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Abstract

Denitrification within riparian buffers may trade reduced nonpoint source pollution of
surface waters for increased greenhouse gas emissions resulting from denitrification-
produced nitrous oxide (N2O). However, little is known about the N2O emission within
conservation buffers established for water quality improvement or of the importance of5

short-term N2O peak emission following rewetting dry soils and thawing frozen soils.
Such estimates are important in reducing uncertainties in current Intergovernmental
Panel on Climate Change (IPCC) methodologies estimating soil N2O emission which
are based on N inputs. This study contrasts N2O emission from riparian buffer systems
of three perennial vegetation types and an adjacent crop field, and compares mea-10

sured N2O emission with estimates based on the IPCC methodology. We measured
soil properties, N inputs, weather conditions and N2O fluxes from soils in forested ripar-
ian buffers, warm-season and cool-season grass filters, and a crop field located in the
Bear Creek watershed in central Iowa, USA. Cumulative N2O emissions from soils in
all riparian buffers (5.8 kg N2O-N ha−1 in 2006–2007) were significantly less than those15

from crop field soils (24.0 kg N2O-N ha−1 in 2006–2007), with no difference among the
buffer vegetation types. While N2O peak emissions (up to 70-fold increase) following
the rewetting of dry soils and thawing of frozen soils comprised 46–70% of the annual
N2O emissions from soils in the crop field, soils in the riparian buffers were less sensi-
tive to such events (3 to 10-fold increase). The ratio of N2O emission to N inputs within20

riparian buffers (0.02) was smaller than those of crop field (0.07). These results indicate
that N2O emission from soils within the riparian buffers established for water quality im-
provement should not be considered a major source of N2O emission compared to
crop field emission. The observed large difference between measured N2O emissions
and those estimated using the IPCC’s recommended methodology (i.e., 87% under-25

estimation) in the crop field suggests that the IPCC methodology may underestimate
N2O emission in the regions where soil rewetting and thawing are common, and that
conditions predicted by future climate-change scenarios may increase N2O emissions.
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1 Introduction

Non-point source (NPS) pollutants such as sediment, nitrogen (N), phosphorus (P) and
pesticides are major contributors to water quality problems worldwide (Duda, 1993;
Tonderski, 1996; Carpenter et al., 1998). Shortly after the Waikato Valley Authority
in New Zealand (1973) first discussed the use of riparian buffers for the prevention5

of water pollution, a number of research projects were initiated to quantify the abil-
ity of riparian buffers to control NPS pollution (e.g. Lowrance et al., 1983; Peterjohn
and Correll, 1984). Based on these and other studies, riparian buffers have been rec-
ommended as effective tools for coping with NPS pollution (e.g. Mitsch et al., 2001;
Sabater et al., 2003; Hubbard et al., 2004).10

Important functions of riparian buffers related to NPS pollution control are filtering
and retaining sediment, and immobilizing, storing, and transforming chemical inputs
from uplands (Schultz et al., 2000). Many studies have shown that riparian buffers can
reduce sediment erosion to surface waters by 70 to 95% (e.g. Lee et al., 2000, 2003),
N fluxes by 5 to more than 90% (e.g. Kuusemets et al., 2001; Dukes et al., 2002)15

and P losses by 27 to 97% (e.g. Uusi-Kamppa et al., 2000; Kuusemets et al., 2001).
Denitrification is recognized as the major mechanism for reducing nitrate (NO−

3 ) within

riparian systems, with removal generally ranging from 2–7 g N m−2 y−1 (e.g.; Groffman
and Hanson, 1997; Watts and Seitzinger, 2000).

It recently has been hypothesized that increased denitrification within riparian areas20

may trade a water quality concern for an atmospheric concern (Groffman et al., 1998),
resulting from the greenhouse effect of N2O produced during nitrification and denitrifi-
cation (Wang et al., 1976) and its contribution to ozone depletion (Crutzen, 1970; Liu
et al., 1977). The global warming potential of N2O is 298 times that of carbon dioxide
(CO2) and 25 times that of methane (CH4) in a 100-year time horizon (Forster et al.,25

2007). Some studies (Groffman et al., 1998, 2000; Hefting et al., 2003, 2006) have
concluded that N transformation within riparian buffers with high NO−

3 loads results in
a significant increase of greenhouse gas emission. As a result, Groffman et al. (2002)
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suggested that the Intergovernmental Panel on Climate Change (IPCC) inventory might
be improved by including additional measurements of riparian N2O fluxes.

Numerous studies have emphasized the role of vegetation in soil biogeochemical
processes within riparian buffers. However, there are conflicting results regarding the
relationship between vegetation type and denitrification rate in riparian buffers. While5

some studies (e.g. Hubbard and Lowrance, 1997; Verchot et al., 1997) found higher
groundwater NO−

3 removal or denitrification rates in forested riparian zones, other stud-
ies (Groffman et al., 1991; Schnabel et al., 1996) found higher removal in grass domi-
nated riparian sites. Some studies (e.g. Hefting et al., 2003; Dhondt et al., 2004) found
no significant difference in groundwater NO−

3 removal or denitrification rate between10

forested and grass-dominated riparian sites. Simpkins et al. (2002) emphasized the im-
portance of hydrogeologic setting and suggested that denitrification would be favored
by hydrogeologic conditions of groundwater flow toward the creek, small groundwater
velocities, and long groundwater residence times in fine-textured materials. This vari-
ability suggests that there are uncertanties about the relationship between the type of15

perennial vegetation within riparian buffers and soil N2O emission and illustrates the
need for additional studies in various regions of the country, in different landscape set-
tings, and under different vegetation communities to quantify the emission of N2O from
soils in riparian buffers established or managed for water quality functions (Walker et
al., 2002).20

Numerous studies have observed increased soil N2O emission following wetting of
dry soil in tropical grass lands (Nobre et al., 2001), semiarid pasture (Saetre and Stark,
2005), Mediterranean grassland and oak forest (Fierer and Schimel, 2002), dry trop-
ical forests (Garcı́a-Méndez et al., 1991; Davidson et al., 1993), savanna (Scholes et
al., 1997), agricultural lands (e.g. Kusa et al., 2002; Mikha et al., 2005) and in lab-25

oratory studies (e.g. Appel, 1998; Hütsch et al., 1999). The increased rates ranged
from 5-fold up to 1000-fold (e.g. Prieme and Christensen, 2001; Saetre and Stark,
2005) and magnitudes of the episodic N2O emission increase varied depending on
soil texture (Appel, 1998; Austin et al., 2004), soil water content (Appel, 1998), root
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responses (Cui and Caldwell, 1997), amount of added water (Ruser et al., 2006) and
the characteristics and availability of substrates (e.g. Van Gestel et al., 1993; Schaeffer
et al., 2003). Based on these studies, it is apparent that even a single wetting event
could account for a large proportion of annual emission of N2O (e.g. Prieme and Chris-
tensen, 2001; Nobre et al., 2001). Thawing frozen soils can also lead to increased5

N2O emission (e.g. Herrmann and Witter, 2002; Müller et al., 2003). Although the du-
ration of such elevated emission is limited mostly to a few days, these episodes have
been found to be an important source of the total annual emission from agricultural
land (e.g. Wagner-Riddle and Thurtell, 1998; Teepe et al., 2004), forests (e.g. Papen
and Butterbach-Bahl, 1999; Teepe et al., 2000), and grasslands (Kammann et al.,10

1998). Matzner and Borken (2008) observed that the emission of N2O after thawing
frozen soils was in some cases significantly larger from arable soils than from forest
soils. Such events usually occurred at soil temperatures near 0◦C (e.g. Chen et al.,
1995; Müller et al., 2003). Matzner and Borken (2008) stated that the increase in N2O
emission after thawing increases with colder temperatures of frozen soil. In temperate15

regions, observed N2O emissions during freeze-thaw periods in spring may account
for up to 70% of the total yearly N2O emission (e.g. Teepe et al., 2000; Regina et al.,
2004).

The Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodology (2006)
estimates soil N2O emission by multiplying N inputs by an emission factor in crop fields,20

assuming that these N inputs are a source of N2O. However, estimating N2O emissions
by such N input-based methodologies do not account for the episodic nature of N2O
emissions, and may underestimate fluxes in the regions with frequent rewetting of dry
soils and thawing of frozen soils. Therefore, studies assessing the contribution of peak
emissions to annual N2O emissions and evaluating the current IPCC methodology are25

clearly needed to better understand annual N2O fluxes and the N cycle within these
systems.

Objectives of this study were to compare N2O emissions from riparian buffer systems
established for water quality improvement comprised of forest, warm-season grasses,
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and cool-season grasses and an adjacent crop field, and to compare measured N2O
emissions with estimates using the methodology recommended by the IPCC.

