
We have now finished the revision of the paper. The review comments1

were very helpful and we trust that considering them greatly improved the2

manuscript. Please find below a list with all comments and our detailed re-3

sponses, including a description of the changes in the manuscript.4

Anonymous Referee #15

• < − >6

→ The first section is quite similar in approach and objectives to7

a handful of papers that have been published over the last8

5 or 6 years, including work by Janssens, Del Grosso, and9

Richardson; results of the present study should, I think, be10

put in the context of this earlier work.11

Janssens, I.A. et al. 2003. Climatic influences on seasonal12

and spatial differences in soil CO2 efflux. In: Valentini, R.13

(Ed.), Fluxes of Carbon, Water and Energy of European14

Forests. Springer, Berlin, pp. 233-253.15

Del Grosso, S.J. et al. 2005. Modeling soil CO2 emissions16

from ecosystems. Biogeochemistry 73: 71–91.17

Richardson, A.D. et al. 2006. Comparing simple respiration18

models for eddy flux and dynamic chamber data. Ag &19

Forest Met 141: 219-234.20

← We now refer to those in the discussion section (p. 8, l. 683) (p. 8, l.21

684).22

done23

• < − >24

→ The second section does not seem to follow logically from the25

first, especially since there is no overlap between the sites26

with measurements and the site that is modeled.27

← We agree that this was not explained well. We have added the reason-28

ing to the methods (p. 2, l. 146).29

The idea of a dynamic vegetation model like LPJ-GUESS is to have a30

model with one fix implementation of all the biogeochemical and veg-31

etation dynamics. By providing the model with a given set of plant32

functional types, the model can be applied to different forest ecosys-33

tems, e.g. over whole Europe. Ideally, the model therefore should34

be calibrated just once and then is run in differing ecosystems. We35

conducted our study on an elevation gradient to account for different36

temperature regimes. By running the simulations along an eleva-37

tion gradient, the weather drivers are gradually changing, whereas38

the precipitation and temperature pattern at the calibration sites39

did not differ systematically, which makes comparison more difficult40
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compared to a gradient study within one valley. The difference of the41

sites along the Ticino elevation gradient therefore are only reflected42

by the given temperature and precipitation regimes but underlying43

the same broad-scale weather regime. And this in turn makes a com-44

parison more meaningful. The interpretation of the study results does45

not depend on the location of the modeling study, as long as the same46

climatic region is used. As other studies have been conducted in the47

Ticino catchment in our group, the choice of the Ticino catchment48

as a study site stood to reason.49

done50

• < 1 >51

→ The introduction highlights some of the challenges of mod-52

eling soil respiratory processes. On P8131 L15, it is stated53

that a consensus has not yet emerged on the climate sen-54

sitivity of soil carbon decomposition, then on L23+, de-55

composition of SOM is highly complex, as it is driven by a56

combination of factors. However, the authors then resort to57

evaluating simple, well-known models that effectively con-58

tain no pools, do not incorporate moisture (or other en-59

vironmental driver) effects, lump together autotrophic and60

heterotrophic R, and are driven by a single soil temperature61

(of questionable representativeness). So the approach taken62

seems at odds with the motivation for the study.63

← We acknowledge this issue. The motivation for the study has been64

clarified in the abstract (p. 1, l. 16) and in the introduction (p. 2, l.65

74), (p. 2, l. 99).66

The motivation for the study was an uncertainty analysis of temper-67

ature dependence of the soil carbon dynamics. We wanted to be able68

to systematically quantify the uncertainty and therefore used just69

one model implementation as-is to exclude further uncertainties of70

model inter-comparisons. We therefore calibrated different potential71

temperature-response functions to experimental datasets of total soil72

respiration and replaced the standard function in the three pool soil73

carbon model in LPJ-GUESS. The model itself was kept as-is, we74

introduced parameter uncertainties and looked at the uncertainties75

propagation of model projections of heterotrophic soil respiration and76

soil carbon stocks.77

done78

• < 2 >79

→ Re: P8132 L11. Since the soil R data are a combination of80

autotrophic and heterotrophic processes, it is not clear to81

me how the analysis performed really provides insight into82
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heterotrophic respiration specifically; related to this, I find83

it very strange that later (P8135 L15+), that in the LPJ84

analysis, the L&T function is used for autotrophic respira-85

tion, but the five different candidate models are used for86

heterotrophic respiration.87

← We agree that this was not clear. We have clarified this issue in the88

methods section (p. 3, l. 237).89

We use the total soil respiration to estimate the overall temperature90

response of soil respiration, as more data set were available for to-91

tal soil respiration. In the model LPJ-GUESS, the root respiration92

is modeled as part of the autotrophic respiration and does therefore93

influence plant net primary production (NPP). As the amount of lit-94

ter produced depends on NPP, a change in root respiration would95

change litter input. To avoid this indirect impact of temperature,96

we did not change the implementation of autotrophic respiration to97

guarantee comparable litter inputs for all simulations on a given el-98

evation level.99

done100

• < 3 >101

→ The motivation for focusing on the Ticino catchment in the102

southern Alps is not clear, especially given that none of res-103

piration datasets are from this region. Why not conduct the104

LPJ modeling for the eight sites used in the model selection105

part of the manuscript?106

← See the comment above (p. 1, l. 28), where we clarified the reasons107

for choosing the Ticino catchment.108

done109

• < 4 >110

→ Sec. 2.1.2. It is not at all clear to me how the response func-111

tions were parameterized when included in the LPJ model.112

The section in the manuscript that appears to describe this113

(P8136 L22+) is quite cryptic and this needs to be improved.114

How were confidence intervals of turnover times estimated?115

I cannot find this in the manuscript.116

← Yes, this was not very clear. In the revised version, the paragraph de-117

scribing the usage of the SIMLAB software has been moved upwards118

to clarify how the functions were parameterized (p. 4, l. 292).119

The confidence interval for the turnover times could not be estimated120

with the given experimental datasets, we therefore took the values121

by Parton et al. (1987) as stated in the text (p. 4, l. 316).122

done123
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• < 5 >124

→ P8136 L4+, L18. The way in which the parameter uncertain-125

ties were estimated needs to be documented (Monte Carlo126

methods or otherwise?). Furthermore, on L13 of this page127

it is reported that nonlinear OLS was used to fit model pa-128

rameters, however, subsequently (P8145 L15) the increased129

scatter of model residuals at higher temperatures is men-130

tioned; this indicates heteroscedasticity (non-constant error131

variance), which means that OLS assumptions are violated,132

and a weighted least squares approach should be used in-133

stead. Whether or not the error distribution is normal is not134

even discussed. Finally, on P8143, L18, there are comments135

about the need to consider parameter uncertainties (rather136

than an individual value), but it seems as if the authors treat137

the parameters as independent of one another (although on138

P8136 L19 the correlation matrix is mentioned).139

← We have improved the manuscript to explain these points better. We140

used the method of expected-value parameters (Ratkowsky, 1990) to141

linearize all functions in order to get parameter uncertainties based on142

nonlinear regression. We have described this in the methods (p. 3, l.143

260) and have added a short summary of the method for clarification144

(p. 3, l. 264).145

The scatter of the data points at higher temperatures does not nec-146

essarily imply heteroscedasticity. The authors who compiled the147

dataset (Hibbard et al., 2006) used an ordinary least squares ap-148

proach to fit the function of Lloyd and Taylor (1994). Additionally,149

heteroscedasticity does not cause OLS coefficient estimates to be bi-150

ased nor inconsistent, but it can cause the variance of the parameters151

to be underestimated. Based on these considerations, we decided not152

to change the text.153

Lastly, the parameters of the temperature-response functions are not154

treated as independent in our analysis. The correlation matrix from155

the non-linear function fits is considered based on the the method of156

Iman and Conover (1982) upon generation of parameter samples in157

the SIMLAB software (p. 4, l. 292).158

done159

• < 6 >160

→ The Gaussian and van’t Hoff functions reach maxima before161

declining. This fine, but as in no instance are there data162

to constrain the declining portion of the curve (as acknowl-163

edged on P8145 L10+), and so I find the decision to show164

the decline (i.e. Fig 1), or to draw any inferences from this165

(e.g. P8144 L25), surprising. Also, in light of this, I would166
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be very hesitant about using these functions under climate167

change scenarios where the model is being used to make168

predictions well outside the domain used for parameteriza-169

tion. (Related to this: for at least one of the sites in Fig170

1, it would be nice to see the confidence intervals on model171

predictions shown graphically).172

← We are aware of these issues and show and discuss them (p. 7, l.173

621), (p. 7, l. 653) and (p. 9, l. 795). Furthermore, the main174

conclusions of our study are not altered, that there is a higher un-175

certainty in low-temperature regimes and a possible overestimation176

of high-temperature regimes.177

To illustrate the issue even more, we added a new figure (Fig. 2)178

which shows the confidence intervals for the five candidate functions179

for one of the calibration sites (HOW).180

done181

• < 7 >182

→ Overall I find the discussion (which is repetitive and wander-183

ing) to be in need of reorganization and better editing.184

← We have restructured the discussion and carefully removed repetitions185

(p. 7, l. 613) (p. 8, l. 694) (p. 8, l. 745) (p. 8, l. 744) (p. 8, l.186

702). Furthermore, we have now four paragraphs in the discussion,187

dealing with “fit of the functions”, “short-term carbon flux under188

present climate”, “long-term carbon stock under present climate” and189

“long-term carbon stock under future climate”. We hope that this is190

sufficient to tidy up the discussion and make it easily comprehensible191

for the reader (p. 8, l. 696) (p. 8, l. 781) (p. 8, l. 707) (p. 8, l. 724)192

(p. 8, l. 751).193

done194

• < 8 >195

→ The modeling is conducted over a narrow elevational range196

but then conclusions are drawn about warm vs. cold cli-197

mates, high vs. low latitudes, etc (sec. 4.4). While I un-198

derstand the need to present the results in a way that em-199

phasizes their broad importance, I think this is a stretch, as200

there are many ways in which boreal/subarctic ecosystems201

are dissimilar from subalpine ecosystems.202

← The elevation gradient spans over 2000 m, which we do not believe to be203

“narrow”, as it results in a large range of annual mean temperatures204

(11.5-1.0◦ C). To clarify this, we have edited this in the methods part205

(p. 4, l. 328).206

We acknowledge that the alpine ecosystems are not identical to e.g.207

boreal/subarctic ecosystems. However, the model LPJ-GUESS, like208
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other ecosystem models uses only climatic factors, CO2and soil prop-209

