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Small scale spatial heterogeneity of soil respiration in an old growth temperate deciduous forest 
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Abstract

Soil respiration has been studied intensively in various ecosystems throughout the last decades. However, relatively little is known about micro scale heterogeneity within forest ecosystems on homogeneous soils. Here, we investigate within site spatial heterogeneity of soil respiration.

Soil respiration was measured with closed chambers biweekly from April 2005 to April 2006 using a nested design (a set of stratified random measurement locations, supplemented by 2 small and 2 large nested groupings) in an unmanaged, beech dominated old growth forest in Central Germany (Hainich, Thuringia). A set of randomly arranged measurement locations was established in August 2005 and continually sampled biweekly until July 2007.

The average soil respiration values from the random measurement locations were standardized by modeling soil respiration data at defined soil temperature and soil moisture values. By comparing sampling points as well as by comparing kriging results based on various sampling point densities, we found that the exclusion of local outliers was of great importance for the reliability of the estimated fluxes. Most of this information would have been missed without the nested groupings. The interpolation results slightly improved when additional parameters like soil temperature and soil moisture were included in the interpolation procedure. Semivariograms solely calculated from soil respiration data show a broad variety of autocorrelation distances (ranges) from a few centimeters up to a few tens of meters.

The combination of randomly distributed measurement locations with nested groupings plus the inclusion of additional relevant parameters like soil temperature and soil moisture data allows an improved estimation of the range of soil respiration, which is a prerequisite for reliably interpolated maps of soil respiration. 
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1. Introduction

Soil CO2 efflux is one of the largest carbon flux components. Globally it accounts for 20-40% (50-75 Gt C/yr) of the total annual input of carbon dioxide into the atmosphere (Houghton and Woodwell, 1989; Raich and Schlesinger, 1992; Schimel, 1995; Lankreijer et al., 2003). Even small shifts between carbon release and photosynthetic uptake can have a significant influence on the atmospheric carbon budget (Pregitzer and Euskirchen, 2004). 

4.1 billion hectares of land on earth are covered with boreal, temperate and tropical forests containing up to 80% of the terrestrial aboveground carbon and 40% of total soil C (Dixon et al., 1994; Pregitzer and Euskirchen, 2004). However, mean soil efflux rates do not only vary between the major biome types, they also show high variability within the same biome and even within the same measurement site (Raich and Schlesinger, 1992; Rayment and Jarvis, 2000; Soe et. al., 2005; Herbst et. al. 2009). Thus, there are large uncertainties in the annual averages of site-specific soil efflux rates (a site is understood here as a particular ecosystem e.g., a forest or a wetland). Small-scale heterogeneities in soil efflux rates are, inter alia, caused by the high variability of soil structure (Bouma and Bryla, 2000), soil moisture (Davidson et al., 1998), bacterial & fungal communities (Gomoryova, 2004), root density (Hanson et al., 2000; Soe and Buchmann, 2005), soil organic matter content, wind speed at the soil surface and pressure patterns (Lankreijer et al., 2003; Martin and Bolstad, 2005).

In recent years, the term “spatial heterogeneity” occurred mainly within studies comparing soil respiration values between different measurement sites. Most of these sites are selected just because of their different sample characteristics, for example their different soil or vegetation type, stand structure or stand age (Law et al., 2001; Salimon et al., 2004; Vogel et al., 2005). Studies describing within site "spatial heterogeneity“, that means micro scale spatial heterogeneity within old growth temperate deciduous forests with otherwise relatively homogeneous site conditions are rare. Many studies in the past few years partitioned soil respiration into autotrophic and heterotrophic components (Kuzyakov, 2006; Subke et al., 2006) and advances have been made in understanding the dynamics of a wide range of soil C pools and their effects on soil respiration (Baggs, 2006; Kalbitz et al., 2000; Ryan and Law, 2005). However, it still remains unclear on which scales factors influencing soil respiration vary, while influencing total soil respiration rate. 

An approach spanning various spatial scales seems to be adequate to identify the scales on which the variation occurs. Therefore, in the present study we adopted a three-fold strategy. First, we set up nested groups of sampling measurement locations. Second, we recorded data from stratified randomly distributed measurement locations. Third, additional information gathered at the sampling points was used via kriging to improve the reliability of the site scale estimates of soil efflux rates. With this approach we aimed for a better understanding of the spatial variability of soil respiration in old growth temperate deciduous forests. Specifically we tested the following hypotheses:

(1) The environmental controls for soil respiration vary on different spatial scales within old growth temperate deciduous forest sites. Therefore, a multiple scale sampling approach improves the reliability of site scale soil efflux rate estimates extrapolated from point measurements.