2 Materials and methods

2.1 Study site

The study area consisted of three forest buffers, three warm-season grass filters, one5

cool-season grass filter, and one crop field, all located within the riparian zone within
the Bear Creek watershed, Story County and Hamilton County, Iowa, United States
of America (42◦ 11′ N, 93◦ 30′ W). Bear Creek (total length 56 473 m) is a third order
stream with typical discharges of 0.3 to 1.4 m3 s−1. The watershed drains 6810 ha of
farmland, with nearly 90% of these acres in a corn-soybean rotation. Located within10

the Des Moines Lobe subregion of the Western Corn Belt Plains ecoregion (Griffiths
et al., 1994), the study area was once a tallgrass prairie ecosystem containing wet
prairie marshes and pothole wetlands in topographically low areas and forests along
higher order streams. An ongoing objective of the Bear Creek watershed project has
been to establish riparian buffers along the upper portions of the watershed as willing15

landowners and cost-share are identified (Schultz et al., 2004). This has provided a
variety of sites of different streamside vegetation and buffer age to utilize in assessing
the spatial and temporal variability of riparian buffers in reducing NPS pollution. Forest
buffers and warm-season grass filters were previously under row-crop cultivation and
the cool-season grass filter was previously under livestock grazing. Tree species in-20

clude silver maple (Acer saccharinum L.), green ash (Fraxinus pennsylvanica Marsh.),
black walnut (Juglans nigra L.), willow (Salix spp.), cottonwood hybrids (Populus spp.),
red oak (Quercus rubra L.), and bur oak (Quercus bicolor Willd). Shrub species in-
cluded chokecherry (Prunus virginiana L.), Nanking cherry (Prunus tomentosa Thunb),
wild plum (Prunus americana Marsh), red osier dogwood (Cornus stolonifera Michx),25

and ninebark (Physocarpus opulifolius Max.). Warm-season grasses included native
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grasses such as switchgrass (Panicum virgatum) Indian grass (Sorghastrum nutans),
and Big Bluestem (Andropogon gerardi). Numerous forb species were present, in-
cluding purple prairie clover (Petalostemum purpureum), black-eyed susan (Rudbeckia
hirta), yellow coneflower (Ratibida pinnata), stiff goldenrod (Solidago rigida), prairie
blazing star (Liatris pycnostachya), and others. The cool-season grass buffer was5

dominated by non-native forage grasses (Bromus inermis L., Phleum pratense L., and
Poa pratensis L). Details of the riparian buffer design, placement, and plant species
are given in Schultz et al. (1995). The crop field was planted to a corn (Zea mays
L.) and soybean (Glycine max L. Merr.) rotation, with corn in 2006 and soybeans in
2005 and 2007. Pelletized urea (133.4 kg N ha−1) was applied to the crop field in April10

2006, and fall chisel plowing (15–20 cm depth) was conducted in November 2006.
Harvested crop yield was 3934.1 kg dry matter (d.m.) ha −1 (soybeans) in 2005 and
10 419.8 kg d.m. ha−1 (corn) in 2006. The major soil association in the watershed is the
Clarion-Webster-Nicolett association with minor areas of Clarion-Storden-Coland, and
Canisteo-Okoboji-Nicolett (Dewitt, 1984). The areas used in this study are all located15

on the same soil mapping unit (Coland) and have similar topography.

2.2 Nitrous oxide flux and environmental factors measurement

Nitrous oxide flux from soils under riparian forest buffers, warm-season and cool-
season grass filters, and the crop field were measured weekly from October 2005
through December 2007 (no measurement in mid April to mid May, August, and20

September to October 2006 in the crop field). Five points were randomly selected
in each of the sites for N2O gas collection and soil sampling. Nitrous oxide flux mea-
surements were conducted at mid-morning using static vented chambers (PVC, 30-cm
diameter ×15 cm tall with vent). Chambers were equipped with a thermometer to mea-
sure air temperature within the chambers at the time of sampling. Ten ml of air was25

sampled from the chamber with a polypropylene syringe at 15 min intervals for 45 min
and the gas stored in evacuated glass vials (6 ml, fitted with butyl rubber stoppers) until
analysis. Glass vials were prepared by alternately evacuating the vial headspace and
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flushing with helium to remove air. Nitrous oxide concentrations were determined with
a gas chromatograph (Model GC17A; Shimadzu, Kyoto, Japan) equipped with a 63Ni
electron capture detector and a stainless steel column (0.3175 cm diameter×75.54 cm
long) packed with Porapak Q (80–100 mesh). Samples were introduced into the chro-
matograph using an autosampler described by Arnold et al. (2001). Details of the5

chamber design and GC analysis are given in Parkin and Kaspar (2006). Nitrous oxide
flux was calculated from the linear slope of N2O concentration change over time (Hol-
land et al., 1999). Our estimated minimum detectable flux was 0.175 g N2O-N ha−1 h−1

(Parkin and Kaspar, 2006). Some of the fluxes measured from the individual chambers
were smaller than our detection limit. The measured values of these ”nondetects” were10

included in computing mean fluxes (Gilbert, 1987; Chan and Parkin, 2001).
Soil temperature and soil moisture near the chambers were measured simultane-

ously with N2O gas collection at a 5 cm depth using a digital thermocouple and a digital
soil moisture meter (HydroSense, Campbell Scientifc, Inc., Logan, Utah, USA). Air
temperature was measured simultaneously with N2O gas collection inside and outside15

the gas chamber. Continuous measurements of soil temperature, air temperature, and
soil moisture at 5 cm soil depths were collected using a data logger (HOBO Micro sta-
tion data logger with sensors, Oneset Computer Corporation, Bourne, MA USA) at one
site per vegetation type. Daily rainfall and snow data were provided by the nearest
meteorology station (Colo, IA, 42◦ 01′ N, 93◦ 19′ W) (Herzmann, 2004).20

2.3 Diel variation of N2O flux and Q10 relationship

In addition to regular measurements described above, the diel variation in N2O flux was
measured during 21–22 November 2005, 18–19 May 2006, and 16–17 July 2007. For
this assessment, three locations were randomly selected for flux measurements within
each of the forest buffer, warm-season and cool-season grass filter, and the crop field.25

Nitrous oxide flux and soil temperature was measured every three hour for 24 h at all
sites. To examine soil temperature sensitivity of N2O flux during the diel measurements,
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we conducted nonlinear regression analyses using N2O flux=a×Q
(soil temperature/10)
10 (Q10

represents activity increase of N2O flux for every 10◦C increase in soil temperature)
(Parkin and Kaspar, 2006).

2.4 Cumulative N2O flux calculations

Because fluxes were measured during the day time when soil temperatures were gen-5

erally higher than the daily average soil temperatures, cumulative N2O fluxes were
calculated using soil-temperature-corrected daily flux measurements (Parkin and Kas-
par, 2003, 2006). Temperature corrections were done with a Q10 relationship, using
the 5 cm soil temperature at the time each flux was measured, along with the daily
average soil temperature for that day. Daily average N2O flux was calculated using the10

equation:

Daily Average N2O Flux = N2Omeasured × Q(DAT−T )/10 (1)

where N2O measured is measured N2O flux at a specific hour, T is the soil temperature
at the time the flux was measured, DAT is the daily average soil temperature, Q is
the Q10 factor, and Daily Average N2O Flux is the resulting estimated daily average flux15

based on the single hourly measured N2O flux. Cumulative N2O fluxes were calculated
by linear interpolation and numerical integration of daily N2O fluxes between sampling
times.

2.5 Soil sampling and analysis

Six intact soil cores (5.3 cm diameter) were collected to a depth of 15 cm in each of20

the forest buffer, warm-season grass filter, cool-season grass filter, and adjacent crop
field in October 2006 and September 2007. A plastic sleeve liner was placed inside
the metal core tube and the liner with the intact soil core removed from the tube and
capped for transport to the laboratory. Soils samples were stored at 4◦C until analy-
sis. Soil pH was determined using a pH meter (Accument 910, Fisher Scientific Ltd.,25
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Pittsburgh, PA, USA) on a 1:1 diluted soil solution. Gravimetric moisture content was
determined by oven drying a subsample at 105◦C for 24 h and bulk density was de-
termined by the core method (Grossman and Reinsch, 2002). For C and N analysis,
soils were air dried at room temperature, sieved (2mm) and gravimetric moisture con-
tent determined. Total C (TC) and total N (TN) were measured using a Flash EA 20005

(ThermoFinnigan, Milan, Italy) direct combustion instrument. Soil inorganic N was ex-
tracted with 2M potassium chloride (KCl) and stored at 4◦C until filtration (within 4 h
of field collection of the soil cores) (Van Miegroet, 1995). Filtrates were frozen and
stored until analysis. Nitrate and ammonium (NH+

4 ) contents were analyzed by colori-
metric method (Mulvaney, 1996) with an auto analyzer (Quikchem 8000 FIA+, Lachat10

Instruments, Milwaukee, WI, USA).