erties as drivers to predict vegetation. We have added a comment210

to the conclusions, that the higher latitudes are taken as an analog211

to higher elevations, because of the low-temperature regime (p. 9, l.212

809).213

done214

• < 9 >215

→ It would have been nice to see the providers of the data (to216

the Hibbard database) acknowledged for their efforts.217

← We apologize and have corrected this deficiency (p. 9, l. 818).218

done219

Anonymous Referee #2220

• < 1 >221

→ First, there are some minor points of confusion regarding222

naming of soil C pools. In section 2.1.1, the authors refer to223

2.85y, 33y, and 1000y, respectively, but it is not clear which224

pools are associated with these respective turnover times.225

The only list that I could find was at the beginning of that226

section, where the 3 pools are listed in the following order:227

litter, slow SOM and fast SOM. However, that order doesn’t228

make sense. I presume that the correct order is litter, fast229

SOM, and slow SOM, but that is also confusing, because the230

fast SOM should have turnover times of years, not decades.231

← The order of the soil carbon pool names and their associated turnover232

times have been corrected and clarified in the text (p. 2, l. 162) (p.233

3, l. 178). According to our sources (see refs in the manuscript), fast234

SOM does have turnover times of decades rather than years, hence235

we did not change this.236

done237

• < 2 >238

→ At the end of section 2.2, the Century model pools are de-239

scribed as having turnover times of 1-5y, 20-24y, and 200-240

1500y for litter, fast and slow SOM decomposition.” This241

is incorrect for the Century model. Both litter layer pools242

and the fast pool in the mineral soil have turnover times on243

the order of years in the Century model, not decades. The244

slow pool has turnover times on the order of decades, not245

centuries or millennia. Only the passive pool has turnover246
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times as long as 200-1500y. This confusion about the Cen-247

tury model leads me to wonder if there is similar confusion248

about identifying pools in the LPJ-GUESS model in section249

2.1.1.250

← We worked exclusively with the ecosystem model LPJ-GUESS here,251

and did not use any parts of the Century model. To avoid this252

confusion, we clarified this in the introduction (p. 2, l. 104) and in253

the method parts (p. 2, l. 138).254

done255

• < 3 >256

→ More important than this confusion about pool names and257

their respective turnover times, is the more basic question258

of whether a model fit to short-term CO2 efflux rates, such259

as the fitting done in this manuscript with the database260

compiled by Hibbard et al. (2006), to address questions of261

long term soil C storage over decades and centuries. There262

are at least two problems with this approach. First, short-263

term CO2 efflux rates include the temperature sensitivity264

of root growth and root respiration over seasons as well as265

decomposition of SOM. The apparent temperature sensitiv-266

ity across seasons may be inflated due to plant phenology267

compared to the actual temperature sensitivity of decom-268

position processes. Second, the long-term soil C storage is269

affected by stabilization processes, such as formation and270

destruction of soil aggregates and sorption and desorption271

of C substrates on mineral surfaces, but these are not cap-272

tured in simple models of temperature sensitivity of respi-273

ration. The concept of a slow pool with a turnover time of274

several decades is useful, but the reaction constant (k) is275

not really the reaction rate of a single process, but rather276

an indicator of the net effect of several stabilization and277

destabilization processes and decomposition processes. The278

temperature sensitivities of these various processes proba-279

bly cannot be inferred from fitting a model to contemporary280

measurements of soil CO2 efflux. On what basis do the au-281

thors think that this could be legitimate?282

← Thank you for stressing these issues; we have clarified them in the283

manuscript, as follows. We built upon LPJ-GUESS and analyzed284

its uncertainty by using the model as-is, i.e. without any changes285

or modifications, except for the temperature response functions as286

described in the paper. This is a simple procedure from the mod-287

eling perspective, as the only thing we did is to replace the original288

temperature response function and associated parameters with the289

alternative functions and parameters.290
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There are no long-term experiments of soil carbon dynamics (decades291

to centuries). The model LPJ-GUESS uses a simplified soil dynamics292

module, but it has been validated at several sites (Smith et al., 2001;293

Morales et al., 2007; Hickler et al., 2004). We have now clarified this294

point in the introduction (p. 2, l. 99).295

We have also added a clarification in the introduction, that in spite296

of all the complexity present in reality, simple models have been297

developed and yielded legitimate projections of soil carbon fluxes298

and long-term carbon storage (p. 2, l. 74).299

done300

• < 4 >301

→ Assuming that the decomposition of the slow pool should re-302

spond to temperature in the same manner as contemporary303

CO2 efflux measurements suggests that the turnover times304

are simply functions of temperature in the same way that305

root respiration and decomposition of the fast pool are sensi-306

tive to temperature. However, the factors that stabilize soil307

C into the slow pool could be more or less sensitive to tem-308

perature. Moreover, the turnover times of these pools could309

vary with climate for a number of reasons, including direct310

responses of decomposition of SOM within aggregates to311

temperature, but also including formation and breakdown312

of aggregates and sorption and desorption processes. There313

is no discussion in this manuscript of the various processes314

that might affect turnover times in soils, and how those pro-315

cesses are affected by temperature.316

← We have added an explicit clarification in the methods section (p. 4, l.317

308) were we address this issue. We acknowledge that these processes318

are not taken into account in the soil dynamics of the model LPJ-319

GUESS; rather, we conducted an uncertainty study with the model320

“as-is”, and propose that the additional uncertainty mentioned by321

the reviewer is covered by the uncertainty in turnover times, which322

we considered explicitly (case wτ).323

done324

• < 5 >325

→ The model assumes that 0.45% of litter inputs is transformed326

to the slow pool and 29.55% to the fast pool, apparently327

under all climate scenarios. Why would one assume that328

these transfer functions are constant with climate? The rel-329

ative fractions that are decomposed within the litter layer330

and that are stabilized in mineral soils may also be temper-331

ature dependent, but this possibility does not seem to be332

considered.333
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← We acknowledge the problems implied by this concern. We let the334

transfer fractions from the litter pool to the two SOM pools constant335

because there is no knowledge how they will respond to a changing336

climate. The transfer fractions have a direct effect on the size of the337

specific carbon pools, i.e. a higher fraction would result in a larger338

pool. The changes in pools with climate change however, are less339

influenced by this fraction and more by the temperature response340

itself. The higher uncertainties at lower temperatures are a result of341

the generally larger carbon pools, due to the slower turnover time342

at lower temperatures and the larger accumulation of carbon due to343

slow decomposition. This larger accumulation of carbon will still be344

found if the transfer fractions were varied somewhat with climate.345

done346

• < 6 >347

→ In summary, I have no qualms with comparing the efficacy of348

various temperature models to see how well they simulate349

measured fluxes, but the conceptual link to simulating long-350

term soil C storage is not sufficiently well developed for the351

results to be useful.352

← We took up this issue of short-term vs. long-term soil carbon dynamics353

and refer to the comment by reviewer #2 (p. 8, l. 290): The idea of354

ecosystem models is to be able to estimate long-term responses after355

being calibrated and validated against short-term data.356

done357

Anonymous Referee #3358

• < − >359

→ In general, much effort has been put on the fit of the functions360

to the data and the evaluation of the fit and the statistical361

methods (calibration). Finally, the equations are used in a362

biosphere model to project soil carbon stocks. This part is363

described in less detail but would actually be very important364

in order to get the whole picture of the ”story”. I wonder365

if it would have been of interest to conduct a sensitivity366

analysis for all the parameters used in the LPJ-GUESS soil367

module (e.g. turnover times, autotrophic respiration). Per-368

sonally, I would have been also interested in how good the369

vegetation was represented e.g. in the Ticino catchment, be-370

cause I would guess that this is important for the estimation371

of the soil carbon stocks. The uncertainty for the soil car-372

bon stocks in the Ticino catchment were estimated but not373
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compared to observed data. The link between short-term374

and long-term carbon stocks is not clear. How can you con-375

clude from estimating the response functions for short-term376

carbon stocks to long-term carbon stocks?377

← We are aware that our analysis does not provide a complete sensitivity378

analysis of the model, but this would have been clearly beyond the379

scope of our analysis. Still, the turnover times have been included in380

our uncertainty analysis in the case wτ (p. 4, l. 303).381

Autotrophic respiration has no direct effect on the soil carbon pools382

in LPJ-GUESS, as it contributes to vegetation biomass but not to383

the soil carbon pools. For further explanations, see our response to384

reviewer #1 (p. 3, l. 88).385

It has been argued that the uncertainty in soil respiration will lead to386

high uncertainty in estimations of future soil carbon stocks, especially387

in warmer regions, where the uncertainty in the parameters of the388

temperature response function is very high. This is why we conducted389

a study specifically aimed to investigate this hypothesis. We did not390

want to replicate other studies that have addressed other aspects of391

the sensitivity of LPJ-GUESS. For example, Wramneby et al. (2008)392

studied the uncertainty of LPJ-GUESS to variations in 9 parameters,393

but focused on vegetation dynamics and its influence on NEE and394

tree community structure.395

Zaehle et al. (2005) conducted a sensitivity analysis of the LPJ-396

DGVM (Dynamic Global Vegetation Model), which the LPJ-GUESS397

model builds upon, we now cite them in the methods section (p. 3,398

l. 185).399

The vegetation is simulated well in the Ticino catchment, but the400

exact species distribution is not of major importance, as (in LPJ-401

GUESS) soil dynamics are driven by litter input solely without taking402

into account litter quality. Still, we have added information on the403

vegetation cover to the results section (p. 5, l. 459).404

A comparison with observed data would be interesting. However,405

such a comparison was not needed for our study, as we did not con-406

duct a model validation, but an uncertainty analysis along this ele-407

vation gradient408

Lastly, the issue of short-term vs. long-term soil carbon dynamics is409

addressed in our response to reviewer #2 (p. 8, l. 290).410

done411

• < 1 >412

→ p. 8130, l. 12 and throughout the manuscript: The terms413

short-term soil carbon dynamics, short-term carbon flux are414

used. Do they always refer to heterotrophic respiration?415
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← Thank you for mentioning this difficulty for the reader. Yes they do416

