (5)15

where Phyto is the concentration of nitrogen in the phytoplankton compartment, MC is
the molar mass of carbon (12.01 g mol−1), and (C:N)P is the molar C:N ratio in phyto-
plankton (6.625 mol C (mol N)−1). The C:Chl (mass) ratio, is computed using physical
variables and the nutrient limitation on growth (Nlim) according to Cloern et al. (1995):

C:Chl =
(

0.003 + 0.0154e(0.05TM−0.059(IM ))Nlim

)−1
(6)20

where TM is the temperature of the mixed layer (◦C) and IM is the mean daily irradiance
in the mixed layer (mol photons m−2 d−1) (the expression is inverted as Cloern et al.,
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1995 use Chl:C). The nutrient limitation on growth is given by:

Nlim =
N

KN + N
(7)

where N is inorganic nutrient (nitrogen) and KN is the growth saturation parameter (see
Table 1).

4.2.3 Computing bbp(490) within GOTM-HadOCC5

The scattering of underwater light is affected by the amount of POC in the water. In
GOTM-HadOCC, POC is calculated by adding together the carbon in the phytoplankton
and detrital compartments:

POC = MC((C:N)P Phyto + (C:N)DDet) (8)

where Det is the nitrogen concentration (mmol N m−3) in the detritus compartment and10

(C:N)D is the C:N ratio in detritus (set to 7.5). POC is then used to simulate bbp(490)
through the following series of equations.

The scattering coefficient due to POC, bPOC(490), is estimated from POC using
a simple linear relationship:

bPOC(490) =
POC
400

(9)15

(Loisel et al., 2002; Claustre et al., 1999). This is converted to the backscattering
coefficient due to POC by

bbPOC(490) = 0.0096bPOC(490)Chl−0.253 (10)

(Twardowski et al., 2001). The total particulate backscattering coefficient is then as-
sumed to be the sum of bbPOC and a background value (bbBG) which is unrelated to20

biological activity and set to 0.17×10−3 m−1 (Fujii et al., 2007), such that:

bbp(490) = bbPOC(490) + bbBG. (11)
4209
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Thus the minimum value for bbp(490) predicted by GOTM-HadOCC is 0.17×10−3

which is just slightly higher than the minima shown by the satellite data for the three
sites (Fig. 2).

4.2.4 Optical weighting

In order to compare depth-resolved model variables with the equivalent remote sens-5

ing variable, the vertical profile must be weighted according to its contribution to the
light leaving the water. Since the light must travel down through the water and back out
again, the dimishing factor is exp(−2Kd (z)) (assuming the attenuation of upwelling irra-
diance is equal to the downwelling irradiance attenuation) where Kd is the attenuation
coefficient for downwelling light. Thus for a variable X its remotely sensed equivalent,10

Xrs is computed here using:

Xrs =

∫z90

0 X (z)g(z)dz∫z90

0 g(z)dz
(12)

where

g(z) = exp
(
−2

∫ z90

0
Kd (z′)dz′

)
(Gordon and Clark, 1980), where Kd is spectrally averaged and z90 is the first atten-15

uation depth (the depth above which 90% of the light received by the satellite sensor
originates).

4.3 Tuning model parameters

Eleven of the model parameters are tuned, based on a recent sensitivity analysis of
the model by Scott et al. (2008). Table 1 shows the tuning parameters and their range20

of possible values. Given the similarity between the LP and QAA bb(490) datasets it
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was deemed unnecessary to tune the model to both datasets and so the QAA dataset
was omitted from the following work. Thus GOTM-HadOCC is tuned at each site to the
following four datasets:

C Chlorophyll

L Chlorophyll and bb(490) from LP5

G Chlorophyll and bb(490) from GSM

P Chlorophyll and bb(490) from PML

For a given parameter set, GOTM-HadOCC outputs Chlrs and bbrs which are then
compared to the observed dataset using the cost function:

cost = ΣJ
j=1

1

Nσ2
j

ΣN
n=1(obsjn − modjn)2 (13)10

where N is the number of observations, j is the data type (i.e., Chl or bb), J is the
number of datatypes (i.e., 1 or 2), σ2

j is the variance of the observed data and modj is
an 8 day moving average of the 6-hourly model output. When there is more than one
type of observation, i.e., both Chl and bb, they each have the same number of data
points.15

4.3.1 Optimisation using a genetic algorithm

To search through the parameter space to find the optimum parameter set (i.e., the
one which minimizes the cost function – Eq. 13), a genetic algorithm (GA) is employed
(following Schartau and Oschlies, 2003). This is simply a search/optimization tech-
nique based on Darwin’s theory of natural selection (for an good introduction to GAs20

see Goldberg, 1989). The basic idea is that a set of model parameters is viewed as
an “individual” whose fitness is determined by 1

cost . A number of individuals make up
a “population” within which the individuals “reproduce” to make a population of new
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individuals (the next generation). Whether or not attributes from a certain individual
are transferred to the next generation depends on whether the individual is allowed to
reproduce, which in turn depends on its fitness. Individuals with high fitness levels are
more likely to reproduce than those with low fitness (survival of the fittest). The off-
spring from two individuals is a new individual (parameter set) with characteristics from5

each parent. To bring in new information, mutation may be used to make small modifi-
cations to some of the children. Thus, the procedure produces successive generations
of parameter sets that give models whose output is a better match to the observed
data, eventually converging to the parameter set that gives the best possible model fit.

