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Abstract

Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests,
although in situ measurements have only been poorly reported and the dependence of
soil moisture and soil temperature also weakly understood. This work investigates the
temporal variability of soil respiration using field measurements, which also included5

soil moisture, soil temperature and litterfall, from April 2003 to January 2004, in a south-
west Brazilian tropical rainforest near Ji-Paraná, Rondônia. The experimental design
deployed five automatic (static, semi-opened) soil chambers connected to an infra-red
CO2 gas analyzer. The mean half-hourly soil respiration showed a large scattering
from 0.6 to 18.9µmol CO2 m−2 s−1 and the average was 8.0±3.4µmol CO2 m−2 s−1.10

Soil respiration varied seasonally, being lower in the dry season and higher in the
wet season, which generally responded positively to the variation of soil moisture and
temperature year round. The peak was reached in the dry-to-wet season transition
(September), this coincided with increasing sunlight, evapotranspiration and ecosys-
tem productivity. Litterfall processes contributed to meet very favorable conditions for15

biomass decomposition in early wet season, especially the fresh litter on the forest floor
accumulated during the dry season. We attempted to fit three models with the data:
the exponential Q10 model, the Reichstein model, and the log-soil moisture model.
The models do not contradict the scattering of observations, but poorly explain the
variance of the half-hourly data, which is improved when the lag-time days averaging20

is longer. The observations suggested an optimum range of soil moisture, between
0.115<θ≤0.25 m3 m−3, which maximize soil respiration in an approximated non-linear
relationship. The Q10 coefficient was overestimated and may lead to erroneous calcu-
lation at warmer temperatures, which is of concern for global climate models deploying
simple parameterizations under strong climate anomalies in the tropics.25
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1 Introduction

Soil respiration processes play an important role on the carbon cycle of Amazonian
forests, which interacts with the water (Richey et al., 2002) and energy fluxes on the
spatial and seasonal scales (von Randow et al., 2004), and helps to promote the cou-
pling with the climate (Betts et al., 2004; Saleska et al., 2009). Various authors suggest5

that soil emissions are between 60–80% of the total primary production (Meir et al.,
1996; Davidson et al., 1998; Janssens et al., 2001). The ability to estimate the car-
bon budget of the Amazon basin shall improve by reconciling various estimates of the
net primary productivity and the heterotrophic sources over tropical terra firme forests,
which includes measurements of micrometeorological towers (Saleska et al., 2003; de10

Araújo et al., 2002; Goulden et al., 2004), soil respiration chambers (Davidson et al.,
2000; Sotta et al., 2004; Buchmann et al., 1997; Salimon et al., 2004), remote sens-
ing and aircraft measurements. While measurements of soil respiration in Amazonia
have been poorly reported and constrained by spatial variability, simple soil CO2 ef-
flux models are enable to show the dependence of the climate and integration with15

situ measurements (Meir et al., 1996; Davidson et al., 2000), as well as contribute to
improve description of land surface parameterization used in climate studies to predict
the effects of Amazonian deforestation. Soil respiration measurements are essential
to get both a reliable understanding of the driving forces of soil processes and an es-
timate of the sensitivities of the model formulations to eliminate uncertainties. There20

is a broad consensus about the necessity to validate model results to observations in
tropical region, because of the strong climate anomalies and different local variables
forcing. However, field research, especially in Amazonia, is still not exactly in pace
with modelling. Some authors defined models of soil respiration as a function of soil
temperature and proposed a functional relationship for a particular ecosystem (Lloyd25

and Taylor, 1994; Davidson et al., 1998; Janssens et al., 2003). The amount of het-
erotrophic or root respiration in the soil is not only controlled by temperature, but by
many other factors, such as soil moisture (Howard and Howard, 1993; Davidson et al.,
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1998; Irvine and Law, 2002; Janssens et al., 2003; Raich et al., 2002; Reichstein et al.,
2003), soil minerals, chemical properties of leaf and root activities of the macrofauna
and microfauna (Liski and Westma, 1997; Giardina and Ryan, 2000). Some authors
showed some influence of the annual variation of litterfall in the soil respiration (Re-
ichstein et al., 2003; Salimon et al., 2004; Valentini et al., 2008), while others show5

the Q10 parameter (Q10 is the relative change in respiration with a temperature change
of 10◦C), can decrease when soil temperature increases (Howard and Howard, 1993;
Lloyd and Taylor, 1994; Janssens and Pilegaard, 2003), because the soil respiration
also depends on soil moisture conditions. This can be explained by Linn and Doran
(1984), the author found that under very dry soil conditions, the substrate diffusion10

through water films (around soil particles) to microbial active cells is limited. In con-
trast, under very wet soil conditions, oxygen diffusion may inhibit the gas production,
and the diffusion through pore spaces to the atmosphere is limited (Skopp et al., 1990;
Davidson, 1993). This non-linear dependence can be avoided when the analysis is re-
stricted to a specific interval of temperature and soil moisture. Lloyd and Taylor (1994)15

reported that the fits of the Q10 factor in the models can systematically underestimate
the soil respiration for low temperatures and overestimate it for high temperatures. The
ecosystem respiration in different Amazonian forests do not show a similar depen-
dence on the soil moisture. For example, in eastern Amazonia (Santarém), respiration
appeared to decline in the whole dry season, which indicates the likely water limitation20

for such well-drained upland sites during about 4–5 months, despite the increasing lit-
terfall in the early dry season (Keller et al., 2004; Goulden et al., 2004; Saleska et al.,
2009). Alternatively, canopy photosynthesis appeared to increase from the middle dry
season on, due to a combination of increasing sunlight, green-leaf flush and deep root
activity (Saleska et al., 2003; Goulden et al., 2004; da Rocha et al., 2004). Still in east-25

ern Amazonia forests, drought-controlled experiments on sandy soils, in Caxiuana,
reduced soil respiration (Sotta et al., 2004), while drought on clay soils in Santarém
have not induced substantial changes (Davidson et al., 2008). Differently, in central
Amazonia, Manaus, a region dominated by a mosaic of plateaus, and valleys where
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soils saturate during most of the year, the relationship of soil respiration with soil mois-
ture was negative (Chambers et al., 2004), with higher respiration over the plateaus
than in the valleys. In this study we deployed a set of automatic soil chambers, to
measure half-hourly soil respiration during 10 months in a southwestern tropical forest
in Amazonia, to investigate the diurnal and seasonal patterns, and how simple models5

dependent on soil moisture and soil temperature help to explain the soil respiration.