2.6 Nitrogen inputs to sites and ratio of N2O emission to N inputs

Nitrogen inputs as direct sources of N2O were estimated in warm-season and
cool-season grass filters, a forest buffer and adjacent crop field. Pelletized urea
(133.4 kg N ha−1) was applied in the crop field (corn) in April 2006. Annual dry and wet15

deposition was 7.7 kg N ha−1 y−1 on the Iowa State University campus (19 km south of
the study site) in January 2003–January 2004 (Anderson and Downing, 2006) and the
value was used for N input from deposition in 2006 and 2007. Nitrogen inputs from
soybeans residue was estimated from samples collected in five randomly located plots
(50 cm×50 cm) in the crop field after the harvest of soybeans in 2005. Nitrogen in-20

puts from corn residues (Yr ) in 2006, were estimated using a harvest index (HI, 0.53;
from Johnson et al., 2006) and harvested corn yields (Ygr , 10 419.8 kg ha−1 y−1) as
following:

Yr = Ygr [(1/HI) − 1] (2)

where Yr is corn residues (kg ha−1), and Ygr is harvested corn grain and HI is harvest25

index (Johnson et al., 2006).
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N inputs from dead roots in the crop field were calculated from the previous stud-
ies on the same sites (Tufekcioglu et al., 1999 and 2003). Biological N fixation was
not included as a direct source of N2O because of the lack of evidence of significant
emissions arising from the fixation process itself (Rochette and Janzen, 2005; IPCC,
2006).5

N inputs from litter-fall within a forest buffer was estimated from monthly samples
collected within five litter-fall collecting baskets (50 cm × 50 cm) placed at random lo-
cations within the forest buffer starting in September 2005. In addition, above-ground
biomass was harvested within five randomly located plots (50 cm×50 cm) in the warm-
season and cool-season grass filters, and the forest buffer in early November of 200510

and 2006. Samples were dried (70◦C, 48 h), weighed, and stored for TN analysis. Total
N was measured by direct combustion using a Flash EA 2000 (ThermoFinnigan, Milan,
Italy). N inputs from dead roots in warm-season and cool-season grass filters, and the
forest buffer were calculated from previous studies conducted within the same sites
(Tufekcioglu et al., 1999, 2003). In these same sites, Lee et al. (2003) estimated that15

0.5 kg N transported from crop fields in run-off was retained in the riparian buffers per
an event (>20 mm rainfall) and there were 13 events exceeding this threshold during
2006–2007. Based on these data, N input from runoff to riparian buffers was estimated
in 2006 and 2007, respectively. Nitrogen input from groundwater discharged from crop
fields to the riparian buffers was estimated by averaging lost N load in groundwater20

measured in wells under two of the riparian buffers (Kim et al., 2009). Using the cu-
mulative annual N2O emission and N input in the sites, the ratio of N2O emission to N
inputs (N2O emission factor, EF) in the crop field and riparian buffers was determined.

2.7 Watershed-scale estimation of N2O emission

Nitrous oxide emission from all cropped fields within the Bear Creek watershed was25

estimated by multiplying the determined N input and N2O emission factor (EFCF ) in
the crop field, by area of the crop fields (6810 ha). The equation for estimating N2O
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emission from whole crop fields is:

N2O − NCF = (Fertilizer N + Crop residues N + N deposition) × EFCF × AreaCF (3)

where N2O-N CF is annual direct N2O–N emissions from N inputs to crop fields (kg
N2O–N y−1); Fertilizer N is annual amount of synthetic fertilizer N applied to soils
(kg N ha−1y−1); Crop residues N is amount of N in crop residues (above- and below-5

ground), including N-fixing crops returned to soils (kg N ha−1 y−1); N deposition is N in
dry and wet deposition; EFCF is emission factor for N2O emissions from N inputs in
crop fields (kg N2O–N (kg N input)−1); and Area CF is area of crop fields in the Bear
Creek watershed (6810 ha).

Nitrous oxide emission from riparian buffers already re-established in the watershed10

was estimated by applying measured areal emissions [N input and N2O emission factor
(EFRB)] from study sites to the total area of established riparian buffers (75.9 ha). To
estimate N2O emission from hypothetical riparian buffers established for water quality
improvement throughout the watershed, it was assumed that both sides of the creek
(56 473 m) would be bordered by 30 m width riparian buffers (current design criteria,15

Mayer et al., 2006). The equation for estimating N2O emission from riparian buffers is:

N2O − NRB = (Litter and roots N + Run offN + Groundwater N + N deposition) × EFRB × AreaRB (4)

where N2O-N RB is annual direct N2O-N emissions from N inputs to riparian buffers
(kg N2O–N y−1); Litter and roots N is annual amount of N in litter-fall and dead roots
(kg N ha−1 y−1); Run off N is amount of N in run off from crop fields (kg N ha−1 y−1);20

Groundwater N is N in groundwater exported to riparian buffers from crop fields
(kg N ha−1 y−1); N deposition is N in dry and wet deposition (kg N ha−1 y−1); EFRB is
emission factor for N2O emissions from N inputs in riparian buffers (kg N2O–N (kg N
input)−1); and Area RB is area of riparian buffers.
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2.8 Intergovernmental Panel on Climate Change N2O flux calculations

The Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodology (2006)
separately estimates direct N2O emission (i.e. directly from the soils to which N
is added/released) and indirect N2O emission resulting from offsite N movement
(i.e. volatilization of NH3 and NOx, and leaching and runoff of N) from managed soils.5

The method then estimates direct N2O emission from crop fields by multiplying N in-
puts by an emission factor. For this study, N inputs from synthetic fertilizer (FSN ) and
crop residues (FCR) estimated as described above were summed and multiplied by an
emission factor (EF1). The equation for estimating direct N2O emission is:

N2ODirect − N = N2O − NN inputs = (FSN + FCR)EF1 (5)10

where N2ODirect-N is annual direct N2O-N emissions produced from managed soils (kg
N2O-N y−1); N2O-N N inputs is annual direct N2O-N emissions from N inputs to managed

soils (kg N2O-N y−1); FSN is annual amount of synthetic fertilizer N applied to soils
(kg N y−1); FCR=amount of N in crop residues (above- and below-ground), including N-
fixing crops returned to soils (kg N y−1); and EF1 is emission factor for N2O emissions15

from N inputs (kg N2O–N (kg N input)−1). The IPCC default value for EF1 is 0.01.
Details of calculating FCR is given in IPCC (1997, 2006).

The IPCC (2006) Tier 1 estimates N2O emission from atmospheric deposition of N
volatilized from crop fields (indirect N2O emission) by multiplying N inputs (FSN ) by a
fraction factor (EF4) for volatilized N. Because synthetic fertilizer is an N input potentially20

volatilized in the crop fields, the equation for estimating N2O emission is:

N2O(ATD) − N = (FSN × FracGASF) × EF 4 (6)

where N2O(ATD)-N is annual amount of N2O–N produced from atmospheric deposition

of N volatilized from managed soils (kg N2O–N y−1); FSN is annual amount of synthetic
fertilizer N applied to soils (kg N y−1); FracGASF is fraction of synthetic fertilizer N that25

volatilizes as NH3 and NOx [kg N volatilized (kg of N applied) −1, IPCC default value
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0.10 for FracGASF]; and EF4 is emission factor for N2O emissions from atmospheric
deposition of N on soils and water surfaces [kg N–N2O (kg NH3–N + NOx–N volatilized)
−1, IPCC default value for EF4 is 0.010].

2.9 Statistical analyses

Normality of the distribution of the data was analyzed using the Shapiro-Wilk normality5

test. One-way analysis of variance (ANOVA) was used to evaluate the differences in
soil properties, and diel and seasonal N2O flux by site. When the standard assumptions
of normality were violated, non-parametric Kruskal-Wallis one-way ANOVA on ranks
was used. Differences were considered significant at the P <0.05 level. To determine
the relationship between soil properties and N2O flux, correlation analysis using the10

GLM procedure was applied and NONLIN procedure was utilized for deriving the best
fit of N2O flux models developed by the relationship between soil temperature and N2O
flux. These statistical analyses were conducted by SAS version 8.1 (SAS institute,
1999).