(2) The consideration of seasonal parameters like soil temperature and soil moisture further improves the interpolation results.

2. Material and methods

Site

The study site is located in the core zone of the Hainich National Park in Thuringia, Central Germany (51°04´46´´N, 10°27’08’’E, 440m a.s.l.). Sampling locations were established within the fetch area of an Eddy Covariance Tower that is run by the MPI for Biogeochemistry Jena, Germany to provide for the possibility to compare upscaled data to measurements. However, this is beyond the scope of this paper. The mean annual temperature and precipitation are 6-7ºC and 750mm. Soils are chromic cambisols (ISSS, 1998) on limestone. Vegetation structure is that of an old growth forest with a large amount of dead wood and high species diversity. The oldest trees reach 250 years of age. The forest is dominated by Fagus sylvatica L. Additionally Fraxinus excelsior L., Acer pseudoplatanus L., and Acer platanoides L. occur in smaller fractions.

Sampling design
We implemented two different sampling approaches. On the one hand we followed a double nested, stratified random approach (nested series) to determine the maximum range of autocorrelation as a prerequisite for interpolation (Fig. 1). 79 measurement locations were arranged in this series. We superimposed a grid on a map of the site that divides it into 43 rectangular cells with an edge length of 34m. In each of the grid cells one measurement location was placed in a random location to reduce the maximum distance between the points and to avoid large gaps between them. Thus, 43 measurement locations were distributed in a stratified random layout across the whole study site. To obtain spatially nested measurement locations 2 cells were chosen randomly from the grid and 36 measurement locations were placed in 4 groups within them resulting in two small and two larger measurement location groupings nested within each other (see Fig. 1 for details). This double nested approach allowed computing soil respiration data with three different spatial resolutions. Additionally 81 measurement locations were located completely random across the study site (random series).

All measurement locations were equipped with PVC collars with an inner diameter of 10cm and a height of 7cm. They were inserted 3 cm into the soil two weeks before the measurements started to avoid disturbance. Each collar was laterally fixed with three tent pegs to secure fix them against removal by animals.

Sampling procedure

Both series were sampled biweekly. For the nested series sampling was carried out from April 2005 to April 2006. The random series was sampled from August 2005 to June 2007. During the time when both series were sampled (August 2005 to April 2006) the biweekly sampling was carried out alternately.

Soil respiration was recorded with a portable infrared gas analyser (IRGA, EGM-4) connected to a closed soil respiration chamber (SRC-1), both devices by PP Systems, Hitchin, UK. The soil respiration rate was calculated as the rate of change in CO2 concentration within the chamber headspace. The EGM-4 allows for an automatic calculation of emission rates provided that the volume of the chamber and the surface area of the soil are set. The CO2 concentration was monitored each 4.8 seconds over an interval of 124 seconds. 

In addition to the recording of respiration rates soil temperature was measured next to each measurement location at a depth of 0-10cm below the litter layer by digital precision thermometers (Greisinger, Regenstauf, Germany for the nested series; Testo, Lenzkirch, Germany for the random series). Due to the year round measurement campaigns, a few data gaps occurred at ground frost events. These were closed with data from the continuously measuring soil sensors of the Max-Planck-Institute for Biogeochemistry, Jena. These sensors collect data at depths of -2, -5, -15, -30 and -50cm. To assure comparability, the average temperature of the sensors in the depths of -2 and -5cm were calculated. These values showed a very close and significant correlation with the average value of the own measurements at non-ground frost days.

From the 14th of April 2005 until the 12th of April 2006 soil moisture was determined gravimetrically. During each measurement event, gravimetric soil water content was determined next to each measurement location. Hereto, soil samples were taken twice at each measurement location with a small auger up to a depth of -15 cm. These wet samples were weighted, oven-dried for 24 hours at 105°C to stable weight and weighted again. The soil moisture was calculated as the percentage difference between wet and dry weight. At the beginning of both measurement series, soil samples were also taken singularly for determining the soil bulk density. From April 2006 until the end of the measurements soil moisture was determined with frequency domain reflectrometry (fdr) at 0-6cm soil depth below the litter layer with the ThetaProbe Soil Moisture Sensor –ML-2x and the Soil Moisture Meter – HH2 (AT-Delta-T Devices Ltd., Cambridge, UK). In contrast to soil temperature, data gaps during ground frost periods could not be closed using data from the eddy covariance tower, because of the large spatial variability of soil moisture measurements at single measurement dates.