2 Materials and methods

2.1 Study area and climate

The study area was at Fazenda Itapirema, a ranchland placed in south-west Amazonia
(10◦55, 60′S and 62◦01, 266′W), 15 km distant from Ji-Paraná city, state of Rondônia,10

Brazil, bordered by the Urupá’s River (162 m a.s.l.). The measurements were made in a
pristine tropical forest fragment, of about 500 m×650 m size surrounded by a 20 years
secondary forest and pasture. The height of the trees varied from 25 to 30 m, with
crown diameter of 10 to 15 m, and many palm trees Orbignya martiana (local name,
Babaçus). The mean annual precipitation is 2000 mm, and the wet season is defined15

between September to April. During the dry season, coincident with the winter, the
rainfall is often below 20 mm, with monthly average air temperature varying from 24◦C
(in July) to 27◦C (in October) (da Rocha et al., 2009). The regional weather is often
marked by two or three cold events (“friagens”), usually between July and August, due
to the influence of large scale cold fronts, which make the temperature falls to ∼10◦C20

during 1 to 3 days (Culf et al., 1996). The winter is drier, and the specific humidity varies
from 11.9 g kg−1 in July to 17.2 g kg−1 in December (Culf et al., 1996; von Randow et al.,
2004). The soil in the study area is an Oxisol, which in general shows contents of 58%
of sand, 33% of clay and 9% of silt for the first 15–20 cm in the region (Ballester et al.,
2003).25
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2.2 Soil respiration measurements

The system with the automatic chambers was assembled at the University of São
Paulo, designed with five chamber (C1, C2,. . .C5) unities (16.4 l each), static, semi-
opened, with a closed-dynamic circuit. The chambers had fixed collars, inserted to
4 cm depth in the soil. The closed cycle used a suction air pump that operated at5

4 l min−1 in each chamber’s headspace, which circulated the air into and out of the gas
analyser. For each individual chamber, the air CO2 concentration was measured by
an infrared gas analyzer (Ciras-SC, PP Systems, Hitchin, UK), connected to 2 sets of
10 pneumatic valves (Clippard, USA), and recorded in a datalogger (CR10X, Camp-
bell Sci., USA) every 5 s during 4 min (48 measures). Each chamber was left opened10

at about 45◦ using individual electrical rotor with a cord and pulley. The record was
initiated after the chamber was automatically closed. After 4 min the tubes were al-
lowed to flush during 2 min, in order to move to next unity. The entire set of chambers
spent 30 min, and restarted immediately after. The mean CO2 variation during each
event (4 min) was calculated with the estimate of the linear regression of the CO2 con-15

centration over time time (∆c∆t ), which excluded the first 10 samples (or 50 s) to prevent
spurious influences during the closure. The soil respiration was calculated as:

Rs =
∆c
∆t

(
P

Tsoil ∗ <

)
Ma

(
V
A

)
(1)

where Rs is the soil respiration (µmol CO2 m−2 s−1), P is the air pressure (kPa),
Tsoil is soil temperature at 15 cm (K), < is the specific gas constant for ideal air20

(287.053 J kg−1 K−1), V is the chamber volume (m3), A is the chamber horizontal area
(m2) and Mar is the molar weight of dry air (28.9645 g mol−1).

2.3 Soil temperature, soil moisture and litterfall

The soil temperature at 15 cm depth was measured using a thermometer (T107, Camp-
bell Sci, USA), installed near individual chambers. Soil moisture was measured using25
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Frequency Domain Reflectometry – (CS615, Campbell Sci., USA) with one sensor in-
stalled near each chamber, inserted in a vertical direction which provided the mean
soil water content (%) between the surface to 25 cm depth. The soil calibration was
developed using a similar methodology of (Bruno et al., 2006), with samples of oxisol
collected in a nearby station (Reserva Jarú). Measurements of litterfall were taken5

using 15 littertraps (1 m2) collectors over an 150 m×200 m area surrounding the set of
chambers. The collectors were installed 30 cm above the soil (Newbould, 1967), to
avoid influence of the ground on the leaf decomposition, collected twice a month and
the leaves were weigthed and dried in an oven for 3 days at 50◦C.

2.4 Statistics and data analysis10

The measurements were made from April 2003 to February 2004 for soil moisture
and until June 2004 for soil temperature. Data gaps occurred due to mechanical mal-
functions, heavy storms and a tree falling down on chamber (C4) in November 2003.
The average respiration was calculated from 5 automatic chambers. This was done
after applying an ANOVA (p<0.05, confidence level) to all five chambers to check for15

significant correlation between them. From October to December of 2004 a tree fell
over chamber C4 and the soil respiration showed a substantial increase of more than
3 times the normal emission and the statistical test showed no significant correlation.
C4 was therefore not included in the average for this period. To preserve the data anal-
ysis, the soil temperature, moisture and respiration were removed from the data set 3 h20

after rain events, because normally the data were disturbed by the CO2 spikes after
rain. The Q10 model (Lloyd and Taylor, 1994), the Reichstein model (Reichstein et al.,
2003) for the relation of soil respiration and soil temperature and the polynomial loga-
rithmic (log-soil) Davidson et al. (2000) fit curve for the soil respiration and soil moisture
(models are explained in the results section) were tested by fitting the observations us-25

ing a nonlinear least square fit and also the Root Mean Square Errors (RMSE) were
calculated to explain how well the model fits to the real data. All tests were optimized
using Matlab Software (Version 6.5.0.1, The MathWorks, Inc.).
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3 Results