3 Results15

3.1 Soil properties and periods dried and frozen soil

Soil texture was loam at all sites (Marquez et al., 2004). Soils within the forest buffer
and warm and cool-season grass filters had significantly (one-way ANOVA) lower bulk
density, higher pH, TC, TN, and NH+

4 than crop fields, while soil NO−
3 was not signifi-

cantly different among sites (Table 1).20

Soils had longer dry (soil moisture <15%) and frozen (soil temperature <0◦C) periods
in 2007 than in 2006 (Fig. 4D and E). From 15 June to 15 August 2006 (93 d), soils
(5 cm depth) were extremely dry (<15%) within crop fields for 12 days, within forest
buffers 0 days, and within grass filters 51 days. In comparison, from 15 June to 15
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August 2007 (93 d), soils were extremely dry (<15%) within crop fields for 78 days,
within forest buffers for 32 days, and within grass filters for 24 days. From January
to March 2006 (90 days), soils (5 cm depth) were frozen (<0◦C) within the crop field
for 47 days, within forest buffers for 17 days, and within grass filters for 49 days. In
comparison, from January to March 2007 (90 days), soils were frozen (<0◦C) within5

the crop field for 82 days, within forest buffers for 46 days, and within grass filters for
62 days.

3.2 Diel variation of N2O flux and cumulative diel N2O emission

Diel variation of N2O flux and soil temperature in the crop field and riparian buffers are
shown in Fig. 1. During the 21–22 November 2005, there was no significant difference10

in N2O flux between the crop field and riparian buffers (one-way ANOVA P=0.395)
and also no significant correlation between soil temperature (5 cm depth, 2–5◦C) and
N2O flux in the crop field and riparian buffers during this late fall period (all P >0.05).
In contrast, N2O flux in the crop field was significantly higher than riparian buffers in
both 18–19 May 2006 (7 to 13 times, Kruskal-Wallis one-way ANOVA P <0.001) and15

16–17 July (12 to 18 times, Kruskal-Wallis one-way ANOVA P <0.001), but there were
no differences among vegetation types in riparian buffers in the both periods (Tukey’s
Studentized Range Test) (Fig. 1). Significant correlations between soil temperature
(5 cm depth) and N2O flux were only found within the crop field during 18–19 May 2006
(Pearson coefficient r=0.77 P=0.02) and 16–17 July 2007 (Pearson coefficient r=0.4820

P=0.02). The resulting Q10 models (N2O flux = a× Q
(soil temperature/10)
10 ) and Q10 factors

were:
May 2006 (soil temperature 11–17◦C, crop field):

N2O flux (mg N2O-N ha−1 h−1)=28.9× 12.28 (soil temperature/10)(R2=0.67)
Q10 factor 12.7825

July 2007 (soil temperature 23–27◦C, crop field):

N2O flux (mg N2O-N ha−1 h−1)=411.0×2.27 (soil temperature/10)(R2=0.87)
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Q10 factor 2.27
Cumulative diel N2O emissions from the crop field during the three measured dates

was 5.9 g N2O-N ha−1 d−1 during 21–22 November 2005, 43.2 g N2O-N ha−1 d−1 during
18–19 May 2006, and 130.3 g N2O-N ha−1 during 16–17 July 2007 (Fig. 2). In contrast,
the range of cumulative diel N2O emissions from the riparian buffers during the three5

measured dates was 1.0–3.0 g N2O-N ha−1 d−1 during 21–22 November 2005, 3.9–
6.0 g N2O-N ha−1 d−1 during 18–19 May 2006, and 7.1–10.5 g N2O-N ha−1 d−1 during
16–17 July 2007 (Fig. 2). When compared, N2O emissions from the crop field were 2
to 5-fold higher than riparian buffers during 21–22 November 2005, 7 to 11-fold higher
during 18–19 May 2006, and 12 to 14-fold higher during 16–17 July 2007 (Fig. 2).10

3.3 Seasonal variation of N2O flux and cumulative N2O emission

When assessed seasonally, N2O flux in the crop field was significantly correlated with
air temperature (Pearson coefficient r=0.38 P=0.0001), soil temperature (5 cm depth)
(r=0.42P <0.0001) and soil moisture (5 cm depth) (r=0.35 P=0.005). In all riparian
buffers, N2O flux was significantly correlated with air temperature (Pearson coeffi-15

cient r= 0.1–0.5P <0.01) and soil temperature (5 cm depth) (r=0.3–0.6 P <0.0001)
during this same period. The average of observed N2O fluxes in the crop field
(39.4±7.1 kg N2O-N ha−1 d−1, n=76) was significantly higher than in riparian buffers
(2.8–11.0 kg N2O-N ha−1 d−1, n=72–93) (P <0.0001), but there were no differences
among riparian buffer vegetation types (Tukey’s Studentized Range Test) (Fig. 3).20

Q10 factors used for correcting daily average N2O flux in the crop field were distin-
guished for three different field soil temperature ranges (<10◦C, 10–20◦C, >20◦C) as
follows:

(1) soil temperature <10◦C condition; no valid Q10 factor, Measured N2O Flux=Diel
average N2O Flux25

(2) soil temperature 10–20◦C condition; Q10 factor 12.78 was applied
(3) soil temperature >20◦C condition; Q10 factor 2.27 was applied
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Since there was no significant effect of soil temperature on diel N2O flux (no valid Q10
factor) in the forest buffer, and warm-season and cool-season grass filters, measured
N2O flux was used as a diel average N2O flux.

In both 2006 and 2007, annual cumulative N2O emission was significantly greater
in the crop field (7.2 kg N2O-N ha−1 in 2006 and 16.8 kg N2O-N ha−1 in 2007) than in5

forest buffers (1.8 kg N2O-N ha−1 in 2006 and 4.5 kg N2O-N ha−1 in 2007) and grass
filters (1.8 kg N2O-N ha−1 in 2006 and 3.4 kg N2O-N ha−1 in 2007) (Table 3). The annual
cumulative N2O emission in the crop field, forest buffers, and grass filters in 2007 were
2 to 2.5-fold larger than 2006.

3.4 N2O peak emission10

Several periods of peak N2O emission contributed significantly to annual N2O emission
in both the crop field and riparian buffers (Fig. 4A and B). In the crop field 2006, two
large peak emissions following the thawing of frozen soil (13-fold increase, February)
and rewetting of dry soil (37-fold increase, November) contributed 33.8% of the annual
N2O emission. In the crop field during 2007, a peak emission followed the thawing15

of frozen soil (28-fold increase, March) and three peak emissions followed rewetting
of dry soil (5 to 70-fold increase, July to October). These four peak emissions con-
tributed 70.3% of annual N2O emission. All of the peak emissions returned to lower
levels within a week. In warm-season and cool-season grass filters during 2006, two
peak emissions (July and December) followed the rewetting of dry soil, and contributed20

17.0% of annual N2O emission. In grass filters during 2007, a peak emission after the
thawing of frozen soil (March) and two peak emissions after rewetting of dry soil (June
and December) contributed 31.1% of the annual N2O emission. In forest buffers during
2006, a peak emission after the rewetting of dry soil (July) contributed 10.8% of annual
N2O emission, and in 2007, a peak emission after the thawing of frozen soil (March)25

and two peak emissions after rewetting of dry soil (June and December) contributed
70.5% of annual N2O emission. Across all vegetation types, N2O peak emissions were
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3 to 10-fold greater than base-line levels after the thawing of frozen soil or rewetting of
dry soil and the peaks returned to lower levels within a week. Soils within the crop field
showed higher peak rates of N2O emission than riparian buffers in both 2006 and 2007.
As a result, the contribution of peak emissions to annual N2O emission was larger in
the crop field than in riparian buffers during both years, with the contribution higher in5

2007 than 2006.
Several negative N2O fluxes were observed in the crop field and riparian buffers

(Fig. 5). There were no significant differences among sites (P=0.99) and the negative
fluxes showed no significant relation to soil or air temperature or soil moisture (P >0.05).
The negative N2O fluxes were most frequently observed (81%) in the less than 5oC soil10

temperature range, and the observed maximum negative N2O flux was −0.64 g N2O-
N ha−1 h−1(−64.0µg N2O-N m−2 h−1) (Fig. 5). The negative N2O fluxes observed were
insignificant in the overall N2O fluxes.

