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Abstract

Global, spatially and temporally explicit estimates of carbon and water fluxes derived
from empirical up-scaling eddy covariance measurements would constitute a new and
possibly powerful data stream to study the variability of the global terrestrial carbon
and water cycle. This paper introduces and validates a machine learning approach5

dedicated to the upscaling of observations from the current global network of eddy
covariance towers (FLUXNET). We present a new model TRee Induction ALgorithm
(TRIAL) that performs hierarchical stratification of the data set into units where particu-
lar multiple regressions for a target variable hold. We propose an ensemble approach
(Evolving tRees with RandOm gRowth, ERROR) where the base learning algorithm is10

perturbed in order to gain a diverse sequence of different model trees which evolves
over time.

We evaluate the efficiency of the model tree ensemble approach using an artificial
data set derived from the the Lund-Potsdam-Jena managed Land (LPJmL) biosphere
model. We aim at reproducing global monthly gross primary production as simulated by15

LPJmL from 1998–2005 using only locations and months where high quality FLUXNET
data exist for the training of the model trees. The model trees are trained with the
LPJmL land cover and meteorological input data, climate data, and the fraction of
absorbed photosynthetic active radiation simulated by LPJmL. Given that we know the
“true result” in the form of global LPJmL simulations we can effectively study the perfor-20

mance of the model tree ensemble upscaling and associated problems of extrapolation
capacity.

We show that the model tree ensemble is able to explain 92% of the variability of the
global LPJmL GPP simulations. The mean spatial pattern and the seasonal variability
of GPP that constitute the largest sources of variance are very well reproduced (96%25

and 94% of variance explained respectively) while the monthly interannual anomalies
which occupy much less variance are less well matched (41% of variance explained).
We demonstrate the substantially improved accuracy of the model tree ensemble over
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individual model trees in particular for the monthly anomalies and for situations of ex-
trapolation. We estimate that roughly one fifth of the domain is subject to extrapolation
while the model tree ensemble is still able to reproduce 73% of the LPJmL GPP vari-
ability here.

This paper presents for the first time a benchmark for a global FLUXNET upscaling5

approach that will be employed in future studies. Although the real world FLUXNET
upscaling is more complicated than for a noise free and reduced complexity biosphere
model as presented here, our results show that an empirical upscaling from the current
FLUXNET network with a model tree ensemble is feasible and able to extract global
patterns of carbon flux variability.10

1 Introduction

The establishment of a global database of eddy covariance measurements of CO2,
H2O and energy, the FLUXNET database (www.fluxdata.org), offers unprecedented
opportunities to study the variability of the terrestrial carbon and water cycles. How-
ever, this compilation does not provide a complete picture; it has still the character of15

acupuncture and is heavily biased to regions in the mid-latitudes of the Northern Hemi-
sphere. Therefore, one objective of the FLUXNET initiative is upscaling of the data to
generate spatially and temporally explicit maps of carbon fluxes. Upscaling exercises
of eddy covariance based carbon fluxes to large regions has been conducted for the
US (Xiao et al., 2008; Yang et al., 2007) and Europe (Jung et al., 2008; Papale et20

al., 2003; Vetter et al., 2008), which are both characterized by a comparatively dense
network of towers. The upscaling principle generally employs the training of a machine
learning algorithm to predict carbon flux estimates based on measured meteorological
data, remotely sensed vegetation properties, and vegetation type. The trained model
can then be applied spatially using grids of the respective input data.25

A comparison of different diagnostic approaches to upscale GPP from eddy covari-
ance towers to Europe has suggested that (1) the method being used for upscaling
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has a strong effect on the final result, (2) that interannual anomaly patterns are com-
paratively poorly matching between the upscaled fields (Jung et al., 2008). No actual
benchmarking has been carried out for upscaling algorithms and the issue of extrapo-
lation has not been studied yet, which is crucial for large parts of the world with little or
no flux towers such as large regions in tundra, boreal and tropical regions. In this paper5

we propose such a benchmarking by using a biosphere model as surrogate truth. The
advantage of this approach is that we know the true result and that we do not confound
uncertainties other than the method of upscaling and the distribution of the samples
that are available for the training.

So called model trees are one example of a machine learning algorithm that can be10

trained to predict the fluxes and have been employed for the US to predict NEE (Xiao
et al., 2008). Model trees are tree shaped structures that partition the data space into
units where a specific model (usually a regression) is valid. This unsupervised stratifi-
cation approach thus identifies “response units” where particular controlling factors and
respective sensitivities govern the fluxes. Therefore, an advantage of model trees is15

that they partly resolve the problem of representativeness of the training data, by parti-
tioning the data space into units of similar behaviour of the target variable with respect
to the explanatory variables. A number of theoretical and empirical studies have shown
that ensemble methods where several diverse models are constructed and jointly ap-
plied have substantial larger predictive capacity and have become common practise20

is many forecasting applications (Bates et al., 1969; Chandra et al., 2009; Hansen et
al., 1990; Kocev et al., 2009; Makridakis et al., 1982). However, we are not aware
of any study that developed ensemble model trees or used ensemble methods for the
upscaling of biogeochemical flux data.