3.1 Temporal variation

We discuss how mean half hourly soil respiration varied on the diel cycle, and the
patterns of seasonal variability, soil temperature and soil moisture. The mean diel
cycle of soil respiration is shown in Fig. 1, for averages calculated in a dry pe-5

riod (28 July 2003 to 1 August 2003) and in a wet period (25–30 December 2003).
During the dry period, the soil respiration peaked in the afternoon, around 15 h, at
∼7µmol CO2 m−2 s−1. In the wet period the mean soil respiration was remarkably
higher during the nighttime than in the daytime, and peaked early in the evening, be-
tween 18 and 22 h, at ∼10µmol CO2 m−2 s−1. The mean daily amplitude of soil respi-10

ration was of ∼4µmol CO2 m−2 s−1 in the wet period, and nearly half of that in the dry
period, of ∼2.5µmol CO2 m−2 s−1. As expected, soil temperature was higher in the wet
period (∼26.5◦C), and lower in the dry period (∼24.0◦C), and varied less than 1◦C day
round. The soil temperature peaked between 14 to 21 h in both the dry and wet peri-
ods. Similar soil temperature results were found by Alvalá et al. (2002) and Meir et al.15

(1996) in tropical amazonian forests. The minimum soil respiration for both periods oc-
curred during the first hours of morning time, between 6 to 9 h, which was concurrent
with minimum soil temperature. Some authors report the correlation of soil respiration
with soil temperature at 2 or 5 cm (e.g., Meir et al., 1996). The measured soil temper-
atures at 15 cm probably did not cause a substantial lag between half-hourly data of20

temperature and soil respiration that prejudiced the regression as the diurnal amplitude
of soil temperature is often small below the tropical forest canopy (Alvalá et al., 2002),
but in different soils as sand soil or more clay as in central Amazonian plateaus, we can
find in this dept some hysteresis between both (Zanchi et al., 2009). Davidson et al.
(1998) reported the maxima soil respiration and soil temperature around 18 h, in a pri-25

mary forest of eastern Amazonia, which coincides with the diel cycle pattern in the dry
period. On the perspective of the seasonal variability, the lowest mean soil respiration
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was noticed in August and within the dry season, of ∼1µmol CO2 m−2 s−1, concurrent
with the lowest soil temperature and soil moisture (∼23◦C and 0.1 m3 m−3, respectively)
(Fig. 2). The maxima of soil temperature and moisture were ∼28◦C and 0.55 m3 m−3,
respectively, in January and within the rainy season and the soil respiration peaked at
∼19µmol CO2 m−2 s−1 occasionally in the early as well as later on the rainy season.5

The peak of soil respiration in September (Fig. 3) is marked by the end of a long dry
period and the start of several rain events, which was also accompanied by the rapid
increase of soil temperature and soil moisture. Litterfall was maximum in the dry sea-
son, in August 2003 and May 2004, of about 70 g m−2, and remained approximatelly
constant during the wet season at approximated rates of 40 g m−2. Litterfall is usually10

maximum during the dry season in the tropical forests (Luizão and Schubart, 1987).
In more detail, soil respiration varies abruptly after the first rain events in September
(Fig. 4) (see the ellipses in Fig. 4a). In addition, soil moisture also increased abruptly
from 0.09 to 0.25 m3 m−3 (Fig. 4b) during the rain events, associated with the pulses of
soil respiration. We argue that air within empty soil pores was replaced by drained wa-15

ter, that drove the CO2 out of the soil, similar to other observations using soil chambers
(Matteucci et al., 2000). In addition, the pulses may be associated with other biological
controls, as regrowth, the increase of microbial activity which arise from to dead mi-
crobial cells accumulated during the drought, and the release of organic solutes from
live and dead cells following wetting (Kieft et al., 1987; Howard and Howard, 1993;20

Davidson et al., 2000, 2005).

3.2 Modelling the dependence on soil moisture and temperature

We discuss the dependence of soil respiration (Rs) on soil temperature (Tsoil) at 15 cm
depth firstly based with two simple models: the exponential Q10 model (Eqs. 2 and 3),
and the Reichstein model (Lloyd and Taylor, 1994). The first model is described as25

Rs = R0 ∗ e(β0∗Tsoil) (2)

Q10 = e10∗β0 (3)
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where R0 and β0 are the fitted parameters, Q10 is a sensitivity parameter of the respira-
tion variation with a variation in temperature of 10◦C . This model does not describe soil
moisture and others factors directly, that is, they do not limit respiration explicitly (Lloyd
and Taylor, 1994; Fang and Moncrieff, 2001; Janssens and Pilegaard, 2003; Reichstein
et al., 2003; Yuste et al., 2004). The second model re-introduces the Arrhenius model5

(Lloyd and Taylor, 1994) and adds an explicit water dependence to the soil temperature
and respiration, which includes the water content relative to the soil water content at
field capacity (RSWC), namely as:

Rs = Rref ∗ f (Tsoil,RSWC) ∗ g (RSWC) , (4)

f (Tsoil,RSWC) = e
E0(RSWC)

(
1

Tref−T0
− 1

Tsoil−T0

)
(5)10

g (RSWC) =
RSWC

RSWC1/2
+ RSWC

(6)

E0 (RSWC) = aREW + bREW ∗ RSWC (7)

RSWC =
SWC

SWC1/2
(8)

where Rref (µmol CO2 m−2 s−1) is the soil respiration at the reference temperature
Tref=25◦C (approximately equal to the local annual mean soil temperatures), E0 (K−1) is15

the activation energy and T0 (−46◦C) is the lower temperature limit for the soil respira-
tion from the original model of Lloyd and Taylor (1994), and RSWC1/2 (dimensionless)
is the soil water content where half-maximal respiration (at a given temperature) occurs.
Reichstein et al. (2003) proposed that the temperature sensitivity of soil respiration is
exponentially dependent on the soil water status (Eq. 5), and in a first approximation20

the exponential power E0 is linearly dependent on RSWC for the Eq. (7).
Both models were fitted to the entire data set (Fig. 5a, Table 1). The correlations with

the soil temperature and soil moisture were weak, for the Q10 model (R2=0.17, Q10=3.9
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and RMSE=3.12) and also for the Reichstein model (R2=0.17 and RMSE=3.11) and
were not significant. We noticed that, from 23 to about 26◦C, the soil respiration in-
creased, but tended to decrease above this temperature range because in Amazon re-
gion the increase of soil temperature means also soil moisture increase, which makes
more difficult to fit the models.5

An alternative and third (log-soil) model is presented here (Eq. 9), derivate from the
Davidson et al. (2000), which is a nonlinear dependence of the natural logarithm on
the soil moisture, as:

Rs = a + b ∗ ln(θ) + c ∗ ln2(θ) (9)

where Rs (µmol CO2 m−2 s−1) is the soil respiration and θ (m3 m−3) is the volumetric soil10

moisture content, a can be called the soil activation energy, b is the parameter for the
soil respiration close to the water field capacity, and c is the soil respiration decrease
when the soil water content is higher than θ>0.25 m3 m−3 or lower than θ<0.15 m3 m−3.