3.5 Nitrogen inputs and ratio of N2O emission to N inputs

In 2006, N fertilizer (133.4 kg N ha−1) applied in the crop field (corn) resulted in a larger15

N input to the crop field than riparian buffers. However, in 2007, N input to the crop
field was less than riparian buffers, mainly due to no fertilizer application. Nitrogen
input from crop residues and dead roots in the crop field was 82.1 and 92.2 kg N ha−1

in 2006 and 2007, respectively (Tables 2 and 3). Annual dry and wet deposition was
7.7 kg N ha−1 in the crop field and riparian buffers. Total N inputs in the crop field were20

323.1 kg N ha−1 through 2006 and 2007 (Table 3).
Nitrogen input from plant litter and dead roots within riparian buffers was estimated

at 83.6 in 2006 and 69.0 kg N ha−1 in 2007 (Table 2). N input from runoff to riparian
buffers was estimated at 0.5 in 2006 and 6.0 kg N ha−1 in 2007. Nitrogen input from
groundwater discharged from the crop field to the riparian buffers was 36.1 kg N ha−1

25

in 2006 and 2007. Total N inputs in riparian buffer was 246.7 kg N ha−1 through 2006
and 2007 (Table 3) which is 23.6% less than crop field inputs.
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The ratio of measured N2O emission to N inputs to soils in the crop field in 2006
(0.03) was 3-fold higher than the ratio of riparian buffers in 2006 (0.01) (Table 3). In
2007, the ratio of measured N2O emission to N inputs to soils in the crop field (0.17)
was over 5-fold higher than to riparian buffers (0.03) (Table 3). Overall, the ratio of
measured N2O emission to N inputs to soils in the crop field (0.07) was over 3-fold5

higher than the ratio of riparian buffers (0.02) (Table 3).

3.6 Watershed-scale estimation of N2O emission

The estimated total N2O emission from all cropped fields within the Bear Creek water-
shed was 77 010.9 kg N y−1 compared to 187.2 kg N y−1 for actual riparian buffers and
835.9 kg N y−1 for hypothetical riparian buffers (Table 4). The resulting estimated ratio10

of N2O emission from all cropped fields to N2O emission in current and hypothetical
riparian buffers in the watershed would be 0.002 and 0.01, respectively (Table 4).

3.7 Comparison of measured N inputs and N2O emission with estimated values by
IPCC method

Estimated N input from crop residues and dead roots in the crop field by IPCC15

method (2006) was 56.4 in 2006 and 118.3 kg N ha−1 in 2007 (Table 2). Compared
to the measured N input values (Table 2), the IPCC method underestimated inputs by
31% in 2006 and overestimated inputs by 28% in 2007 in the crop field. In the crop field,
estimated N2O emission (by IPCC 2006) was 2.0 kg N ha−1 in 2006 and 1.2 kg N ha−1

and 2007 (Table 3). The ratio of measured N2O emission to estimated N2O emission20

in the crop field was 3.5 in 2006 and 14.2 in 2007, with an overall ratio of 7.5 for both
years (Table 3) indicating that the IPCC method underestimated N2O emission about
87% in the crop field.
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4 Discussion

4.1 N2O emission from cropped fields and riparian buffers

In our studies, measured N2O emissions from soils within all riparian buffers
(1.8–4.0 kg N2O-N ha−1 y−1) were significantly lower than within the crop field (7.2–
16.8 kg N2O-N ha−1 y−1) and there were no observed differences in N2O emissions5

among the different riparian buffer vegetation types (Fig. 3). Other studies (Weller
et al., 1994; Groffman et al., 1998; Machefert et al., 2004) have measured 0.1–
5.3 kg N ha−1 y−1 of N2O emissions from soils within riparian buffers, similar to observa-
tions within this study. In similar studies within temperate regions, mean N2O emissions
measured within fertilizer-applied grassland were 8.0±1.4 kg N2O-N ha−1 y−1, within10

grassland without fertilizer were 1.4±0.4 kg N2O-N ha−1 y−1, and within forests were
0.7±0.3 kg N2O-N ha−1 y−1 (Stehfest and Bouwman, 2006). Nitrous oxide emissions
from soils within riparian buffers in 2006 (1.8 kg N2O-N ha−1 y−1) in our studies were
similar to N2O emission from soils in unfertilized grass lands and forest in temperate re-
gions. This suggests that N2O emissions from soils within riparian buffers established15

to perennial vegetation for water quality functions were similar to those from natural
ecosystem.

When scaled to the watershed level, the ratio of estimated N2O emissions from all
cropped fields within the Bear Creek Watershed to N2O emissions from actual and
hypothetical riparian buffers in the watershed would be 0.002 and 0.01, respectively20

(Table 4). Since dissolved N2O emission in groundwater leached from the crop fields
was negligible in comparison to soil N2O emission in the crop fields (ratio between
dissolved N2O emission and soil N2O emission, 0.0003) (Kim et al., 2009), this sug-
gests that the contribution of N2O emission from riparian buffers to total N2O emission
in the watershed may be around 1%, even if riparian buffers are extended along both25

sides of the entire creek in the watershed to maximize water quality benefits. Weller et
al. (1994) estimated 0.35 kg N ha−1 and 0.04 kg N ha−1 of annual N2O loss in soil emis-
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sion and groundwater (<1% of the intercepted N) in riparian buffers and concluded
N2O production in the riparian buffers is neither an important fate of N removed from
cropland discharges nor an important source of atmospheric N2O pollution. Similarly,
Dhondt et al. (2004) observed N2O emissions of −0.6 to 2.5 mg N2O-N m−2 d−1 in three
NO−

3 loaded riparian sites and concluded the observed N2O emission did not represent5

a transfer from water pollution to greenhouse gas emission. Teiter and Mander (2005)
reported that N2O emissions from the riparian gray alder stand which varied from −0.4
to 58µg N2O-N m−2 h−1 and concluded that the global warming potential of the riparian
alder forest from N2O was relatively low. Our results, along with those of past stud-
ies, suggest that the riparian buffers, even when established to promote denitrification,10

should not be considered a major source of N2O emission in the watershed.
In contrast, some studies (Walker et al., 2002; Hefting et al., 2003) have shown

much higher N2O emission from soils within riparian areas. Walker et al. (2002) ob-
served that N2O emission in a recovering riparian zone and a grazed riparian zone
was 24.19 kg N ha−1 y−1 and 24.50 kg N ha−1 y−1, respectively. Hefting et al. (2003)15

observed that N2O emissions were significantly higher in the forested buffer system
(20 kg N ha−1 y−1) than within the grassland buffer zone (2–4 kg N ha−1 y−1). They sug-
gested that the higher rates of N2O emissions within the forested buffer zone were
associated with higher NO−

3 concentration in the groundwater, and that N transforma-
tion by buffer zones with high NO−

3 loading resulted in a significant increase of N2O20

emission. This is consistent with the work of Ullah and Zinati (2006) who reported that
prolonged N loading resulted in higher N2O emissions in riparian forest soils compared
to emission rates from non-exposed forest soils. Hefting et al. (2006) reported that lo-
cations with high NO−

3 removal efficiency also contribute significantly to increased N2O
emission from riparian zones.25

Considering all of these results, it is likely that N2O emission from riparian buffers is
highly site specific and may vary with site characteristics such as soil type, magnitude
and speciation of N input, and hydrologic characteristics (Walker et al., 2002). In our
study, lower N inputs and fewer N2O peak emissions observed within in riparian buffers
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result in less N2O emission than adjacent crop field and compared to several other
studies (Walker et al., 2002; Hefting et al., 2003).

The magnitude and frequency of the episodic N2O emissions observed in our studies
indicate the importance of frequent measurements to reduce the uncertainty of longer-
term N2O flux measurements and may partially explain the differences in results from5

previous For example, the N2O emission value reported by Walker et al. (2002) was
determined with three month measurements for 14 months. Hefting et al. (2003) and
Dhondt et al. (2004) measured N2O emission in February, May, August, and Novem-
ber representing winter, spring, summer and fall seasons. Teiter and Mander (2005)
measured N2O emission once a month for 15 months through three years and Hefting10

et al. (2006) measured N2O emission once in winter and once in summer to obtain the
difference of N2O emission in high and low NO−

3 removal transects. Several other stud-
ies have also shown that annual N2O flux is significantly increased by episodic events
such as rewetting of dry soil and thawing of frozen soil as well as N input (e.g. Müller
et al., 2003; Mikha et al., 2005) and the peak N2O emission substantially contribute15

to total N2O emission (e.g. Prieme and Christensen, 2001; Nobre et al., 2001). It
is important that future studies consider the implications of such episodic events for
flux-measurement protocols (Parkin, 2008).