refer to the same, as we focus on the heterotrophic soil carbon process417

in our model. We clarified this in the introduction (p. 1, l. 62) and418

the methods (p. 3, l. 192) that these terms are used as synonyms.419

done420

• < 2 >421

→ p. 8131, l. 27/28: Could you give some examples of the422

models?423

← We have added references to a set of widely used vegetation and bio-424

geochemistry models.(p. 2, l. 82) Prominent models specific for the425

soil carbon dynamics are the Century (Parton et al., 1987) and the426

RothC (Jenkinson, 1990) models.427

done428

• < 3 >429

→ p. 8133, l. 19/20: Is the model able to predict vegetation in430

the (rather small-scale) Ticino catchment? Does it simulate431

the tree-line at the right position? How much does the432

simulated vegetation influence the soil carbon stocks?433

← We agree that the above-ground vegetation should not be neglected434

altogether in the results. The model is able to predict the potential435

natural vegetation correctly.436

We have added a paragraph in the results (p. 5, l. 459) covering the437

estimates of tree line and vegetation composition along the elevation438

gradient.439

The direct influence of vegetation on soil carbon dynamics is equal440

for all simulations we have done, as we varied only the temperature441

response function for SOM decomposition. Vegetation influences soil442

carbon pools via litter input, which differs between plant functional443

types, but this input was exactly the same in all simulation runs for a444

given elevation level, as there is no feedback from litter decomposition445

to vegetation dynamics in LPJ-GUESS.446

done447

• < 4 >448

→ p. 8133, l. 22: litter, slow SOM, fast SOM, does not corre-449

spond with p.8134, l. 7 turnover times. Later on p. 8136450

it is described that it has been sampled over a different451

timescale. Please explain.452

← The order of these lists was completely garbled. This has been cor-453

rected and clarified at (p. 2, l. 162) and (p. 3, l. 178). For details,454

see our response to reviewer #2 (p. 6, l. 233).455
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The decay rates cannot be inferred from short-term soil carbon flux456

measurements. Instead, we adopted the uncertainty bound suggested457

by Parton et al. (1987) to investigate the importance of uncertainties458

in the decay rates themselves, as these may change in future. The459

standard model parameters lay well within the uncertainty bounds460

by Parton et al. (1987). Please see also our resopnse to reviewer #2461

(p. 8, l. 315).462

done463

• < 5 >464

→ p. 8134, l. 21: Please insert (Table 1) after C=B=0.465

← “(Table 1)” has been inserted (p. 3, l. 209).466

done467

• < 6 >468

→ p. 8136, l.5-6: The method could be explained better. E.g.469

what is the method of expected-value parameters?470

← We have clarified this part of the method description and have added471

a short description of the method of “expected-value parameters” (p.472

3, l. 264).473

done474

• < 7 >475

→ p.8136, l. 26-28: The methods are not clearly described. It476

is unclear why these two cases have been discriminated.477

← We have now clarified this in the text (p. 4, l. 308): the case wτ478

includes the uncertainty of the turn-over times of the soil carbon479

pools. This uncertainty combines the uncertainty of the current value480

of the parameter as well as the uncertainty in the future development481

of the value.482

done483

• < 8 >484

→ p. 8137, l.15: Did you run the simulations for these 11 sites?485

Later the results are only shown for 3 sites. Later (p. 8138,486

l.19) you state that simulations were run for 30 independent487

... patches. Are these the sites?488

← We have improved this paragraph for clarity. The simulations were489

run on 11 elevation levels along the elevation gradient. All these490

sites can be recognized in figure 5. For figures 3 and 4, we only show491

three elevations out of these 11 to avoid overloading the figures with492
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information. The results of elevations between the presented sites493

lay, as expected, in between those shown.494

The “30 independent patches” refer to the configuration of the model.495

As the model includes stochastic processes such as disturbances and496

vegetation dynamics, each modelled site is simulated several times497

(here N=30) and afterwards averaged to take into account this stochas-498

ticity.499

We have clarified the issue with the patches in the methods part (p.500

5, l. 377).501

done502

• < 9 >503

→ p. 8138, l. 1: The description of how you have derived the set504

of daily values from randomly selected years and monthly505

values of the CRU dataset is not clear.506

← We have clarified the derivation of the set of daily values in the methods507

part (p. 4, l. 342) (p. 4, l. 360) (p. 4, l. 370).508

done509

• < 10 >510

→ p. 8138, l. 20: Does the length of the model spin-up influence511

the soil carbon stocks? If yes, what would be the effects on512

your uncertainty analysis?513

← (p. 5, l. 386)The length of the model spin-up has no influence on the514

steady-state soil carbon stock, because the sizes of the steady-state515

soil carbon pools are solved analytically, as mentioned in the methods516

part. After vegetation has reached the equilibrium with the spinup517

climate (in simulation-year 700), the average litter input is estimated518

for 200 years (i.e. from the simulation-years 700 to 900); from these519

values, the average temperature response coefficient are calculated.520

Afterwards, the steady-state soil carbon pools of the three-pool sys-521

tem is solved analytically. Thus, a longer spin-up period would have522

no effect on soil carbon stocks.523

done524

• < 11 >525

→ The results would be easier to understand if you would place526

section 3.3 before section 3.2. Also section 4.3 should be527

moved before section 4.2528

← We have adopted this suggestion, and have switched the sections of529

“short-term responses” and “long-term responses” both in the results530

and the discussion (p. 6, l. 472) (p. 6, l. 510) (p. 8, l. 696) (p. 8, l.531

718).532
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done533

• < 12 >534

→ The parameters for the temperature response functions were535

estimated for low altitudes but then applied to high alti-536

tudes, is that problematic?537

← No, this is not problematic, as the temperature range is more impor-538

tant than altitude itself. The elevation range we used in our simula-539

tions covers the range observed in the measured data for the warm540

temperatures. The simulated gradient extends into higher elevations,541

but as the temperatures there are quite low, this is not a problem,542

because the uncertainty in model estimations is generally low for the543

low temperature range. We decided not to change the text in this544

regard.545

done546

• < 13 >547

→ p. 8143, l. 15: reliability instead of explanatory power?548

← We have replaced “explanatory power” by “reliability” at (p. 7, l. 575)549

and (p. 7, l. 651).550

done551

• < 14 >552

→ p. 8145, l. 28: “in regions where soil temperature normally553

does not exceed values of 20◦ C, for instance in forests at554

high elevations and high latitudes”. . . but this is expected555

to change under future climate conditions?556

← Yes, this is expected to change under future climate and we take it up in557

the discussion section (p. 8, l. 774). We mainly express the concern in558

using the temperature functions without new parameter estimations559

using larger temperature ranges (p. 7, l. 621). In our study, the560

largest changes in carbon storage and the highest uncertainty occur561

at higher elevations (low temperatures). At these elevations we do562

usually not expect soil temperatures above 20◦ C, even under climatic563

change. We therefore believe that our conclusions are valid and not564

influenced by the limits in two of the temperature functions.565

done566

• < 15 >567

→ Figure 1: The legend is hard to read, please change boxes to568

line types.569

← The boxes in the legend have been changed to colored lines instead.570
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done571

• < 16 >572

→ p. 8149, l.14: The last two sentences are too long, please573

rewrite.574

← We agree and have rewritten them (p. 8, l. 774).575

done576

Interactive Comment577

• < − >578

→ I would just like to remind the authors of two papers with a579

very similar approach.580

Rodrigo et al. (1997) analytically compared several temper-581

ature sensitivity functions, whereas Bauer et al. (2008) also582

used a carbon turnover model to investigate the sensitivity583

towards six different temperature reduction functions. It584

probably makes sense to refer to those papers in the intro-585

duction and the discussion.586

Bauer, J., Herbst, M., Huisman, J.A., Weihermüller, L.,587

Vereecken, H.: Sensitivity of simulated soil heterotrophic588

respiration to temperature and moisture reduction func-589

tions. Geoderma, 145, 17-27, 2008.590

Rodrigo, A., Recous, S., Neel, C., Mary, B.: Modelling591

temperature and moisture effects on C-N transformation in592

soils: comparison of nine models. Ecological Modelling, 102,593

325-339, 1997.594

← Thank you for the valuable references, we have incorporated them in595

the discussion (p. 8, l. 712) (p. 7, l. 672).596

done597
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Abstract. Models of carbon cycling in terrestrial ecosystems
contain formulations for the dependence of respiration on
temperature, but the sensitivity of predicted carbon pools and
fluxes to these formulations and their parameterization is not
well understood. Thus, we made an uncertainty analysis of5

soil organic matter decomposition with respect to its temper-
ature dependency using the ecosystem model LPJ-GUESS.

We used five temperature response functions (Exponen-
tial, Arrhenius, Lloyd-Taylor, Gaussian, Van’t Hoff). We de-
termined the parameter uncertainty ranges of the functions10

by nonlinear regression analysis based on eight experimental
datasets from northern hemisphere ecosystems. We sampled
over the uncertainty bounds of the parameters and run sim-
ulations for each pair of temperature response function and
calibration site. The uncertainty in both long-term and short-15

term heterotrophic soil carbon dynamics was analyzed over
an elevation gradient in southern Switzerland.

The function of Lloyd-Taylor turned out to be adequate
for modelling the temperature dependency of soil organic
matter decomposition, whereas the other functions either re-20

sulted in poor fits (Exponential, Arrhenius) or were not ap-
plicable for all datasets (Gaussian, Van’t Hoff). There were
two main sources of uncertainty for model simulations: (1)
the uncertainty in the parameter estimates of the response
functions, which increased with increasing temperature and25

(2) the uncertainty in the simulated size of the soil carbon
pools, which increased with elevation, as slower turn-over
times lead to higher carbon stocks and higher associated un-
certainties. The higher uncertainty in carbon pools with slow
turn-over rates has important implications for the uncertainty30

in the projection of the change of soil carbon stocks driven
by climate change, which turned out to be more uncertain
for higher elevations and hence higher latitudes, which are of

Correspondence to: Portner Hanspeter
(hanspeter.portner@env.ethz.ch)

key importance for the global terrestrial carbon budget.
35

1 Introduction

Anthropogenic CO2 emissions from fossil fuel consump-
tion, cement-manufacturing and deforestation are leading
to an increase in atmospheric CO2 concentrations, thus in-
ducing considerable changes of the climate at global, re-40

gional and local scales (Solomon et al., 2007). Atmospheric
CO2 concentrations are also strongly affected by changes in
the major global natural carbon reservoirs. For example, at
present significantly more carbon is stored in the world’s
soils than in the atmosphere (Schlesinger, 1997). Climatic45

changes have a direct impact on global soil carbon stocks,
but their quantification is subject to considerable debate and
disagreement (Davidson and Janssens, 2006; Kirschbaum,
2006; Hakkenberg et al., 2008). If significant amounts of
carbon currently stored as organic matter belowground are50

transferred to the atmosphere by a warming-induced accel-
eration of decomposition, a positive feedback to climate
change may occur (Bronson et al., 2008). Conversely, if
increases of plant-derived carbon inputs to soils exceed in-
creases in decomposition, the feedback would be negative.55

Despite much research, a consensus has not yet emerged on
the climate sensitivity of soil carbon decomposition.