The model was fitted with the soil moisture data (Fig. 5b, Table 1) (R2=0.31;
RMSE=2.81; p<0.05), and despite the weak correlation, suggested that soil respiration15

responded to soil moisture variation around an optimum soil moisture that maximizes
respiration, that is, respiration decreased for soil water content low and high (i.e., be-
low and above field capacity). Such optimum soil water content was noticed, by simple
inspection, to be between 0.2 and 0.3 m3 m−3, which is close to the field capacity of
oxisols.20

To help understanding the dependence of soil respiration to soil temperature and
soil moisture, the model fitting was separated for 3 different classes of soil moisture
(Fig. 6). The Q10 soil respiration model and the Reichstein model were fitted with data
specifically for the period of data constrained by the following classes of soil mois-
ture: (a) 0.09<θ<0.115 m3 m−3; (b) 0.115<θ<0.25 m3 m−3 and (c) θ>0.3 m3 m−3. In25

the drier range (Fig. 6a, Table 1), soil respiration shows a clear exponential pattern for
both models. In this range, coincident with the dry season, soil temperature was low
and also limited respiration. The regression coefficients were however low (Q10 model
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showed R2=0.26 with RMSE=1.30 and the Reichstein models showed R2=0.27, and
RMSE=1.28). The estimate of the parameter Q10 was equal to 12, which is relatively
high when compared to other estimates for tropical forest (Meir et al., 1996; Sotta et al.,
2004). In this case, the amplitude of temperature was quite small (of about 2◦C), which
makes the calculated Q10 parameter to increase. For the second class of data, the5

intermediate soil moisture range (Fig. 6b, Table 1), the models also appeared as an
exponential fitting, although the range of temperature was larger than that of the first
class, of about 3.5◦C. In this case, the regression coefficients were also low, although
the Reichstein model fitted a little better than the simple Q10 exponential model (Reich-
stein: R2=0.33; RMSE=2.76 and Q10: R2=0.25 and RMSE=2.91). The calculated Q1010

parameter was equal to 8.8. For the third class, that is, for the data within the period
on the upper ranges of soil moisture, in the wet season, no correlation was significantly
estimated (R2<0.04) (Fig. 6c). In this case, soil respiration was not sensitive to the
temperature variation for the very wet soil conditions, according to those models.

Furthermore, we fitted the model dependent on log-soil moisture (Eq. 9) constrained15

by the same range of soil moisture: in the first class (Fig. 7a), soil respiration ap-
peared to be strongly reduced near the lowest limit of soil moisture. In addition, soil
respiration remains low and approximately constant (no sensitivity to the low humid-
ity) for θ≤0.106 m3 m−3 and starts to increase for moisture above 0.106 m3 m−3, un-
der a modest regression (R2=0.36). In Fig. 7b, the middle soil moisture class, soil20

respiration is reduced in both the lower and upper thresholds of the classes, and
varies non-linearly around an maximum in the range of soil moisture of approximately
(0.15<θ≤0.25 m3 m−3). Finally, for the third class (Fig. 7c) of data, no clear fitting was
suggested. In this interval there was a large variation of soil respiration, between ∼0.4
to 14µmol CO2 m−2 s−1, and other controls may be likely more important rather than25

the moisture.
We calculated the fittings of the three models, using the mean monthly data instead

of half-hourly for the entire set of data to be possible to understand better the Lag-
time of the soil respiration to soil temperature and moisture. The regression explained
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over 65% of the variance for the Exponential model, with a calculated Q10 parameter
equal to 3.9 and 46% for the Reichstein model (Fig. 8a), and over 49% for the log-soil
moisture model (Fig. 8b). Furthermore, we fitted the models to the data averaged on
a variable scale of periods, between 1 day and 30 days. The results showed that the
R2 coefficient, for all models, appeared to depend on the period of averaging, with the5

fitting (based on R2 and RMSE) improving progressively with the days Lag-time period
(Table 2).

4 Discussion

The measurements of soil respiration in a tropical forest in southwestern Amazonia
varied seasonally, lower in the dry season and higher in the wet season, and generally10

responded positively to the variation of soil moisture and temperature year round. The
peak of the soil respiration happened remarkably in the dry-to-wet season transition
(September). We estimated an average emission equal to (8±3.4µmol CO2 m−2 s−1)
over an approximated period of 10 months which comprised the dry and the wet sea-
son. The mean half hourly data showed a large annual amplitude, which varied from15

∼0.62 to 18.9µmol CO2 m−2 s−1. Davidson (1993) and Chambers et al. (2004) showed
increases in soil moisture content to lead to decreases in soil respiration, which must
have been likely caused by inhibition of respiratory activity due to inadequate oxygen
supply in saturated soils (Linn and Doran, 1984). Chambers et al. (2004) associated
this pattern with the topography of Amazonian terra firme forests, and attributed the20

wetter soils under the valleys as the pre-condition which sustains such mechanism.
Our measurements do not meet exactly those reports, also because the study site was
more similar to the plateau forest types. Soil respiration reached the highest emission
in the dry-to-wet season (transition) and was associated with the increase of soil tem-
perature and soil moisture. Such a variability coincided with increasing sunlight and25