Statistics

Tests for normal distribution with the Kolmogoroff-Smirnoff testing algorithm showed that non-parametric testing procedures were necessary, so we proceeded with Spearman rank correlations. All statistical calculations were carried out with STATISTICA 7.0 (Statsoft, Oklahoma, USA).

To estimate the dependency of seasonal variation of soil respiration from soil temperature, the temperature functions were fitted by regression to the exponential equation:
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with R = soil respiration [g CO2 m-2 a-1], T = soil temperature (0-10cm) [°C], k and a are constants (Davidson et al., 1998; Knohl et al., 2008). Q10 represents the temperature response of soil respiration and is calculated with the formula:
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Saiz et al. (2006) and Stoyan et al. (2000) found that soil moisture is more important for the determination of spatial effects in temperate deciduous forests than soil temperature. Therefore, we consider soil moisture in the model (Eq. 3).
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with θ = soil moisture measured at 0-6cm [vol%] and a, b are fitted constants. The exponential equation taken from Knohl et al. (2008), was log-transformed to a linear model in order to conduct linear regression for the estimation of the parameters (Fig. 2). Soil respiration rates were standardized using soil moisture and soil temperature. Eq. 4 presents the modified version of Eq. 3, where RδTδθ represents the modeled soil respiration for each collar, T and θ are the standardized soil temperature and soil moisture. δT and δθ are the differences between standardized and measured temperature and moisture values and k, a and b are constants again.
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Eq. 4 can be transformed to separate R, so R is replaced by Rstandard (Eq. 5). The modeled RδTδθ term in Eq. 5 can be substituted by the measured soil respiration values. We used the trend identification tool of ArcGIS 9.2 to identify spatial trends by plotting single soil respiration measurement events within a three dimensional diagram. To estimate the confidence of the observed total mean flux, we calculated N, the number of measurement locations needed for a given precision level (Davidson et al., 2002; Yim et al., 2003; Adachi et al., 2005; Knohl et al., 2008) using equation 6:
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with t the Student´s t-statistic, s the standard deviation of one set of daily measurements, and range the desired interval around the daily mean. N was calculated for each measurement date separately. N was averaged to obtain a valid N for the entire study.

Geostatistical analysis

We extrapolated the pointwise measurements using ordinary kriging. Kriging is based on the determination of experimental semivariograms from the data (Goovaerts, 1999, Webster and Oliver, 2001). To optimize the kriging results we varied the lag distance until we obtained the best possible parameter estimates, that means the maximum range. Kriging was carried out using the Geostatistical Analyst extension of ArcGIS 9.2 (ESRI, Redlands, USA).

We used all sampling points located within the two grid cells with the nested groupings to quantify autocorrelation at different spatial scale. Thus, we used three different sets of measurement locations for estimating the kriging parameters. First, only the stratified random measurement locations of the nested series with relatively large inter-measurement location distances were used. Then, the data of the larger groupings from the nested series and finally the data of the small scale groupings were added. The maps as well as the parameter estimates resulting from ordinary kriging with these three datasets were compared. The cell size of the maps was set to 10cm x 10cm and the maps were classified in 0.01 g CO2 m-² h-1 units, the same resolution as the applied measurement equipment. “Hawth´s Analysis Tool” (http://www.spatialecology.com, extension to ArcGIS) was used to count the number of equal values per class. Thus, average soil respiration rates were calculated for different sampling densities. 

To estimate annual fluxes based on the random series with 81 data points, regression equations using measured soil respiration, soil moisture and soil temperature data were calculated for each measurement location. Soil temperature values measured at the eddy covariance facility were used to estimate the mean flux for each measurement location each day of the year. Two methods were used for further calculation: On the on hand we calculated the final annual flux of the site from the average sum of all measurement locations, on the other hand we used a geostatistical approach. Therefore average standardised soil respiration values of each measurement location were extrapolated using ordinary kriging. A minimum convex polygon was created around the measurement points and reduced by 10m inwards to avoid border effects. The resulting polygon was used to clip the ordinary kriging result. Zonal statistics were performed to calculate the total soil respiration rate at the study site.