We propose a new model tree algorithm with some innovations called TRIAL (Tree25

Induction ALgorithm), and introduce a new method to create model tree ensembles,
called ERROR (Evolving tRees with RandOm gRowth). Subsequently, we evaluate
the efficiency of the proposed algorithms to upscale carbon fluxes from FLUXNET lo-
cations. A thorough testing is made possible by using simulations for gross primary
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production (GPP) of the Lund-Potsdam-Jena managed Land (LPJmL, Bondeau et al.,
2007; Sitch et al., 2003) biosphere model as truth that is aimed to be reproduced by
the model trees which are trained only at FLUXNET locations. We focus specifically
on how well different components of the variability are reproduced such as the mean
spatial pattern of GPP, the seasonal cycles, and the monthly anomaly patterns. We5

dedicate particular emphasis on investigating the extrapolation capacity of the pro-
posed approach, and demonstrate the superiority of the ensemble method over single
individual model trees.

2 Materials and methods

2.1 Tree Induction Algorithm (TRIAL)10

Model trees (Fig. 1) have been developed from regression trees. Regression trees per-
form a recursive stratification by minimizing the variance within data subsets and the
model in the leaf nodes is a constant (the mean). Model trees contain nontrivial mod-
els in the leaf nodes, usually a multiple regression and their superiority over regression
trees had been demonstrated (e.g. Vens et al., 2006). Algorithms that learn to generate15

a model tree are heuristic machine learning approaches, and data mining techniques
for knowledge discovery and generally referred to as Top Down Induction of Model
Trees (TDIMT). Several model tree induction heuristics have been proposed in the liter-
ature that share a common strategy (see Vens et al., 2006 for a review): first, an overly
large tree is grown based on recursive partitioning, then the tree is pruned back. Differ-20

ences among TDIMT algorithms are mainly related to (1) the cost function that is used
to find the best split location for a variable Xi , (2) the search algorithm to find the best
split along a split variable Xi , and (3) the model in the leaves. Since model tree induc-
tion methods are computationally expensive attention is given to keep computation time
reasonable. The next sections provide a brief outline of the functioning of TRIAL. The25

algorithms are illustrated with pseudo-code in the supplementary material (see http:
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//www.biogeosciences-discuss.net/6/5271/2009/bgd-6-5271-2009-supplement.pdf).

2.1.1 General principle

In contrast to other model tree algorithms TRIAL allows to specify whether the explana-
tory variables X are (1) only split variables (Xsplit), (2) only regression variables (Xreg),
or (3) both. The model in the leaf nodes are multiple linear regressions. The central5

cost function of TRIAL that is minimized is the Schwarz criterion (Schwarz, 1978), also
known as Bayesian Information Criterion (BIC):

BIC = log(MSE) × n + log(n) × p

where MSE is the mean squared error based on 10fold crossvalidations, n the number
of samples, and p the number of parameters (in our case including intercepts).10

BIC contains a strong penalty for the complexity of the model which ensures parsi-
mony. In combination with the MSE estimate from crossvalidations, TRIAL is featured
by strong overfitting avoidance. Although there is debate in the literature if the less
penalizing Akaike’s Information Criterion (AIC, Akaike, 1974) or BIC should be used for
model selection (see Burnham et al., 2004 and references therein) we favour simplicity15

of the model and chose BIC. The BIC criterion is used to stop the growth of a tree, to
identify the node that should be split, as well as to select the predictor variables of the
multiple regressions in the leaf nodes. Instead of a pruning phase after tree growth
TRIAL employs pre-pruning by controlling which current leaf node is further partitioned
to yield the largest information gain for the entire model tree and stops if further splitting20

results in an increase of BIC of the tree. Thus TRIAL is not based on truly recursive
partitioning but evaluates each time which leaf node should be split. In practise this is
facilitated by calculating BIC of the full new model tree for each possible leaf node that
could be split and choosing the leaf where BIC of the new model tree is smallest.
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2.1.2 Splits along continuous variables