evapotranspiration year round in a nearby station, a primary forest at Reserva Jarú in
Rondônia (da Rocha et al., 2009), and are also correlated with the increasing ecosys-
tem productivity at that same station (Saleska et al., 2009). Increasing productivity and
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transpiration in turn may affect positively root respiration, especially the fine roots in the
shallower soil layers, and partly explains the increasing soil respiration. It is remarkable
how such fast dry-to-wet season transition in southwest Amazon was captured with the
measurements, and appeared to show the most significant variation in intra-seasonal
soil respiration. Furthermore, heterotrophic controls play a strong role in the peak of5

soil respiration, especially the highest litterfall rates during the middle dry season. At
that time, soil microorganisms have certainly met very favorable conditions for biomass
decomposition, especially the fresh litter on the forest floor accumulated during the dry
season, and the increasing temperature and moisture. The direct reaction of soil respi-
ration to soil moisture could be partly explained by the heterotrophic component, when10

the decomposition is activated with the increase of the microorganisms and mycor-
rhizae, after a long dry spell, that correspond to 25% of primary productivity (Lankreijer
et al., 2002). Our observations corroborate more closely the increase of soil respiration
over an eastern Amazonian forest in Santarém (Goulden et al., 2004) in late December,
or more exactly the onset of the wet season regionally. Particularly, our measurements15

were relatively higher during the wet season compared to then, it appeared to be more
transient than that authors. We argue that processes as carbon decomposition and
turn-over may be possibly faster in our study site than in Santarém during the wet
season. The increase of soil respiration in the early wet season agrees with other
observations in eastern Amazonia (Davidson et al., 2000; Sotta et al., 2004) and in a20

southwestern tropical forest in Acre (Salimon et al., 2004). Our analysis of modelling
the half-hourly soil respiration suggests that the Q10 and the Reichstein models will
hardly explain the variance of the observations significantly, partly because the data
scattering is high. However, it is suggested that the models tend to represent the mean
statistics, and do not contradict the observations entirely. The performance of the re-25

gression improves when the mean variables are calculated over longer periods, up to
one month, which make the model fit more smooth the intra-seasonal variation. The
Q10 coefficient was possibly overestimated (see Table 1), and may lead to erroneous
calculation at warmer temperatures, which is partly explained by the narrow amplitude
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of soil temperature observed in the tropical forests, of ∼5◦C, in comparison to high an-
nual amplitudes in temperature zones, usually >20◦C (Janssens and Pilegaard, 2003).
This is to be noticed in the use of global climate models which deploy simple param-
eterizations dependent only on temperature, and especially the exponential coefficient
Q10 (Parton et al., 1987; Hunt Jr. et al., 1996; Cox et al., 2000), as it seems diffi-5

cult to predict the soil respiration when strong climate anomalies dominate the tropics.
Moreover, the dependence of soil moisture did not contribute to increase the explained
variance in the Reichstein model, as its representation may not be satisfactorily espe-
cially when the soil moisture and litterfall vary substantially. We did not find an optimal
temperature at which biological processes are maximum (other environmental factors10

constant) (Fang and Moncrieff, 2001). However the observations clearly suggested
an optimum soil moisture range. Linn and Doran (1984) and Davidson (1993) have
suggested that an interval between 0.2 to 0.7 m3 m−3 is likely optimum. We found it
between 0.115 to 0.25 m3 m−3, which obviously depend much on the soil porosity, and
not entirely on the absolute soil water content.15

5 Conclusions

We concluded that, for the benefit of the modelling, the data could be stratified, or
separated by different classes of soil moisture. The Q10 and the Reichstein model
showed the worst performance when soil water content was high, as the dependence
of temperature in the observation was not obvious. In general, the data stratification20

helped slightly the Q10 and Reichstein model to improve the fitting. To achieve an
explicit representation of the soil moisture, we deployed the log-soil moisture model,
which in turn showed to be helpful to describe the optimum soil moisture range. In
comparison to the other models, however, it did not improve substantially the explained
variance of the observations. The scattering of the half-hourly data also prejudiced the25

model regression. Especially in the very wet soil conditions, all models generally fail
in correlating either temperature or moisture. Overall the modelling of soil respiration
over our tropical forest study area showed the dependence of single variables as soil
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temperature and moisture can be helpful although certainly limited. To improve the
modelling of the seasonal variability, other variables should be required, as for example
soil structure, and more importantly, gross productivity and litterfall, which correlate with
temperature and moisture in the tropics, but also depend on circadian rhythms and are
species-dependent.5
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de Araújo, A., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., von Randow, C.,10

Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., and Kabat, P. P.: Comparative mea-
surements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainfor-
est: The Manaus LBA site, J. Geophys. Res., 107(D20), 8090, doi:10.1029/2001JD000676,
2002. 6149

Fang, C. and Moncrieff, J. B.: The dependence of soil CO2 efflux on temperature, Soil15

Biol. Biochem., 33, 155–165, available at: http://www.sciencedirect.com/science?
ob=ArticleURL& udi=B6TC7-41YG2YJ-3& user=499882& rdoc=1& fmt=& orig=

search& sort=d&view=c& acct=C000024498& version=1& urlVersion=0& userid=
499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae, 2001. 6156, 6161

Giardina, C. P. and Ryan, M. G.: Evidence that decomposition rates of organic carbon in mineral20

soil do not vary with temperature, Nature, 404, 858–861, available at: http://www.nature.com/
nature/journal/v404/n6780/full/404858a0.html, 2000. 6150

Goulden, M. L., Miller, S. D., da Rocha, H. R., Menton, M. C., de Freitas, H. C., Figueira, A.
M. S., and de Sousa, C. A. D.: Diel and seasonal patterns of tropical forest CO2 exchange,
Ecol. Appl., 14, 42–54, 2004. 6149, 6150, 616025

Howard, D. and Howard, P.: Relationships between CO2 evolution, moisture content and tem-
perature for a range of soil types, Soil Biol. Biochem., 25, 1537–1546, 1993. 6149, 6150,
6155

Irvine, J. and Law, B. E.: Contrasting soil respiration in young and old-growth ponderosa
pine forests, Glob. Change Biol., 8, 1183–1194, available at: http://dx.doi.org/10.1046/j.30

1365-2486.2002.00544.x, 2002. 6150
Janssens, I. A. and Pilegaard, K.: Large seasonal changes in Q10 of soil respiration in a beech

forest, Glob. Change Biol., 9, 911–918, available at: http://dx.doi.org/10.1046/j.1365-2486.