3. Results

Seasonal variation of soil respiration

Looking solely at the flux rates of the random series the measurements started with average soil respiration rates of 0.48 g CO2 m-2 h-1, with a soil temperature of 14°C and soil moisture of 40% (Fig. 3). From September 2005 the average soil respiration rate decreased constantly until it reached an absolute minimum of 0.04 g CO2 m-2 h-1 in January 2006. Then, in spring 2006, the soil temperature increased rapidly. This was followed with a little delay by the soil respiration rate. The two lower respiration values in the middle of May and July 2006 seem to correspond with temporal decreases in soil moisture availability. Maximum soil temperature and minimum soil moisture was measured on July 26, 2006. 

The seasonal variation of soil respiration is clearly temperature dependent (Fig 4, all data: r²= 0.60, Q10=3.9). The total average soil respiration value is 0.28 g CO2 m-2 h-1. However, the relation between soil respiration and soil temperature was much closer at collars with lower soil moisture content (0-30 % Vol., r²= 0.69, Q10=2.3) compared to wetter measurement locations (>60-90 % Vol., r²=0.32, Q10=4.1) (Fig. 4). The highest average respiration rates (0.30 g CO2 m-2 h-1) were observed at medium soil moisture between >30-60 [% Vol.]. 
The residuals of the regression respiration against temperature have a non-linear relation to the soil moisture content. Under very dry conditions (below soil moisture content of 20%) respiration is underestimated, whereas under medium moisture conditions the fit is generally good but can, under specific conditions driven by other variables not measured here, also be overestimated (Fig. 5). 

Soil temperature did not vary much in space (average soil temperature variability at a given measurement date was 1.3°C)(Fig. 6), whereas soil moisture measurements showed a considerable spatial heterogeneity as well as high seasonal variability. Total average volumetric water content was 37% with a wide range from 5% to 88%. A multiple regression model including soil moisture and soil temperature as explanatory variables slightly improves the explanation (R2 increased from 0.60 using only temperature to 0.63). This model was used for the regionalization.

Spatial distribution

Number of measurement measurement locations required

There are few but highly significant outliers regarding annual soil respiration rates even within short distances. This underlines the need to calculate the number of measurement points required for different levels of accuracy beforehand. Measurements from 6±4 locations are necessary for an 80% confidence level with an error limit of 30% around the full population mean (Table 1). Higher levels of precision require a higher number of measurement locations. At a 95% confidence level, 16±11 collars are necessary for the same large error limit. Reducing this limit to 20% precision increases the required number of collars up to 35±26, further precision can be achieved by using 140±103 at an error limit of 10%.

Kriging preparation

Data point density was varied to optimize the kriging parameters (Fig. 7). We did this on subsets of the data centered around the nested cells. That allowed us to test a large range of different densities. Whereas the calculated average soil respiration rates around one of the grid cells changed little when altering sampling densities by subsampling from the available data, soil respiration rates decreased significantly with higher sampling densities. Both cells are characterized by artificial block structures at low and medium sampling point densities, indicating a distance between the sampling points wider than the range of the semivariograms. Much of the block structures can be smoothed by using a coarser scale for soil respiration, but not all.

Semivariograms

Varying lag distances when calculating semivariograms resulted in markedly heterogeneous autocorrelation ranges. When using a lag distance of 10m the resulting semivariograms reveal a lack of spatial autocorrelation (Figure 8a,b). Zooming in by choosing smaller lag sizes (Figure 8c,d) whilst reducing the dataset by eliminating outliers, results in small range autocorrelation. Furthermore, ranges vary considerably from date to date. However, the average range of autocorrelation was determined at 9m, using lag sizes of 2m. This lag size was used in all further steps of analysis

Maps of soil respiration

A further interpolation run is based on random series and standardized soil respiration rates (Figure 10e). To achieve standardized soil respiration rates average soil respiration was used with equation 5. For the 2006 series it amounts to 0.26 g CO2 m-2 h-1 and a typical soil temperature of 11.6°C results. This is much higher than the total average soil temperature and caused by the exponential dependence between soil temperature and soil respiration. The corresponding soil moisture value was determined using the regression function between soil temperature and soil moisture. Standardization causes the interval of soil respiration to shrink to 0.15-0.23 g CO2 m-2 h-1. The predicted standard error as well as the RMSE (0.04497) are smaller compared to the interpolation based on average soil respiration alone (Figure 10f). Comparing the maps of average and standardized soil respiration reveals the influence of soil temperature and soil moisture. Whereas soil temperature is mainly evenly distributed, the map predominantly shows the distribution of soil moisture deficits or excessive supply which impedes soil respiration.