Splits along continuous variables are determined by finding the split location li of each
continuous explanatory variable X where the joint sum of squared errors of the left
(Xj<li ) and right child (Xj<li ) is minimal (cf. Karalic, 1992): min(SSEleft+SSEright). In-
stead of evaluating each single possibility, the number of split locations being searched5

is restricted to a predefined number (default 100) to be tractable for larger datasets (cf.
Potts et al., 2005; Vogel et al., 2007). Once the best split variable and correspond-
ing value is found a stepwise forward selection chooses the predictor variables of the
multiple regressions based on BIC. Variable selection is a critical point to reduce the
complexity of the model and to avoid unwanted effects of colinearity resulting in poorly10

constrained regression coefficients (Malerba et al., 2004). After the identification of the
predictor variables a 10-fold cross-validation is used to estimate an unbiased estimate
of the error. Because 10-fold cross-validation may be sensitive to the distribution of
training and validation data points due to the random initialization, several repetitions
(default: 5) of the 10-fold cross-validation are performed and the mean of the mean15

squared error over all cross-validations is stored.

2.1.3 Splits along categorical variables

In contrast to classic model and regression tree algorithms, TRIAL does not use so
called binary splits for categorical variables where only one single category is sepa-
rated from a group (Breiman et al., 1984). Our principle is based on iteratively joining20

two categories into a new aggregated one, which is repeated until only two categories
are left which consist of several original categories. Starting from the initial variable
with ncat categories, there are 0.5×ncat2–0.5×ncat possibilities which two groups can
be joined. For each of these possibilities SSE is computed if the two classes would
be joined. Subsequently, the two groups where SSE of the joint multiple regression25

is minimal are aggregated into a new category, i.e. where two different groups can be
best described using one regression. After each step of joining two categories, the
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new classification contains one category less. This procedure is repeated until only
two major categories are left while each consists of several original categories. This
approach is several orders of magnitude less computationally expensive than testing
each possible way of splitting the categorical variable Xj into two subgroups.

2.1.4 Model tree ensembles: evolving tRees with RandOm gRowth (ERROR)5

Ensemble methods (e.g. Breiman, 1996; Ho, 1998; Freund et al., 1996; Breiman, 2001)
where a set of different tree structures are built and jointly applied have been developed
for decision and regression trees, and have been shown to outperform single trees
(e.g. Dietterich, 2000) including the reduction of extrapolation errors (Loh et al., 2007).
The effectiveness of ensembles relies on the accuracy and diversity of the individual10

members which constitutes a trade-off (Hansen et al., 1990). Surprisingly, ensemble
methods for model trees have not attracted attention so far.

The approach we propose follows the idea of Liu et al. (2008) which uses both deter-
ministic splits (by finding the locally best split) and truly random splits without searching
for the best split. Random splits are justified because the base search algorithm for the15

best split operates locally (at one node) only which has little meaning globally, i.e. for
the performance of the entire tree (Geurts et al., 2006). Random splits allow also ex-
ploiting a substantially larger space of possible tree structures with positive effects on
the diversity – accuracy trade-off of ensemble members. However, random splits may
result in poor performance of the tree in particular if they occur at final split nodes. Liu20

et al. (2008) has shown that a combination of random and deterministic splits outcom-
petes classical ensemble methods based on resampling (e.g. bagging, Breiman, 1996)
and those based on random splits only (Geurts et al., 2006; Liu et al., 2005).

Common practice is to grow a large number of trees starting from the root. We use an
evolutionary motivated approach where an existing tree is chosen, a branch is pruned25

and a new branch is grown with partly random and partly deterministic splits. The tree
being selected for modification is partly random but the selection probability scales
with the square root of the rank of its performance: for each tree a uniformly distributed
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random number is generated and multiplied by the square root of the rank of the BIC
(best tree has rank 1, worst tree has rank “number of trees”) and the tree associated
with the minimum product is selected. This successive modification of existing trees
allows that already “good” trees can be more easily improved further than growing
independent trees from the root where the chances are small to achieve comparable5

good results again. If a large number of trees are evolved using this approach (e.g.
1000) there will be a sequence of trees that exhibit good performance and are finally
independent of each other, i.e. they do not share any part of their structure. A certain
fraction (e.g. 25 trees) of these “best-independent” trees is selected for the model tree
ensemble.10

The starting point of the “evolution” is the deterministic tree that is grown using
TRIAL. Subsequently, the tree is pruned at a randomly chosen interior node and truly
random splits are used to develop the tree further starting from this node until stopping
criteria terminate the tree growth, most likely because inappropriate random splits were
tried. Thus we can now use deterministic splits to continue the growth of the tree from15

the new leaf nodes until it stops again. While for interior split nodes the deterministic
split is likely not the “best”, the deterministic split is always the best split for final split
nodes. Therefore, we impose that all final split nodes must be deterministic and only
interior split nodes are allowed to be random.