Here a micro-genetic algorithm (µGA) coded and published by Carroll (1996) and10

made freely available at http://cuaerospace.com/carroll/ga.html is used. Details of the
µGA are given by Krishnakumar (1989). The µGA is based on the same operations
as a general GA but it does not contain mutation and gives greater influence on elitism
principles thereby assuring that the best individual (parameter set) is transferred to the
next generation. As soon as all the individuals of one generation show less than 5%15

difference between each other, a new random population is generated (although the
best individual is retained).

Here each parameter in the set of 11 tuneable parameters (Table 1) is represented
by a 6 digit binary string thus enabling each parameter to take 64 possible values (the
resulting parameter increments are given in Table 1). The string for each individual (i.e.20

parameter set) is thus 66 (11×6) digits long and the population is chosen to comprise
of 11 individuals. The optimization is run for 2000 generations (11×2000 model runs)
to ensure convergence.
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5 Results and discussion

5.1 Model fit to data

At each site GOTM-HadOCC is tuned in turn to the C, L, G and P datasets (defined in
Sect. 4.3). In most cases the GA has achieved the optimum fitness after ∼1000 gen-
erations. It is possible that the same degree of fitness can be achieved by a number of5

different parameter sets, however, in all cases here there is only one optimum param-
eter set for each dataset at each site. Figs. 4 and 5 show the model outputs of Chlrs
and bbrs

(from here on simply referred to as Chl and bb) when run with the optimised
parameter sets, compared with the appropriate satellite data. The fits are remarkably
good given GOTM-HadOCC is only 1-D with no accounting for advection. Broadly10

speaking, tuning also to bb data increases the magnitude of both modelled Chl and bb
(Figs. 4 and 5). Table 2 gives the RMSEs for the different model fits. In general, and as
expected, adding in bb data causes an increase in Chl error. Somewhat surprisingly
Table 2 shows that in some cases the bb RMSE is actually smaller when the model
is not tuned to bb (e.g., at CIS and PAP tuning to dataset P gives a larger bb RMSE15

than tuning to dataset C; at ESTOC tuning to L and P are worst than tuning to C). This
is to do with the way the errors are calculated whereby the models tuned to dataset C
are compared with the mean of the observed bb datasets, whereas the models tuned
to a particular bb dataset are then compared with that dataset. The combined RMSE
results show that GOTM-HadOCC produces the best fit to dataset G which implies that20

the SeaWiFS chlorophyll data and the GSM bb data are related in a way that is the
most consistent with the mechanisms contained within GOTM-HadOCC.

5.2 Optimised parameter values

Table 3 shows the optimum parameter values for each dataset at each site. Since the
GA evaluates a very large amount of parameter sets and cost functions (22 000 for25

each site and dataset) these can be used to gain insight into how well each parameter
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is constrained. By examining the cost function for every value of a particular parame-
ter generated it is possible to see the sensitivity of the cost function to that parameter
(given that the other parameters may take any value). For each of the 64 values of
any given parameter the associated minimum cost function indicates the best combi-
nation of the other parameters. Thus, plotting the possible values for a given parameter5

against the minimum of the cost functions generated for that parameter value indicates
how well that parameter is constrained. Figure 6 shows this with values binned into 15
intervals over the parameter range (to smooth excessive scatter) and crosses to indi-
cate the optimal parameter values. If the optimization problem is well posed and the
parameters are uncorrelated, all the subplots would show sharp symmetric parabolas10

and the parameters would be fully constrained (Schartau and Oschlies, 2003). How-
ever, from Fig. 6 it is clear that most of the parameters are not well constrained which
is unsurprising given that data on nutrient and zooplankton are not used, and that the
parameter values will heavily interact with each other.

Some of the parameters are not constrained to one value but instead there appears15

to be a range of values which give similarly low costs but beyond which the cost function
increases rapidly, e.g., φ (at CIS and ESTOC), µ1 (at CIS), gmax (at CIS) and m0 (at
PAP). Other parameters are constrained to the upper or lower limit of their ranges,
e.g., R (at CIS and ESTOC), m0 (at CIS and ESTOC), µ2 (at CIS), V (at CIS) and
KN (at PAP). For some parameters the slopes of the cost function are greater when20

bb data are included implying that the bb data are helping to constrain parameters
but this is not always the case. Due to the inability of the data to strongly constrain
model parameters, it is important to realise that the parameters of the tuned models
can not be reliably used to infer properties of the system, for instance, the presence of
a particular species of phytoplankton.25