Soil respiration is commonly divided into two compo-
nents: root respiration with associated mycorrhizal respira-
tion and soil organic matter (SOM) decomposition. We fo-60

cus on SOM decomposition here which is also known un-
der the terms of heterotrophic or microbial soil respiration.
SOM has turnover times ranging from years to decades and
even centuries. It is often conceptualised as several distinct
pools with increasing residence times (Knorr et al., 2005;65

Kirschbaum, 2004; Eliasson et al., 2005) or as continuous
with gradual decay rates (Ågren and Bosatta, 1987; Bosatta
and Ågren, 1999). Decomposition of SOM is highly com-
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plex, as it is driven by a combination of factors such as tem-
perature (Berg and Laskowski, 2005a), moisture conditions70

(Cisneros-Dozal et al., 2006) and its chemical quality (Berg
and Laskowski, 2005b; Weedon et al., 2009; Cornwell et al.,
2008).

In spite of all this complexity, relatively simple models
have been developed and shown to be useful; therefore, we75

focus on soil dynamics as they were implemented in a widely
used biosphere model, LPJ-GUESS (Smith et al., 2001)

Many biogeochemical models have been developed and
applied to study the response of the carbon cycle to past,
current and future changes in climate. While the process80

of carbon uptake (photosynthesis) is represented in a fairly
detailed manner in these models (e.g. BiomeBGC (Thornton
et al., 2002), IBIS (Kucharik et al., 2000), LPJ-DGVM (Sitch
et al., 2003), LPJ-GUESS (Smith et al., 2001), CLM (Oleson
et al., 2004) or Triffid (Foley et al., 1996)), the equally im-85

portant process of carbon release by soil respiration is rep-
resented in a comparatively simple manner (Cramer et al.,
2001; Friedlingstein et al., 2006). Although some models
have been specifically developed to study soil carbon dy-
namics, their representation of aboveground productivity and90

hence litter input is usually highly simplified (Parton et al.,
1987; Jenkinson, 1990). Interestingly, there is no agreement
on the choice of the form of the response function that is
used to describe the sensitivity of soil carbon decomposition
to temperature.95

In this study, we focus on the sensitivity of LPJ-GUESS
(Smith et al., 2001), to a range of possible formulations for
the temperature dependency of soil organic matter decom-
position, in order to evaluate their assets and drawbacks.
We use the model without any further changes to provide100

consistent estimates of above- and belowground litter pro-
duction, but we vary the temperature response functions of
heterotrophic (i.e., soil) decomposition.

Thus, we assess the impact of uncertainty in the formu-
lation of the temperature response of heterotrophic soil res-105

piration on estimates of present and future carbon storage
in ecosystems and hence on the CO2 feedback to the atmo-
sphere. We specifically investigate the relative importance
of the model formulation versus the uncertainty introduced
by using different parameterization data sets in LPJ-GUESS.110

We quantify the resulting impacts with regard to both short-
term soil carbon fluxes and long-term soil carbon storage
along a large elevation gradient in southern Switzerland.

2 Methods

We chose a holistic approach and considered not only the raw115

fits of candidate functions to calibration datasets, but also the
number of parameters, the uncertainty in parameter estimates
and the uncertainty in model output variables. We placed a
special focus on the identification of a suitable model formu-
lation that not only fitted well to experimental data, but also120

led to acceptable uncertainty in the output variables when
employed in LPJ-GUESS.

In biogeochemical models, the relationship between SOM
decomposition and soil temperature is often described by
one out of a set of related functions. We tested five candi-125

date functions: a simple Exponential function with a con-
stant Q10, the Arrhenius function, the Gaussian function, the
Van’t Hoff function and the Lloyd-Taylor function. The Ex-
ponential and Arrhenius functions are simplifications of the
function proposed by Van’t Hoff (1901). Lloyd and Taylor130

(1994) proposed a modified Arrhenius function and Tuomi
et al. (2008) and O’Connell (1990) suggested a Gaussian
function. The details of the five functions are described be-
low.

We built upon the well-established LPJ-GUESS model135

(Smith et al., 2001) and soil respiration data from different
Ameriflux and CarboEuropeIP sites (Hibbard et al., 2005,
2006). We used only one ecosystem model, LPJ-GUESS, to
avoid further uncertainties introduced by different represen-
tations of other vegetation processes which typically arise in140

model inter-comparisons (Cramer et al., 2001; Morales et al.,
2005). The Ticino catchment in southern Switzerland with its
large climate gradient was used as a case study to evaluate the
sensitivity of the model to the uncertainty in model parame-
ters with respect to different process formulations and cali-145

bration datasets with varying temperature regimes. We used
the Ticino catchment as our study site instead of modelling
the calibration sites directly, in order to reduce the influence
of specific weather patterns , which differed greatly between
the calibration sites.150

2.1 The LPJ-GUESS model

We used the dynamic ecosystem model LPJ-GUESS (Smith
et al., 2001; Sitch et al., 2003). The model framework in-
corporates process-based representations of plant physiol-
ogy, establishment, competition, mortality and ecosystem155

biogeochemistry. LPJ-GUESS has been successful in pre-
dicting vegetation distribution, net primary production and
net ecosystem exchange in many different ecosystems (Smith
et al., 2001; Morales et al., 2007).

2.1.1 LPJ-GUESS soil module160

Soil carbon in LPJ-GUESS is divided into three distinct
pools: litter, fast SOM and slow SOM. The temporal dynam-
ics of the carbon stock (Ci) of each individual pool (i) are
modeled on a daily basis and follow first-order kinetics with
a decay rate ki (Eq. 1). The decay rate itself depends on soil165

temperature and soil moisture, expressed as the product of
the decay rate ki,Tref

at a given reference temperature Tref ,
the temperature response function RT and the moisture re-
sponse function RM (Eq. 2). The decay rate ki,Tref

is the
reciprocal of turnover time τi,Tref

.170
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∆Ci

∆t
= −ki × Ci (1)

ki = ki,Tref
×RT ×RM (2)

Litter from leaves, roots and tree stems is added to the
litter pool at the end of each simulation year. Each of the
three carbon pools, i.e. litter, fast and slow SOM, has its175

own specific turnover time (τi,Tref
) at reference temperature

Tref =10◦C and ample soil moisture: 2.85 y, 33 y and 1000
y for the litter, fast SOM and slow SOM pools, respectively
(Meentemeyer, 1978; Foley, 1995). The mineralized litter is
divided into three parts, 70% are respired, whereas 0.45%180

are transferred to the slow and 29.55% to the fast SOM pool
(Foley, 1995). Both SOM pools then undergo decomposition
independently, i.e. without feedbacks to the other pools. In a
previous study it has been shown that soil carbon pools were
sensitive to the transfer fractions (Zaehle et al., 2005), as they185

influence the input into the system of soil carbon pools. In
our study we focus instead on the response of the soil carbon
pools and fluxes on the temperature response and turnover
times directly, without confounding the results with variable
amounts of litter input. We therefore treated the transfer frac-190

tions as constants.
Throughout the paper, we always refer to the heterotrophic

soil respiration when talking about soil carbon dynamics and
soil carbon fluxes.

2.1.2 Temperature response functions implemented in195

LPJ-GUESS

Five potential response functions were implemented in the
model (Tab. 1). The Exponential response function (E) fea-
tures a constant Q10 value. It is motivated by Van’t Hoffs
rule, stating that the rate of a reaction increases two- to200

threefold for an increase in temperature by 10◦C (Van’t Hoff,
1901). The Arrhenius function (A) is based on the concept
of an activation energy for chemical and biological reactions.
However, realizing that the change of the rate is not constant
over temperatures, Van’t Hoff therefore suggested a more205

complex formula (V). Importantly, the Exponential and Ar-
rhenius formulations are direct derivatives of the Van’t Hoff
formulation, obtained by setting the parameters A = B = 0
and C = B = 0 (Tab. 1), respectively. The response func-
tion in the standard implementation of LPJ-GUESS is based210

on Lloyd and Taylor (1994) (L). It is a variant of the Ar-
rhenius function, suggested by Lloyd and Taylor (1994), be-
cause it often leads to better fits against empirical data by
allowing for a decrease in activation energy with increasing
energy. It must meet the condition T > T0. The Gaus-215

sian function (G) in turn is based on Lloyd-Taylor, by taking
into account the first three terms of the Taylor series expan-
sion of the exponent of the Lloyd-Taylor function (Tuomi
et al., 2008; O’Connell, 1990). Note that the Exponential,

Arrhenius and Lloyd-Taylor functions are monotonically ris-220

ing functions, whereas the Gaussian and the Van’t Hoff func-
tions have a maximum.

As the decay constant ki,Tref
is valid only at the reference

temperature Tref , the response functions were expressed rel-
ative to this temperature (Tab. 1). We thus reparameterized225

the functions by combining Eqs. 3-4, leading to the gen-
eral scheme of Eq. 5, where fabs, frel and RTref

refer to
the absolute and the relative response functions and to the
reference respiration at a given reference temperature Tref ,
respectively.230

RT = fabs(T )× Const (3)
RTref

= fabs(Tref )× Const (4)
RT = RTref

× frel(T, Tref ) (5)

In the default version of LPJ-GUESS, autotrophic (root
and mycorrhiza) and heterotrophic soil respiration (SOM de-235

composition) are modelled using the same response func-
tion. As we focused on SOM decomposition here, only the
heterotrophic soil respiration was varied using the five alter-
native formulations introduced above. The autotrophic soil
respiration (root respiration and stem respiration) was in all240

simulations modeled with the standard response function of
Lloyd-Taylor. We did not change the response function for
the autotrophic respiration as it is used in the calculation of
net primary production, which determines growth, but also
litter production. As we wanted to ensure that litter input245

does not vary between simulations, the autotrophic respira-
tion was kept in its default implementation.