2.2 Experimental design20

The principle idea is to mimic the challenge of upscaling GPP from eddy-covariance
sites to the globe by using a process model as “truth”. This allows a thorough
assessment of the efficiency of the proposed upscaling algorithms (TRIAL and
TRIAL+ERROR) given the actual availability of relevant FLUXNET data at site level for
training. We use simulations of GPP from the LPJmL biosphere model on monthly time25

scale from 1998–2005 and with a spatial resolution of 0.5◦. We train the model trees
to predict the simulated GPP at the respective locations and months where FLUXNET
data of sufficient quality are available. We run three realizations to evaluate the relative
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performances of (1) the deterministic model tree using TRIAL, (2) the best model tree
from the TRIAL+ERROR model tree ensemble consisting of 1000 trees, (3) a model
tree ensemble (MTE hereafter) consisting of the 25 “best independent” model trees
from the 1000 model trees.

2.2.1 LPJmL simulations5

LPJ is a dynamic global vegetation model (DGVM) and originates from the BIOME
model family (Haxeltine et al., 1996; Prentice et al., 1992). It simulates the distribu-
tion of plant functional types, and cycling of water and carbon on a quasi-daily time-
step. LPJ has been used in numerous studies on responses and feedbacks of the
biosphere in the Earth System (e.g. Brovkin et al., 2004; Lucht et al., 2002; Sitch et10

al., 2005; Schaphoff et al., 2006), and is probably the most extensively evaluated bio-
sphere model to date. The version of LPJ used here has been adapted to account for
a realistic treatment of croplands and grasslands using a crop functional type (CFT)
approach (LPJmL, Bondeau et al., 2007).

The model runs at a spatial resolution of 0.5◦, using global data sets of climate, soil15

type, and land use. The enhanced CRU TS2.1 climate database (CRU-PIK, Österle et
al., 2003) provides the historical monthly climatology for the period 1901–2005. The
anthropogenic land use information consists of annual cover fractions of 12 CFTs and
one managed grassland, while all these are further distinguished according to rainfed
and irrigated following (Fader et al., 2009). The distribution of natural plant functional20

types (PFTs) is simulated by the model. A spinup run of 1000 years is first performed
by recycling the first 30 years of the climate data in order to generate equilibrium of
carbon pools and distribution of the natural plant functional types (PFTs). The model is
then run dynamically for the period 1901–2005, responding to CO2, climate, and land
use change.25
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2.2.2 Explanatory variables for model tree training and upscaling

The explanatory variables being chosen for training and upscaling are those that are
also available for the real FLUXNET upscaling endeavour, i.e. climatic/meteorological
variables, biophysical state of the vegetation (FAPAR), and vegetation type (Table 1).
We include variables that were used to drive LPJmL except for soil properties and at-5

mospheric CO2, and also include variables not used directly in LPJmL, since we do
not always have relevant soil data and also do not know exactly which variables are
needed for predicting carbon fluxes in the real FLUXNET upscaling initiative. Climate
variables from the Climatic Research Unit (CRU, New et al., 2002) that provide mean
annual characteristics and landuse data are only used as split variables for partition-10

ing; they are not predictor variables that could appear in the regression equations. The
FAPAR simulated by LPJmL is used as an input for the model tree training because
remotely sensed FAPAR constitutes one of the most important information when up-
scaling carbon fluxes from eddy covariance sites (Jung et al., 2008; Sims et al., 2006).
The 9 different natural, and 13 different crop functional types were aggregated into15

9 classes (evergreen broadleaf trees, evergreen needleleaf trees, deciduous trees, C3
grass, C4 grass, C3 crop, C4 crop, C3 pasture, C4 pasture) which is compatible with
the vegetation classification used in FLUXNET. Consistently with the real FLUXNET
data availability, the dominant vegetation type within the gridcell and year was used as
categorical explanatory variable for model tree training although LPJmL uses a frac-20

tional representation of vegetation types.
In total 21 explanatory variables are provided for model tree training of which 16 op-

erate only as potential split variables. Please note that not all variables are necessarily
included in the final model trees since some may not be selected.