6164

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-print.pdf
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.springerlink.com/content/l83p811676736534
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-41YG2YJ-3&_user=499882&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000024498&_version=1&_urlVersion=0&_userid=499882&md5=cf989fc27df7f8eb3ad89d389a8a94ae
http://www.nature.com/nature/journal/v404/n6780/full/404858a0.html
http://www.nature.com/nature/journal/v404/n6780/full/404858a0.html
http://www.nature.com/nature/journal/v404/n6780/full/404858a0.html
http://dx.doi.org/10.1046/j.1365-2486.2002.00544.x
http://dx.doi.org/10.1046/j.1365-2486.2002.00544.x
http://dx.doi.org/10.1046/j.1365-2486.2002.00544.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00636.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00636.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00636.x


BGD
6, 6147–6177, 2009

Soil respiration and
simple models in

Amazon forest

F. B. Zanchi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2003.00636.x, 2003. 6150, 6156, 6161
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pile-

gaard, K., Kutsch, W., Longdoz, B., Grünwald, T., Montagnani, L., Dore, S., Rebmann, C.,
Moors, E. J., Grelle, A., Rannik, K., Morgenstern, K., Oltchev, S., Clement, R., Gudmunds-
son, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen,5

N. O., Vesala, T., Granier, A., Schulze, E. D., Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceule-
mans, R., and Valentini, R.: Productivity overshadows temperature in determining soil and
ecosystem respiration across European forests, Glob. Change Biol., 7, 269–278, available
at: http://dx.doi.org/10.1046/j.1365-2486.2001.00412.x, 2001. 6149

Janssens, I. A., Dore, S., Epron, D., Lankreijer, H., Buchmann, N., Longdoz, B., Brossaud,10

J., and Montagnani, L.: Climatic influences on seasonal and spatial differences in soil CO2
Efflux, in: Canopy Fluxes of Energy, Water and Carbon Dioxide of European Forests, edited
by: Valentini, R., Springer-Verlag, Berlin, Germany, 235–256, 2003. 6149, 6150

Hunt Jr., E. R., Piper, S. C., Nemani, R., Keeling, C. D., Otto, R. D., and Running, S. W.:
Global Net Carbon Exchange and Intra-annual Atmospheric CO2 Concentrations Predicted15

by an Ecosystem Process Model and Three-Dimensional Atmospheric Transport Model,
Global Biogeochem. Cy., 10, 431–456, available at: http://www.agu.org/journals/gb/v010/
i003/96GB01691/, 1996. 6161

Keller, M., Alencar, A., Asner, G. P., Braswell, B., Bustamante, M., Davidson, E., Feldpausch,
T., Fernandes, E., Goulden, M., Kabat, P., Kruijt, B., ao, F. L., Miller, S., Markewitz, D.,20

Nobre, A. D., Nobre, C. A., Priante, N., da Rocha, H. R., Dias, P. S., von Randow, C., and
Vourlitis, G. L.: Ecological research in the Large-scale Biosphere-Atmosphere experiment in
Amazonia: Early results, Ecol. Appl., 14, S3–S16, suppl. S, 2004. 6150

Kieft, T. L., Soroker, E., and Firestone, M. K.: Microbial biomass response to a rapid increase
in water potential when dry soil is wetted, Soil Biol. Biochem. 19, 119–126, 1987. 615525

Lankreijer, H., Janssens, I., Buchmann, N., Longdoz, B., Epron, D., and S. Dore, E.: Mea-
surement of Soil Respiration. Fluxes of Carbon, Water and Energy of European Forests,
Ecological studies, Springer-Verlag Berlin Heidelberg New York, 164, chap. 3, 2002. 6160

Linn, D. M. and Doran, J. W.: Effect of water filled pore space on CO2 and NO production in
tilled and nontilled soils., Soil Sci. Soc. Am. J., 48, 1267–1272, available at: http://ddr.nal.30

usda.gov/bitstream/10113/16745/1/GUA85010259.pdf, 1984. 6150, 6159, 6161
Liski, J. and Westma, J.: Carbon storage in forest soil of Finland. 1. Effect of thermo-

climate, Biogeochemistry, 36, 239–260, available at: http://www.springerlink.com/content/

6165

http://dx.doi.org/10.1046/j.1365-2486.2003.00636.x
http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-print.pdf
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1046/j.1365-2486.2003.00636.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00636.x
http://dx.doi.org/10.1046/j.1365-2486.2001.00412.x
http://www.agu.org/journals/gb/v010/i003/96GB01691/
http://www.agu.org/journals/gb/v010/i003/96GB01691/
http://www.agu.org/journals/gb/v010/i003/96GB01691/
http://ddr.nal.usda.gov/bitstream/10113/16745/1/GUA85010259.pdf
http://ddr.nal.usda.gov/bitstream/10113/16745/1/GUA85010259.pdf
http://ddr.nal.usda.gov/bitstream/10113/16745/1/GUA85010259.pdf
http://www.springerlink.com/content/u8u2086t47u8t1x5
http://www.springerlink.com/content/u8u2086t47u8t1x5
http://www.springerlink.com/content/u8u2086t47u8t1x5


BGD
6, 6147–6177, 2009

Soil respiration and
simple models in

Amazon forest

F. B. Zanchi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

u8u2086t47u8t1x5, 1997. 6150
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil Respiration, Funct. Ecol., 8,

315–323, available at: http://www.jstor.org/stable/2389824, 1994. 6149, 6150, 6153, 6155,
6156

Luizão, F. J. and Schubart, H. O. R.: Litter production and decomposition in a terra-firme forest5

of Central Amazonia, Experientia, 43, 259–265, 1987. 6155
Matteucci, G., Dore, S., Stivanello, S., Rebmann, C., and Buchmann, N.: Soil Respiration

in Beech and Spruce Forests in Europe: Trends, Controlling Factors, Annual Budgets and
Implications for the Ecosystem Carbon Balance, Ecological Studies, 142, 217–236, 2000.
615510