4.2 Peak N2O emissions

In the crop (soybeans) field in 2007, even though N inputs were less than the crop20

(corn) field 2006 because N fertilizer was not applied, both annual N2O emission
(16.8 kg N2O-N ha−1 y−1) and the EF (0.17) were larger than the crop field 2006 (an-
nual N2O emission: 7.2 kg N2O-N ha−1 y−1, EF: 0.03) (Table 3). In the same region
of central Iowa, Parkin and Kasper (2006) observed annual N2O emission from soy-
beans fields of 2.2–2.7 N2O-N ha−1 y−1 and corn fields (N fertilizer 215 kg N ha−1) of25

7.6–10.2 N2O-N ha−1 y−1. Our N2O emission estimate from the crop field in 2006 is
similar to these authors’ observation under corn; however, our emission estimate from
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the crop field in 2007 when soybeans were present is 6 to 7- fold higher than Parkin
and Kasper’s (2006) observation. The N2O emission from the crop field in 2007 is also
larger than average N2O emission observed in the crop fields in temperate regions ob-
served by Stehfest and Bouwman (2006) of 3.6±0.5 kg N2O-N ha−1 y−1. The emission
factor in the crop field 2007 is also larger than other reports (Bouwman et al., 2002;5

Stehfest and Bouwman, 2006; Novoa and Tejeda, 2006) and the IPCC (2006)’s de-
fault value (0.01, uncertainty range 0.003–0.03). A similar pattern was also observed
within soils within riparian buffers in 2007. These results indicate that N2O emission
from soils within the crop field and riparian buffers were caused by additional factors
beyond N inputs. One such factor may be the peak N2O emissions observed within10

the crop field and riparian buffers during each year. There were several peak emis-
sions following rewetting dry soils and thawing frozen soils in both sites (Fig. 4), and
the peak emissions significantly contributed (30-70%) to the amount of annual N2O
emission. This result is consistent with other studies (e.g. Teepe et al., 2000; Prieme
and Christensen, 2001; Nobre et al., 2001; Regina et al., 2004) reporting peak N2O15

emissions following rewetting dry soils and thawing frozen soils contributed substan-
tially to annual N2O emissions. In our sites, we observed that the crop field had N2O
peak emissions of greater magnitude than riparian buffers (Fig. 3). This result is similar
to studies reviewed by Matzner and Borken (2008) in that the emissions of N2O after
thawing frozen soils were sometimes significantly larger from arable soils than from20

forest soils. In our observations, soils within the crop field had lower soil temperatures
in winter and higher soil temperature and longer dry periods in summer compared with
soils within riparian buffers (Fig. 4D, E). This may explain why peak emissions during
periods of rewetting and thawing were higher in the crop field than riparian buffers.
Vegetation within riparian buffers provides more shade, preventing high temperature25

increases during the summer months and provides insulation, preventing severe tem-
perature deceases during winter months. In contrast, soils within the crop field are
exposed to direct sunlight during the summer months and cold wind during the win-
ter months. Riparian vegetation will also result in lower soil bulk density and higher
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organic matter (Marquez et al., 1999; Tufekcioglu et al., 2001; Bharati et al., 2002),
resulting in higher soil moisture. In contrast, soils within the crop field exposed to direct
sunlight, with higher bulk density, and lower soil organic matter will tend to hold less
soil moisture compared with riparian buffer soils. We observed that the contribution
of peak emissions to annual N2O emission was larger in 2007 than 2006 in both the5

crop field and riparian buffers. The period soils were frozen during winter months and
the period soil were dried during summer months were longer in 2007 compared with
2006, and this may explain the higher peak emissions during periods of rewetting and
thawing observed in 2007.

Since N2O flux was not measured in the crop field mid April to mid May 2006, and10

fertilizer was applied and it rained during this period (Fig. 4A), we might have missed
peak N2O flux in response to rainfall after fertilizer application (Parkin and Kaspar,
2006; Baggs et al., 2003; Sehy et al., 2003). Also since N2O flux was not measured in
the crop field in August and September to October in the crop field 2006 (Fig. 4A), and
there were several rewetting events during the periods, we might have missed peak15

emissions in the periods. It is suspected that these missed peak emissions may result
in lower annual N2O emission in the crop field 2006.

Many future climate change scenarios predict more severe droughts associated with
summer drying and intense precipitation in a future warmer climate (Easterling et al.,
2000; Wang, 2005; Burke et al., 2006; Meehl et al., 2006; Rowell and Jones, 2006;20

Alexander et al., 2006; Sillmann and Roeckner, 2008). Also the increase in freeze and
thaw frequency (Gu et al., 2008) and the increased impacts on the area and depth
of permafrost regions (Lawrence and Slater, 2005) are predicted in a future warmer
climate. The observed peak N2O emissions during the thawing of frozen soils and
rewetting of dry soils in the crop field 2007 have important implications for greenhouse25

gas emissions in a changing climate which predicts a greater frequency of such condi-
tions.

The observed large difference between measured N2O emission and estimated N2O
emission by IPCC method (2006) (87% underestimation by IPCC method) suggests
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that the current IPCC (2006) N2O emission estimation methodology, based on N in-
put information, may underestimate emissions in the regions where soil rewetting and
thawing are common. Additional studies are warranted to clarify the relationships be-
tween antecedent soil moisture/soil temperature and the frequency of dry-wet/frozen-
thawed cycles and their subsequent effect on soil N2O flux. The resulting improvements5

in N2O emission models would improve the accuracy of the N balance of terrestrial
ecosystems and improve predictions of the probable impacts of anthropogenic climate
change on such factors as an increased risk of drought (e.g. Alexander et al., 2006;
Sillmann and Roeckner, 2008) and an increase in freeze and thaw frequency (Gu et
al., 2008).10

5 Conclusions

Annual N2O emissions from soils within all riparian buffers (1.8 kg N2O-N ha−1 in 2006
and 3.4–4.5 kg N2O-N ha−1 in 2007) were significantly lower than within the cropped
fields (7.2 kg N2O-N ha−1 in 2006 and 16.8 kg N2O-N ha−1 in 2007) and no differences
were observed among the different kinds of riparian buffers. While N2O peak emissions15

following the rewetting of dry soils and thawing of frozen soils contributed significantly
to annual N2O emission in the crop field, soils in riparian buffers were less sensitive to
the events. Over a 2-year period, the EF of soils in riparian buffers (0.02) was about one
third that of the crop field (0.07) with N input lower within soils in riparian buffers than
in the crop field. Such findings indicate that even if riparian buffers were established20

for their water quality function (e.g. enhanced denitrification) throughout the watershed,
they would only represent 1% of the annual N2O emission. In addition, this study also
suggests N input cannot always explain N2O flux and that the N input-based IPCC
methodology for estimating N2O emissions may underestimate fluxes in the regions
where with frequent rewetting of dry soils and thawing of frozen soils occurs. Additional25

studies characterizing N2O peak emissions are needed to better understand annual
N2O fluxes and the N cycle within these systems, and to improve prediction of the

631

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-print.pdf
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 607–650, 2009

Nitrous oxide
emissions from
riparian buffers

D.-G. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

impacts of future climate change.
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Müller, C., Kammann, C., Ottow, J. C. G., and Jäger, H. J.: Nitrous oxide emission from frozen20

grassland soil and during thawing periods, J. Plant Nutr. Soil Sci., 166, 46–53, 2003.
Mulvaney, R. L.: Nitrogen–Inorganic forms, in: Methods of Soil Analysis. Part 3, Soil Sci. Soc.

Amer., Book Ser. 5, edited by: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H.,
Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., and Sumner, M. E., Soil Sci. Soc. Amer.,
Madison, WI, USA, 1123–1184, 1996.25

Nobre, A. D., Keller, M., Crill, P. M., and Harriss, R. C.: Short-term nitrous oxide profile dynamics
and emissions response to water, nitrogen and carbon additions in two tropical soils, Biol.
Fert. Soils, 34, 363–373, 2001.

Novoa, R. S. A. and Tejeda, H. R.: Evaluation of the N2O emissions from N in plant residues
as affected by environmental and management factors, Nutr. Cycl. Agroecosys., 75, 29–46,30

2006.
Papen, H. and Butterbach-Bahl, K.: A 3-year continuous record of nitrogen trace gas fluxes

from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Ger-

637

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-print.pdf
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 607–650, 2009

Nitrous oxide
emissions from
riparian buffers

D.-G. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

many - 1. N2O emissions, J. Geophys. Res.-Atmos., 104, 18487–18503, 1999.
Parkin, T. B.: Effect of sampling frequency on estimates of cumulative nitrous oxide emissions,

J. Environ. Qual., 37, 1390–1395, doi:10.2134/jeq2007.0333, 2008.
Parkin, T. B. and Kaspar, T. C.: Nitrous oxide emissions from corn-soybean systems in the

Midwest, J. Environ. Qual., 35, 1496–1506, 2006.5

Parkin, T. B. and Kaspar, T. C.: Temperature controls on diurnal carbon dioxide flux: Implica-
tions for estimating soil carbon loss, Soil Sci. Soc. Am. J., 67, 1763–1772, 2003.

Peterjohn, W. and Correll, D.: Nutrient dynamics in an agricultural watershed: Observations on
the role of a riparian forest, Ecology, 65, 1466–1475, 1984.