2.2.3 Data selection for training at FLUXNET sites25

In order to be consistent with the analogue FLUXNET upscaling exercise we extract
explanatory variables and LPJmL simulations only exactly for the respective locations,
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years and months of FLUXNET data, which pass various quality controls. Uncertainty
estimates of eddy covariance data is crucial since machine learning algorithms fit the
data including their possible biases. We filter the eddy covariance data according
to the degree of gap filling and using the data from the latest studies on systematic
uncertainties of FLUXNET. This procedure yields a realistic number and distribution of5

data points that should also be used for the actual upscaling. There is clearly a trade-
off between the strictness of the quality control and number of data points available
for using in the upscaling. For the eddy covariance measurements and meteorological
data (air temperature, global radiation, vapour pressure deficit, precipitation) measured
at the sites we allow a maximum of 20% of gap filling within a calendar month. We10

estimated the u∗ associated uncertainty for all FLUXNET data using a bootstrapping
approach as in Reichstein et al. (2005) and Papale et al. (2006). We reject all data
where the 95% confidence interval of this uncertainty for GPP exceeds 1 gC/m2/day on
average per month. Recently, Lasslop et al. (2009) applied an extended light response
curve method for separating measured NEE into GPP and TER using primarily day time15

NEE data, which complements the standard FLUXNET GPP data from the Reichstein
et al. (2005) algorithm that is based on estimating TER using night-time NEE data.
We exclude (monthly) data points where the absolute difference of GPP from the two
independent algorithms exceeds 1 gC/m2/day. Moreover, we exclude entire sites if
the absolute mean difference (“bias”) between the two GPP estimates is larger than20

120 gC/m2/year. Such a systematic difference between the daytime and night-time
based flux separation methods indicates possible problems with low turbulence and
advection losses.

2.2.4 Model tree application to the domain

The model trees are applied to the spatial domain using grids of the explanatory vari-25

ables. The computation is carried out separately for each vegetation type (i.e. assum-
ing the entire grid would be covered by the same vegetation) and subsequently ag-
gregated based on the fractional land use representation by calculating the weighted
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mean. Although the land use may change annually in LPJmL we use the mean frac-
tion over the eight years (1998–2005) in order to be consistent with real FLUXNET
upscaling.

The model tree ensemble is given as the median of the 25 independent values from
each ensemble member. We calculate the uncertainty of the model tree ensemble5

using a robust estimate of the standard deviation over the 25 ensemble trees, which
is given as the median absolute deviation (MAD)×1.4826. Multiplying the MAD with
1.4826 yields the standard deviation of a normal distribution.

2.2.5 Extrapolation detection

Detecting extrapolation in the upscaling is relevant for further analysis because the re-10

sults may not be trustable, and is in any case interesting in terms of representativeness
and future measurement network design of FLUXNET. Intuitively, extrapolation occurs
when conditions are present that are not captured by the training dataset and this may
be quantified by distance measures of environmental conditions. However, the short-
coming with this approach is that not all variables are equally important and that the15

importance of these variables (controlling factors) change in space and time, which is
not known a priori. This problem can be circumvented by using our proposed ensemble
method and we propose a new and simple way of detecting extrapolation which is also
computationally inexpensive. Each model tree of the ensemble has learned a different
way to predict the target variable from the same training dataset with roughly similar20

performance. We exploit this equifinality feature and argue that the different model tree
estimates are similar if these conditions are known to them due to the training and that
the estimates diverge if unknown conditions occur. We use a simple heuristics to flag
extrapolation by testing if the uncertainty of the ensemble estimate is larger than the
99th percentile of the uncertainty of the ensemble from the training sequence. This25

binary flag can be further converted into an index of extrapolation that can be mapped
spatially by computing the relative frequency of the extrapolation flag in the time domain
for each pixel.
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2.2.6 Statistical analysis

We report two standard statistical measures to assess the quality of the upscaling: the
root mean squared error (RMSE), and the coefficient of determination. For the latter
we do not compute the squared Pearson correlation coefficient but follow the definition
that is also known as modelling efficiency to measure the deviation from the 1:1 line.5

RMSE = (SSE/n)0.5

R2 = 1 − SSE/SS

Where SSE denotes the sum of squared errors, n the number of data points, and SS
the sum of squares of the target variable (GPP from LPJmL). Please note that with this
definition of R2 negative values are possible if SSE exceeds SS. Whenever we refer to10

the “true” RMSE or R2 we calculate the measures between the model tree based GPP
and LPJmL GPP (truth) over the full modelling domain. We refer to training RMSE or
R2 when both measures are derived from the training data points only using 10fold
crossvalidations.

We decompose the spatio-temporal data of GPP into three components that help to15

understand uncertainties of different aspects: (1) between site or spatial variability, (2)
mean seasonal variation, (3) between year variability of the monthly fluxes. We define
(1) as the spatial field of the mean value computed over the time domain. Seasonal
variation is given as the mean seasonal cycle minus its mean. Anomalies are calcu-
lated by subtracting the mean seasonal cycle. This decomposition allows quantifying20

global measures of the explained variance of the mean spatial pattern, mean seasonal
variation, and monthly anomalies by the model tree results.