The annual flux calculated solely from 81 data points of the random series yielded a soil respiration rate of 2285.5 g CO2 m-2 a-1 (±480.2 g CO2 m-2 a-1) or 6.23 Mg C ha-1 a-1 (±1.31 Mg C ha-1 a-1) in 2006 and can be trusted at a confidence level of 90% within an error limit of 10% (or 99% confidence level at an error limit of 20%). Using the geostatistical approach accounting for the spatial distribution of the measurement locations yielded a soil respiration rate of 1875.5 g CO2 m-2 a-1 or 5.11 Mg C ha-1 a-1 in 2006.

4. Discussion

Considerable spatial heterogeneity of soil respiration rates was apparent within our study site due to a variety of confounding factors:

Soil temperature is an important control for the seasonal variation of soil respiration (Davidson et al., 1998, Janssens and Pilegaard, 2003, Reichstein et al., 2008). Reichstein et al (2008) describe a variety of models reflecting a nonlinear positive relationship between soil respiration and soil temperature. Here, we used the Q10 function (van´t Hoff, 1898). It is widely accepted and often used (Janssens and Pilegaard, 2003; Hashimoto, 2005; Pavelka et al., 2007). However, it must be accepted that the Q10 function integrates several controls: An increase in soil temperature influences many biological and physiochemical processes e.g. root biomass distribution, litter inputs and the activity of microbial populations (Janssens and Pilegaard, 2003). However, the calculated Q10-value of 3.9 fits well within the range of other published data of temperate deciduous forests (Raich and Schlesinger, 1992; Davidson et al., 1998; Janssens and Pilegaard, 2003; van Miegroet et al., 2007). The relationship between soil temperature and soil respiration was much closer at dry conditions (r²=0.69, Q10=4.1) compared to wet conditions (r²=0.32, Q10=2.3). This is in contradiction to results by Janssens et al. (2003). They also found that Q10 is not constant during the year, while interpreting data from a Danish beech forest. However, they observed the lowest Q10 values in early autumn during a period of drought stress when soil respiration was completely unrelated to soil temperature and the highest values in winter. Very low or very high soil water contents may limit soil respiration (e.g., Davidson et al., 1998; Reichstein and Beer, 2008; Sotta et al. 2006). In our data-set we did not experience drought. Instead, high soil moisture values occurred at all seasons. This might be due to pockets of high clay content (Knohl et al., 2008) with increased soil moisture. Taking this into consideration, the low Q10 value in our study is more likely caused by the characteristics of a few collars throughout the entire year than a characteristic of seasonality. We find no considerable relationship between soil moisture and soil respiration. That might be caused by the relatively low number of potentially impeding situations (drought or high soil moisture) as also found by Knohl et.al (2008) in the same study area.

Spatial heterogeneity of soil respiration

Soil respiration as well as soil moisture did not show any spatial trends. However, soil respiration rates and soil moisture revealed a patchy pattern without any obvious structures. The spatial variability of soil temperature apparently does not drive this heterogeneity because it is very small (less than ±1°C during a single measurement day). This is in line with Yim et al. (2003) who report that soil temperature is not a dominant factor for the spatial variability of soil respiration in temperate broadleaved forests. 

However, combining soil temperature and soil moisture effects within a single exponential equation slightly enhances the predictability of soil respiration measurements (r²=0.63 compared to r²=0.61). But the effect was not as pronounced as described by Knohl et.al. (2008) for the same study site. Nevertheless, we used equation 5 to calculate standardized soil respiration measurement values for defined averaged parameters to achieve a higher level of accuracy.

Due to the relatively smaller coefficient of variation of CO2 flux in the field compared with N2O fluxes, generally less attention has been paid to the spatial heterogeneity of CO2 fluxes (Ishizuka et al. 2005). A wide variety of authors performed statistical analyses based on the Student´s t-distribution to calculate the number of measurement locations required for an adequate level of precision (Folorunso and Rolston, 1984; Davidson et al., 2002; Yim et al., 2003; Adachi et al., 2005; Knohl et al., 2008). According to our calculations a higher number of measurement locations is demanded to achieve a sufficient level of precision compared to published studies within temperate deciduous broadleaved forest. Especially the differences to the results of Knohl et al. (2008) are remarkable, because they performed their analysis within the same research area. Knohl et al. used data from 10 different studies within the same research site, but most of these measurements were performed using much less sampling points, within smaller observational windows and only during the vegetation period. This suggests that either there sampling density was insufficient, or - and more likely - that spatial heterogeneity is increasing when all-season measurements are considered. This has important implications for the geospatial interpolation.