5.3 Model behaviour

Given that the optimal parameter values may show a range of values for the different
tuning datasets, it is more informative to examine the actual model outputs to ascertain
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the real effect of including bb data. Figure 7 shows the modelled nutrient, phytoplank-
ton, zooplankton and detritus for each site for each optimised model. Results vary
considerably between sites with all of the differently optimised models having very sim-
ilar behaviour at CIS, very different behaviour at ESTOC and differences which depend
on the model compartment examined at PAP. At ESTOC, it is clear that the satellite data5

are too noisy to sufficiently constrain the model behaviour. At all of the sites, however,
the models tuned to datsets G and L show very similar behaviour implying that the bb
data from these 2 algorithms are not significantly different. At CIS and PAP the models
tuned to dataset P (dotted lines) have outputs which are generally similar to those for
L and G with the notable exception of the complete extinction of zooplankton at PAP!10

At CIS the model tuned to dataset C (the chlorophyll only dataset) shows slightly less
phytoplankton (and subsequently less nutrient uptake), and zooplankton and detritus
than the models that are also tuned to bb. At PAP, the model tuned to dataset C shows
similar concentrations of nutrient and phytoplankton but significantly less detritus (the
zooplankton compartment is clearly not well constrained by the satellite data).15

Interestingly at ESTOC the phytoplankton compartment shows a wide range of
values which implies the model is simulating very different phytoplankton physiology
(C:Chl ratios) since the chlorophyll concentrations are similar (Fig. 4). Figure 8 shows
C:Chl ratios in the mixed layer depth for each site. At CIS they are virtually identical
for the different models; at PAP there are large differences when the model is tuned20

to dataset P and small differences between the other models in the latter half of the
year. At ESTOC, however, there are very large differences in C:Chl between the mod-
els. This indicates that correctly simulating Chl at this location with GOTM-HadOCC
will not necessarily result in the correct estimation of carbon fixation. Furthermore,
the fairly large differences between the models tuned to datasets with bb included in-25

dicates that at this location (where there is no strong seasonal cycle), the differences
in the bb values from different IOP algorithms is significant. This is supported by the
values for mean column primary production predicted by the models which are tuned to
the datasets that include bb data (Table 4) – at ESTOC the values vary by up to 191%,
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at CIS by up to 24% and at PAP by up to 54%.
Importantly for climate prediction, the air-sea flux of CO2 does not alter significantly

between the differently optimised models as shown in Table 4. This is because the air-
sea CO2 flux is largely controlled by physical not biological processes at these locations
(particularly ESTOC) and the biological process is the uptake of DIC by phytoplankton5

which are largely constrained by Chl not bb at CIS and PAP. The other important vari-
able for climate prediction is the export of detrital material to the sea bed (export pro-
duction). This is a balance between the rate at which the material sinks and the rate at
which it is remineralised back to nutrient. In order to compare the effect of the different
parameter sets on export production, the amount of detritus below 200 m on the last10

day of the simulation is used. The choice of depth level is arbitrary since the physics of
the models at each site are the same. Note this not exactly export production as some
of the material may not make it to the sea bed. Table 4 shows that the amount of detrital
carbon below 200 m is highly variable even for models that have very similar surface
behaviour (e.g., models tuned to datasets L and G at CIS). This is because it is highly15

sensitive to the remineralisation rate, γ which is not well constrained since its effects
are seen beneath the depth to which the satellite sensor can retrieve information.

6 Conclusions

It has been shown here that satellite Chl and bb data are not sufficient to fully constrain
ocean carbon cycle model parameters. However, at two of the locations chosen (CIS20

and PAP) using the Chl and bb datasets together is sufficient to constrain modelled
outputs of nutrient, phytoplankton and detritus (but not always zooplankton). Moreover,
including bb data rather than simply using Chl can significantly alter the modelled de-
tritus. The differences in bb resulting from different IOP inversion algorithms do not
appear to be a significant as the models tuned to the different datasets show fairly25

consistent behaviour. The change in modelled detritus caused by tuning to bb data
is important for climate prediction modelling since it is the detrital compartment that
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relates to the amount of carbon that is exported to the seabed and therefore effectively
removed from the system. However, modelled export production is determined by the
parameters for the detrital sinking rate (V ) and remineralisation (γ). Contraining γ is
difficult using satellite data as its effects are seen deeper in the water column. There-
fore, satellite bb data are not sufficient to constrain export production in ocean carbon5

cycle models but they can help to improve modelling of detritus in the mixed layer which
is a step in the right direction.
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Table 1. Parameters of the NPZD model. Note the fixed parameters are shown in Table 2 in
Kettle and Merchant (2008) with the exception that Fth is set to 0.01 mmol N m−3 at all sites.