2.2 Fitting of the temperature response functions

We used the database compiled by Hibbard et al. (2006),
which contains datasets of soil respiration from different ex-250

perimental sites of the northern hemisphere in Europe and
America. Eight sites were selected for calibration (Tab.
2) to reflect forest vegetation types that are significant for
our research area (evergreen-needleleaf, mixed deciduous-
evergreen, deciduous-broadleaf); we only used datasets that255

provided more than 30 measurements of temperature and soil
respiration. Measurements were made on a daily basis, dis-
tributed over the whole year for time periods ranging from
1995 to 2002, depending on the site.

In nonlinear regression, the usual parameter confidence260

intervals cannot be used because the parameters show non-
linear behavior. Therefore, we first linearized all five stan-
dardized functions using the method of expected-value pa-
rameters (Ratkowsky, 1990). Models in expected-value pa-
rameterization are close to linear models in terms of the sta-265

tistical properties of their parameter estimates, i.e. the con-
fidence intervals of the parameters are comparable, and thus
a follow-up uncertainty analysis will yield unbiased results.
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The functions were linearized by replacing the initial param-
eters with a set of new parameters, whereby the new param-270

eters reflect the expected-value of the function output at a
given position of the curve. We linearized for all parame-
ters but RTref

: the confidence intervals are provided in the
appendix (Tab. A1). In order to make response functions
across the different sites comparable, they were normalized275

(RTnorm
) in such a way that the reference respiration RTref

at reference temperature Tref =10◦C is equal to 1 for each
site and equation (Eq. 6).

RTnorm
= (RTref

)−1 ×RT (6)

We used all five response functions at all eight sites and280

performed nonlinear fits for each dataset-function pair us-
ing nonlinear least-squares estimates in the statistics software
package R (R Development Core Team, 2008).

To fit the Van’t Hoff function, we introduced an additional
data point in each data set at (-40◦C , 0µmol C m−2s1) to285

ensure that the function converges to zero when approaching
the absolute zero temperature (0 K). We determined the 99%
confidence intervals for each parameter of each function and
the correlation matrix of the parameters for each individual
fit. The goodness of each fit was quantified by the Bayesian290

information criterion (BIC) introduced by Schwarz (1978).
We used the SIMLAB software from the European Joint

Research Center (Saltelli et al., 2004) to generate the param-
eter sample sets. For each fit, we generated a latin hypercube
sample (N=20). We sampled uniformly over the confidence295

intervals of the parameters and included the parameter de-
pendencies through the correlation matrix obtained in the fit-
ting procedure based on the method of Iman and Conover
(1982).

We used the 99% confidence intervals of the parameters,300

we created a sample of parameter sets over their correspond-
ing confidence range for each response function-site pair. We
further discriminated between two cases: In the case woτ
(without τ ), we sampled over the confidence intervals of the
response function parameters only. In the case wτ (with τ ),305

we additionally sampled over the confidence intervals of the
turnover times for the litter, fast and slow soil carbon pools
τl, τf and τs. Including the uncertainty of turnover times, en-
ables us to investigate how important the uncertainties in the
estimations of current turnover times are for the results. By310

using variable rather than fixed turnover times, we account
for the additional uncertainty induced by the fact that future
turnover times may change with the climate. The turnover
times for the three carbon pools for the case wτ had a range
of 1-5y for the litter pool, 20-40y for the fast SOM and 200-315

1500y for the slow SOM as suggested by Parton et al. (1987).
We thus assumed implicitly that the turnover times depended
neither on each other nor on the other parameters of the re-
sponse functions.

2.3 Simulations with LPJ-GUESS320

2.3.1 Interpolation of climate data

LPJ-GUESS is driven by daily weather input, including mean
temperature, precipitation sum, percentage sun-shine and at-
mospheric CO2 concentration. The climate data were com-
piled for a large elevation transect in the Ticino catchment in325

the Southern Swiss Alps ranging from 300 to 2300 m a.s.l.,
sampled at 200 m intervals, resulting in a total of 11 indi-
vidual sites. The mean annual temperatures varied widely,
ranging from -1 to 11.5◦C along this gradient.

Climate data for the period of 1901-2006 were compiled330

from different sources. Daily mean temperatures and daily
precipitation sums for the period of 1960-2006 were obtained
from a spatially explicit climate data set of Switzerland with
a spatial resolution of 1 ha. The data were derived using
the DAYMET model (Thornton et al., 1997), which was de-335

veloped specifically for complex terrain such as mountain
ranges (data source: Land Use Dynamics, Swiss Federal In-
stitute for Forest, Snow and Landscape Research, Switzer-
land). For each elevation level we calculated the mean daily
temperature and precipitation of 100 adjacent grid points (us-340

ing a 10x10 grid) at a south-facing slope.
Temperature and precipitation data for the period of 1935-

1959 were based on the nearest automated meteorological
station Locarno-Monti (distance 24 km), which served as a
reference to derive the daily anomalies relative to the long-345

term climatology of this station. The daily anomalies of the
Locarno-Monti station for the years 1935-1959 were applied
to the climatology of the years 1960-1970 of each elevation
site. This prolonged the climate input for each elevation level
back to the year 1935. Lastly, the climate for the period350

1901-1934 was based on monthly data from the Climate Re-
search Unit (CRU TS 1.2, Mitchell et al. (2003)). For this
period, the daily climate anomalies were taken from 35 ran-
domly chosen years out of the Locarno-Monti dataset. The
CRU dataset was sampled along the elevation gradient and355

the daily anomalies were applied to the samples.
The dataset for percentage sunshine was based on the ref-

erence station Locarno-Monti (1960-2006) and the CRU TS
1.2 dataset for the period of 1901-1959. The same dataset
was used for all elevation levels, assuming that mean daily360

cloud cover did not differ within the valley.
For the future projections, i.e. from 2007 to 2106, we

chose the SRES A2 scenario data from the PRUDENCE
project (Christensen et al., 2007), as provided to us by the In-
stitute of Atmosphere and Climate of ETH Zurich. As LPJ-365

GUESS requires a continuous time series, we performed a
linear interpolation of the anomalies between the future and
the control runs of the climate model with respect to mean
annual temperature and annual precipitation sum. We as-
sumed percentage sunshine to not change. For each eleva-370

tion site, the interpolated differences were then then added to
randomly chosen years of the period of 1961-1990. Lastly,
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a dataset for annual global atmospheric CO2 concentration
was compiled based on the PRUDENCE data set.

2.3.2 Simulation experiments375

Simulations were run for the 11 sites for a total of 1206
years. Each site was modelled with 30 independent replicate
patches to account for stochastic processes in the vegetation
dynamics, like establishment and growth. We analysed the
mean of all 30 patches for each site. The first 1000 years380

were used for a model spin-up, whereas the subsequent 206
years corresponded to the calendar years 1901-2106. The
spin-up period was based on a constant long-term climate,
but considering interannual variations; this is adequate for
estimating the equilibria for both soil carbon pools and veg-385

etation composition (Sitch et al., 2003). During the spin-up
period, the long-term equilibria of the litter, fast and slow
SOM pools were estimated by analytically solving the dif-
ferential flux equations assuming that the annual litter inputs
from the years 700 to 900 are representing the steady state390

litter inputs; this is ligitimate because vegetation composi-
tion and productivity have reached their equilibrium by the
simulation year 700.

Uncertainty analysis was performed for each pair of re-
sponse function and site separately. As the key variable to395

assess uncertainty, we chose the sum of the three carbon pool
sizes at the beginning of August 2006 as a proxy for mean
annual pool size. The summed soil carbon pool fluxes were
also evaluated as monthly sums. We used the month of Au-
gust, because soil respiration was generally highest at that400

time within the year.
To provide a better overview, we report our results refer-

ring not to each pair of response function and site separately,
but grouped them by the given response functions.

3 Results405

3.1 Fit of the functions

We divided the response functions into three groups sharing
similar curve characteristics: (1) Exponential&Arrhenius,
(2) Gaussian&Van’t Hoff and (3) Lloyd-Taylor.

The Exponential and Arrhenius equations overestimated410

soil respiration at temperatures below 10◦C in all datasets
(Fig. 1). Lloyd-Taylor generally performed better not show-
ing an overestimation at lower temperatures. At five sites,
the Gaussian and Van’t Hoff equations yielded a maximum in
the temperature range of 15-25◦C , but they provided the best415

estimates below 10◦C because the maximum was located at
rather low temperatures, they tended to underestimate respi-
ration at high temperatures (Fig. 1).

All parameter estimates and their corresponding 99% con-
fidence intervals were significant (P < 0.05) except for the420

first parameter of the Van’t Hoff equation (Appendix Tab.

A2). The only parameter estimate directly comparable be-
tween the different response functions was the reference res-
piration, which ranged from 1.06-1.15 µmol C m−2 s−1 at
the site BEP to 3.49-3.63 µmol C m−2 s−1 at the site THA,425

respectively (cf. Appendix Tab. A3; site acronyms are pro-
vided in Tab. 2).

The ranking of the performance of the response functions
depended on the criterion used: When the sum of squared
residuals was used (Tab. 3), Van’t Hoff performed best (7/8),430

Gaussian dominated the second rank (5/8) and Lloyd-Taylor
dominated the third rank (5/8), but it showed the best fit at
the site MEO. When the data for all sites were combined,
thus comprising a larger variability of environmental condi-
tions than any site-specific dataset, Lloyd-Taylor showed the435

best overall fit. The Exponential and Arrhenius formulations
generally showed an inferior fit compared to any of the other
three equations.

Based on the Bayesian information criterion, i.e. when
considering also the number of parameters employed in a440

given formulation, the performance of the Van’t Hoff equa-
tion was lower as it features the largest number of parame-
ters (Tab. 4). It now was ranked the second best model at
four sites. Best were the Gaussian model at five sites, the
Lloyd-Taylor model at two sites and the Arrhenius model at445

one site. As for the case of the sum of squared residuals,
Lloyd-Taylor showed the best performance when all the data
were analyzed together, and it was best at two sites, second
best at another two sites and third best at the remaining four
sites (Tab. 4).450

The uncertainty in the response function according to the
sampled parameters showed an increase with increasing tem-
perature (Fig. 2). As expected, uncertainties increased with
the number of parameters used: the Exponential and Arrhe-
nius formulations had the lowest uncertainty ranges, Gaus-455

sian and Van’t Hoff the highest, and Lloyd-Taylor was char-
acterized by intermediate uncertainty ranges.