Soe & Buchmann (2005), also working in the Hainich National Park, observed that trees have a stronger stabilizing effect on patterns of soil respiration than understory vegetation within an annual perspective. If the summer or winter season were considered alone, the variation in soil respiration was much higher (ibid.). Soil respiration was higher in areas with high mean dbh, compared to areas with many small trees. No correlation was found between the distance to the nearest trees and soil respiration, but they determined a negative correlation between the number of tree species and soil respiration. 

Optimizing the parameters for interpolation
The influence of different sample sizes was assessed using nested groupings of measurement locations that are arranged in two of the grid cells. Huge differences between the average soil respiration rates of different sampling densities can be caused by single outliers outside the considered grid cells. This led us to vary the lag distances and bin sizes when calculating the semivariograms (Franklin and Mills, 2003). The observed range sizes clearly depend on the selected bin sizes. Large lag sizes (>10m) sometimes correspond with large range sizes indicating that some drivers of soil respiration may vary on coarser scales than others. For this study, small bin sizes were selected to determine autocorrelation at small ranges where large bin sizes did not indicate any autocorrelation, and small bin sizes were selected to consider even large variability between locations close together. However, the calculated ranges of autocorrelation also varied considerably between measurement dates. This may be caused by fluctuations in spatial patterns due to changes in microbial activity, organic matter input or root activity during the course of the year (Saiz et al., 2006). The then determined average range of the semivariograms (9m) is comparable to ranges found in investigations at the same study site with a range of 6m (Soe and Buchmann, 2005) and in other studies (e.g., 10 m in Ishizuka et al., 2005). The increased amount of measurement locations of the random series (81) compared to the stratified random measurement locations (43) reduces the average distances and considerably enhances the validity of the kriging result proved by the associated predicted standard error map (Fig. 10d). The predicted standard error decreased from 0.07 g CO2 m-² h-1 to 0.05 g CO2 m-² h-1  (at average respiration rates of 0.27 respectively 0.26 g CO2 m-² h-1). This results because the average distances between the measurement locations of the random series better fit to the calculated range of the semivariogram than to the stratified random series. 

Single hotspot soil respiration events can adulterate not only the semivariograms but also large areas within the interpolated maps especially when the sampling density is small. The results of our nested approach measurements clearly show the misleading effect of single outliers (Fig. 7). Therefore, their elimination is important for the reliability of the interpolation results, even when the local hot spot measurement may be functionally justified. This was also supported by the estimation of an adequate number of collars based on the Student´s t-distribution required for an adequate level of precision, which is widely used in previous studies (Folorunso and Rolston, 1984; Davidson et al., 2002; Yim et al., 2003; Adachi et al., 2005; Knohl et al., 2008).

Another important factor regarding the semivariogram calculation might be the area covered by the closed chamber used for respiration measurement. Because a larger variation in emitted gas is covered with larger chambers these may require fewer sampling points compared to small chambers where the variation within one chamber is much smaller (Yim et al., 2003). The chamber used in the present study has an area of 78 cm2, which is comparably small. However, with even smaller soil cores covering an area of 1.8 cm² Robertson et al (1997) and Stoyan et al (2000) found autocorrelation distances of less than 30cm. Seen in relation to our results a possible influence of the chamber size becomes obvious.

Interpolated maps

To avoid the influence of seasonal effects we based the kriging on mean annual soil respiration rates. Ordinary kriging was preferred to cokriging because of the bivalent nature of the supporting parameters (Pringle and Lark, 2006). Soil temperature primarily accounts for seasonal changes and did not show any spatial heterogeneity. Therefore, it is a poor predictor for spatial interpolation (Yim et al., 2003). Soil moisture varies on the seasonal scale as well as on the spatial scale and the values show little autocorrelation. Therefore, the proposed approach to standardize soil respiration using defined soil moisture and temperature values seems to be more promising compared to cokriging. This should not be seen as contradictory to coregionalisation attempts. A particular model may reproduce the components of variation better at some spatial scales than it does at others (Pringle and Lark, 2006). Thus, cokriging methods may be the best choice when parameters with a better autocorrelation structure are available. But in the case of complicated autocorrelation situations like in the presented data, the standardization approach might yield better results.