Parameter for variation symbol units lower bound upper bound interval

Half saturation constant of N uptake KN mmol N m−3 0.01 0.85 0.0133
Max. photosynthetic rate Pm d−1 0.1 5.1 0.0808
yield φ mol C mol quanta−1 0.01 0.12 0.0018
Respiration rate R d−1 0.005 0.095 0.0014
Conc. dependent specific mortality m0 d−1(mmol N m−3)−1 0.008 0.25 0.0038
Constant specific mortality (zoo.) µ1 d−1 0.03 0.2 0.0027
Zoo-dependent specific mortality µ2 d−1(mmol N m−3)−1 0.03 0.57 0.0086
Half saturation constant for Z grazing Kf mmol N m−3 0.4 1.0 0.0095
max Z grazing rate gmax d−1 0.06 2.0 0.0308
Detrital sinking rate V m d−1 3.0 32.0 0.4603
Deep remineralisation rate γ d−1 3.8 13.36 0.1518
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Table 2. RMS errors between the tuned-model output and the satellite data. Note bb output
from models tuned to dataset C are compared with the mean of the 3 bb datasets whereas the
others are compared with the bb datset they were tuned to. The combined error is computed by
scaling the two RMSEs by the mean for the 4 tuning datasets and then adding the two scaled
error values. The number of observed data points is shown in brackets (note CIS covers 2
years).

Dataset C L G P

RMSE with observed Chl (mg m−3)

CIS 0.177 0.194 0.190 0.205
EST 0.0245 0.0256 0.0256 0.0260
PAP 0.134 0.136 0.148 0.164

RMSE with observed bb (10−4 m−1)

CIS 13.383 9.991 8.113 21.018
EST 2.412 2.880 2.110 3.208
PAP 11.46 9.241 7.139 16.323

Combined error (dimensionless)

CIS 1.94 (54) 1.77 (48) 1.61 (51) 2.67 (44)
EST 1.86 (45) 2.10 (43) 1.80 (45) 2.24 (38)
PAP 1.96 (38) 1.77 (33) 1.66 (36) 2.60 (28)
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Table 3. Optimised model parameter sets for each tuning dataset at each site.

KN Pm φ R m0 µ1 µ2 Kf gmax V γ fitness

CIS
C 0.7167 1.2219 0.0397 0.0107 0.2500 0.0786 0.5700 0.6571 1.4149 3.9206 7.1384 1.88
L 0.8500 0.5756 0.0886 0.0050 0.2500 0.0435 0.5443 0.92381 1.1070 3.0000 3.8000 0.70
G 0.8500 0.5756 0.0921 0.0050 0.2500 0.0543 0.5700 0.6952 0.9222 3.0000 13.3600 0.91
P 0.8500 0.7371 0.0903 0.0050 0.2500 0.0813 0.5700 1.0000 1.5381 3.0000 3.8000 0.40

EST
C 0.8500 0.6563 0.1130 0.0050 0.0080 0.2000 0.2014 0.5333 1.7844 4.8413 3.8000 1.86
L 0.0100 4.5344 0.1200 0.0150 0.0118 0.1433 0.4500 0.9048 0.6759 19.5714 3.8000 0.70
G 0.0100 4.6152 0.1130 0.0279 0.0080 0.1163 0.5700 0.8381 1.2302 31.5397 4.8622 0.65
P 0.8500 5.1000 0.0641 0.0050 0.0118 0.1163 0.0729 0.9810 1.9384 3.0000 3.8000 0.70

PAP
C 0.6900 3.1610 0.0100 0.0193 0.1578 0.0597 0.0300 0.5524 0.6451 7.6032 13.3600 2.12
L 0.8233 4.5344 0.0135 0.0164 0.2423 0.0867 0.0900 0.4000 0.5527 3.0000 13.3600 0.89
G 0.8500 0.6563 0.0571 0.0621 0.2231 0.0408 0.2529 0.5333 0.3987 3.0000 12.9048 0.83
P 0.8500 2.4338 0.0152 0.0164 0.2193 0.1838 0.3643 0.4857 1.9692 3.0000 4.1035 0.47
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Table 4. Comparing results from the differently optimised models for the mean CO2

flux (mol C m−2 a−1) into the ocean, the mean primary production for the water column
(mg C m−2 d−1) and the amount of detrital carbon below 200 m (g C m−2).

Tuning Data: C L G P

Site Air-sea CO2 flux

CIS 14.90 15.00 14.93 15.08
EST 0.65 0.75 0.70 0.63
PAP 3.87 3.81 3.85 3.98

Mean column primary production

CIS 152.4 181.0 182.5 224.5
EST 92.4 40.9 65.8 119.4
PAP 62.3 86.7 134.2 95.7

Detrital carbon below 200 m

CIS 0.42 2.12 0.09 2.62
EST 1.95 2.55 1.56 1.06
PAP 0.08 0.01 0.01 0.47
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2 H. Kettle: Using backscattering data to constrain an ocean biogeochemical model

backscattering coefficient,bb (m−1). The total backscatter-
ing coefficent is the sum of the particulate backscattering co-
efficient (bbp) and the backscattering due to seawater (bbw).
There are a number of algorithms available to calculatebb or
bbp from the water leaving radiance, e.g., Loisel and Poteau
(2006), Smyth et al. (2006), the QAA (Lee et al. (2002)),
and the GSM (Garver and Siegel (1997), Maritorena et al.
(2002) and Siegel et al. (2002)). Furthermore,bbp derived
from satellite data has been empirically related to the amount
of POC in the surface waters (e.g. Loisel et al. (2001), Loisel
et al. (2002), Stramski et al. (1999)). POC is a combination
of the amount of carbon contained within living phytoplank-
ton (CP ) and biological detritus (CD). Other possible prod-
ucts from ocean colur data are the IOPa and the apparent
optical propertyKd (attenuation coefficient for downwelling
light). However, in the open ocean variations ina andKd

will be strongly related toChl so it is unlikely that there is
significantly different information here to constrain the mod-
els much beyond simply usingChl.