In addition to these global measures of model performance we extract the dominant
modes of variability of the seasonal and interannual variability using principal compo-
nent analysis (PCA). PCA is effective in reducing the dimensionality of a data set and to25

extract dominant patterns of variability. We use PCA to reduce the dimensionality in the
time domain which yields spatial patterns of variability. The first principal component is
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used to map the dominant pattern of the seasonal and interannual variability. For the
latter, interannual anomalies are computed by the difference of annual GPP and mean
annual GPP for each pixel.

3 Results and discussion

3.1 Performance of individual trees and the model tree ensemble5

Performance statistics of the deterministic tree, best tree, and ensemble of 5% of the
best trees in Table 2 shows that (1) the model tree(s) are able to accurately reproduce
(R2>0.96) the LPJmL GPP in the training data set and (2) that the ERROR algorithm
was able to generate a number of hybrid model trees that are superior over the de-
terministic tree in terms of the fit of the training samples. However, statistics of the10

true model tree performances (Table 3) which is computed over the full LPJml model
domain after upscaling reveals that performance statistics from the training are not di-
rectly transferable to the actual upscaling product. For example, the best tree of the
training exhibits poorer description of the global spatio-temporal variability of LPJmL
than the deterministic tree, essentially because a substantial degree of extrapolation is15

necessary. The model tree ensemble yields the best performance for the full modelling
domain.

The very high accuracy of 92% of explained variance of the global multi-year GPP
of LPJmL by the model tree ensemble is surprising given that with the training data set
less than 0.1% of the domain was sampled, and even in a geographically clumped way.20

The superiority of the model tree ensemble over individual trees is further illustrated in
Fig. 3. The model tree ensemble shows always better performance than any of the
individual trees overall, for the mean spatial pattern, seasonal variation, and anomalies
of LPJmL GPP. While the mean spatial pattern and seasonal variation that contribute
large variance in the LPJmL GPP are already well captured by single trees, the GPP25

anomalies which constitute by far the lowest variance component is poorly reproduced
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by all individual trees but substantially improved by the model tree ensemble.
Having illustrated the improved efficiency of the ensembling method we next focus

on a more detailed evaluation of the model tree ensemble upscaling. As indicated by
the statistical measures above, Fig. 4 shows that the mean spatial pattern, and dom-
inant mode of the seasonal variability are very well reproduced by the model tree en-5

semble and differences to LPJmL are hardly detectable visually. Although interannual
variability is the component with least accuracy, its dominant pattern is consistently
extracted by the MTE as seen by the first principal component (Fig. 4). This dominant
pattern of interannual variability seems to largely represent the carbon cycle response
to the El Nino Southern Oscillation (ENSO) climate phenomenon (Jones et al., 2001;10

Knorr et al., 2007; Qian et al., 2008). Also when aggregated to latitudinal bands the
anomaly time series derived from the MTE compares much more favourably to the
original LPJmL dynamics than might be thought from Table 3, where individual pixels
were compared (Fig. 5).

There are several reasons why the interannual variability is less well reproduced by15

MTE. Firstly, the signal is small in comparison to the spatial and seasonal variability
as indicated by the variances in Table 3, which also implies that comparatively little
emphasis is given to that small fraction of variance during model tree training. Sec-
ondly, the controlling factors for the spatial GPP gradients and between year variability
may differ (Reichstein et al., 2007), which might cause a conflict. Thirdly, we used20

mean annual fractions of vegetation types for MTE while the land use in LPJmL may
show some variations over the year, for instance in consequence of fires. Fourthly, in
many regions the GPP interannual variability as simulated by LPJmL is controlled by
variations of soil moisture (e.g. Jung et al., 2007; Weber et al., 2009). Soil moisture
is a storage term and causes memory effects of the system, which is not taken into25

account by MTE. Given that all these factors are not considered by MTE the results are
still rather encouraging.
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3.2 Uncertainty estimates and extrapolation capacity of the model tree ensem-
ble

Providing realistic uncertainty estimates of the upscaling products is essential for its
scientific use. The uncertainty of the upscaling from ensemble methods described by
a robust estimate of the standard deviation is weakly correlated with the true absolute5

error between the MTE and LPJmL (r=0.37 (Pearson) over the full spatio-temporal
domain) indicating that between-tree variability does not necessarily imply a large pre-
diction error also. As described in Sect. 2.2.5 we can flag situations when extrapolation
is likely which are characterized by a prediction variability among individual trees that
goes beyond those present for the training data. We estimate that about one fifth10

(21.5%) of the pixel-months are subject to extrapolation. An index of extrapolation de-
fined as the fraction of months per pixel flagged and extrapolated is mapped in Fig. 6.
On the one hand it is evident that in particular tropical areas are subject to extrapola-
tion, but that even the few flux towers effectively constrain the MTEs for a considerable
part (e.g. northern Amazon forest areas, parts of Indonesia). Moreover, the lack a tow-15

ers over boreal Siberia seems to introduce less extrapolation problems than expected,
since environmental conditions seem to be sampled well by Canadian and European
flux towers.