3.2 Tree line and vegetation distribution

Gehrig-Fasel et al. (2007) have estimated the potential re-
gional tree line elevations for whole Switzerland. The re-460

gional tree line was derived from highest forest patches in a
rectangular 10 km x 10 km moving search window. For the
Ticino catchment they report that potential tree line reaches
up to 2300 m. The simulated tree line along the elevation gra-
dient is close to this value, although a bit higher, i.e. at 2400465

m. The simulated vegetation distribution corresponds well
to the observed southern Swiss alpine vegetation (Körner,
2003), changing from deciduous-dominated forests at low el-
evation to evergreen-dominated forests starting at 1300 m to
grass-dominated vegetation above the tree line.470
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3.3 Short-term carbon flux under present climate

The results for the Exponential and Arrhenius response func-
tions are combined and referred to as E&A. The results for
the Lloyd-Taylor function are reported separately (L) and the
functions of Gaussian and Van’t Hoff are combined and re-475

ferred to as G&V.
The total carbon fluxes to the atmosphere for case wτ

do not directly depend on the turn-over times of the carbon
pools, but instead on the size of the carbon pools (results not
shown), we therefore report only for the case woτ . If not dif-480

ferently stated, units of monthly carbon fluxes in August are
given in kg C m−2 month−1 .

Elevation 300 m: Soil carbon fluxes for all response func-
tions ranged between 0.06 and 0.11 (Fig. 3), whereby the
range was somewhat smaller for the E&A functions. The un-485

certainty ranges of G&V and Lloyd-Taylor were 1.4 and 1.5
times larger relative to the range of E&A.

Elevation 1300 m: On 1300 m elevation the median values
were rather similar ranging from 0.087 to 0.161 (Fig. 3),
although the uncertainty range was larger for the Gaussian490

and the Lloyd-Taylor function.
Elevation 2300 m: While carbon fluxes increased from

300 to 1300 m, they decreased again up to 2300 m and three
distinct subgroups were identifiable: E&A with a range of
0.076-0.105, G&V with a range of 0.082-0.159, and Lloyd-495

Taylor with a range of 0.078-0.145 (Fig. 3). This resulted in
uncertainty ranges for G&V and Lloyd-Taylor that were 2.7
and 2.3 times the range of E&A.

Changes with elevation: The medians of monthly respi-
ration showed a bell-shaped curve over the elevation gra-500

dient, starting with low values at 300 m, inflecting at
around 1300 m and then decreasing again up to 2300
m. Although the means always were in the range of
0.1±0.02 kg C m−2 month−1 , the uncertainty ranges in-
creased steadily with elevation, particularly for the response505

functions G&V and Lloyd-Taylor, leading to uncertainty
ranges at 2300 m that were 1.5 and 1.7 times larger than the
range at 300 m.

3.4 Long-term carbon stock under present climate

Looking at the carbon stock estimates in 2006, the response510

functions could be divided into the same groups as found in
the regression analysis, both according to their median and
the magnitude of their uncertainty range (Fig. 4). If not
stated otherwise, the units of carbon pools are kg C m−2 .

Elevation 300 m: Soil carbon stock estimates for E&A515

ranged from 9.2-13, for Gaussian&Vant’t Hoff from 6-15.7
and for Lloyd-Taylor from 8-14.1 when the uncertainty in
turnover times was not included. The uncertainty ranges of
G&V and Lloyd-Taylor were a factor 2.5 and 1.6 higher than
those of the E&A formulations (Fig. 4). When the uncer-520

tainty in turnover times (wτ ) was considered as well (Fig.
4), uncertainty ranges generally increased. The differences

between the groups decreased, however, as the medians were
more similar. In addition, the uncertainty range differed less
between the groups G&V vs. Lloyd-Taylor, amounting to 1.4525

and 1.2 times the uncertainty range of the E&A formulations,
respectively (Fig. 4). The response functions E&A showed
a strong increase in the uncertainty when the uncertainty in
the turnover times of the carbon pools was considered in the
analysis.530

Elevation 1300 m: The E&A formulations yielded soil car-
bon stocks in the range of 14.8-20.2, whereas G&V as well
as Lloyd-Taylor showed a larger range of 14.1-23.7 and 15-
21.5, respectively (Fig. 4). The uncertainty ranges of G&V
and Lloyd-Taylor amounted to 1.8 and 1.2 times the range535

of E&A. When the uncertainty in turnover times was con-
sidered additionally, median values differed only little (0.35
kg C m−2 ), but the uncertainty ranges were much larger
(2.1, 1.4 and 2.0 times) for E&A, Gaussian&Van’t Hoff and
Lloyd-Taylor, respectively (Fig. 4).540

Elevation 2300 m: At the highest elevation, soil carbon
stocks were generally largest and showed a much larger
range compared to lower elevation sites. Projections ranged
from 17.7-38, from 21.4-80.4 and from 18.5-64.6 for E&A,
G&V and Lloyd-Taylor, respectively (Fig. 4). For the case545

wτ we found ranges of 13.6-37.7, 15.8-75.8 and 15.1-59.7,
respectively (Fig. 4). When the uncertainty in turnover
times was considered, the median carbon stock was 1.6
kg C m−2 lower. In contrast to the other two elevations, the
range of carbon stock predictions was almost unaffected by550

the uncertainty in turnover times.

Changes with elevation: The uncertainty range increased
with increasing elevation for all three subgroups, whereby
the largest uncertainties were found at the 2300 m elevation
site for all model formulations.555

3.5 Long-term carbon stock under future climate

The uncertainty in potential loss of soil carbon due to cli-
mate warming (SRES A2 scenario, difference between val-
ues from 2106 and 2006) was most pronounced at higher el-
evations (Fig. 5). The same patterns as under current climate560

were evident for all candidate functions, and hence they are
not shown separately.

The standard implementation of LPJ-GUESS (with the
Lloyd-Taylor formulation) projects a loss of up to 5
kg C m−2 due to climate change over the whole elevation565

gradient. Accounting for the overall uncertainty in response
function, site and turn-over times, the uncertainty in loss of
carbon readily increased with elevation, ranging from 1.9
kg C m−2 at 300 m up to 15.3 kg C m−2 at 2300 m, thus
leading to highly uncertain projections at higher elevations.570

The uncertainty ranges in the projection of soil carbon loss
at 1300 m and 2300 m amounted to 3.1 and 8 times the range
at 300 m, respectively.
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4 Discussion

The reliability of model outputs heavily depends on the as-575

sociated uncertainty. Models often consist of many functions
whose parameters are estimated e.g. using regression analy-
sis based on experimental data. The parameters thus do not
have one ’true’ value, but they are characterized by an un-
certainty band. The error based on the uncertainty will prop-580

agate through the model and lead to a corresponding uncer-
tainty in model output (Jones et al., 2003). Different pro-
cess formulations and different parameter sets of the SOM
decomposition dynamics may lead to different model results
and therefore may have consequences for the applicability of585

model projections.

4.1 Fit of the functions

The response functions could be assigned into three groups:
Exponential&Arrhenius, Gaussian&Van’t Hoff and Lloyd-
Taylor. Both Exponential and Arrhenius overestimated the590

temperature response at low (<10◦C ) temperatures, which
resulted in an overall insufficient fit, thus corroborating the
results of earlier research (Lloyd and Taylor, 1994). The Ex-
ponential function, which is based on a constant Q10 value
is not adequate as the Q10 value has been shown to decrease595

with increasing temperature (Kirschbaum, 1995). Neverthe-
less, the Exponential function was included in the analysis
because the usage of Q10 values is still common.

For the other three functions, the rankings differed depend-
ing on the criterion employed. As expected, the Van’t Hoff600

function ranked best when considering the summed square
residuals, as it has the largest number of parameters. When
we used the Bayesian information criterion, which evaluates
the model fit relative to the number of parameters, the Gaus-
sian and Lloyd-Taylor functions performed better. The good605

performance of the Gaussian function is in line with results
from agricultural and forest soils in Finland and Sitka spruce
plantations in Scotland (Tuomi et al., 2008). The Lloyd-
Taylor function has been reported to give good results for
a variety of soil types (Lloyd and Taylor, 1994) and it is610

widely used in soil and ecosystem models (Adair et al., 2008;
Kucharik et al., 2000; Thornton et al., 2002).

Although the Gaussian and Lloyd-Taylor functions feature
the same number of parameters, the Gaussian formulation
outperformed the Lloyd-Taylor function by matching more615

of the eight datasets used in this study, which is in line with
findings by Tuomi et al. (2008). Importantly, when all indi-
vidual sites were combined, Lloyd-Taylor outperformed both
Gaussian and Van’t Hoff with respect to a ranking based on
both the summed-squared-residuals and the Bayesian infor-620

mation criterion. As we found that both Gaussian and Van’t
Hoff underestimate the response at higher temperatures, we
conclude that the decrease of respiration rates at high tem-
peratures was mainly an artefact of model parameterisation.
A decline in respiration rates would be expected at consid-625

erably higher temperatures due to microbial protein denatu-
ration, but the modeled declines found for our datasets were
starting at too low temperatures (Larcher, 2001). Especially
at sites in a colder temperature regime, Gaussian and Van’t
Hoff inflect too early and therefore are not suitable as candi-630

date response functions if the function is to be applied over
a broad temperature spectrum (Friedlingstein et al., 2006).
Functions that do not have this decline at high temperatures,
such as Exponential, Arrhenius or Lloyd-Taylor, would have
to be complemented by an additional function at very high635

temperatures to cover respiration decline due to protein de-
naturation. However, based on our data sets there are not
enough data points to provide a good estimate of the max-
imum point, we therefore neither have a reliable estimation
of the decline of Van’t Hoff and Gaussian directly nor of an640

additional declining function for Exponential, Arrhenius or
Lloyd-Taylor.

The higher the number of parameters there were in a given
function, the more increased the uncertainty range of the
overall parameter space. Although each additional param-645

eter improved the curve fit significantly, it also contributed
up to the total uncertainty for the given response function.

Generally, the uncertainty of the response functions in-
creased with higher temperatures, because most data points
of the eight study sites were highly scattered at higher tem-650

peratures. Due to their better reliability, one would be
tempted to choose the Gaussian or Van’t Hoff response func-
tion. However, as the functions were optimized using a
dataset that comprises temperate test sites only, they would
need to be verified over a larger temperature range. Hence,655

when applying such functions particularly for warmer condi-
tions (subtropical and tropical) in the context of global veg-
etation modelling efforts, they are likely to have an unsatis-
factory performance. In our test region, even the site with
the highest annual mean temperature (at 300 m on our eleva-660

tion gradient), soil temperatures of 20◦C were exceeded on
average on only 10% of the days per year. For sites at higher
elevations and hence lower temperatures, soil temperatures
never reached the values where the response function had the
highest uncertainty. Hence, the high uncertainty at higher665

temperatures has only small or no consequences at all for the
uncertainty in model output in regions where soil tempera-
ture normally does not exceed values of 20◦C , for instance
in forests at high elevations and high latitudes.