Here, the potential to use satellitebb data in addition to
satelliteChl data to calibrate a simple 1-d open ocean bio-
geochemical model is investigated. The model consists of
the Hadley Centre Ocean Carbon Cycle model (HadOCC;
Palmer and Totterdell (2001)) coupled to the 1-d General
Ocean Turbulence Model (GOTM, Burchard et al. (1999)).
HadOCC is a simple nutrient-phytoplankton-zooplankton-
detritus (NPZD) plus carbonate chemistry model that is used
in climate prediction models such as HadCM3. The model
is applied to three sites in the Atlantic ocean that have very
different physical and biological characteristics. The model
parameters are tuned to coincident satelliteChl andbb data
using a genetic algorithm to search the parameter space. The
hypothesis is that by using satellitebb to validate the POC in
global 3-d climate prediction models, the detrital and phyto-
plankton components of the model may be better constrained
than when simply usingChl. Since there are several IOP al-
gorithms available for estimatingbb the model is tuned to
each of these different datasets to assess whether the uncer-
tainty in thebb data invalidates the hypothesis.

2 Sites

Three sites in the Atlantic are chosen due to the availability of
observed data at these locations (see http://www.noc.soton.
ac.uk/animate). They are: the Central Irminger Sea (CIS)
at 60◦N, 40◦W, the Estacion Europea de Series Temporales
del Oceano, Islas Canarias (ESTOC) at 29◦N, 15.5◦W and
the Porcupine Abyssal Plain (PAP) at 49◦N, 16◦W. These
sites have diverse characteristics, as demonstrated by SeaW-
iFS satellite measurements of their photosynthetically active
radiation (PAR), chlorophyll concentrations and backscatter-
ing coefficients (Fig.1) thereby providing a range of condi-
tions on which to test the hypothesis.
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Fig. 1. Comparing PAR (SeaWiFS), chlorophyll (SeaWiFS) and
bb(490) (LP algorithm) at the three different sites in the Atlantic.

3 Satellite Data

The ocean colour data were downloaded from ftp://oceans.
gsfc.nasa.gov/SeaWiFS/Binned/8Day/. These datafiles con-
tain binned normalised water leaving radiances, nLw (at
wavelengths 412, 443, 490, 510, 555 and 670nm and
chlorophyll-a data (from the OC4v4 algorithm), averaged
over 8 days intervals. The remote sensing reflectance (Rrs)
is computed from nLw using

Rrs(λ) =
nLw(λ)

F0
(1)

whereF0(λ) are 173.00, 190.15, 196.47, 188.16, 183.01,
151.14.

4 Methods

4.1 Deriving the particulate backscattering coefficient,bbp

bbp can be derived fromnLw or Rrs using a variety of Inher-
ent Optical Property (IOP) inversion algorithms. Herebbp at
490nm (required for relating to POC) is obtained using the
following four IOP algorithms:

LP (Loisel and Poteau (2006), Loisel and Stramski (2000)
and Loisel et al. (2001)). This algorithm givesbb (to-
tal backscattering coefficient) at 410, 440, 490, 510 and
550nm.bb(490) is then converted tobbp(490) using

bbp(490) = bb(490) − bbw (2)

wherebbw = 0.001581378 m−1 is the backscattering co-
efficient due to water.

Fig. 1. Comparing PAR (SeaWiFS), chlorophyll (SeaWiFS) and bb(490) (LP algorithm) at the
three different sites in the Atlantic.
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GSM (The Garver-Siegel-Maritorena semi-analytical algo-
rithm; Garver and Siegel (1997), Maritorena et al.
(2002) and Siegel et al. (2002)). This algorithm gives
bbp(443) which, for use in this work, is converted to
bbp(490) using

bbp(490) = bbp(443)

(

490

443

)

−γ

(3)

where

γ = −0.855 ∗ log 10(Chl) + 1.259. (4)

(Loisel et al., 2006).

PML (Plymouth Marine Laboratory; Smyth et al. (2006)).
This givesbbp at 412, 443, 490, 510, 555 and 670nm.

QAA (The Quasi-Analytical Algorithm, Lee et al. (2002)).
This givesbbp at 410, 440, 490, 510, 555 and 670nm.

Where the solar zenith angle is a necessary input
(e.g., for LP and PML) it is set to 0◦. The code
for computing the LP and QAA algorithms was ob-
tained from http://www.ioccg.org/groups/software.htmland
the algorithms were driven by eight-day averages of
nLw or Rrs (Eq.1) from SeaWiFS. The results of the
GSM (v4) algorithm for bbp(443) (using SeaWiFS 5.2)
were downloaded from http://www.science.oregonstate.edu/
ocean.productivity/inputBbpGsmData.php. And finally, the
PML algorithm results were provided by Tim Smyth.