By using this extrapolation flag we can demonstrate the substantially improved ex-
trapolation capacity of the ensemble relative to individual trees by computing the true20

performance separately for non-extrapolation and extrapolation conditions (Fig. 7).
While the individual trees show high and only a small spread of performance for in-
terpolation, the individual trees give poor results and diverge in performance for ex-
trapolation. However, the ensemble as a combined estimate over the individual trees
gives substantially improved results for conditions of extrapolation (True R2=0.74) and25

also a small gain for non-extrapolation situations (True R2=0.95). Thus, even when the
estimates of different trees diverge the median value appears to be a robust approxi-
mation of the true value in many cases which underlines once more the advantages of
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ensemble methods.
The (robust) standard deviation of the predictions between the trees of MTE can be

interpreted as a measure of prediction uncertainty. Taking advantage of the fact that
we know the true values we can evaluate if this measure of uncertainty is sensible.
From a theoretical statistical point of view, for example 95% of the true observations5

should lie within ±2 standard deviations of the mean MTE estimate assuming normal
distribution of the error. Hence, Fig. 8 summarizes the percentage of true observations
being within a certain multitude of standard deviations. The true value is within one
or two standard deviations in 73% or 90% of the cases, respectively. Given that the
error distribution is not necessarily Gaussian this result indicates that the estimation of10

uncertainty is reasonable. Interestingly, under extrapolation conditions always a larger
percentage of true observations is within the estimated uncertainty range than under
non-extrapolation conditions. This illustrates that the uncertainty estimate tends to be
conservative and is also valid when extrapolating.

4 Summary and conclusion15

We have presented a new model tree ensemble machine learning algorithm and pro-
vided empirical evidence for its efficiency. We performed an upscaling of simulated
GPP from LPJmL from the highly clumped distribution of FLUXNET sites to the globe
and evaluated this product against the actual LPJmL simulations which here consti-
tutes the truth. The model tree ensemble result explains overall 92% of the variance20

of the global LPJmL GPP simulations, 96% of the mean spatial pattern, 94% of the
seasonal variability, and 41% of the monthly anomalies. The uncertainty estimates of
the model tree ensemble, given as the robust standard deviation of the individual tree
estimates, was confirmed to be a useful indicator of the true uncertainty. The true value
was within one standard deviation for 73% of the cases. We developed an indicator25

for extrapolation based on the spread of the model tree estimates which yields plau-
sible results showing that overall about one fifth of the global spatio-temporal domain
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was subject to extrapolation, primarily large parts of the tropics, which, however, does
not necessarily imply poor performance of the ensemble estimate. We demonstrate
that the ensemble method is particularly powerful in enhancing extrapolation capacity
yielding a true R2 of 73% when extrapolating (95% when interpolating).

This study constitutes a benchmark for the method of upscaling carbon and water5

fluxes from FLUXNET sites to the globe which is enabled by using a biosphere model
as surrogate truth. We can conclude that the proposed method is highly efficient to
perform this upscaling and is able to generate good and substantially better results
than single trees also in situations of extrapolation. The retrieved performance
statistics can certainly not be directly transferred to the real FLUXNET upscaling10

exercise where a more complex world than LPJmL, noise of explanatory variables,
and possible systematic biases in the flux measurements must be expected and taken
into account. Nevertheless, we have now improved confidence that future FLUXNET
upscaling products using our method will be a new and useful information stream
derived from observations that will help to better understand the variability of the global15

terrestrial carbon cycle.

The service charges for this open access publication
have been covered by the Max Planck Society.
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Table 1. List of explanatory variables used for model tree training. Mean climatic variables from
CRU are 1961–1990 means. Monthly meteorological data from CRU-PIK are from 1998–2005.
Land cover is on annual time step.

Variable Type Source/reference Is LPJmL driver?