The standardisation approach

The standardisation of soil respiration using soil temperature and soil moisture largely reduces the interpolated spatial heterogeneity of soil respiration. The remaining heterogeneity must therefore be caused by other, not measured variables. As a result, the interpolation of soil respiration data requires large sampling densities if better, spatially autocorrelated parameters than soil moisture and soil temperature are not available. Standardizing of soil respiration can help to minimize artifacts caused by temporal and spatial small scale heterogeneity of soil moisture and soil temperature. However, to further increase the reliability of the interpolation it would be necessary to incorporate other parameters with less temporal variability and larger autocorrelation ranges.

In summary, the geostatistical approach yielded slightly lower results than the statistical approach, which indicates that the calculated fluxes of even a high number of measurement measurement locations can be further improved by involving spatial parameter. 

Conclusion

This study concentrates on the measurement location scale spatial effects, the relationships and confounding co-variations between soil temperature and soil moisture. Variations on the micro scale as well as at larger scales have to be considered whenever measurement location scale variations are influenced (Reichstein and Beer, 2008). We conclude that only a combination of a randomized and a double nested sampling approach as well as the appropriate incorporation of additional parameters like soil temperature and soil moisture data may permit a sufficient estimation of the range of soil respiration, which is a prerequisite for reliable maps of soil respiration based on interpolation. Appropriate range distances should always govern the sampling design. Therefore, there is a need to estimate the range distance based on extensive pre-studies with nested measurement locations. Furthermore, our results show that the consideration of seasonal controls facilitates the interpolation of soil respiration measurements.
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Figure 1: Distribution of sampling locations in two series. Sampling locations of the random series (81 open circles) are distributed completely random across the site. Sampling locations of the nested series (43 dark circles and 36 triangles and 34m grid squares) are arranged in a stratified random way in 2 nested groupings: Two of the cells were chosen randomly from the grid. In both, 9 measurement locations are distributed randomly (large groupings).  Both cells are further divided into quarters and in one quarter 9 measurement locations are placed at random (small groupings).
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Figure 2: Log transformation of soil repiration data.


[image: image14]Figure 3: Soil moisture, soil temperature, and soil respiration during the course of the study. The graphs base on the measurements in the 81 measurement locations of the random series. Vertical bars represent the 95% confidence interval. The annual cycle is clearly apparent. The soil moisture data gap during winter 2005/2006 is caused by ground frost. Furthermore, the soil respiration measurements show considerable heterogeneity at some of the measurement dates.
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Figure 4: Relationship between soil temperature and soil respiration. Q10 as well as the fit and the parameters of the models vary for different ranges of soil moisture. The Q10 for all data is 3.9 [r²=0.60; CO2=0.0711*exp(0.1365*x)
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Figure 5: The residuals from the regressions of soil respiration vs soil temperature are plotted against soil moisture
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Figure 6: Covariation of soil temperature of all measurement events.
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Figure 7. Comparison of the soil respiration interpolation based on three different sampling densities within two test cells (see methods section for details). The resulting average soil respiration values are given below the panels. Units are g CO2 m-2 h-1. Figure a & b are kriging results using only data from the stratified random distributed measurement locations, figure c & d  represent results using the stratified random measurement locations and data from the large nests, and figure e & f are supplemented with data from the small nests. 
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Figure 8: Example semivariograms of soil respiration a, b): Bin width is 10m, all possible distances included. c, d): Bin width = 1.5m, only distances up to 150m included. Auto-correlation does only occur at very small distances between measurement locations. 
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Figure 9: Example semivariograms of soil moisture and soil temperature.
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Figure 10: Interpolated maps of soil respiration measurements of the nested series (a) exhibits a large predicted standard error –PSE (b), whereas the random distribution (c) shows a much smaller PSE (d). The most homogeneous result was achieved by standardizing the randomized soil respiration measurements of 2006 at 11.6°C soil temperature and correlative 35.2 % soil moisture (e) possessing little PSE (f). Units are g CO2 m-² h-1

Table 1: Required number of soil respiration measurement points to achieve a precision [image: image24.png]of ±10, ±20, or ±30% around full population mean at various confidence levels (80-99%)
Interval [%]�
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�
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32±24�
16±11�
10±8�
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