The different IOP algorithms can give quite different val-
ues ofbbp(490) as shown in Figs. 2 and 3. In Fig. 3 it is
clear that the QAA and LP results agree very well (Fig. 3c)
but there is considerably less agreement between the other
algorithms, with the largest discrepancies between PML and
GSM (Fig. 3e). However, the intention here is not to com-
pare these algorithms but rather to investigate whether the
bb data from the different algorithms are similar enough to
each other to constrain the ocean biogeochemical model in a
consistent way.

4.2 Biogeochemical Model

The biogeochemical model used here is the NPZD Hadley
Centre Ocean Carbon Cycle model (HadOCC; Palmer and
Totterdell (2001)) coupled to the 1-d General Ocean Turbu-
lence Model (GOTM, Burchard et al. (1999)) (henceforth de-
noted GOTM-HadOCC). For further details and model equa-
tions please refer to Kettle and Merchant (2008). The dif-
ference in the model used here is the calculation of C:Chl,
for which the mainly physically-based equation of Cloern
et al. (1995) is used rather than that of Geider et al. (1997)
which is largely determined by biological parameter values
(further details are given in section 4.2). In the application
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Fig. 2. Satellite-derivedbbp(490) at each site using 4 different IOP
inversion algorithms.
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Fig. 3. Comparing IOP inversion algorithms forbbp(490) (m−1): a)
Loisel and PML, b) QAA and PML, c) Loisel and QAA, d) GSM
and QAA, e) GSM and PML, f) Loisel and GSM for CIS (blue),
ESTOC (green) and PAP (red).

here underwater light and photosynthesis are modelled us-
ing 6 wavebands, with the downwelling attenution coeffi-
cient modelled according to Morel and Maritorena (2001)

Fig. 2. Satellite-derived bbp(490) at each site using 4 different IOP inversion algorithms.
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GSM (The Garver-Siegel-Maritorena semi-analytical algo-
rithm; Garver and Siegel (1997), Maritorena et al.
(2002) and Siegel et al. (2002)). This algorithm gives
bbp(443) which, for use in this work, is converted to
bbp(490) using

bbp(490) = bbp(443)

(

490

443

)

−γ

(3)

where

γ = −0.855 ∗ log 10(Chl) + 1.259. (4)

(Loisel et al., 2006).

PML (Plymouth Marine Laboratory; Smyth et al. (2006)).
This givesbbp at 412, 443, 490, 510, 555 and 670nm.

QAA (The Quasi-Analytical Algorithm, Lee et al. (2002)).
This givesbbp at 410, 440, 490, 510, 555 and 670nm.

Where the solar zenith angle is a necessary input
(e.g., for LP and PML) it is set to 0◦. The code
for computing the LP and QAA algorithms was ob-
tained from http://www.ioccg.org/groups/software.htmland
the algorithms were driven by eight-day averages of
nLw or Rrs (Eq.1) from SeaWiFS. The results of the
GSM (v4) algorithm for bbp(443) (using SeaWiFS 5.2)
were downloaded from http://www.science.oregonstate.edu/
ocean.productivity/inputBbpGsmData.php. And finally, the
PML algorithm results were provided by Tim Smyth.

The different IOP algorithms can give quite different val-
ues ofbbp(490) as shown in Figs. 2 and 3. In Fig. 3 it is
clear that the QAA and LP results agree very well (Fig. 3c)
but there is considerably less agreement between the other
algorithms, with the largest discrepancies between PML and
GSM (Fig. 3e). However, the intention here is not to com-
pare these algorithms but rather to investigate whether the
bb data from the different algorithms are similar enough to
each other to constrain the ocean biogeochemical model in a
consistent way.

4.2 Biogeochemical Model

The biogeochemical model used here is the NPZD Hadley
Centre Ocean Carbon Cycle model (HadOCC; Palmer and
Totterdell (2001)) coupled to the 1-d General Ocean Turbu-
lence Model (GOTM, Burchard et al. (1999)) (henceforth de-
noted GOTM-HadOCC). For further details and model equa-
tions please refer to Kettle and Merchant (2008). The dif-
ference in the model used here is the calculation of C:Chl,
for which the mainly physically-based equation of Cloern
et al. (1995) is used rather than that of Geider et al. (1997)
which is largely determined by biological parameter values
(further details are given in section 4.2). In the application
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Fig. 2. Satellite-derivedbbp(490) at each site using 4 different IOP
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and QAA, e) GSM and PML, f) Loisel and GSM for CIS (blue),
ESTOC (green) and PAP (red).

here underwater light and photosynthesis are modelled us-
ing 6 wavebands, with the downwelling attenution coeffi-
cient modelled according to Morel and Maritorena (2001)

Fig. 3. Comparing IOP inversion algorithms for bbp(490) (m−1): (a) Loisel and PML, (b) QAA
and PML, (c) Loisel and QAA, (d) GSM and QAA, (e) GSM and PML, (f) Loisel and GSM for
CIS (blue), ESTOC (green) and PAP (red).
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Table 1. Parameters of the NPZD model. Note the fixed parameters are shown in Table 2 in Kettle and Merchant (2008) with the exception
that Fth is set to 0.01 mmol N m−3 at all sites.