Prieme, A. and Christensen, S.: Natural perturbations, drying-wetting and freezing-thawing10

cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic
soils, Soil Biol. Biochem., 33, 2083–2091, 2001.

Regina, K., Syvasalo, E., Hannukkala, A., and Esala, M.: Fluxes of N2O from farmed peat soils
in Finland, Eur. J. Soil Sci., 55, 591–599, 2004.

Rochette, P. and Janzen, H. H.: Towards a revised coefficient for estimating N2O emissions15

from legumes, Nutr. Cycl. Agroecosys., 73, 171–179, 2005.
Rowell, D. P. and Jones, R. G.: Causes and uncertainty of future summer drying over Europe,

Clim. Dynam., 27, 281–299, 2006.
Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., and Munch, J. C.: Emission of

N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and20

rewetting, Soil Biol. Biochem., 38, 263–274, 2006.
Sabater, S., Butturini, A., Clement, J., Burt, T., Dowrick, D., Hefting, M., Matre, V., Pinay, G.,

Postolache, C., and Rzepecki, M.: Nitrogen removal by riparian buffers along a European
climatic gradient: Patterns and factors of variation, Ecosystems, 6, 20–30, 2003.

Saetre, P. and Stark, J. M.: Microbial dynamics and carbon and nitrogen cycling following re-25

wetting of soils beneath two semi-arid plant species, Oecologia, 142, 247–260, 2005.
SAS Institute Inc.: SAS/STAT User’s Guide, Version 8, SAS Inst., Cary, NC, 3884 pp., USA,

1999.
Schaeffer, S. M., Billings, S. A., and Evans, R. D.: Responses of soil nitrogen dynamics in a

Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability, Oecologia,30

134, 547–553, 2003.
Schnabel, R. R., Cornish, L. F., Stout, W. L., and Shaffer, J. A.: Denitrification in a grassed and

a wooded, valley and ridge, riparian ecotone, J. Environ. Qual., 25, 1230–1235, 1996.

638

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-print.pdf
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 607–650, 2009

Nitrous oxide
emissions from
riparian buffers

D.-G. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Scholes, M. C., Martin, R., Scholes, R. J., Parsons, D., and Winstead, E.: NO and N2O emis-
sions from savanna soils following the first simulated rains of the season, Nutr. Cycl. Agroe-
cosys., 48, 115–122, 1997.

Schultz, R. C., Colletti, J. P., Isenhart, T. M., Marquez, C. O., Simpkins, W. W., and Ball, C. J.:
Riparian forest buffer practices, In: North American Agroforestry: An Integrated Science and5

Practice, Garrett, H. E., Rietved, W. J., and Fisher, R. F. (Eds.), Amer. Soc. Agr., Madison,
WI, USA, 189–281, 2000.

Schultz, R. C., Colletti, J. P., Isenhart, T. M., Simpkins, W. W., Mize, C. W., and Thompson, M.
L.: Design and placement of a multispecies riparian buffer strip system, Agroforest Syst., 29,
201–226, 1995.10

Schultz, R. C., Isenhart, T. M., Simpkins, W. W., and Colletti, J. P.: Riparian forest buffers in
agroecosystems-lessons learned from the bear creek watershed, central Iowa, USA, Agro-
forestry Systems, 61, 35–50, 2004.

Sehy, U., Ruser, R., and Munch, J. C.: Nitrous oxide fluxes from maize fields: Relationship
to yield, site-specific fertilization, and soil conditions, Agric. Ecosyst. Environ., 99, 97–111,15

2003.
Sillmann, J. and Roeckner, E.: Indices for extreme events in projections of anthropogenic cli-

mate change, Clim. Change, 86, 83–104, 2008.
Simpkins, W. W., Wineland, T. R., Andress, R. J., Johnston, D. A., Caron, G. C., Isenhart, T. M.,

and Schultz, R. C.: Hydrogeological constraints on riparian buffers for reduction of diffuse20

pollution: Examples from the Bear Creek watershed in Iowa, USA, Water Sci. Technol., 45,
61–68, 2002.

Stehfest, E. and Bouwman, L.: N2O and NO emission from agricultural fields and soils under
natural vegetation: Summarizing available measurement data and modeling of global annual
emissions, Nutr. Cycl. Agroecosys., 74, 207–228, 2006.25

Teepe, R., Brumme, R., and Beese, F.: Nitrous oxide emissions from frozen soils under agri-
cultural, fallow and forest land, Soil Biol. Biochem., 32, 1807–1810, 2000.

Teepe, R., Vor, A., Beese, F., and Ludwig, B.: Emissions of N2O from soils during cycles of
freezing and thawing and the effects of soil water, texture and duration of freezing, Eur. J.
Soil Sci., 55, 357–365, 2004.30

Teiter, S. and Mander, U.: Emission of N2O, N2, CH4, and CO2 from constructed wetlands for
wastewater treatment and from riparian buffer zones, Ecol. Eng., 25, 528–541, 2005.

Tonderski, A.: Landuse-based nonpoint source pollution. A threat to water resources in devel-

639

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-print.pdf
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 607–650, 2009

Nitrous oxide
emissions from
riparian buffers

D.-G. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

oping countries, Water Sci. Technol., 33, 53–61, 1996.
Tufekcioglu, A., Raich, J. W., Isenhart, T. M., and Schultz, R. C.: Soil respiration within riparian

buffers and adjacent crop fields, Plant Soil, 229, 117–124, 2001.
Tufekcioglu, A., Raich, J. W., Isenhart, T. M., and Schultz, R. C.: Biomass, carbon and nitrogen

dynamics of multi-species riparian buffers within an agricultural watershed in Iowa, USA,5

Agroforest Syst., 57, 187–198, 2003.
Tufekcioglu, A., Raich, J. W., Isenhart, T. M., and Schultz, R. C.: Fine root dynamics, coarse

root biomass, root distribution, and soil respiration in a multispecies riparian buffer in central
Iowa, USA, Agroforest Syst., 44, 163–174, 1999.

Ullah, S. and Zinati, G. M.: Denitrification and nitrous oxide emissions from riparian forests10

soils exposed to prolonged nitrogen runoff, Biogeochemistry, 81, 253–267, 2006.
Uusi-Kamppa, J., Braskerud, B., Jansson, H., Syversen, N., and Uusitalo, R.: Buffer zones and

constructed wetlands as filters for agricultural phosphorus, J. Environ. Qual., 29, 151–158,
2000.

Van Gestel, M., Merckx, R., and Vlassak, K.: Microbial biomass responses to soil drying and15

rewetting – the fate of fast-growing and slow-growing microorganisms in soils from different
climates, Soil Biol. Biochem., 25, 109–123, 1993.

Van Miegroet, H.: Inorganic nitrogen determined by laboratory and field extractions of two forest
soils, Soil Sci. Soc. Am. J., 59, 549–553, 1995.

Verchot, L. V., Franklin, E. C., and Gilliam, J. W.: Nitrogen cycling in piedmont vegetated filter20

zones: II. Subsurface nitrate removal, J. Environ. Qual., 26, 337–347, 1997.
Wagner-Riddle, C. and Thurtell, G. W.: Nitrous oxide emissions from agricultural fields during

winter and spring thaw as affected by management practices, Nutr. Cycl. Agroecosys., 52,
151–163, 1998.

Waikato Valley Authority.: Lake Taupo catchment control scheme, Appendix VI: the history, prin-25

ciples and status of the lakeshore reserves proposals – the Taupo County Report. Waikato
Valley Authority, Hamilton, 1973.

Walker, J. T., Geron, C. D., Vose, J. M., and Swank, W. T.: Nitrogen trace gas emissions from a
riparian ecosystem in southern Appalachia, Chemosphere, 49, 1389–1398, 2002.

Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T., and Hansen, J. E.: Greenhouse effects due to30

man-made perturbations of trace gases, Science, 194, 685–690, 1976.
Wang, Z. P., Han, X. G., Li, L. H., Chen, Q. S., Duan, Y., and Cheng, W. X.: Methane emission

from small wetlands and implications for semiarid region budgets, J. Geophys. Res.-Atmos.,

640

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-print.pdf
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 607–650, 2009

Nitrous oxide
emissions from
riparian buffers

D.-G. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

110, D13304, doi:10.1029/2004JD005548, 2005.
Watts, S. H. and Seitzinger, S. P.: Denitrification rates in organic and mineral soils from riparian

sites: A comparison of N2 flux and acetylene inhibition methods, Soil Biol. Biochem., 32,
1383–1392, 2000.

Weller, D. E., Correl, D. L., and Jordan, T. E.: Denitrification in riparian forests receiving agri-5

cultural discharges, in: Global Wetlands: Old World and New, Mitsch, W. J. (Ed.), Elsvier,
Amsterdam, The Netherlands, 117–131, 1994.