We have to bear in mind however, that measured data at670

each individual site may be influenced by additional fac-
tors, such as soil moisture conditions (Rodrigo et al., 1997;
Cisneros-Dozal et al., 2006), litter chemistry (Berg and
Laskowski, 2005b) and soil quality (Conant et al., 2008).
Still, the regression analysis based on the compound data set675

shows, that the default response function of Lloyd-Taylor in
LPJ-GUESS is worth considering for further work. These
findings are in agreement with those by Adair et al. (2008),
which found that the function of Lloyd-Taylor performed
best with a three-pool model on the Long-term Intersite680
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Decomposition Experiment Team (LIDET) data set. The
good performance of Llloyd-Taylor, when short-term car-
bon fluxes are considered, was also shown by Del Grosso
et al. (2005) for range land sites and by Richardson et al.
(2006) who tested different response functions for the short-685

term carbon fluxes at flux towers. Our findings, however,
are in contrast to those by Tuomi et al. (2008), which found
the Gaussian function to be best on incubation measurements
from different sources. Gaussian functions might be the best
functions to use, but they require calibration across a broad690

range of temperatures as we could show that the uncertainty
of the flexing point at higher temperatures will determine the
reliability of the long-term results.

4.2 Short-term carbon flux under present climate695

The short-term soil carbon fluxes in the month of August
2006 showed a diverse picture along the elevation gradient
for both the response function and the size of the soil car-
bon stock. The medians of the projections under all response
functions showed a bell-shaped behavior along the elevation700

gradient, the highest values being found at 1300 m.
The fact that the soil carbon fluxes increased up to middle

and higher elevations and then started to decrease again lead
to the conclusion that the sensitivity of the soil carbon fluxes
changed from being more sensitive to carbon pool size at low705

elevations to being more sensitive to the rate of decomposi-
tion (i.e. the response function itself) at high elevations. This
is analogous to Atkin and Tjoelker (2003), who found that
the temperature dependence of plant respiration is limited by
by the turnover rate (enzyme activity) at low temperatures710

and by substrate availability (pool size) at high temperatures.
We could show in our study that the choice of soil temper-

ature functions is crucial for the short-term carbon turnover
(Bauer et al., 2008). Moreover, the interaction of carbon pool
size and decomposition rates determines the size of the soil715

carbon pools as well as the short-term carbon fluxes.

4.3 Long-term carbon stock under present climate

At low elevations and high temperatures, carbon pools turned
over relatively quickly and therefore large carbon stocks did
not accumulate. Carbon pools at higher elevations tend to be720

higher, due to the slower turnover rates; this is reflected in
our simulation results, and it also agrees with experimental
findings by Rodeghiero and Cescatti (2005); Zinke and Stan-
genberger (2000), but not with Perruchoud et al. (2000) who
found little evidence for a significant influence of climate on725

soil carbon stocks in Swiss forests.
The uncertainty bounds of total soil carbon stocks gener-

ally increased with elevation, i.e. they decreased with in-
creasing mean temperature for all response functions and
sites. At first sight, this may appear counter-intuitive as the730

uncertainty of the response function itself was found to in-

crease with temperature. This apparent paradox is caused
by the fact that the high uncertainty of the response function
at high temperatures does not result in a high uncertainty of
the long-term carbon stocks, because the carbon is readily735

decomposed and no large soil carbon pools are formed. It is
important to take into account that the accumulation of uncer-
tainty was larger as the average decomposition rate became
slower. This was illustrated by the result that the influence
of the uncertainty in turnover times diminished with increas-740

ing elevations. An additional change in an already very low
decomposition rate did have only minor effects on the esti-
mations of carbon storage.

745

At higher temperatures and thus at lower elevations, un-
certainty in long-term soil carbon stocks resulted from the
uncertainties in temperature response functions itself. Due to
high turnover rates, only little carbon accumulated and there-
fore uncertainty in carbon stock estimations was compara-750

tively low. This may nevertheless be important when com-
paring ecosystems within the tropics and subtropics. Holland
et al. (2000) showed with the Century model that a low tem-
perature sensitivity lead to lower soil carbon decomposition
but also to higher soil carbon pools.755

4.4 Long-term carbon stock under future climate

With a climate warming scenario, the carbon pools on all
elevation levels turned over faster, and carbon stocks there-
fore were projected to diminish in the next 100 years, as sug-
gested by Jones et al. (2005) and Friedlingstein et al. (2006).760

However, the high uncertainty in the size of soil carbon pools
at higher elevations (i.e. in colder areas) resulted in highly
uncertain projections on the net release of carbon from these
areas. Therefore, the uncertainty in potential carbon loss
from soils in temperate and cold climates is higher than for765

warmer regions. The higher uncertainty regarding the carbon
storage potential of high altitude and high latitude soils adds
up to the higher temperature sensitivity of the non-labile soil
organic matter pools, as reported by Knorr et al. (2005).

According to Townsend et al. (1992) soil respiration in770

tropical ecosystems will be more sensitive to increasing tem-
perature in future. They also suggested that soil respiration
in boreal and tundra ecosystems should be less sensitive to
increasing temperatures. This is likely to be true for the
response of the decomposition process to temperature itself.775

We showed, however, that due to the higher uncertainties in
soil carbon pool size in temperate and boreal regions, the rel-
ative importance of carbon released from soil in a changing
climate should be reconsidered regarding to the tropics vs.
high-latitude and high-altitude ecosystems.780

Taking into account that high-latitude soils contain large
amounts of carbon whose respiration could cause a signif-
icant positive feedback to climate change (Davidson and
Janssens, 2006), the uncertainty we found for the projec-
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tions from LPJ-GUESS for exactly these conditions calls785

for caution in the interpretation of earlier modeling studies
(Friedlingstein et al., 2006), and it clearly calls for further
research in this regard.

5 Conclusions

The function of Lloyd-Taylor turned out to be adequate for790

modelling the temperature dependency of soil organic mat-
ter decomposition in LPJ-GUESS, as the alternative func-
tions where not as favorable, because they either resulted
in poor fits (Exponential, Arrhenius) or were not applica-
ble when extrapolating beyond the given datasets (Gaussian,795

Van’t Hoff).
We investigated the two main sources of uncertainty for

model simulations: On one hand, the uncertainty in the pa-
rameter estimates of the response functions, which increased
with decreasing elevation. On the other hand, we evaluated800

the resulting uncertainty in the simulation of carbon pools
and fluxes and found an increase with elevation. The soil car-
bon at low elevations was readily degraded due to faster turn-
over times, whereas at higher elevations, the slower turn-
over times lead to higher carbon stocks and as a consequence805

higher associated uncertainties. This increased uncertainty in
the size of carbon pools with slow turn-over rates has impli-
cations for the uncertainty in the projection of the change of
soil carbon stocks driven by climate change. The increased
uncertainty for higher elevations and, when taken as an ana-810

log for the higher latitudes, contributes to a high uncertainty
when estimating the global carbon budget.
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Larcher, W.: Ökophysiologie der Pflanzen, Verlag Eugen Ulmer,
Stuttgart, 6. neubearbeitete auflage edn., 2001.

Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Functional Ecology, 8, 315–323, 1994.

Meentemeyer, V.: Macroclimate the Lignin Control of Litter De-960

composition Rates, Ecology, 59, 465–472, 1978.
Mitchell, T. D., Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme,

M., and New, M.: A comprehensive set of climate scenarios for
Europe and the globe., Tyndall Centre for Climate Change Re-
search Working Paper, 2003.965

Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bug-
mann, H., Zierl, B., Friedlingstein, P., Viovy, N., and Sabate,
S.: Comparing and evaluating process-based ecosystem model
predictions of carbon and water fluxes in major European forest
biomes, Global Change Biology, 11, 2211–2233, 2005.970

Morales, P., Hickler, T., Rowell, D. P., Smith, B., and Sykes, M. T.:
Changes in European Ecosystem Productivity and Carbon Bal-
ance Driven by Regional Climate Model Output, Global Change
Biology, 13, 108–122, 2007.

O’Connell, A. M.: Microbial decomposition (respiration) of litter in975

eucalypt forests of South-Western Australia: An empirical model
based on laboratory incubations, Soil Biology and Biochemistry,
22, 153–160, 1990.

Oleson, K., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R.,
Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G. Y., et al.:980

Technical description of the community land model “(CLM)”.
Technical Note “NCAR/TN-461+” “STR”, National Center for
Atmospheric Research, Boulder, Colo, 2004.

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analy-
sis of factors controlling soil organic matter levels in Great Plains985

grasslands, Soil Science Society of America Journal, 51, 1173–
1179, 1987.

Perruchoud, D., Walthert, L., Zimmermann, S., and Lüscher, P.:
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Table 1. Temperature response functions

Id Differential equation Absolute function Relative functiona

Eb dlnRT
dT

= C RT = eC×T × Const RT = RTref × e
C×(T−Tref )

A dlnRT
dT

= A
T2 RT = e−

A
T × Const RT = RTref × e

A×( 1
Tref

− 1
T )

G dlnRT
dT

= a+ 2bT RT = eaT+bT2
× Const RT = RTref × e

a×(T−Tref )+b×(T2−T2
ref )

V dlnRT
dT

= A
T2 + B

T
+ C RT = e−

A
T × TB × eC×T × Const RT = RTref × e

A×( 1
Tref

− 1
T

)+B×log( T
Tref

)+C×(T−Tref )

L dlnRT
dT

= A
(T−T0)2

RT = e
− A

T−T0 × Const RT = RTref × e
A×( 1

Tref−T0
− 1

T−T0
)

a Functions expressed relative to reference temperature Tref = 10◦C with reference respiration RTref normalized to 1 at mean reference
respiration RTref . b The candiate functions are: Exponential (E), Arrhenius (A), Gaussian (G), Van’t Hoff (V) and Lloyd-Taylor (L).