Parameter for variation symbol units lower bound upper bound interval
Half saturation constant of N uptake KN mmol N m−3 0.01 0.85 0.0133
Max. photosynthetic rate Pm d−1 0.1 5.1 0.0808
yield φ mol C mol quanta−1 0.01 0.12 0.0018
Respiration rate R d−1 0.005 0.095 0.0014
Conc. dependent specific mortality m0 d−1(mmol N m−3)−1 0.008 0.25 0.0038
Constant specific mortality (zoo.) µ1 d−1 0.03 0.2 0.0027
Zoo-dependent specific mortality µ2 d−1(mmol N m−3)−1 0.03 0.57 0.0086
Half saturation constant for Z grazing Kf mmol N m−3 0.4 1.0 0.0095
max Z grazing rate gmax d−1 0.06 2.0 0.0308
Detrital sinking rate V m d−1 3.0 32.0 0.4603
Deep remineralisation rate γ d−1 3.8 13.36 0.1518

Table 2. RMS errors between the tuned-model output and the satel-
lite data. Notebb output from models tuned to dataset C are com-
pared with the mean of the 3bb datasets whereas the others are com-
pared with thebb datset they were tuned to. The combined error is
computed by scaling the two RMSEs by the mean for the 4 tuning
datasets and then adding the two scaled error values. The number of
observed data points is shown in brackets (note CIS covers 2 years).

Dataset C L G P
RMSE with observedChl (mg m−3)

CIS 0.177 0.194 0.190 0.205
EST 0.0245 0.0256 0.0256 0.0260
PAP 0.134 0.136 0.148 0.164

RMSE with observedbb (10−4 m−1)
CIS 13.383 9.991 8.113 21.018
EST 2.412 2.880 2.110 3.208
PAP 11.46 9.241 7.139 16.323

Combined error (dimensionless)
CIS 1.94 (54) 1.77 (48) 1.61 (51) 2.67 (44)
EST 1.86 (45) 2.10 (43) 1.80 (45) 2.24 (38)
PAP 1.96 (38) 1.77 (33) 1.66 (36) 2.60 (28)

5.2 Optimised Parameter Values

Table 3 shows the optimum parameter values for each dataset
at each site. Since the GA evaluates a very large amount of
parameter sets and cost functions (22000 for each site and
dataset) these can be used to gain insight into how well each
parameter is constrained. By examining the cost function for
every value of a particular parameter generated it is possi-
ble to see the sensitivity of the cost function to that param-
eter (given that the other parameters may take any value).
For each of the 64 values of any given parameter the associ-
ated minimum cost function indicates the best combination
of the other parameters. Thus, plotting the possible values
for a given parameter against the minimum of the cost func-
tions generated for that parameter value indicates how well
that parameter is constrained. Fig. 6 shows this with values

0 200 400 600 800
0

0.5

1

1.5
C

hl
 (

m
g 

m
−

3 )

days since 1/1/2003

a) CIS

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

C
hl

 (
m

g 
m

−
3 )

days since 1/1/2003

b) ESTOC

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

days since 1/1/2003

C
hl

 (
m

g 
m

−
3 )

 

 

c) PAP

C
L
G
P
obs

Fig. 4. ComparingChl from optimised models (8-day running
means) with observed satellite data.

binned into 15 intervals over the parameter range (to smooth
excessive scatter) and crosses to indicate the optimal param-
eter values. If the optimization problem is well posed and
the parameters are uncorrelated, all the subplots would show
sharp symmetric parabolas and the parameters would be fully
constrained (Schartau and Oschlies, 2003). However, from
Fig. 6 it is clear that most of the parameters are not well con-
strained which is unsurprising given that data on nutrient and
zooplankton are not used, and that the parameter values will
heavily interact with each other.

Some of the parameters are not constrained to one value
but instead there appears to be a range of values which give
similarly low costs but beyond which the cost function in-
creases rapidly, e.g.,φ (at CIS and ESTOC),µ1 (at CIS),
gmax (at CIS) andm0 (at PAP). Other parameters are con-
strained to the upper or lower limit of their ranges, e.g.,R (at
CIS and ESTOC),m0 (at CIS and ESTOC),µ2 (at CIS),V
(at CIS) andKN (at PAP). For some parameters the slopes

Fig. 4. Comparing Chl from optimised models (8-day running means) with observed satellite
data.
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Fig. 5. Comparing bb(490)rs from optimised models (8-day run-
ning means) with observed satellite data (averge of all IOP algo-
rithm results).

of the cost function are greater whenbb data are included im-
plying that thebb data are helping to constrain parameters
but this is not always the case. Due to the inability of the
data to strongly constrain model parameters, it is important
to realise that the parameters of the tuned models can not be
reliably used to infer properties of the system, for instance,
the presence of a particular species of phytoplankton.