641

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-print.pdf
http://www.biogeosciences-discuss.net/6/607/2009/bgd-6-607-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 607–650, 2009

Nitrous oxide
emissions from
riparian buffers

D.-G. Kim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Soil properties (mean ± standard error) (n=6–9 except bulk density; n=27) of the
sites. Soil samples (depth 0–15 cm) were collected in a forest buffer, a warm-season grass
filter, a cool-season grass filter, and an adjacent crop field in October 2006 and September
2007.

Site Soil texture† Bulk density pH TC TN NH4-N NO3-N

mg m−3 – g kg−1 soil – – mg N kg −1 soil –

Crop field Loam 1.67±0.02a‡ 5.9±0.1c 22.8±1.0c 1.9±0.1c 1.7±0.2b 1.2±0.5a

Forest buffer Loam 1.10±0.03c 7.3±0.1a 42.9±3.2a 3.8±0.3a 4.1±0.6a 0.7±0.2a

Warm-season grass filter Loam 1.29±0.05b 6.7±0.2b 29.1±2.7bc 2.6±0.2bc 3.9±0.5a 0.2±0.1a

Cool-season grass filter Loam 1.19±0.04bc 6.9±0.1ab 32.4±1.6bc 2.9±0.1b 4.3±0.4a 0.9±0.3a

†Marquez et al. (2004).
‡Values in the same column followed by a different letter are significantly different (P <0.05).
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Table 2. Nitrogen inputs from crop residues (n=5), dead roots (n=5), and plant litter (n=5) of
the previous year in the crop field and riparian buffers in 2006 and 2007 and estimated N inputs
(IPCC 2006) from crop residues and dead roots of the previous year in the crop fields in 2006
and 2007.

Site
Measured N (kg N ha−1) IPCC-Estimated N (kg N ha−1)

Crop residues Dead roots§ Litter Total Crop residues§§ Dead roots§§ Total

Crop field (2006) † 53.1 29.0 – 82.1 42.4 14.0 56.4

Crop field (2007) ‡ 61.2 31.0 – 92.2 73.4 44.9 118.3

Forest buffer (2006) – 22.8 55.4 78.2 – – –

Warm-season grass filter (2006) – 15.1 43.6 58.7 – – –

Cool-season grass filter (2006) – 30.5 83.3 113.8 – – –

Average of riparian buffers (2006) – 22.8 60.7 83.6 – – –

Forest buffer (2007) – 22.8 66.9 89.8 – – –

Warm-season grass filter (2007) – 15.1 30.3 45.4 – – –

Cool-season grass filter (2007) – 30.5 41.2 71.8 – – –

Average of riparian buffers (2007) – 22.8 46.2 69.0 – – –

†From soybeans.
‡From corn.
§N in dead roots (0 to 125 cm, fine and small root) was calculated from Tufekcioglu et al. (1999,
2000, 2003).
§§Used harvested annual dry matter (d.m.) yield: 3934.1 kg d.m. ha −1 (soybeans) in 2005 and
10 419.8 kg d.m. ha−1 (corn) in 2006.
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Table 3. Measured (Mea.) N inputs and N2O emission, ratio of measured (Mea.) N2O emission
to N inputs, estimated (Est.) N2O emission by IPCC 2006 method, and the ratio of measured
(Mea.) N2O emission to estimated (Est.) N2O emission in the crop field and riparian buffers.
Units of all N input and measured (Mea.) and estimated (Est.) N2O-N is kg N ha−1.

Crop
N inputs†

Mea. Mea. N2O-N:
IPCC-Est. N2O-N

Mea. N2O-N:
Fertilizer‡ Crop residues & Deposition# Total Direct †† Indirect ‡‡ Totalfield N2O-N N inputs Est. N2O-N

roots§

2006 133.4 82.1 7.7 223.2 7.2 0.03 1.9 0.13 2.0 3.5

2007 – 92.2 7.7 99.9 16.8 0.17 1.2 – 1.2 14.2

2006–2007 133.4 174.3 15.4 323.1 24.0 0.07 3.1 0.13 3.2 7.5

Riparian
N inputs

Mea. Mea. N2O-N:

buffers N2O-N N inputsLitter & roots Runoff §§ Ground water¶ Depo- sition# Total

2006 83.6 0.5 36.1 7.7 127.9 1.8 0.01

2007 69.0 6.0 36.1 7.7 118.8 4.0 0.03

2006–2007 152.6 6.5 72.2 15.4 246.7 5.8 0.02

†Biological N fixation was not included as a direct source of N2O because of the lack of evidence of significant emissions arising from the fixation process

itself (Rochette and Janzen, 2005; IPCC, 2006).

‡Pelletized urea (133.4 kg N ha−1) was applied in the crop field (corn) in April 2006.

§From previous year.

§§In an event (>0.02 mm runoff), 0.5 kg N in run-off flowed from crop fields was retained in the riparian buffers (calculated from Lee et al., 2003). During

2006–2007, there were 13 events (>20 mm rainfall) in the sites.

¶Average of reduced N load in groundwater under two different riparian buffers (data from Kim et al., 2009).

# Annual dry and wet deposition (ha−1 y−1) was 7.7 kg of N on the Iowa State University campus (19 km south of the study site) in January 2003–January

2004 (Anderson and Downing, 2006).

†† Annual amount of direct N2O–N emissions produced from managed soils. Used harvested annual dry matter (d.m.) yield: 3934.1 kg d.m. ha−1 (soybeans)

in 2005 and 10 419.8 kg d.m. ha−1 (corn) in 2006.

‡‡ Annual amount of N2O-N produced from atmospheric deposition of N volatilized from managed soils.
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Table 4. The estimated N2O emission in actual riparian buffers (N2ORBa), hypothetical riparain
buffers (N2ORBh) and crop fields (N2OCF ) in the Bear Creek watershed and the ratio between
them. It is hypothesized that 30 m width riparian buffers are installed on the both side of the
creek.

unit value

Area of current riparian buffers (RBa) ha 75.9

Total length of Bear Creek m 56 473

Width of riparian buffers m 30†

Hypothetical area of riparian buffers (RBh) ha 338.8

Total area of crop fields in the watershed ha 6810

EF of riparian buffers (EFRB) kg N2O–N (kg N input)−1 0.02

EF of crop fields (EFCF ) kg N2O–N (kg N input)−1 0.07

N input rate of riparian buffer kg N ha−1 y−1 123.4‡

N input rate of crop fields kg N ha−1 y−1 161.6§

N2O emission in current riparian buffers
(N2ORBa)

kg N ha−1 y−1 187.2

N2O emission in hypothetical riparian buffers
(N2ORBh)

kg N ha−1 y−1 835.9

N2O emission in crop fields kg N ha−1 y−1 77 010.9

N2ORBa/ N2OCF kg N ha−1 y−1 (kg N ha−1 y−1)−1 0.002

N2ORBh/ N2OCF kg N ha−1 y−1 (kg N ha−1 y−1)−1 0.01

†Riparian buffers >30 m are recommended for fully effective nutrient reduction (Mayer et al., 2006).

‡Average of 2006–2007 (246.7 kg N ha−1) in riparian buffers.

§Average of 2006–2007 (323.1 kg N ha−1) in the crop field.
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Fig. 1. Diel variation of N2O flux and soil temperature (5 cm dept) in crop field, forest buffer,
warm-season and cool-season grass filter in 21–22 November 2005 (A and B), 18–19 May
2006 (C and D), and 16–17 July 2007 (E and F). Observations are mean values with standard
errors of the mean.
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Fig. 2. Cumulative diel N2O emission in crop field, forest buffer, warm-season and cool-season
grass filter in 21–22 November 2005, 18–19 May 2006, and 16–17 July 2007.
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Fig. 3. Daily N2O flux from soils within the crop field and riparian buffers in 2006 and
2007(n=72–93). I, II, and III indicate replicates. The lower boundary of the box indicates the
25th percentile, the line within the box marks the median, and the upper boundary of the box
indicates the 75th percentile. Error bars indicate the 90th and 10th percentiles. Solid circles
indicate outliers.
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Fig. 4. Nitrous oxide emissions (A, B), precipitation (C), and daily average of soil moisture (D)
and soil temperature (E) in forest buffers (n= 3), grass filters (n=4), and adjacent crop field
(n=1) during 2006 and 2007. Observations are mean values with standard errors of the mean
in (A) and (B).
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Fig. 5. Observed negative N2O flux (<−0.175 g N2O-N ha−1 h−1, minimum detectable flux; sig-
nificance was satisfied with 95% confidence limits) of the slope was tested and on-site soil
temperature (5 cm depth) in forest buffers, grass filters, and adjacent crop field during 2006 and
2007.
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