Meir, P., Grace, J., Miranda, A., and Lloyd, J.: Soil respiration in a rainforest in Amazonia and
in Cerrado in Central Brazil, in: Amazonian Deforestation and Climate, edited by: Gash, J.
H. C., Nobre, C. A., Roberts, J. M., and Victoria, R. L., John Wiley and Sons, Chichester,
UK, 319–329, 1996. 6149, 6154, 6158

Newbould, P. J.: Methods for estimating the primary production of forests, International Biolog-15

ical Programme, Blackwell Scientific Publications, available at: http://coweeta.ecology.uga.
edu/webdocs/1/ppforests.html, 1967. 6153

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of Factors Controlling
Soil Organic Matter Levels in Great Plains Grasslands, Soil Sci. Soc. Am. J., 51, 1173–1179,
http://soil.scijournals.org/cgi/reprint/51/5/1173, 1987. 616120

Raich, J. W., Potter, C. S., and Bhagawati, D.: Interannual variability in global soil respiration,
198094, Glob. Change Biol., 8, 800–812, available at: http://www3.interscience.wiley.com/
journal/118961405/abstract, 2002. 6150

Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P., Cheng,
Y., Grunzweig, J. M., Irvine, J., Joffre, R., Law, B. E., Loustau, D., Miglietta, F., Oechel,25

W., Ourcival, J.-M., Pereira, J. S., Peressotti, A., Ponti, F., Qi, Y., Rambal, S., Rayment, M.,
Romanya, J., Rossi, F., Tedeschi, V., Tirone, G., Xu, M., and Yakir, D.: Modeling temporal
and large-scale spatial variability of soil respiration from soil water availability, temperature
and vegetation productivity indices, Global Biogeochem. Cy., 17, 15.1–15.15, available at:
http://www.agu.org/journals/gb/gb0304/2003GB002035/, 2003. 6150, 6153, 615630

Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., and Hess, L.: Outgassing
from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature,
416, 617–620, 2002. 6149

6166

http://www.springerlink.com/content/u8u2086t47u8t1x5
http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-print.pdf
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.springerlink.com/content/u8u2086t47u8t1x5
http://www.springerlink.com/content/u8u2086t47u8t1x5
http://www.jstor.org/stable/2389824
http://coweeta.ecology.uga.edu/webdocs/1/ppforests.html
http://coweeta.ecology.uga.edu/webdocs/1/ppforests.html
http://coweeta.ecology.uga.edu/webdocs/1/ppforests.html
http://soil.scijournals.org/cgi/reprint/51/5/1173
http://www3.interscience.wiley.com/journal/118961405/abstract
http://www3.interscience.wiley.com/journal/118961405/abstract
http://www3.interscience.wiley.com/journal/118961405/abstract
http://www.agu.org/journals/gb/gb0304/2003GB002035/


BGD
6, 6147–6177, 2009

Soil respiration and
simple models in

Amazon forest

F. B. Zanchi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Saleska, S., da Rocha, H. R., Kruijt, B., and Nobre, A.: Ecosystem carbon fluxes and Amazon
forest metabolism, in: Amazonia and Global Change, edited by: Keller, M., Bustamante, M.,
Gash, J., and Dias, P. S., American Geophysical Union, in press, 2009. 6149, 6150, 6159

Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R.,
de Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff,5

V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H., and Silva, H.: Carbon in amazon
forests: Unexpected seasonal fluxes and disturbance-induced losses, Science, 302, 1554–
1557, 2003. 6149, 6150

Salimon, C. I., Davidson, E. A., Victoria, R. L., and Melo, A. W. F.: CO2 flux from soil in pas-
tures and forests in southwestern Amazonia, Glob. Change Biol., 10(5), 833–843, available10

at: http://www3.interscience.wiley.com/cgi-bin/fulltext/118805468/PDFSTART, 2004. 6149,
6150, 6160

Skopp, J., Jawson, M. D., and Doran, J. W.: Steady-State Aerobic Microbial Activity as
a Function of Soil Water Content, Soil Sci. Soc. Am. J., 54, 1619–1625, available at:
http://hdl.handle.net/10113/1720, 1990. 615015

Sotta, E. D., Meir, P., Malhi, Y., Nobre, A. D., Hodnett, M. G., and Grace, J.: Soil CO2 efflux in a
tropical forest in the Central Amazon, Global Change Biol., 10, 601–617, 2004. 6149, 6150,
6158, 6160

Valentini, C. M. A., Sanches, L., de Paula, S. R., Vourlitis, G. L., de S. Nogueira, J.,
Pinto Jr., O. B., and de A. Lobo, F.: Soil respiration and aboveground litter dynamics20

of a tropical transitional forest in northwest Mato Grosso, Brazil, J. Geophys. Res., 113,
G00B10, doi:10.1029/2007JG000619, available at: http://www.agu.org/journals/jg/jg0804/
2007JG000619/2007JG000619.pdf, 2008. 6150

von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Hodnett,
M. G., Gash, J. H. C., Elbers, J. A., Waterloo, M. J., Cardoso, F. L., and Kabat, P.: Compara-25

tive measurements and seasonal variations in energy and carbon exchange over forest and
pasture in South West Amazonia, Theor. Appl. Climatol., 78, 5–26, 2004. 6149, 6151

Yuste, J. C., Janssens, I. A., Carrara, A., and Ceulemans, R.: Annual Q10 of soil respiration
reflects plant phenological patterns as well as temperature sensitivity, Glob. Change Biol.,
10, 161–169, available at: http://dx.doi.org/10.1111/j.1529-8817.2003.00727.x, 2004. 615630

Zanchi, F. B., Kruijt, B., Waterloo, M. J., Kesselmeier, J., Manzi, A. O., and Dolman, J.: Soil
respiration from different ecosystem in the central of Amazon forest, in preparation, 2009
6154