Mean annual temperature Split CRU No
(continuous)

Mean Annual precipitation sum Split CRU No
(continuous)

Mean annual climatic water balance Split Hargreaves and Samani, 1985, No
(continuous) Droogers and Allen, 2002, CRU

Mean annual Potential evaporation Split Hargreaves and Samani, 1985, No
(continuous) Droogers and Allen, 2002, CRU

Mean annual sunshine hours Split CRU No
(continuous)

Mean annual number of wet days Split CRU No
(continuous)

Mean annual relative humidity Split CRU No
(continuous)

Mean monthly temperature Split CRU No
(continuous)

Mean monthly precipitation sum Split CRU No
(continuous)

Mean monthly climatic water balance Split Hargreaves and Samani, 1985, No
(continuous) Droogers and Allen, 2002, CRU

Mean monthly Potential evaporation Split CRU No
(continuous)

Mean monthly sunshine hours Split CRU No
(continuous)

Mean monthly number of wet days Split CRU No
(continuous)

Mean monthly relative humidity Split CRU No
(continuous)

Potential radiation Split – (Yes)
(continuous)

Temperature Split & regression CRU-PIK Yes
(continuous)

Cloudiness Split & regression CRU-PIK Yes
(continuous)

Precipitation Split & regression CRU-PIK Yes
(continuous)

fraction of absorbed photosynthetic Split & regression LPJmL –
active radiation (FAPAR) (continuous)

Potentially absorbed photosynthetic Split & regression (LPJmL) –
active radiation (Potential (continuous)
Radiation × FAPAR)

Land Cover Split PFTs: LPJmL –
(categorical) CFTs: Fader et al., 2009 Yes
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Table 2. Performance statistics of model trees from the training procedure (n=3530). MTE
refers to the model tree ensemble (mean of 5% of the best hybrid trees (=25) with standard
deviations given in brackets). Number of parameters includes intercepts of the regression
models. Please note that all measures originate from five repetitions of a 10fold cross-validation
within the leaf nodes.

Deterministic tree Best tree MTE

R2 0.963 0.97 0.966 [0.002]
RMSE 0.638 0.572 0.606 [0.02]
BIC −2470 −3016 −2560 [205]
# strata 20 29 30.9 [4.9]
# parameters 86 114 119.4 [18]
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Table 3. Statistics of the true performance of the deterministic tree, best tree from the train-
ing, and model tree ensemble (MTE). Statistics were computed over the full modelling domain
and against the ‘truth’ (LPJmL). The decomposition into the components mean spatial pat-
tern, seasonal variation, and monthly anomalies is described in Sect. 2.2.6. Please note the
small fraction of variance of the anomalies, and the improved performance of the model tree
ensemble in particular for the anomalies.

Total Spatial Seasonal Anomalies

Variance [gC/m2/day]

Det Tree 9.79 3.99 5.49 0.32
Best Tree 10.93 4.24 6.09 0.58
MTE 9.32 3.98 5.1 0.24
LPJmL 8.98 3.44 5.15 0.39

True R2

Det Tree 0.86 0.93 0.87 0.09
Best Tree 0.78 0.89 0.8 −0.4
MTE 0.92 0.96 0.94 0.41

True RMSE [gC/m2/day]

Det Tree 1.13 0.49 0.82 0.6
Best Tree 1.4 0.6 1.02 0.74
MTE 0.83 0.37 0.57 0.48
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Fig. 1. Conceptual diagram of a model tree structure from TRIAL. X variables denote explana-
tory variables. Letters “f ” and “i ” within the split nodes indicate if the split node is a final split
node (two leaf children only) or an interior split node (> two leaf children). The split along the
categorical variable (X6) is specific for TRIAL which allows moving several categories into left
and right children (see supplementary material for details: http://www.biogeosciences-discuss.
net/6/5271/2009/bgd-6-5271-2009-supplement.pdf).
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Fig. 2. Map of FLUXNET stations with the number of site-months that passed the quality control
(n=3530, 178 sites). The colour gives the number of site months; the colour scale is truncated
at 24 months.
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Fig. 3. Gain of true R2 of the model tree ensemble over the 25 individual trees in the ensemble.
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Fig. 4. Comparison of the mean annual, dominant seasonal, and dominant interannual patterns
between the ensemble (left) and LPJmL (right). Dominant mode of the seasonal variation is
given as the first principal component (PC) of the mean seasonal variation which explains 70%
and 76% for LPJmL and MTE respectively. Dominant mode of interannual variability is given as
the first PC of interannual anomalies which explains 27% and 29% of the variance for LPJmL
and MTE, respectively.
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Fig. 5. Comparison of the monthly anomalies between LPJmL and MTE for latitudinal bands
and global.
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Fig. 6. Index of extrapolation derived from the model tree ensemble. See text for details.
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Fig. 7. True R2 for interpolation and extrapolation conditions of the individual trees of the
ensemble (box plot) and the model tree ensemble (star).
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Fig. 8. Cumulative distribution of the number of standard deviations that are needed to capture
the true value, stratified for extrapolation and no extrapolation conditions.
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