Table 2. Site characteristics

Site Description Location Elevation (m) MATa Nb Forest vegetation type

BEP Belgium de Inslag Pine 51.31N 4.31E 16 10 41 Evergreen-needleleaf
DUK Duke FACE 35.97N 79.1W 120-163 15.5 47 Evergreen-needleleaf
HAR Harvard 42.54N 72.17W 180-490 7.85 197 Mixed Deciduous-evergreen
HES Hesse 48.67N 7.08E 300 9.7 39 Deciduous-broadleaf
HOW Howland 45.2N 68.7W 60 5.69 164 Evergreen-neddleleaf
MEO Metolius old site 44.5N 121.62W 915-1141 8.5 316 Evergreen-needleleaf
THA Tharandt 50.96N 13.75E 380 7.6 279 Evergreen-needleleaf
UMB Univ. of Michigan Biological Station 45.56N 84.71W 234 6.2 78 Mixed Deciduous-evergreen

Characteristics of the sites providing the soil respiration data. Adapted from Hibbard et al. (2006). aMAT: Mean annual temperature in ◦C .
bN: Number of data points.
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Table 3. Summed squared residuals of nonlinear model fits

Site SSRa

E A G V L

BEP 2.6 2.5 1.72 1.69 2.1
DUK 81.1 79.7 72.2 71.8 73.7
HAR 249.7 246.4 216.9 215.3 229.3
HES 23.3 23.0 19.22 19.17 21.1
HOW 88.4 84.9 53.9 53.4 65.6
MEO 110.9 110.2 108.4 108.4 108.3
THA 248.9 247.7 243.4 240.8 242.5
UMB 53.3 52.5 51.5 49.9 51.2
All 184.4 182.0 212.9 218.4 176.0

a SSR: Summed Squared Residuals. Best (lowest) values for each
site shown in bold numbers. All is the compound dataset consisting

of all eight individual datasets.

Table 4. Ranking of nonlinear model fits

Site BICa

E A G V L

BEP 5.0 3.9 -9.4 -8.9 -1.2
DUK 161.1 160.3 157.9 162.5 158.9
HAR 576.2 573.7 552.8 556.0 562.9
HES 92.7 92.2 87.5 91.0 91.1
HOW 347.1 341.1 275.8 277.6 304.9
MEO 556.6 554.6 551.9 555.2 551.8
THA 760.3 758.9 756.3 757.6 755.3
UMB 193.7 192.6 193.4 194.8 192.9
All 1159.6 1145.4 1322.6 1353.7 1110.0

a BIC: Bayesian information criterion (Schwarz, 1978). Best
(lowest) values for each site shown in bold numbers. All is the
compound dataset consisting of all eight individual datasets.
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Fig. 1. Best non-linear fit for the soil respiration as a function of soil temperature for all sites are shown (E: Exponential, A: Arrhenius, G:
Gaussian, V: Van’t Hoff, L: Lloyd-Taylor). The abbreviations of the sites are explained in Tab. 2.
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Fig. 2. Uncertainty bound for each candidate temperature response function spanned out by the sampled function parameter range sets for
the site HOW. The abbreviation of the site is esplained in Tab. 2.
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Fig. 3. Uncertainty in short-term soil carbon flux in August 2006 on 300 m, 1300 m and 2300 m of elevation. Pairs of response functions and
sites have been grouped according to the response function used. The box plots span over the 95% confidence interval. Models are separated
by the dashed lines into groups with similar means and uncertainty ranges. Abbrevations as in Fig. 1.
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Fig. 4. Uncertainty in long-term soil carbon stocks in August 2006 with varying (case wτ ) and fixed (woτ ) turnover times on 300 m, 1300
m and 2300 m of elevation. Pairs of response functions and sites have been grouped according to the response function used. The box plots
span over the 95% confidence interval. Models are separated by the dashed lines into three distinct groups with similar means and uncertainty
ranges. Abbrevations as in Fig. 1.
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Fig. 5. Uncertainty in future projections of the difference of the
long-term soil carbon stocks between 2006 and 2106, based on a
SRES A2 climate scenario over all response functions and all sites
with varying turnover times.



18 Portner H., Bugmann H., Wolf A.: Temperature response functions introduce high uncertainty

Table A1. Linearized temperature response functions

Id Linearized functiona

Eb RT = (RTref )−1 ×RTref

x1−T
x1−Tref ×E1

T−Tref
x1−Tref

A RT = (RTref )−1 ×RTref

Tref×(T−x1)
T×(Tref−x1) ×A1

x1×(Tref−T )
T×(Tref−x1)

G RT = (RTref )−1 ×RTref

(T−x1)(T−x2)
(Tref−x1)(Tref−x2) ×G1

−
(T−Tref )(T−x2)
(Tref−x1)(x1−x2) ×G2

(T−Tref )(T−x1)
(Tref−x2)(x1−x2)

V RT = (RTref )−1 ×RTref
P01+P02×T−1+P03×T+P04×ln(T ) ×V1

P11+P12×T−1+P13×T+P14×ln(T )

×V2
P21+P22×T−1+P23×T+P24×ln(T ) ×V3

P31+P32×T−1+P33×T+P34×ln(T )

L RT = (RTref )−1 ×RTref × ( L1
RTref

)
(Tref−T )(L2−x1)
(L2−T )(Tref−x1)

aTemperature response functions linearized with the method of expected-value parameters (Ratkowsky, 1990). Tref =283.15K,
x0=268.15K (for V only), x1=280.15K, x2=292.15K. b The candiate functions are: Exponential (E), Arrhenius (A), Gaussian (G), Van’t

Hoff (V) and Lloyd-Taylor (L).

Table A2. Significance levels

Site P-Valuea

RTref E1 RTref A1 RTref G1 G2 RTref V1 V2 V3 RTref L1 L2

BEP *** *** *** *** *** *** *** *** ** *** *** *** *** ***
DUK *** *** *** *** *** *** *** *** ++ *** *** *** *** ***
HAR *** *** *** *** *** *** *** *** ++ *** *** *** *** ***
HES *** *** *** *** *** *** *** *** ++ *** *** *** *** ***
HOW *** *** *** *** *** *** *** *** *** *** *** *** *** ***
MEO *** *** *** *** *** *** *** *** ++ *** *** *** *** ***
THA *** *** *** *** *** *** *** *** ++ *** * *** *** ***
UMB *** *** *** *** *** *** *** *** ++ *** *** *** *** ***

Significance levels are given in P-Values for all the parameters of nonlinear model fits for each pair of temperature response function (as
given in Appendix Tab. A1) and calibration site. a Significance codes for P-values: 0 *** 0.001 ** 0.01 * 0.05 + 0.1 ++ 1.
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Table A3. Model parameter ranges

Site Ra
Tref

E1 RTref A1 RTref G1 G2

BEP 1.06[0.94:1.18] 0.86[0.72:0.99] 1.06[0.94:1.18] 0.86[0.72:0.99] 1. 15[1.03:1.28] 0.81[0.68:0.93] 1.66[1.39:1.94]
DUK 2.58[1.94:3.23] 1.96[1.34:2.57] 2.56[1.92:3.20] 1.90[1.29:2.51] 2. 25[1.50:3.00] 1.36[0.56:2.16] 6.46[5.67:7.26]
HAR 2.15[1.84:2.46] 1.53[1.22:1.84] 2.15[1.84:2.46] 1.50[1.19:1.82] 1. 92[1.54:2.31] 0.96[0.56:1.36] 5.38[4.75:6.01]
HES 1.93[1.52:2.34] 1.53[1.06:2.01] 1.93[1.52:2.34] 1.52[1.04:1.99] 1. 92[1.49:2.36] 1.19[0.62:1.76] 3.30[2.41:4.20]
HOW 2.49[2.30:2.68] 1.89[1.68:2.09] 2.50[2.31:2.69] 1.88[1.68:2.09] 2. 75[2.56:2.94] 1.74[1.53:1.94] 4.68[4.22:5.14]
MEO 1.57[1.46:1.68] 1.25[1.13:1.36] 1.57[1.46:1.68] 1.24[1.12:1.35] 1. 59[1.47:1.70] 1.18[1.05:1.32] 3.16[3.01:3.30]
THA 3.49[3.32:3.67] 2.40[2.23:2.58] 3.51[3.33:3.68] 2.42[2.24:2.59] 3. 63[3.40:3.86] 2.52[2.31:2.73] 7.16[3.92:10.39]
UMB 3.10[2.77:3.43] 2.32[1.98:2.65] 3.10[2.77:3.43] 2.29[1.96:2.63] 3. 12[2.78:3.45] 2.21[1.82:2.61] 7.35[6.93:7.77]

Site RTref V1 V2 V3 RTref L1 L2

BEP 1.14[1.02:1.26] 0.10[0.01:0.20] 0.80[0.68:0. 92] 1.65[1.37:1.93] 1.10[0.96:1.24] 0.84[0.71: 0.97] 253.15[202.12:304.18]
DUK 2.23[1.49:2.98] 0.17[-0.18:0.52] 1.39[0.61:2 .16] 6.50[5.69:7.31] 2.39[1.69:3.10] 1.51[0.55: 2.46] 253.15[194.46:311.84]
HAR 1.90[1.53:2.28] 0.03[-0.03:0.09] 0.98[0.59:1 .36] 5.37[4.73:6.00] 2.12[1.79:2.45] 1.30[0.92: 1.69] 253.15[217.07:289.23]
HES 1.96[1.43:2.50] 0.01[-0.08:0.10] 1.16[0.55:1 .78] 3.32[2.43:4.21] 1.93[1.50:2.36] 1.41[0.87: 1.96] 253.15[162.56:343.74]
HOW 2.71[2.52:2.90] 0.13[0.04:0.22] 1.71[1.51:1. 91] 4.62[4.15:5.09] 2.64[2.43:2.86] 1.88[1.67: 2.08] 253.15[234.22:272.08]
MEO 1.59[1.44:1.74] 0.22[-0.30:0.74] 1.18[1.05:1 .32] 3.15[2.98:3.31] 1.60[1.48:1.72] 1.19[1.05: 1.32] 243.07[201.39:284.74]
THA 3.57[3.32:3.81] 0.07[-0.10:0.24] 2.61[2.35: 2.88] 14.8[-2.7:32.4] 3.63[3.43:3.84] 2.55[2.32 :2.78] 252.26[226.98:277.53]
UMB 3.29[2.85:3.73] 0.07[-0.16:0.31] 2.28[1.84:2 .72] 7.30[6.88:7.71] 3.14[2.79:3.48] 2.21[1.83: 2.59] 230.29[153.06:307.52]

Model parameter estimates for nonlinear fits of each pair of temperature response function (as given in Appendix Tab. A1) and calibration
site with their corresponding 99% confidence interval in square brackets. a RTref : Reference respiration at reference temperature

Tref = 283.15K.