6167

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-print.pdf
http://www.biogeosciences-discuss.net/6/6147/2009/bgd-6-6147-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www3.interscience.wiley.com/cgi-bin/fulltext/118805468/PDFSTART
http://hdl.handle.net/10113/1720
http://www.agu.org/journals/jg/jg0804/2007JG000619/2007JG000619.pdf
http://www.agu.org/journals/jg/jg0804/2007JG000619/2007JG000619.pdf
http://www.agu.org/journals/jg/jg0804/2007JG000619/2007JG000619.pdf
http://dx.doi.org/10.1111/j.1529-8817.2003.00727.x


BGD
6, 6147–6177, 2009

Soil respiration and
simple models in

Amazon forest

F. B. Zanchi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 1. Regression parameters and statistics of the models.

Models

Log model Parameters Statistics

a0 b0 c0 Rs mean±std model mean±Std R2 RMSE

Dry class 2213 1934 423.80 5.94±1.44 6.18±1.52 0.36 1.20
Intermediate −44.70 −65.30 −19.00 9.19±3.41 8.03±3.86 0.28 2.89
Wet class 18.00 19.80 12.00 10.25±3.70 9.14±0.49 0.01 3.65
Whole period −12.50 −30.30 −9.60 8.43±3.40 9.28±1.75 0.31 2.81

Exponential model Parameters Statistics

R0 b0 Q10 Rs mean±std Model mean±Std R2 RMSE

Dry class 0.02 0.25 12.00 6.10±1.46 5.96±0.75 0.26 1.30
Intermediate 0.04 0.22 8.80 8.56±3.35 8.60±1.61 0.25 2.91
Wet class 0.18 0.15 4.30 8.92±3.59 8.69±0.68 0.03 3.50
Whole period 0.28 0.14 3.90 8.43±3.40 8.11±1.32 0.17 3.11

Reichstein model Parameters Statistics

Rref RSWC E0 Rs mean±std Model mean±Std R2 RMSE

Dry class 10.50 0.41 1045.80 6.10±1.46 6.11±0.74 0.27 1.28
Intermediate 12.08 0.52 851.30 8.56±3.35 8.62±1.64 0.33 2.76
Wet class 8.15 1.24 598.80 8.92±3.59 8.70±0.69 0.03 3.52
Whole period 10.84 0.63 316.80 8.43±3.40 8.33±1.25 0.17 3.12
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Table 2. Model results from different average time and the Statistics of Eqs. (2), (4) and (9).

Average period Log model Exponential model Reichstein model

R2 RMSE R2 Q10 RMSE R2 RMSE

1 day 0.39 1.90 0.29 3.30 2.02 0.27 2.32
5 days 0.44 1.70 0.32 3.40 1.90 0.30 2.32
7 days 0.43 1.90 0.38 4.00 1.95 0.34 2.28
10 days 0.67 1.30 0.40 3.70 1.76 0.39 2.26
14 days 0.49 1.70 0.38 3.50 1.87 0.41 2.06
21 days 0.46 2.00 0.20 2.70 2.46 0.26 2.37
30 days 0.87 0.80 0.65 3.90 1.29 0.46 2.19
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Fig. 1. Daily variation of soil respiration (µmol CO2 m−2 s−1), soil temperature (◦C) and precipi-
tation (mm) for the dry period (28 July 2003 to 1 August 2003) and wet period (25–30 December
2003).
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Fig. 2. Mean half-hourly data of (a) soil temperature (◦C), (b) soil respiration (µmol CO2 m−2 s−1)
and (c) soil moisture (m3 m−3).
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Fig. 3. Variation of soil respiration (µmol CO2 m−2 s−1) and litterfall rate (g m−2). Inset: Correla-
tion of soil respiration with litterfall.
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Fig. 4. Variation of half-hourly soil respiration (µmol CO2 m−2 s−1) and precipitation (mm) during
the early wet season (3 September 2003 to 30 March 2003).
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Fig. 5. Mean half-hourly (grey circle) and the standard deviation (black bars) of the soil respi-
ration (µmol CO2 m−2 s−1) related to the soil temperature (◦C) and soil moisture (m3 m−3). (a)
Two models dependence of soil respiration with the soil temperature (◦C), where the Reichstein
model (Scatter black line) had a R2=0.17 and the RMSE=3.12 and the Q10 Model (Solid grey
line) had a R2=0.17, RMSE=3.11 and the Q10=3.9 and (b) One model dependence of soil
respiration with the soil moisture(m3 m−3), where the log-soil moisture models (Solid black line)
had a R2=0.31 and RMSE=2.81.
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Fig. 6. Mean half-hourly (grey circle) and the standard deviation of soil respiration
(µmol CO2 m−2 s−1) and soil temperature (◦C), for specific classes of soil moisture and the
models Reichstein (Scatter black lines) and the Q10 Exponential (Solid grey line), namely: (a)
θ≤0.115 m3 m−3, founding for Reichstein model a R2=0.27 and the RMSE=1.26 and the Q10

model a R2=0.26, RMSE=1.3 and the Q10=11; (b) 0.115<θ≤0.25 m3 m−3, founding for the Re-
ichstein model a R2=0.33 and the RMSE=2.76 and the Q10 model a R2=0.25, RMSE=2.91
and the Q10=8.8, and (c) (θ>0.3 m3 m−3), founding for the Reichstein model a R2=0.03 and the
RMSE=3.5 and the Q10 model a R2=0.04, RMSE=3.5 and the Q10=4.3.
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Fig. 7. Mean half-hourly (grey circle) and the standard deviation of soil respiration
(µmol CO2 m−2 s−1) and soil moisture (m3 m−3), for specific classes of soil moisture using the
log-soil moisture models (solid back line), namely: (a) θ≤0.115 m3 m−3, where the R2=0.36
and the RMSE=1.2; (b) 0.115<θ≤0.25 m3 m−3, where the R2=0.28 and the RMSE=2.89 and
(c) (θ>0.3 m3 m−3), where R2=0.01 and the RMSE=3.5.
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Fig. 8. Mean monthly soil respiration (µmol CO2 m−2 s−1) and (a) soil temperature (◦C), (b) soil
moisture(m3 m−3) for all period; (c) Calculated the Lag days of the regression coefficient R2 for
the fitting between mean soil respiration averaged over a variable period (abscissa, in days),
for the Reichstein, Q10 Exponential, and log-soil moisture models, respectively.
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