5.3 Model Behaviour

Given that the optimal parameter values may show a range
of values for the different tuning datasets, it is more infor-
mative to examine the actual model outputs to ascertain the
real effect of includingbb data. Fig. 7 shows the modelled
nutrient, phytoplankton, zooplankton and detritus for each
site for each optimised model. Results vary considerably be-
tween sites with all of the differently optimised models hav-
ing very similar behaviour at CIS, very different behaviour
at ESTOC and differences which depend on the model com-
partment examined at PAP. At ESTOC, it is clear that the
satellite data are too noisy to sufficiently constrain the model
behaviour. At all of the sites, however, the models tuned to
datsets G and L show very similar behaviour implying that
thebb data from these 2 algorithms are not significantly dif-
ferent. At CIS and PAP the models tuned to dataset P (dotted
lines) have outputs which are generally similar to those forL
and G with the notable exception of the complete extinction
of zooplankton at PAP! At CIS the model tuned to dataset C
(the chlorophyll only dataset) shows slightly less phytoplank-
ton (and subsequently less nutrient uptake), and zooplankton
and detritus than the models that are also tuned tobb. At PAP,
the model tuned to dataset C shows similar concentrations of
nutrient and phytoplankton but significantly less detritus(the
zooplankton compartment is clearly not well constrained by
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Fig. 6. Possible parameter values plotted against the minimum of
the computed cost functions (parameter range is divided into 15
equally spaced bins). The optimum parameter values are marked
by crosses.

the satellite data).
Interestingly at ESTOC the phytoplankton compartment

Fig. 5. Comparing bb(490)rs from optimised models (8-day running means) with observed
satellite data (averge of all IOP algorithm results).
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Fig. 5. Comparing bb(490)rs from optimised models (8-day run-
ning means) with observed satellite data (averge of all IOP algo-
rithm results).

of the cost function are greater whenbb data are included im-
plying that thebb data are helping to constrain parameters
but this is not always the case. Due to the inability of the
data to strongly constrain model parameters, it is important
to realise that the parameters of the tuned models can not be
reliably used to infer properties of the system, for instance,
the presence of a particular species of phytoplankton.

5.3 Model Behaviour

Given that the optimal parameter values may show a range
of values for the different tuning datasets, it is more infor-
mative to examine the actual model outputs to ascertain the
real effect of includingbb data. Fig. 7 shows the modelled
nutrient, phytoplankton, zooplankton and detritus for each
site for each optimised model. Results vary considerably be-
tween sites with all of the differently optimised models hav-
ing very similar behaviour at CIS, very different behaviour
at ESTOC and differences which depend on the model com-
partment examined at PAP. At ESTOC, it is clear that the
satellite data are too noisy to sufficiently constrain the model
behaviour. At all of the sites, however, the models tuned to
datsets G and L show very similar behaviour implying that
thebb data from these 2 algorithms are not significantly dif-
ferent. At CIS and PAP the models tuned to dataset P (dotted
lines) have outputs which are generally similar to those forL
and G with the notable exception of the complete extinction
of zooplankton at PAP! At CIS the model tuned to dataset C
(the chlorophyll only dataset) shows slightly less phytoplank-
ton (and subsequently less nutrient uptake), and zooplankton
and detritus than the models that are also tuned tobb. At PAP,
the model tuned to dataset C shows similar concentrations of
nutrient and phytoplankton but significantly less detritus(the
zooplankton compartment is clearly not well constrained by
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Fig. 6. Possible parameter values plotted against the minimum of
the computed cost functions (parameter range is divided into 15
equally spaced bins). The optimum parameter values are marked
by crosses.

the satellite data).
Interestingly at ESTOC the phytoplankton compartment

Fig. 6. Possible parameter values plotted against the minimum of the computed cost functions (parameter range is
divided into 15 equally spaced bins). The optimum parameter values are marked by crosses.
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Fig. 7. Modelled 8-day running means of mixed-layer nutrient, phy-
toplankton, zooplankton and detritus (all in mmol N m−3) produced
by the optimised models at each site. Thick pale blue lines repre-
sent the model optimised to dataset C, black lines are for datsets L
(solid), G (dashed) and P (dotted).

Fig. 7. Modelled 8-day running means of mixed-layer nutrient, phytoplankton, zooplankton and
detritus (all in mmol N m−3) produced by the optimised models at each site. Thick pale blue lines
represent the model optimised to dataset C, black lines are for datsets L (solid), G (dashed)
and P (dotted).
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Fig. 8. Modelled 8-day running means of mixed-layer C:Chl pro-
duced by the optimised models at each site. Thick pale blue lines
represent the model optimised to dataset C, black lines are for dat-
sets L (solid), G (dashed) and P (dotted).

Fig. 8. Modelled 8-day running means of mixed-layer C:Chl produced by the optimised models
at each site. Thick pale blue lines represent the model optimised to dataset C, black lines are
for datsets L (solid), G (dashed) and P (dotted).
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